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Abstract

The g-differential calculus for the ¢g-Minkowski space is developed. The al-
gebra of the g-derivatives with the ¢-Lorentz generators is found giving the ¢--
.deformation of the Poincaré algebra. The reality structure of the ¢g-Poincaré
algebra is given. The reality structure of the g-differentials is also found. The
real Laplacian is constructed. Finally the comultiplication, counit and antipode-
for the ¢g-Poincaré algebra are obtained making it a Hopf algebra.
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1 Introduction

Quantum groups have already established themselves in such diverse branches of math-
ematics and theoretical physics as conformal field theory, integrable models, statistical
mechanics, knot theory and topology of low-dimensional manifolds. Like many other

“notions (quantum mechanics, special relativity) quantum groups appear as some defor-

mation of old ‘classical’ objects, in this case groups. Although this type of deformation

"can be understood in terms of usual quantum mechanics, the idea of quantizing the

symmetry itself is apparently new. The fruitfulness of this idea is supported by the
number of geometric and algebraic notions which can be ‘g-deformed’. First of all
quantum groups can be viewed as symmetries of ‘quantum’ spaces [1,2]. Next the
frame of differential calculus can be extended to include quantum groups and quantum
spaces [3,4].

The role of symmetry in physics is hard to overestimate. This explains the wide
interest which quantum groups found among theoretical physicists. Particularly one is
tempted to deform a real physical system in this spirit. This requires first of all a deep
understanding of the ¢-deformation of Minkowski geometry. The quantum Minkowski
space itself is more or less understood [5,6,7,8]. The quantum Lorentz group serves
as the ¢-symmetry group of this space. One is naturally interested in the action of
the ¢-Lorentz algebra on the ¢g-Minkowski space. This question is nontrivial since the
relation between Lie algebras and Lie groups becomes more involved on the quantum
level, in particular as of now the exponential map is unknown. The g-Lorentz algebra
was obtained in [8,9] where the Lorentz generators were defined by their commutation
relations with the g-spinors.

The next step is to define the quantum Poincaré algebra, or to add the infinitesimal
translations to the ¢-Lorentz algebra. This is the aim of the present paper. Following
the classical example we treat the g-derivatives as generators of translations. (Another
approach was followed in [10] where the translations stayed undeformed.) The general
theory [11,12] giving the g-deformation of the universal enveloping algebra of any simple
Lie group is not sufficient for the Poincaré algebra, since it is not simple. To find the
algebra we use the action of the Lorentz generators and derivatives on the g-Minkowski
space.

We discover a new effect absent in the classical Poincaré algebra. Namely, the
operators conjugate to the derivatives cannot be expressed linearly in terms of the
derivatives themselves (in contrast to the g-Minkowski coordinates for which the con-
jugation is linear and just given by the classical formulas). A similar phenomenon also
occurs for the conjugated differentials.

We also construct the coproduct for the derivatives. We prove that this comulti-
plication is natural, or in other words is compatible with the action. Finally we find the
counit and antipode to complete the Hopf algebra structure of the g-deformed Poincaré
algebra. ‘

The paper is organized as follows. In sections 2 and 3 we give preliminaries on the
g-spinors, the g-Minkowski vectors and the R-matrices for them. Section 4 contains the
necessary information about the g-Lorentz algebra and its action on the g-Minkowski

1



space. In section 5 we discuss the g-differential calculus on the ¢-Minkowski space.
Section 6 is devoted to the reality structure for derivatives and differentials. There
we also construct the real Laplacian. Finally, in section 7 the comultiplication for the
translation sector of the ¢-Poincaré algebra is given and its naturality is proved. Ap-
pendices contain technical formulas for the projector decomposition of the R-matrices,
commutation relations between coordinates and differentials, action of the conjugate
derivatives, and relations for some g-differential operators needed for defining the real-
ity structure. Many of the relations are given in a component form which is useful in
checking some of the nonlinear relations in the text.

2 R-Matrices for the g-Lorentz Group

The g-deformed Lorentz group has been studied in [5,6,7]. These analyses made use
of the classical isomorphism SO(3,1) = SL(2,C)/Z,. Since the quantum group
SLe(2,C) is well understood, it is natural to use it for the ¢-Lorentz group: The
fundamental representation of SL,(2,C) consists of two-dimensional complex quan-
tum spinors £* and their complex conjugates % Minkowski vectors are constructed
as bilinears of a spinor and a conjugate spinor. A vector is written as

X = z%2P, (2.1)

The R-matrix for the g-Lorentz group is determined by moving such a vector through
another bi ¢g-spinor #7v® where u and v are independent copies of g-spinors. However
there is an ambiguity in choosing the g-relations between z, z and @, v. This results in
two different R-matrices for the g-Lorentz group. Both R-matrices satisfy the Yang-
Baxter equation. This construction of the R-matrices was followed in [7], and we shall
refer to them as Ry and Ry !

