UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Representation and Recognition of Biological Motion

Permalink
https://escholarship.org/uc/item/7 1m7 w691

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Author
Goddard, Nigel H.

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/71m7w69f
https://escholarship.org
http://www.cdlib.org/

Representation and Recognition of Biological Motion
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I.

The human visual system has a remarkable ability to dis-
criminate between different types of movement. The classic
illustration of this ability is Johannson’s Moving Light Dis-
play (MLD) [Johansson, 1973]. Reflective pads were placed
at the joints of an actor dressed in black, and the actor il-
luminated. Films were taken of the actor walking, jumping
and making various other movements against a black back-
drop. When these films were shown to subjects, they all
recognized the display to be of a person walking, jumping,
elc., but reported single frames to be meaningless patterns
of dots. A presentation time of no more than 200 msec was
sufficient for all subjects to make the correct discrimina-
tion. In forced choice experiments, all subjects accurately
identified 6 human and 3 puppet generated patterns with
a presentation time of 400 msec. Further experiments [Ko-
zlowski and Cutting, 1977, Cutting and Kozlowski, 1977]
demonstrated the sensitivity of this faculty: subjects could
determine the actor’s gender, and could even identify the
actor if (s)he was known to the subject.

This paper describes the early stages of an attempt to
produce a computational account of this capability, con-
sistent with the psychological and neurophysiological lit-
erature. The following section discusses data on the hu-
man visual system which may shed light on MLD process-
ing. Section 3 introduces Feldman’s Four Frames compu-
tational architecture [Feldman, 1985] for the visual sys-
tem, outlines the low level processing we believe occurs,
and develops and motivates our target representation the
scenario. Section 4 describes the processing architecture
which activates scenarios using the output of the low level
system, and details its implementation in a connectionist
network.

1T,

Introduction

MLD Processing in the
Human Visual System

There are two obvious ways the motion information avail-
able in the Johannson experiments could be used to gen-
erate the percepts of person and walking, or the single per-

! correspondence should be sent to the first address

2An early version of this paper is to appear in Proceedings of
DARPA Image Understanding Workshop 1988 under the title “Rec-
ognizing Animal Motion".

cept of walking person. The first method would be to use
the motion information to index directly into memory, im-
plying a memory representation rich in temporal informa-
tion. This method places motion information in a cen-
tral position vis-a-vis the recognition process. The second
method would use the motion information to reconstruct
various static qualities of the scene object (such as struc-
ture), and use those static qualities to index into memory
and recognize the object. Having recognized the object,
the motion of various key parts of the object could be used
to discriminate between gaits. In this second method, the
motion information is used in two ways: to recover static
qualities; and to disambiguate a small number of gaits.

In this paper we address the first method, but do not
rule out the second. Such a motion-specific process and
memory structure must play a role in MLD experiments.
Johansson's subjects could distinguish gait with a presen-
tation time of less than a quarter of a cycle of the periodic
motion (i.e. less than a quarter of a step in walking or run-
ning) [Johansson, 1976). This implies that phasal relation-
ships between joints throughout a cycle of the gait must
be represented in memory. Recognition must be based on
invariants and the absolute dot motions in an MLD are
not invariant with respect to scale or rotation in the im-
age plane. Something like the Johannson’s Visual Vector
Analysis [Johansson, 1973] must be taking place, with the
movement of dots treated as relative to that of other dots.
Relative speed of rotation about a joint of the limbs con-
nected at the joint is invariant with respect to scale and
rotation in the image plane, and may be a good candidate
for the recognition process. However the fact that upside-
down MLDs are not recognized as such [Sumi, 1984], while
upside down moving stick figures are easily recognized (our
own informal observation) implies that the motion invari-
ants used in recognition cannot be computed by the visual
system for upside down MLDs. This implicates top-down
feedback in the computation of the invariants, under the
assumption that the gait is represented in memory for the
object in its normal orientation. The memory representa-
tion then provides no help in computation of invariants for
moving objects in an unfamiliar orientation.

