UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Spatial Reasoning Using Sinusoidal Oscillations

Permalink
https://escholarship.org/uc/item/5c¢z1992]
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Author
Pratt, lan

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5cz1992j
https://escholarship.org
http://www.cdlib.org/

Spatial Reasoning Using Sinusoidal Oscillations

Ian Pratt
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Abstract

This paper outlines some preliminary results concerning the use of sinusoidal os-
cillations to represent vectors in two-dimensional space. The proposed representation
scheme permits efficient implementation of translation and rotation, and immediate
detection of such relations as collinearity and proximity of points. This scheme is then
extended so that arbitrary convex regions of the plane are represented using a pair
of signals varying over time. Finally, the advantages of representing convex regions
in this way are shown to derive from the resulting ease with which such regions can
be translated and rotated in the plane, and—more strikingly—from the simplicity of
determining whether two such regions overlap.

1 Introduction

This paper presents an approach to spatial representation such that that: (i) translations and
rotations of points and regions can be readily performed; (i1) relations such as collinearity
and proximity of points can be efliciently detected; and (iii) the question of whether regions
overlap, and, if so, by how much, can be settled with a minimum of computation. For reasons
which will become evident, we concentrate on the problem of representing conver regions
of the plane.

The proposed representation system is based on a well-known correspondence between
sinusoidal oscillations with a fixed frequency w, and vectors in two-dimensional space. Section
2 describes how we can represent a vector (equivalently, a point in space), by having a device
which emits an appropriate sinusoidally varying signal. (Here, “device” may be either a
physical device or a virtual device—i.e. a programming construct.) Section 3 extends these
results to show how we can represent any convex region of the plane using a device emitting
a pair of signals varying with some fixed time period. Such regions, thus represented, can be
efficiently translated and rotated; and, as we see in section 4, given two such regions, it is a
straightforward matter to determine whether they overlap. As such, I claim, the proposed
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system promises to combine the expressive power of numerical co-ordinate systems and their
variants, e.g. (2], [3], with the computational tractability of qualitative, object-based spatial
representation schemes such as [1].

2 Representing vectors

There is a natural correspondence between the set of sinusoidal oscillations with some fixed
frequency w and the set of vectors in two-dimensional space. Given a sine wave

w(t) = asin(wt + @)

with frequency w, amplitude a and phase-lead ¢, we can associate the vector v whose polar
co-ordinates are (a, ¢).

The key feature of this correspondence is that, given two vectors, the superposition of
their corresponding sinusoidal waves yields a third sinusoidal wave, also of frequency w,
which corresponds to the vector sum of the original two vectors. More formally:

Theorem 1: Let wy(t) = aysin(wt + ¢1), wa(t) = a;sin(wt + ¢,) be sinusoidal waves of
frequency w. Let vy, v; be the corresponding vectors (i.e. having polar co-ordinates
(a1,¢1), (a2, $2) respectively). If ws(t) is the pointwise sum w;(t) + w2(t), and if
vz is the vector sum v; + vy, then w;(t) is also a sinusoidal wave of frequency w,
w3(t) = azsin(wt + ¢3), where (a3, ¢3) are the polar coordinates of the vector vs.

Textbooks on the theory of AC circuits use this result to calculate the effects of combining
sinusoidally varying currents and voltages by adding the corresponding vectors. Here, how-
ever, rather than using vectors to reason about sine waves, I propose that we use sine waves
to reason about vectors.

If we have a device (physical or virtual) continuously emitting a signal varying sinusoidally
over time with frequency w, that device can represent a vector. The amplitude, a, of the
wave represents the length of the vector, and the phase lead, ¢ (measured relative to some
internal clock), represents its orientation. The varying signal may be a sequence of numbers,
or a continuously varying potential difference, or yet other things besides. In this paper, I
leave the details of the implementation open, assuming only that suitable sine waves can be
readily produced, superposed, and compared in simple ways.

Now suppose we have two such devices running in parallel and emitting sine waves of
frequency w, representing, respectively, vectors v; and v;. By piping those signals to a unit
which superposes (i.e., pointwise adds) them—call it an addition unit—we have, in effect,

computed the vector sum v; + v (fig.1).
delayer .L[ adder I—-—

1vect0r p i 1

;‘ signal adder |

vector v,

subtractor

vector v

Fig.1 Fig.2
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Similarly, mutatis mutandis, for vector subtraction: by piping the two sinusoidal waves to a
subtraction unit which pointwise subtracts one from the other, we have computed v, — v,.

To rotate a vector v, thus represented, clockwise through some angle 6 (about the origin),
we need only increase, by 8, the phase-lead of the wave used to represent v. This corresponds
to delaying v’s output signal by the amount of time (2r—8)w=" (ignoring the first oscillation),
again, an operation which I shall take it can be simply performed. To rotate a vector about
a point p (other than the origin), it suffices to find v — p (obtainable by piping v and p into
a vector subtraction unit), rotate the result through # about the origin (as just described)
and add p (by piping the result together with p to a vector addition unit). The process is
illustrated in fig.2.