These two R-matrices satisfy the characteristic equations

Bri-1)(Bi+)Br+q?) = 0

(Bu+1)(Ru— ) (Ba—gq2) = 0. (22)

Solution of the eigenvalue problem gives the decomposition of each matrix into three
projectors. Taken together one finds four projectors: Pr which is the g-deformed trace
projector, Ps which is the traceless part of the ¢-deformed symmetrizer, and P, and
P_ which are the selfdual and antiselfdual parts of the g-deformed antisymmetrizer.
These are the g-deformed versions of the classical projectors. Their explicit form is
given in Appendix A. The four projectors sum to the identity matrix:

1=Ps+Pr+ P, +P. (2.3)

In [5] the matrix Ry was derived in a different way. There a matrix of the ¢-Lorentz group was
constructed as a tensor product of an SL,(2, C) matrix and its conjugate. The g-relations between
elements of the Lorentz group matrix were determined by the R-matrix for SLy(2,C). These ¢-

relations then give rise to the Ry-matrix for the g-Lorentz group.
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and the R matrices are written as the sums

Rl = Ps+ Pr—q¢*P, —q~2P.

n 24
Ru = ¢ ?*Ps+¢*Pr—P,-P_. (24)

These are the only linear combinations of the four projectors which are compatible
with the relations between the components of a g-vector. A more precise statement
will be given in [7].

The higher dimensional orthogonal ¢-groups are descrlbed by only one R-matrix.
In four dimensions this is the Ry-matrix. However, in four dimensions the situation
is special in that the antisymmetric square of the vector representation is reducible.
It decomposes into the selfdual and antiselfdual parts. The Rn-matnx takes the same
eigenvalue on both. The selfdual and antiselfdual parts are distinguished by the Ry
matrix. Note that we need both R-matrices since Rj in turn does not split the ¢-
symmetrizer into the trace and traceless parts.

The R-matrix used to define g-relations between elements of the g-space depends
on the projector decomposition needed. For the coordinates X* the antisymmetrizers
acting on the tensor product of two coordinates must give zero. Supressing indices we
write this as

P,XX=0 P.XX=0. | (2.5)
Using this fact we then have
1XX = (Ps+ Pr)XX = RiXX (2.6)

where in the first step we used (2.3) for 1 and in the second step we used (2.4) for Ry
Including the indices we then have

X'X' = Ry ux*Xx' (2.7)

for the g¢-relations between coordinates.
A differential calculus is established on this algebra by introducing an exterior
derivative d with the usual properties of nilpotency and Leibniz rule:

=0 d(fg)=(df)g + f(dg), - (28)

.where f and g are functions of the coordinates. The differential of X* is called ¢'. The

action of d on the coordinates and differentials is
X' =¢ 4+ X'd  dEf =-£d. (2.9)

We will need g-relations between the differentials themselves and between the differen-
tials and coordinates. '

Classically the ¢ are antlcommutmg objects, so in the g-deformed case we require
that a tensor product of two differentials is annihilated by the symmetrizers:

Psg6=0  Pr{€=0. (2.10)



Then we write X
1¢¢ = (Py + P-)¢¢ = —Ruf¢ - (21y)
using (2.3) and (2.4) for the projector decompositions of 1 and Ry, respectively. Then
the equation o "
£¢ = —Rij ue*e! (2.12)
gives g-relations between the differentials.

For g-relations between coordinates and differentials assume that X¢ = C¢X for
some matrix C. Applying d to this equation gives {{ = —C¢¢. Comparing with (2.12)
we see that C = Ry and N -

X'¢ = R} ut* X! C(2.13)
gives the desired g-relations. '

Derivatives are introduced by the usual expansion of the exterior derivative:

d= ¢, , ‘ (2.14)

Then applying d to a coordinate X*, using the Leibniz rule (2.8) for d, and (2.13) to
move the ¢’s to the left, we find

6,-Xj = 5,] + Rﬁc ,'IXlak (2.15)

for the action of derivatives on coordinates.

We also need g¢-relations among the derivatives themselves. Assume a relation of
the form 89 = F89 for some matrix F. Applying both sides of this equation to a
coordinate X* and using (2.15) gives the consistency condition (1 — F)(1 + R) = 0.
A check of (2.4) shows that this is satisfied if ' = Ry, and the g-relations between
derivatives are given by

6.-6]- = R{k ,-;6;‘6,. (2.16)

Note the reversed order of index summation compared to the other R-matrix equations.
Although we will not need them, one can also find g-relations between the dif-
ferentials and derivatives. Assume a relation of the form 96 = D0 for some matrix
D. Applying both sides to a coordinate X* and using already established relations one

finds D = Ry and we have
8¢’ = Ry' 7% €10, A (2.17)

This completes the algebra of coordmates, differentials and derivatives.

Throughout this discussion we could have used the inverse of the R-matrices in-
stead. This would leave the XX, ££ and 00 g-relations unchanged. However the X¢,
08X and ¢ relations would be different. This would give a second possible choice for
the differential calculus. However this second choice coincides with the complex con-
jugates of the derivatives. With the definition of d in Appendlx C this can be seen by
conjugatlng the above relations and using

B3 = ¢* g™ Ru”™ mkgnt = € gkm B ™ 1ng™ - (2.18)
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(this is a property shared by all orthogonal and symplectic quantum groups [1]) and
Bu'y = fifi Ru™ afif! : (2.19)

where f is the matrix appearing in the complex conjugation of coordinates: X =
f;Xj .