Further evidence for memory structures devoted to
representation of sequence and time is provide in [Freyd,
1983]. She presented single frames of a motion sequence to
subjects, and then tested their memory for other frames
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from the same sequence. Subjects found it harder to dis-
tinguish frames lafer in the sequence from the stimulus
frame than they did to distinguish frames earlier in the se-
quence from the stimulus frame. [O’Connell and Gerard,
1985] found that children develop the ability to reproduce
familiar sequences earlier than the ability to reproduce the
same events prevented in an unfamiliar sequence, implying
an early development of representation of sequence. [Rune-
son and Frykholm, 1983] argue persuasively that represen-
tation of body motion is couched in terms of causal factors
as well as descriptive components (i.e. force and mass as
well as velocity). MLD’s of actors lifting boxes were pre-
sented to subjects who had no difficulty discriminating the
box’s weight qualitatively. If the actor attempted to de-
ceive, not only was the deception detected but both real
and intended weights were discriminable. Although we will
ignore causaul factors in our model, they will have to be
integrated eventually.

Whatever the interpretation of the psychological re-
sults, it is clear there must be a memory structure rich in
information about change in the environment. Brain dam-
aged patients provide neuroanatomical evidence for a sepa-
rate recognition process based on motion alone. Lesions to
the temporal lobe can lead to the inability to identify faces,
while leaving intact the ability to identify from body mo-
tion; and lesions to parietal cortex can impair recognition
from body motion while leaving object recognition unim-
paired (Damasio, 1988]. [Perret et al, 1985] found cells
in the superior temporal sulcus of the macaque monkey
which responded selectively to differing body motions in
view, into view and out of view. [Chitty et al., 1987 (in
submission)] found cells in the same area that responded
selectively to MLD displays, to MLD displays with limb
segments suggested by contour; also some cells selective
for static form which responded to MLD stimuli, imply-
ing computation of form from motion. All these results
indicate representation and recognition of sequence is ex-
plicitly performed in the visual system.

ITI. Four Frames

We take as a basis for our computational model the Four
Frames architecture [Feldman, 1985] for the visual system,
and its extension to deal with kinematics [Feldman, 1988].
Using this computational framework, we may address the
question of how MLD image sequences are processed into
percepts. Of the four frames (refinotopic, stable-feature,
world-knowledge and environmental), we shall focus on
the interaction between the stable-feature frame and the
world-knowledge formulary.

A. Retinotopic to Stable-Feature

The first frame, the retinotopic frame, is “intended to
model the view of the world that changes with each eye
movement” [Feldman, 1985, page 265]. In our case the in-
formation in the retinotopic frame at any instant is a rep-
resentation of the dot pattern image on the retina at that

instant, modulated by the receptor properties and their
time characteristics. The most salient information here
will be retinal smear due to the motion of the dots. The
second frame, the stable-feature frame, computes intrinsic
features of the scene being viewed, which do not change
with eye-movement. For our purposes, the first important
feature encoded in the stable-feature frame will be the mo-
tion of the dots. Whether via the short range process or
apparent motion, the stable feature frame will provide at
each instant the velocity and position of each dot in the
moving pattern. Considerable work has been done on the
detailing the kind of computations necessary for transfor-
mating motion information from the retinotopic to stable-
feature frame [Hildreth, 1983). We assume this computa-
tion is performed along the lines suggested in [Feldman,
1988] and [Olson, 1988).

However, as stated in the previous section, the posi-
tion and motion parameters for each dot in the MLD im-
ages are not suitable data to use in indexing. The stable-
feature frame must also compute the invariants in terms
of which object motion is represented in the next frame,
the world-knowledge formulary. We suggested above that
for biological motion relative speed of rotation of the two
limb segments about their common joint might be such an
invariant. In fact we also need to know direction of rota-
tion, and will need some relative positional information,
such as angle formed at the joint. In the following sub-
section we develop a representation for biological motion,
the scenario, based on relative angular velocity and rela-
tive angular position of limb segments. We assume that
the invariants used to represent scenarios are computed in
the stable feature frame from the position and velocity pa-
rameters of the MLD dots, using top-down feedback. The
nature of the feedback and the details of the computation
are hard unsolved problems, but we would assume at least
that the feedback is from the same type of memory used to
hold scenarios. The recognition problem is then to index
into scenario memory from the invariant values computed
in the stable-feature frame.