It is also easy to test for such relations as sameness of orientation, collinearity and
proximity. Two vectors have the same orientation if and only if their corresponding sine
waves are in phase; so a device able to check that the maxima of two waves coincide could
perform this test. To test for the collinearity of vy, v and wvj, it suffices to compute both
v1—v3 and vy —v3 and then to determine whether these two vectors have the same or opposite
orientation. Thus, the arrangement depicted in fig.3 would suffice for such an operation.

vector v

vector v3 Fig.3

phase checker !r——-

il

Similarly, two points, corresponding to vectors vy and v,, will be near each other if and
insofar as the length of vy — v, is small. Therefore, detecting the proximity of points just
involves piping the corresponding signals to a subtraction unit and then piping the result to
a device which registers the maximum amplitude of an incoming signal.

3 Representing convex regions

Let us begin with a simple example. Consider the line AB between two points (vectors)
va, VB, as shown in fig.4 (the sine-wave representation of v, vp is also given).

. m A T’: time
NV

Vg,
A A

VA Fig4 |

The set of vectors lying on the line AB is the set {kv4 + Avp|x, A € [0,1],x + A = 1}. Now
there is a correspondence between this set and the shaded area of fig.4: let w(t) be any sine
wave (of frequency w) and let v be its corresponding vector; then w(t) lies within the shaded
region of figure 9 if and only if v lies on the line AB. The task of this section is to generalise
this result to show how more complicated regions can be represented.
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Definition: A set S of vectors is said to be convez iff, Vz,y € S, V&, A € [0,1] s.t. £+ ) =1,
we have kz + Ay € S.

Fig.5 shows some more convex sets of vectors (the shaded regions, not just their bound-
aries) accompanied by the sinusoidal representations of some of the key points on their
peripheries. (Points in the plane are identified with the corresponding vectors in the obvious
way.)

¢ C
N
a) @;\\ B
> time
2
A
D C
b) *0 & time
A B
al 1
C) All sine waves of amplitude r time

Fig.5 (“0” indicates the origin)

We shall presently show that the shaded regions in the two sets of diagrams correspond, in
a sense we now proceed to define.

Definition: If V is a set of vectors, define the convez hull of V, to be the smallest convex
set containing V.

Definition: If W is a set of sine waves w(t) of frequency w, define the sinusoidal hull of W,
to be the pair of functions: X(t) = (a(t),b(t)), where a(t), b(t) are functions defined
by: a(t) = sup e w(t) b(t) = infuew w(t).

a(t), b(t) represent the upper and lower bounds, respectively, of all the sine waves in W; if
these upper or lower bounds do not exist, we set a(t) = oo, b(t) = —o0, as appropriate.

Definition: If £(¢) = (a(t),b(t)), is a sinusoidal hull, and w(t) is a sine wave, we write
w %X ¥ (read w is contained in T) iff V¢, a(t) > w(t) > b(t).

We can now state the main theorem of this section:

Theorem 2: Let V be a closed set of vectors, and let W be the set of sine waves corre-
sponding to the vectors in V. Let S be the convex hull of V. Let £ be the sinusoidal

hull of W. If v is any vector, and w(t) its corresponding sine wave, then v € S iff
w=<X.
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In other words, the sinusoidal hull of a set (finite or infinite) of sine waves corresponds to
the convex hull of the set of vectors those sine waves represent.

Hence, in order to represent the convex hull of a finite set of vectors, all you need to do
is to take the sine waves corresponding to those vectors and pipe them to two devices, one
outputting the (pointwise) maximum of all its incoming signals, the other the minimum.
(Thus these signals correspond to the functions (a(t), b(t)) respectively of some sinusoidal
hull ¥.) Fig.5a shows roughly what those outputs would have to be in order to represent a
triangle. Fig 5b does the same for a square. Such a pair of signals can be used to determine
whether any given vector v, represented by sine wave w(t), is in the region in question simply
by checking whether w < I (i.e, whether a(t) > w(t) > b(t) holds over an entire oscillation).

Not that a sinusoidal hull need be generated from a finite number of sine waves in this
way: fig.5c shows how the sinusoidal hull corresponding to a circular region centred at the
origin is easily generated — it is just a pair of constant signals. But it cannot be generated
from any finite number of sine waves. Similarly, for other convex, curvilinear shapes.

Furthermore, any device emitting a pair of periodic signals a(t) and b(t), with period
2rw™!, can be taken as representing a (possibly empty) convex set. To see this, note that
there will either be a maximal sinusoidal hull that lies between these two signals, or else no
such sinusoidal hull at all, where a mazimal sinusoidal hull is one for which the set of sine
waves it contains is maximal. And since that maximal sinusoidal hull (if there is one) will
pick out some convex set or other, then the original signals, a(¢) and b(t), can themselves
represent that convex set. As before, to test whether a vector is in that set, we take its
corresponding sine wave w(t) and check whether a(t) > w(t) > b(¢) holds over an entire
oscillation.

Suppose we want to translate a convex set C by a vector v, where C is represented by
the signals (a(t), b(t)) and v by the signal w(t). Then the translated convex set will be
represented by (a(t) + w(t), b(t) + w(t)). Hence, the translation of convex regions, like
that of single points, can easily be effected by means of piping the appropriate signals to an
addition unit as described above. Similarly, the rotation clockwise through an angle 8 of a
convex region about the origin can be effected by delaying the signals a(t) and b(t) by an
amount of time (27 — 8)w™!.