3 Minkowski Coordinates

In this section we introduce the quantum Minkowski coordinates. Explicit formulas
for their g-relations are given. The invariant Minkowski length is also presented.

In [8] the g-Minkowski coordinates were constructed as bilinears of g-spinors (z,y)
and their conjugates (Z,y). We take as coordinates the four quantities

A = 73y C = zz
B = jz D = gy (3.1)
Their reality properties are
A =B C =C
B = A D = D. (32)
Real Minkowski coordinates are defined by the linear combinations
1 1
X° = —(C+D X! = —=(A+B
ﬁ( ) \/§( ) 3

3_L_ 2___1__
X* = —5(C-D) X* = —5(A-B).

In the following we will refer to general Minkowski coordinates as X?, but for explicit
calculations the basis (A, B, C, D) is convenient.

Quantum relations between the coordinates are provided by the R-matrix for
the Lorentz group through the R-matrix relation (2.7). Explicitly the g-relations for
(A,B,C, D) are

AB = BA-g'\CD + ¢\D? BC = CB-—gq'\BD
AC = CA+q)\AD BD = ¢*DB (3.4)
AD = ¢?DA CD = DC

where g is real and A = g—q~1. These relations are invariant under complex conjugation.
accompanied by reversal of the variable order. Also these relations allow ordering of
any monomial in the coordinates.

A quantum Minkowski metric may be obtained from the trace projector which is
one of the projectors comprising the R-matrix. In the basis (A, B, C, D) the metric g;;
and inverse g% are

0 g2 0 0 01 0 0

_ 1 0 0 0 ‘ i q'2 0 0 0
=10 0 0 -1 9°=1 0 0 —gr -1 (3.5)

0 0 -1 ¢\ 0 0 -1 0



Written out using the g-relations for the coordinates the Minkowski length of a four

vector is o .
L=(+1)"¢;X'X’ = AB—q~*CD. (3.6)

This length is real and commutes with the coordinates: LX' = X*L.

4 Lorentz Algebra

In this section we review the previous results on the g-deformed Lorentz algebra [8,9].
Lorentz generators are defined by their action on the four vectors. From this the
algebra and coproduct of the generators is determined. The counit, antipode, and
reality conditions complete the description of the Hopf algebra.

In [8,9] the ¢g-deformed Lorentz algebra was presented. There the generators were
defined by their action on two dimensional complex quantum spinors. Here we will
confine the discussion to the quantum Minkowski coordinates which can be constructed
as bi g-spinors. The three generators of SU,(2), T+, T-, and T°, form the rotation
subalgebra. The Lorentz algebra is completed by adding noncompact generators T,
T?, S', and S%. Although this is an algebra with seven generators, we had shown
[9] that they are not independent and one generator may be eliminated. All these
generators annihilate the constant monomial: 7%1 = 0. For the diagonal generators
T3, T!, and S? it is convenient to define 73 = 1 — AT3, 7! = 14+ AT?, and 0% = 1+ \S?
which obey 71 = 1.

The SU,(2) generators have the following action on the Minkowski coordinates:

T+A = ¢ 2AT+ T+C = CT*+q A
T+B = ¢*BT*+qD—q'C T+D = DT*+-qA
T-A = ¢ 2AT +q4q7'C-qD T-C = CT-—¢qB (4.1)
T-B = ¢*BT- T-D = DT~ +¢B )
A = ¢ 1Ar =C = Cr°
B = ¢'B7® D = Dr3.

Note that all of these generators commute with the time coordinate X® < C+D. Thus
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they do not generate boosts. The additional generators have action

T2A = AT? T2C = qCT?+ gAr!
T?B = ¢ 'BT?+4¢7'Dr? T:D = ¢7'DT*?
S'A = ¢ 1AS'+ ¢ 'Do? S'C = (¢7'C +¢X?D)S* + ¢Bo?
S1B = ¢BS? S'D = ¢DS!
(4.2)
A = g¢AT! 4+ ¢\*DT*? TIC = (¢7'C + ¢A\?D)r! + ¢A\?BT?
'B = ¢~ 'Br! D = ¢Dr?
0?A = ¢ 'Ac? d’C = ¢Co®+ q)\?AS!
o0?B = qBo?+¢)\?DS? o!D = ¢ 'Do?

As shown in (8], these generators produce a linear combination of rotations and boosts
in the limit ¢ — 1, and they complete the Lorentz algebra. Also, it should be noted
that all generators of the g-Lorentz algebra commute with the ¢-Minkowski length L.

The algebra of the generators follows from this action. To this end one finds
bilinear combinations of the generators having an action proportional to the action of
some linear combinations. The full algebra of the seven generators is

P = Tl 4 AT T+T? = ¢T°T+
T~ = ¢ T 71! - AS? T-T* = T?T+ X Yo?-11)
TiT? = ¢°T%7! T+S' = @ES'T* + 17131 - 0?)
1§t = S -5 = S'T-
: ‘ TYT- = FTTH+¢ "' (1-1%)
0.2T+ — T+0'2 — q2/\7.3T2 T251 — SlT2
o’T~ = ¢*T- 0%+ ¢#\S?
T? = -T2 o2 = gl 4 g)3T2S! (4.3)
o2S! = Slg? 3l = plp3
302 = oird.
T+ = ¢™iT*73
BT = ¢*'T-73
PT? = ¢T3

351 = 1S3

The algebra may be written in a more conventional form by the substitutions 7! =
1427, 02=14+A5% and 2 =1-AT3.