B. Representing Biological Motion in the
World-Knowledge Formulary

Under the Four Frames analysis, scenario memory is con-
tained in the world-knowledge formulary. This frame is
“the observer's general knowledge of the world, including
items not dealing with either vision or space” [Feldman,
1985, page 266]. Knowledge of types of movements of types
of objects is general knowledge of the world.

Our scenario representation will be couched in terms
of visual events. Informally an event is any significant
change in one of the invariants specifying the object and
motion. A form eventcould be arrival at colinearity of var-
ious object features, a color event a change in color, and a
motion event a change in speed or direction of movement.

To make our task tractable, we make the following as-
sumptions. The motion to be recognized is that of an artic-
ulated stick figure with bright spots at the joints, moving

231



parallel to the image plane and viewed orthogonally. If
the trunk of the figure is moving, we assume the imag-
ing system is tracking the center of rotation of the trunk,
so that in the image the trunk is undergoing pure rota-
tion. The limbs are rotating about an end of the trunk,
and so on. Thus we have a movement which can be com-
pletely described by the length of each stick in the fig-
ure, and the change in angle at each joint over time. We
shall assume that the change in joint angle over time is
piecewise linear, i.e. a sequence of segments of constant
angular velocity. This treatment is similar to that of [Jo-
hansson, 1973] and recalls Cutting’s hierarchy of “centers
of moment” [Cutting, 1981]. As in the related Tinker Toy
recognition project [Cooper and Hollbach, 1987], we have
assumed a principal views treatment and features which
are invariant to scale®. As viewpoint changes, so that mo-
tion is no longer parallel to the image plane, these angular
position and velocity cues vary little and can be considered
invariant for the purposes of indexing.

We have now delimited the class of movements in such
a way that a complete representation is possible. Each
joint undergoes a sequence of constant angular velocity
changes, which for biological movements such as walking
is periodic. The set of sequences together with informa-
tion co-ordinafing them describe the motion completely:
sufficiently to unambiguously regenerate it. Such a set of
sequences of events constitute a scenario.

The fundamental motion event under these assump-
tions is a change in angular velocity. The choice of angular
velocity as the basis of motion representation is due to data
suggesting that we have velocity information availible for
a variety of tasks, but not any higher derivative such as
acceleration [Jagacinski et al., 1983, Todd, 1981, Runeson,
1975). There are cells sensitive to rotation [Saito et al.,
1986, Sakata et al., 1985), although not sufficiently highly
tuned for particular velocities. However the output of sev-
eral broadly tuned cells can be combined to achieve finer
tuning. [Perret et al., 1985] found cells sensitive to velocity
change, which would be required to detect our events. But
these neurophysiological data are more an indication of
what is possible in the visual system rather than definitive
evidence for a particular computational or representational
scheme.

A simple graphical representation follows from the
specification of a scenario given above. We represent each
event, or point (in time) when the angular velocity changes,
by a graph node. The nodes are labeled with the new an-
gular velocity and the absolute angle of the joint at that
time. Directed edges between nodes represent sequence,
each edge being labeled with the time between the two
nodes. Each sequence is represented by such a graph. The
graph is cyclical if the sequence is periodic. The graphs for
the sequences are linked with directed edges that specify
the co-ordination between the sequences, using labels on

3In fact cells selective for faces by principle view have been found
in the macaque monkey [Perret et al., 1987].
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Figure 1: abstract scenario and graph

the edges as before.