4 Detection of Overlaps of Convex Regions

To detect overlaps, the following definitions will prove expedient:
Definition: Suppose S, S, are sets of vectors. Define their inner difference, S; © S; to be
the set {(z — y)|z € S1,y € S2}.

Definition: Suppose I:(t) = (a;(t), b:1(t)) and T(t) = (aa(t),bz(t)) are sinusoidal hulls.
Define their inner difference, £; © £, to be the pair of functions (a;(t) — by(2), b1(t) —
az(t))

If S;, S, are convex, so is S; © S3. Also, S; N S # 0 iff 0 € S1 © S2. Hence, to determine

whether S; and S, overlap, it suffices to determine whether 0 € S; 6 S;. If £, I, are
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sinusoidal hulls, so is £; — ;. It is formed by subtracting the lower bound of the second hull
from the upper bound of the first, and the upper bound of the second hull from the lower
bound of the first. Inner differences of sinusoidals hulls can therefore be computed using
subtraction units of the kind encountered above. Also, inner differences of sinusoidal hulls
correspond to inner differences of convex sets:

Theorem 3: If S; and S, are convex regions corresponding to sinusoidal hulls ;, I, re-
spectively, then S; 6 5, is a convex region corresponding to the sinusoidal hull £, 6 Z,.

Whence:

Theorem 4: Let wo denote the zero-amplitude sine-wave: wo(t) = 0 for all ¢t. If S; and S,
are convex regions corresponding to sinusoidal hulls ¥;, ¥, respectively, then S; NS, #
QIEWszlezz

Since, then, we have a method for computing the inner difference of two sinusoidal hulls,
and a means of determining whether a sinusoidal hull contains the zero wave, we can imme-
diately detect whether two convex regions overlap by piping their outputs to an appropriate
arrangement of devices.

A caveat. Theorem 4 should be applied with care. Recall from section 3, that any pair of
periodic signals (with period 2rw™') can represent a (possibly empty) convex set. Given two
such pairs of signals, (a;(t), b1(t)) and (ay(t), b2(t)), representing S, and S respectively, we
can define their inner difference in the same way as for sinusoidal hulls. But it is in general
false that the resulting pair of signals (a;(t) — ba2(t), b1(t) — a2(¢)) will contain wy only if
S1N Sz # 0. Theorem 4 requires that (a;(t), b1(2)) and (az(t), b2(t)), be sinusoidal hulls, as
defined in section 3.

5 Discussion

On the present view, a complex two-dimensional scene is represented by a collection of
“devices”, each broadcasting either a single sine wave (representing a single point) or a
pair of periodically varying signals (representing a convex region). By piping the outputs of
these devices through suitable transforming units, geometrical operations like translation and
rotation can be performed. Moreover, by piping the same outputs through yet other devices,
tests for relations like collinearity and proximity of points and overlap of regions can be
made. The computation involved in these operations and tests is trivial, in marked contrast
to the nightmarish problem of determining intercepts of curves expressed as equations in,
say, a Cartesian co-ordinate system. It is as if the sinusoidal representation “flattens out”
the problem of determining the membership of a point in a convex region, yielding the easier
problem of determining whether one signal lies between two other signals over a period of
time.

It will be objected that this assessment ignores the difficult task of converting back and
forth between a Cartesian co-ordinate representation and the sinusoidal hull representation.
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But this would be to miss the point of the present proposal. That proposal is not that regions
be represented by equations of bounding curves, and that those equations be converted into
sinusoidal hull signals in order to perform transformations and tests on them. Rather, it is
that the equations of bounding curves can be dispensed with altogether: all we have is the
collection of signal-emitting devices. Thus, to know what a square is, or a triangle or a circle
or an oval, our system would have to be able to activate a device outputting the appropriate
signals, not state an equation in Cartesian co-ordinates (of course: the device in question
might have to store its signals as a pair of equations a(t) = ..., b(t) = ...). To repeat: the
policy is not to augment traditional co-ordinate representations, but to dispense with them.

So conceived, the fate of the proposed representational system depends on how well it
can interface with visual input and motor ouput: no good doing away with co-ordinate
representations in favour of sine waves, if it then becomes impossible for, say, a robot to
determine the shapes of things it is looking at, or to adjust its movements in conformity with
its beliefs about the spatial arrangement of its environment. These are therefore important
questions for future work in this area. Other pending questions concern the extension of
the proposed system to deal with non-convex shapes, 3-dimensional space, uncertainty and
moving scenes. Finally, of course, many implementation details, some non-trivial, remain
outstanding.

6 Conclusion

This paper has presented a system for detailed representation of convex plane figures. Its
utility derives from the facility it provides to rotate and translate such regions, and to detect
overlaps between them. Work remains to be done to extend and implement the system
as proposed here. However, the results presented above suggest that, for detailed spatial
representations, traditional co-ordinate systems may be considerably less efficient than the
current approach.
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