This algebra appears to have seven generators. However there is an extra relation
in the algebra which allows elimination of one of the diagonal generators. Consider the
quantity )

Z = 1'% — ¢*A°T%S". (4.4)
One finds that Z is central in the algebra and commutes with all of the coordinates:
ZX' = XZ. Therefore Z is 1. Then one could eliminate 7! or ¢? from the algebra,
for example by the substitution o2 = (71)71(1 + ¢?A?T?S"). However this would leave

7



the algebra with inverse powers of the remaining diagonal generator. In the following
it will be convenient to keep all seven generators, having in mind that they are not
independent. 4

In [8,9] the coproduct for the generators was found by considering their action
on functions of the spinors. The same results can be obtained using functions of the
Minkowski coordinates. The counit and antipode are determined by the coproduct,
and conjugation of the action on the coordinates (including reversal of variable order)
yields the real structure of the generators. For the SU,(2) generators the coproduct A
is

A(TH=T*@1+ ()Tt A= (4.5)
The counit € and antipode S are ‘
e(T*) = 0 S(T%) = —(r%)iT* (4.6)
) = 1 S(w3) = ()L '
Under conjugation the SU,(2) generators obey
| | TE = (B°TF  P=15 (4.7)

The results for the remaining generators are slightly more complicated. The coproduct
is
A(TY) = P74+ N8 73~k @ T2
Alo?) = o?@c+ XT3 S!

AT = T*@1!+ (13 502 ® T? (4.8)
A(SY) = S'@a*+ ()it @S

The counit and antipode are
e(rl) = 1 S(t!) = o?
e(e?) = 1 S(0?) = 7!
«T?) = 0 S(T?) = —g¥(r3)}T? (4.9)
(s =0 S(SY) = —(r¥)-3su.

In checking the antipode property one needs the fact that Z = 1. Finally the reality
conditions for-the new generators are

o= (13102 T? = —(r3)-ist

o2 = (r3)ir! 3T = —g(ro)iT. (4.10)

This completes the construction of the Hopf algebra of the Lorentz generators.

5 Poincaré Algebra

In this section we add translation generatofs to the-Lorentz algebra. As translation
generators we take the g-deformed four-vector derivatives. The action of the derivatives
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on the Minkowski coordinates and the algebra of the derivatives is defined by the R-
matrix. The action also allows one to find the commutation relations of the derivatives
with the Lorentz generators.

The action of the derivatives on the q-Minkowski space reads

04A
O04B
04C
04D

OsA
OsB
0sC
0gD

OcA
OcB
0cC
O0cD

OpA
OpB

0pC

OpD

1+ ¢ 2A, + A2Bdg + \(¢D — ¢"1C)dc — ¢~*ADdp
Bo,

The algebra of derivatives is

040B
040c
040p

= q2C84+ N?Do, + gA(1 — gA\)Bdc — ¢ABdp
= D0O4 — g B¢
= A0p
= 14 ¢ 2Bdg — ¢ '\Dd;
= (C0p —q)Adc
= q—zDaB.
(5.1)
= Alc - q')\Dop
= ¢7*Bdc _
= 14+ q—zoac + /\2Dac - q‘lABBB
= Dic¢
= ¢?A0p+ MgD - ¢7'C)08
= Bop — q'b\D@A + A2Bdc
= Co0p-— q—l)\AaA + qABOB - qz\2(qD - q—IC)aC
= 14+¢2Ddp — ¢~ \B3s.
004 — q\0cOc + q\3p 0 0glc = q_2acaB
q2606A 0p0p = O0OpOg+ qAdc0B (5.2)

608A—q3A608A ' acap = aDac.

This algebra is consistent with the action on coordinates.

To find the commutation relations between the derivatives and the Lorentz gener-
ators we follow the same procedure used for the Lorentz algebra alone. The procedure
is straightforward but somewhat lengthy. For the rotation subalgebra one obtains

T+04
Tt0p
T-04
T-0p
730,
30p

q*04T* — q0c + ¢0p T*0c = 0cT*+q'0B

q~205T+ T+0p = OpT* —4q0B

q?04T~ - T70c = 9cT~ —q '0a (5.3)
q 20T~ + ¢ '0¢c — ¢ *0p T-0p = 0pT~ +q0a )
39, 80c = for°

g ir ™0p = dprd



and for the noncompact generators the result is

TZBA = q_la,qT2 - qac‘l'l Tzac = q‘180T2
T?0p = q0T*? T?0p = qOpT?+ q\*0cT? — qOpr!
SlaA = qusl Slac = qacsl
S0 = ¢195S! — ¢~18p0> S8p = q-19pS! — q-1040%
(5.4)
104 = ¢ 1047! 9 = qOct! v
10p = qOpt! — q\?9:T? 10p = ¢ '0pT! — @ IN29,T*?
0'28.4 _ qua,Z -—q3/\28051_ Gzac — q—lacaz
0*0p = ¢ '0go? 0¥0p = qOpo?+ g ?0c0? — qA?9: 5.