Figure 1 shows an example abstract scenario and its
associated graph. At the top of the figure we show two
connected pendula, rotating at joints A and B. The top-
most stick is stationary. Over the course of eight time
steps, the pendula undergo the motion depicted from left
to right. Inter-step motion is of constant angular velocity.
Thus it is easily seen that the upper pendulum (A) oscil-
lates with period 8, and the lower pendulum (B) oscillates
with period 4. For each pendulum, a cycle of this arti-
ficial oscillation consists of two constant angular velocity
segments, one clockwise and one counter-clockwise. In the
graph we represent changes of angular velocity by nodes.
Thus there are two nodes for joint A, shown in the upper
dotted box, corresponding to the two changes of direction
of rotation during the 8 step cycle. Similarly for joint B
there are four nodes corresponding to the four changes of
direction during two cycles of the 4 step period. The nodes
are labeled with the angle at the joint and the new angular
velocity at the joint. For example, the leftmost node in the
dotted box for A specifies that this event occurs when the
joint angle is 210 degrees and the new angular velocity is
-15 degrees/step. Within each dotted box are the sequence
links indicating the order of the nodes. Links between the
dotted boxes indicate coordination of the joint sequences.
The critical simulataneity links are shown by the two lines
with arrows at both ends.

IV. Connectionist Network
Implementation

The preceding section described the information availi-
ble in the stable-feature frame and the world-knowledge
formulary. For our implementation, the stable-feature
frame provides the input representation, and the world-
knowledge formulary the memory representation. Recog-
nition is the process of using the stable-feature frame in-
formation to activate structures in the world-knowledge
formulary.
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A. Input and Scenario Representation

The stable-feature frame will compute the invariants used
for recognition. The invariants we have chosen are the an-
gular position and velocity at each joint. Using the unit
value principle [Ballard, 1986] we have as input represen-
tation a number of input modules, each providing the angle
and angular velocity for one joint.

Figure 2 shows an input module. Each input module
consists of a set of angle, a set of angular veloctiy units, and
a single unit to detect events (change in angular velocity).
Each angle and velocity unit responds to a range of val-
ues, shown by the two numbers in each unit; for example,
the first angle unit responds to joint angles from 0 to 45
degrees. This figure is an example of an input module for
illustrative purposes. In the implementation, we actually
use many more units to represent the 360 degree range.
The pattern of activity of these units over time describes
the kinematics of the joint. We assume that the stable
feature frame has segmented the image information into
information for each joint, and activates the appropriate
number of input modules.

How should we represent scenarios? The graphical
representation developed above is naturally implemented
as a connectionist network®. Each graph node is repre-
sented by a unit, and each directed labeled edge by a link
with an associated time-delay. The units have a site for
priming activation which arrives along these delay links,
and another site for input from the lower levels of the vi-
sual system. Initially all units receive a small amount of
priming activation. Units expect activation to arrive at
both sites simultaneously. If priming activation or input
activation arrives, but not both, then the events in the im-
age are not corresponding to the scenario represented. If
the image events do indeed correspond to the scenario rep-
resented, then priming activation should flow through the
network, building up as it does so. For periodic motions
this activation should saturate quickly. Figure 1 is eas-
ily re-interpretable as a connectionist network, the graph

4 In our networks units have one or more sites at which links arrive,
and where input activation is processed. This enables differential
treatment of inputs.
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Figure 3: evaluation network

nodes becoming scenario event units.

These scenario event units are complex. The unit has
four sites: one receives inhibition from other event units in
the same sequence; one receives priming from event units
that represent simultaneous events in other sequences; an-
other receives priming from preceding events; and the last
receives input originating in the input modules. The sites
compute relatively complex functions of their inputs, such
as sum of squares and exponential decay. The unit out-
put is a multiplicative function of the total priming (less
inhibition) and the input activation.