This completes the g-deformed Poincaré algebra.

6 Real Structure

In the classical case it is straightforward to find conjugation rules for derivatives. How-
ever in the g-generalization one encounters difficulties. The action of the conjugated
derivatives is given in Appendix C. Comparing with (5.1) one observes that these
operators cannot be expressed linearly in terms of the g-derivatives themselves. This
exhibits a new effect which does not appear on the classical level. The conjugation
operation becomes nonlinear. In this section we give the explicit nonlinear relations
between the derivatives and their conjugates.

To this end we will need to define several operators. First is the Laplacian of the

q-derivatives B
A= (q"*+1)"¢"0;0; = 0408 — ¢*0c0p, (6.1)

which is the only quadratic central element in the algebra of derivatives. Also we have
the conjugated Laplacian: 4

A = q_zéAéB - 5051). . (62)
The two are related by _ R |

Note that A commutes with the hatted derivatives. With the unhatted derivatives it
obeys

aA = g*As;. (6.4)

Next we define the operators E and E:
E=X'9; E=X' (6.5)
which are related by . ) |
E=-¢(+1)?-¢E. , (6.6)

10
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The action of these operators on the coordinates and derivatives is given in Appendix
D.
These operators together with the Minkowski length L serve as building blocks for
two more operators A and A:
A = 1—-q¢I\E+¢2NLA

A = 1+grE+¢ALA, (6.7)

Using the formulas from Appendix D one finds
AA=1, &=gA. . (6.8)

The operators A and A act on both coordinates and derivatives multiplicatively. For
A we have _ _
AX* = ¢ 2X'A
A6,~ q28,-A i (69)
Aé; = qzé.'A - .

with the corresponding relations for A given by relation (6.8) .

It is clear from the construction of these operators (A, E, A and their conjugates)
that they are Lorentz scalars. A check verifies that they all commute with the Lorentz
generators.

The hatted derivatives can now be expressed in terms of the unhatted derivatives
as

8; = ¢ 2A7YA, g X). (6.10)

Using the formulas in Appendix D we can write this in the form
8 = A7 — ¢ 3\gi; X' D) (6.11)

or explicitly

04 = A 04—-q'ABA
: A~1(85 — ¢g73NAA (6.12)
Oc = A Yoo+ q"3/\DA '

dp = A*(8p+¢~°A(C — gAD)A).

&
I

-

The inverse map is

84 = A1(d4+¢FABA
0s = A"1(ds+ FrAA
dc = A(8o - ¢*ADA)
dp = A1(6p - #NC - gAD)A).

(6.13)

One verifies these relations by checking that the left and right hand sides have the
same action on the coordinates. Note that the terms proportional to the Laplacians in
the rhs of these equations have the same tranformation properties as the derivatives.

11



Thus these mappings are covariant under the global ¢g-Lorentz group. Along with (4.7)
and (4.10) this describes the real structure of the q-Poincaré algebra.

The properties of the differentials under conjugation are also nontrivial. Again we
introduce several relevant scalar quantities. Define

W = g4€ X7 = 4B + P A— £°D — ¢°(C — gAD). (6.14)
Note that g;; X*¢! = ¢*W. The quanﬁity
U=W —q)\Ld (6.15)

commutes with all coordinates: UX*® = X*U. The relations between the (I:.oordinates
and the differentials are given by (2.13). One can check that the quantities

¢ =¢ —grX'd (6.16)
satisfy the following relations with the coordinates:
X'¢ = Ry' Y ud X' + grg UL (6.17)

Up to the factor ¢° in the lhs and the last term in the rhs these are the relations (B.4)
for X’s and £’s. There is another set of quantites which satisfy relations with X’s
similar to (6.17). Namely one can rewrite the relations (2.15) in the form

PXiO = B uB* X — g2 (6.18)

where & = ¢'/9;. Since U commutes with coordinates we can compensate the extra
term in (6.17) by adding ¢®AUd* to ¢*. To get rid of the factor ¢2 in the lhs of (6.17)
we use the same scaling operator A. Thus the quantities A(¢' + ¢3AU&) have the
same commutation relations with X’s as é ’s. Since these commutation relations are
homogeneous we can conclude only that the ' are proportional to A(¢* + ¢3NU d).
The proportionality factor can be found from the requirement that the square of the
conjugation operation is unity on the ¢’s. Finally we obtain

£ = qTA(S + CAUE) = ¢ A(E — QA X d) + ¢ 3AU(8' — ¢ 3AXA) (6.19)

with 8 = ¢8;. This implies the following reality property for the exterior derivative: -

d=£8; =g *Ad+ ¢ *AUA. (6.20)
This can be verified by a direct check. We note also that
d=—d. (6.21)
To write the inverse map define W = g;jf‘X 3, Using (6.19) for the £’s one finds

U=W +g\Ld. | (6.22)
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By conjugating (6.14) one finds that W = ¢?W. This implies that U is real, U = U.
Then the inverse map reads

¢ =AE + AAXd - qpUd), (6.23)
where we use (6.22) to write U in terms of £’s. For the exterior derivative we have
d = ¢*Ad - FPAUA. (6.24)

Again we note that the mappings (6.19) and (6.23) do not spoil the global ¢-Lorentz
covariance.

The Laplacians A and A defined above are not real as seen in (6.3). However

relations (6.12) allow the construction of the real Laplacian. Substituting them into
(6.2) one finds

A = ¢ *AA. (6.25)
Therefore using (6.3) we obtain

A = ¢*A7IA. : (6.26)
Now define the real Laplacian to be
Ap=q A 3A = PAYA, (6.27)

Using relations (6.8), (6.9) one checks that this Laplacian is indeed real, Ag = Ag. It
g-commutes with the derivatives:

ARd; = ¢ '8;Ar  ARrd; = ¢8R (6.28)

The properties of this Laplacian will be discussed elsewhere.

7 Hopf Structure of g-Derivatives

In this section we complete the Hopf structure of the g-derivatives. The coproduct is
found by a heuristic method. Arguments are made for the validity of this coproduct.
Then this coproduct is used to determine the counit and antipode.

In [8,9] the coproduct for the Lorentz generators was found by considering the
action of the generators on monomials in the spinors. The same could be done for the
derivatives on monomials in the Minkowski coordinates. However the complexity of
the action on coordinates (5.1) makes this a difficult task. Here we use a more heuristic
approach. We make an ansatz for a coproduct of the form ‘

A@G) =8 ®1+ 0 ®0; (7.1)

where the operators O are made up of the Lorentz generators and the scaling operator
A. An inspection of the derivative action shows that Jp and d¢c have a simple form. For
these derivatives it is not difficult to find combinations of the Lorentz generators for O}

13



which produce the correct action on coordinates. But there remains an undetermined
power of A in the Of . It is also easy to evaluate Op on the monomial B". This fixes
the power of A. The coproduct for the remaining derivatives is then found using the
algebra with the SU,(2) generators T*. By this procedure the coproduct is found to

be
A(B4) = 04014+ ANE3)311Q 8, + ¢PN2AF(r3)~3T-S1 ® 05

“MIT-71® §c — gAATS* @ 8p

A(Bs) = 0p®1+A%(1%)"502®8p — ¢MIT? ® 8¢ 72
7.2
A(Bc) = Oc®1+ A1 Q90 — gMi(r?)-151 @ 85

A(Bp) = Op®1+ A2 ®0p — QI (r3)iT? ® 9,
—?AAE(13)"3T~0? @ 05 + gA2A2T-T2 @ .
This coproduct is a homomorphism of the entire Poincaré algebra and is coassociative.
The comultiplication was found by direct inspection. We know only that it is a
homomorphism of the algebra. We now discuss the naturality of this comultiplication.
In other words we wish to prove that the comultiplication is compatible with the action.

Proposition. Let f and g be functions of A, B, C and D. Let A(¢¥) =X, 6o ® by
where 1 is any element of the ¢-Poincaré algebra. Then

¢(f9) = zaa(f)ba(g)' (7'3)

Sketch of proof. 1. A straightforward calculation shows that A is coassociative.
Explicitly, if

Alaa) = Zﬁ: Aap ® $ap Alba) = Z:,#aq ® Vary (7.4)
then
% Aap ® Pap ® b = ; Ao ® foy @ Vor- (7.5)
2. Comparing with the action we conclude
P(X'g) = Za: aa(X*)ba(g) -~ (76)

for all g-Minkowski coordinates X*.
3. Induction in deg f. For deg f = 0 the proposition obviously holds. By (7.6) we have

P(X'fg) = Y aa(X )ba(f9). (7.7)

For ¢ = b, in (7.3) the statement holds by induction assumption for deg f = n.
Therefore

ba(f9) = Z Har(f)Var(9) (7.8)

14

A



and

'/)(Xifg) Zaa(X Jtan(f)Vaq(9)-

Using coassociativity (7.5) we can rewrite it in the form

$XT5) = T haa(X)oal o)

Now using (7.6) with ¢ = a4
| aa( X' ) = 3 Aap(X7)bas(f)

1Y

we conclude that

W(X'fg) = Eaa X'f)
and (7.3) holds for deg f = n + 1.

(7.9)

(7.10)

(7.11)

(7.12)

4. Induction in degg. For deg f = 0 and degg = 1 one easily sees.that the statement
holds. Above induction in deg f shows then that it holds for any f and ¢ = X* (that

is, deg g = 1). Now since it holds for g we have
P(fX'g) Zaa(fX' «(9)-
Using (7.3) with ¢ = a, we can write

aa(in) = ; Aaﬁ(f)‘ﬁaﬁ(xi)'

Now we use coassociativity again:

1/)(in9) = 2{; ’\aﬁ(f)¢aﬂ(Xi)ba(g) = Z aa(f)l‘a'r(Xi)Va'v(g)-

For ¢ = b, in (7.6) we already proved that
X'g) Z/‘M(X War(9)-

Therefore

Y(fX'g) =D aa(f)ba(X'9),

.. (7.13)

(7.14)

(7.15)

(7.16)

(7.17)

and the statement holds for X*g. This finishes induction in deg g and the proof.
With this coproduct the counit and antipode are determined. The counit for all

derivatives vanishes:
6(3.) =0.
The antipode is

5(04) =

S(88) = —A"¥(r3)¥(r'0p + ¢*\T?0c)

S(8c) = —A"%(c?dc + ¢~'AS5'0p)

S(8p) = —A~}(r'dp + g T?04 + A\r*T~8p + ¢X*T*T~ ).
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In checking the antipode property ones uses the fact that Z =1 in (4.4).