A scenario is recognized when activation flows around
the network representing it. It is a simple matter to attach
a network to the scenario network to detect when and how
strongly activation is flowing through the scenario network.
The output of this evaluation network is a measure of how
similar the input is to this particular scenario. Figure 3
illustrates the evaluation network. The dotted boxes from
Figure 1 are reproduced, together with the time step count
(0 to 8). The evaluation network is the bundle of five units
at the bottom of the diagram. The central unit is the sum-
mator, which computes the final evaluation. The four pe-
ripheral units represent the four time steps at which events
take place for this scenario; they are labelled in the dia-
gram with the time steps they represent. If the scenario
event units are activated in the correct order, then they will
activate these evaluation units in the correct order. The
solid links represent the correct order of activation. These
have an associated delay equal to the time step difference
between the source and destination units. The dotted links
are reverese direction inhibitory links, with no delay asso-
ciated. The links ensure that the evaluation units will not
become significantly active unless they are being activated
in the correct order. The central summation unit checks
that only one is active at a time.



B. Recognition

Assuming the input described above, i.e. at each time
step, for each joint in the image, a readout of the angle
and angular velocity at that joint, how do we index into
scenario memory? We would like the indexing algorithm
to be tolerant of missing data points (for example, due to
occlusion), and to incrementally converge on the correct
scenario as more and more data arrives. At the same time
we must avoid exponential growth in the number of units
and links required as the number of scenario memories in-
creases. We would also like to be able to take advantage
of evidence based on structural or other static qualities of
the object if it is available.

Our input modules detect changes in angular veloc-
ity, thus discretizing the input into a set of sequences of
events at which angular velocities change for each joint.
These sequences are exactly analogous to the sequences
of events represented by the nodes in the scenario graph.
For a given scenario we must match the input sequences
against the stored sequences to determine which input se-
quence corresponds to which stored joint sequence. Not
only must a mapping from input to scenario be established,
the co-ordination between input sequences must match the
co-ordination between joint sequences in the scenario. We
must perform this match for each scenario memory. If we
assume a solution to the first problem (matching a par-
ticular scenario against the input), then we can achieve
recognition time independent of the number of scenarios
stored in memory at a cost of linear increase in the num-
ber of units and links: we match against all scenario mem-
ories in parallel. This is trivial to do in a connectionist
network; we simply duplicate the matching machinery for
each scenario.

C. The Correspondence Problem

Solving the correspondence problem is harder. We can-
not wait until we have all the data before attempting to
match. This must also be an incremental process over time.
Our approach is to attempt to match all input sequences
against all stored sequences in parallel. Again it is trivial
to achieve parallel matching in a connectionist network, if
one is willing to pay the price in terms of the number of
units and links required.

Figure 4 gives a schematic outline of the functional ar-
chitecture we adopt to solve the correspondence problem.
This diagram shows four functional units, depicted by the
bold boxes. The input modules and evaluation network, at
the top of the diagram, were detailed above. In this figure
we show three input modules labelled #X, #Y and #Z. On
the left is an example scenario graph network, with three
event sequences labelled #A, #B and #C. Each dotted
box in the scenario graph represent the event sequence for
one joint sequence, as in Figure 1. There is one scenario
graph network for each scenario in memory. In the mid-
dle of Figure 4 is the grid of binding networks (the dotted
boxes). There is one such grid for each scenario graph in
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Figure 4: functional architechture

memory. A binder grid is always composed of n by n bind-
ing networks, where n is the number of event sequences in
the scenario which the binder grid is associated with. The
heavy arrows between the functional units indicate activa-
tion flow, the striped arrows indicating top-down feedback
not yet implemented. Each input module sends activation
to the column of binding networks below it in the dia-
gram. Each row of binding networks sends activation to
the scenario event sequence which is directly to its left, and
receives feedback from that event sequence. The scenario
event sequences send activation to the evaluation network
as shown in Figure 3.

The function of the binder grid is to establish a one to
one mapping, or correspondence, between the active input
modules and the event sequences in the scenario graph.
The input is a time-varying pattern of activation over the
set of input modules. There is one input module for each
joint in the scene. The the time-varying pattern at an
input module should match the expected pattern repre-
sented in one of the scenario sequences. The binder grid
compares in parallel the sequence of events at each input
module with the events in each scenario event sequence.
This is achieved by having a separate binding network for
each input-module/scenario-sequence pair. Thus the top
left dotted box in the binder grid in Figure 4 represents the
binding network that is attempting to match the events ar-
riving at input module #X with the events represented in
scenario sequence #A. Binding networks with competing
interpretations are arranged to inhibit each other, so that
if a consistent interpretation can be found there will be ex-
actly one binding network active in each row and column
of the grid.

If the match between the input events is close to the
sequences in a scenario, a good binding will be found, ac-
tivation will flow around the scenario network, and the
evaluation network will become active. If there is a par-
tial match, the activation in the scenario network will be
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Figure 5: binding network details

lower, and less consistent in time, so that the evaluation
network may become somewhat active. The best match is
found by reading off the activity of the summator units in
the evaluation network for each scenario.

Figure 5 shows the details for one binding network.
At the top is an input module. It has a set of units tuned
to a particular angular range and another set tuned to par-
ticular angular velocity. Unit E is an event detecting unit,
connected to all the velocity tuned units in the module;
it fires when the angular velocity changes, our definition
of an event. At the left of Figure 5 is a sequence network
from a scenario, similar to the dotted boxes in Figure 1.
In the middle is a binding network.

A binding network performs two functions: it passes
on input events from its input module to its sequence
network; and it compares the events occurring in the in-
put module with those occurring in the sequence network.
Events are differentiated by the angle and the angular ve-
locity at the joint, and occur when the angular velocity
changes. For each event represented in the sequence net-
work, there is a pair of units in the binding network, a
detector unit, labeled D, and a relay, labeled R. In Fig-
ure 5 there are four such pairs, corresponding to the four
event units in the scenario sequence. We show the links for
one pair. The detector unit fires fires when the appropriate
event occurs in the input module, i.e. when all three inputs
from the input module are active. The relay unit passes on
activation from the detector unit to the appropriate event
unit in the scenario sequence network, modulated by the
level of activation of the binding unit, labeled B. The de-
tector unit also sends activation to the binding unit. This
binding unit has a site for each event represented in the
sequence network. Each site receives activation from a net-
work event unit and from the corresponding detector unit.
If a site receives input from the detector unit, it expects
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input soon after from the sequence network. Otherwise
there is a mis-match occurring. The binding unit checks
that the sites are receiving activation in this fashion, and
if so increases its activation level. Otherwise its activation
decreases.

All binding networks connected to the same input
module have their binding units arranged in a mutually
inhibitory network (see Figure 4). Similarly all binding
networks connected to the same sequence network are ar-
ranged so that their binding units inhibit each other. Thus,
even with locally ambiguous input, so long as globally the
input is determinate, the correct scenario should be the
most highly activated. If evidence for matching is available
from other sources, for instance form or color matching, it
can be used to influence the scenario match by providing
input to the binding units in the binding networks.

D. Preliminary Qualitative Results

The architecture has been implemented using the
Rochester Connectionist Simulator [Goddard et al., 1988]
for two scenarios - one abstract, and one corresponding to
a running stick figure. Unsurprisingly, with such distinct
choices, the network had no problem with discriminating
inputs. The results depend on the actual parameters used
in the activation functions and in the time-delayed links.
As expected, presenting perfect input causes the scenario
network to saturate quickly (within one cycle of the mo-
tion). Presenting imperfect input, e.g. with one of the in-
put modules inactivated to simulate occlusion, caused the
scenario network to activate more slowly. Recognition was
fairly robust over quite large parameter variations. Over-
all it is clear that the architecture solves the problem, and
moreover that it can be tuned along several dimensions:
speed, sensitivity to missing data, sensitivity to incorrect
data. Exactly how the network should be tuned is a mat-
ter for further research, and will require psychophysical
experiments.

V. Conclusions

We have introduced a representation for articulated stick
figure motion that is naturally implemented in a massively
parallel network. A network architecture for indexing into
this memory representation from biologically plausible in-
put has been designed. The results of the preliminary im-
plementation and tests are encouraging.
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