The coproduct for the derivatives includes the derivatives themselves, Lorentz
generators and the scaling operator A. We note that A does not belong to the g¢-
Lorentz algebra. This is seen by the fact that AL = ¢~*LA, whereas the g-Lorentz
generators commute with L. A similar effect already occurs for the g-derivatives in
two dimensions: their coproduct includes the scaling operator which does not belong
to SL,(2) [4). The Hopf structure of the scaling operator is

AM)=A®A €A)=1 SA)=A"L (7.20)

This completes the Hopf structure of the Poincaré algebra.

Acknowledgements. We are grateful to J. Bobra, H. Ewen and V. Jain for
valuable discussions.

A Projector decomposition of R-matrices

In this appendix we list the four projectors extracted from the two forms of the k-
matrix for the Lorentz group. They act on the tensor product of two coordinate spaces,
so are 16 x 16 matrices. However, they are block diagonal and decompose into two 1-,
two 4- and one 6-dimensional blocks. The bases for these blocks are labeled by pairs
of coordinates, and are '

(1) : (AA) (4) : (DA,CA,AD,AC)

(1) : (BB) (4) : (CB,DB,BC,BD) (A1)
(6) : (BA, DD, DC,CD,CC, AB).

We write the projectors in blocks with these bases.
The symmetrizing projectors are Pr and Ps. Pr is the trace projector, and may
be written in terms of the metric as

ii 1 0 :
PT’ k= mg Jgk[. (A2)

Explicitly it is

PT(l) = PT(lr) =0 PT(4) = PT(4') =0

( q—2 q—lA _q—2 _q—2 0 1 \
0 0 o o0 o0 0
P 1 -1  —q) 1 1 0 —¢* (A-3)
O~ (q+¢1)2| -1 -¢r 1 1 0 —¢°
. —qA —¢?\%? g gh 0 —¢3\
\ 1 g¢ -1 -1 0 & |
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where A = ¢ — qL.

The traceless part of the symmetrizer Ps has the form

Ps1y = Pspy =1

q2 0 q2 0 1 qa/\ q2
Psta) = 1 —q) ¢ ¢*\ 1 Poian = 1 0 1 0 1
¢ +1 1 0 1 0 W= 2+1[1 222 ¢ —g)
0 ¢ X1 0 ¢ 0 ¢
' (A4)
[ ¢ -92+¢%) 1 1 0 I
0 (g+q71)? 0 0 -0 0
Ps(e)v'—' 1 7 ) . . : 1
(g+q¢ 12| ¢ g°A 1 1 0 1
—gA =N =7 —¢7X (g4 ¢ gM2+4¢Y)
\ 1 L 0 g )
The selfdual and antiselfdual parts of the antisymmetrizer are P, and P_:
Piay=Pran=0.
1 0 —¢2 0 @ —¢\ —¢* 0
P 1 gh 0 —¢3\ 0 P 1 0 0 0 0
T 211l =10 & 0 T 211 -1 ¢ 10
0 0 0 O : 0 0 0 O
(A.5)
(1 ¢ ¢% -1 0 -1\
0 0 0 0 0 0
Pag= | 2. B T
(g+q¢ )| =¢ -2 -1 ¢ 0 ¢
gA @A ¢7IA —g) 0 —g¢)
\ -1 —¢» —¢* 1 0 1 )
and '
Pgy=P-a)=0
0 0 0 0 {0 0 0 0
1 0 1 gr -1 1 0 ¢ 0 -1
Po=zrito o 0 o PO=TET 0 - 0 o
0 -—q2 —-qu q2 0 —q2 0 1
(A.6)
(1 g -1 g¢2 0 -1)
0 0 0 0 0 O
P 1 - X ¢ -1 0 ¢
- (g +g71)? 1 gA» -1 ¢ 0 -1
gA  @#X% —qX ¢7X 0 —¢)
\ -1 —¢x 1 —¢20 1



Classically these reduce to the four usual projectors. Plugging ¢ = 1 into the above
expressions it may be verified that

ij 1 4
Plu = 29 gkl
ij Locici | gigiy _ L ij
Psu = 5(51:51 + 66;) — 29 9w
y 1ooi e 4
Plu = Z(‘Sk‘sz] = 66) — 7€ u
g 1, e
PV = Z((Skéi - 51(5,1) + ZGJ k-

Here the e-tensor is defined so that in the real basis €123 = 1.

B g¢-Differentials

(A7)

As discussed in section 2 the first step in finding the derivative action is to find the
g-relations between coordinates and differentials. These are given by the R-matrix
equation (2.13). In the (A, B, C, D) basis we have explicitly

AtA
AEB
ALC
AP

B¢A
B¢B
B¢©
B¢P

CeA
C¢B
cec
CeP
DegA
D¢B

DEC
DEP

g-%4A

EBA 4+ gAPD — g INPC — ¢ INC D + NUAB
A+ gMAD — gTINAC

q'2§DA _ q"l/\fAD

fAB—q-l)\fDD

q%¢"B

q—2§CB + /\2§DB — q_l)\fBD
¢°B

q~26AC + \2¢AD — g IMP A

¢BC — ¢ MCB + gMPB

g %CC — gMBA - ¢?X¢PD
+A26PC + N¢°D + g1 — g )¢AB
EPC — g)é¢4B

§4D
q‘szD _ q-I/\EDB

18
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With these definitions, conjugation of the above g-relations results in

AéA - q2£AA

A = EBA+gMPD
AEC_ — q2£CA+q3/\éAD
AP = éP4

BfA = EAB+ ¢ IMPC 4+ ¢ 1N\CD
+A2EBA — gA(14 ¢~ N)EPD

BE® = ¢¢°B |
BEC = (°B-qMPD +qMEC +¢*NPB
D _ 2¢D ¢B

B¢ g*¢"B + qX¢° D (B.3)

CEA = {40+ qAOA - NP A+ @NEAD

C{B - 2§BC+q3)\£DB

C§C — 2£CC q/\ﬁBA + q3/\§AB q2/\2€DD

C{D — {DC+qA§BA+q2)\2§DD

D€:A = q2€"AD+qA£DA

DB = §8p

D€C — €Cp +q)\£BA+q2)\2§ADD

DEP = ¢%PD.

These relations can be written in the compact form
X' = Ryt Y uéxt. (B.4)
Also we give the explicit form of £€ relations(2.12):
A2 _ (£B)2 D)2 —
7~ peven. | (B:5)

gAe? = —gBed €B6° = —q7HOP — qA(DEP
fAEC = —qucﬁA + q3)\£D£A £B£D — _€D£B (B.G)
£4EP = —£P¢A £°6P = —£PEC — grgBer

Using these relations along with the derivative algebra (5.2) one verifies that d = 0.
Conjugating (B.6) one finds commutation relations for the {’s. Other relevant relations
between the ¢’s and operators discussed in section 6 are listed in appendix D.

C Conjugate g-Derivatives

In this appendix we list some of the relations involving the conjugate derivatives. Their
action on coordinates is determined by conjugating the action of of the derivatives in
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(5.1). Hatted derivatives are then defined by normalizing so that §;X7 = & +.-- .

Writing . B . 3
(0)a = OB (a)B = 0a (6)0 = J¢ (0)p = 0p (C.1) @
we get _ L ‘
8 = —q 919" (9); (C2) )
or explicitly . . .
8_4 = —anB . % = —q4aC
_ ) _ i (C.3)
63 = —qza,q 8D = —q43D.

The action of these operators on the coordinates is given by the R-matrix équation

Explicitly we have

duA
b.B
d4C
84D

dgA
98B
dsC
dsD

bcA
dcB
dcC
5cD
dpA
dpB
dpC
dpD

These relations are consistent with the expression for hatted derivatives in terms of

i

]

I

8. X7 = & + R * 4 X', (C.4)
1 -A!- quéA + qax\Déc
Bd,
Cds + ¢*X2Dd4 + ¢*ABé;
quaA
Abg

1+ ¢2Bdp — gA\D8c + gACc + ¢ADOp + N2 Ad,
¢°Cd5 — qAA + qAAdD
Ddg + g\Abc

¢*Adc

Bdc + ¢~1\Db,
1+ ¢?Cdc + grAb4
Déc

Adp + ¢\Dds

¢*Bdp — gA(1 + ¢\ D4 + ¢?X2Bdg + ¢-*ACd,4
Cdp — gAAB4 + ABbs — X2 Ddc + ¢*\2Ddp
1+ ¢>D8p + qAAd4 + ¢*X2 D¢

unhatted ones (6.12) and the action of unhatted derivatives (5.1) . Among themselves
the 0’s satisfy the same algebra (5.2) as the 0’s. This is compatible with the conjugation

rules (C.3).

One can also find the algebra of hatted with unhatted derivatives. This is given
by the R-matrix equation

6;5,- = Rﬁl lk ,«.—5,:6,. (C.6)
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This yields the explicit relations

8ad4
 Opba4
dca
dpda

9405
dpdp
dc0p
dpds

0adc
dsdc
dcbc
dpdc

d4dp
dsdp
dcdp
dpdp

= qzéAaA
0405 + ¢°\0c 0o
OABC

q25A8D + q2A23Aac + qs)\écaA

353,4 - q/\écac + qképac + q)\écap + /\23A83
¢*9p0p

q*680c + ¢)0c0B

536[, — q/\écaB + Q/\éDaB

qzéca,q + gAd4dc (C.7)
%)

q*dc0c

9cOp + ¢~ 20405

31)3_4 + q)\éAaD - qAéAac

quéDaB + q2/\fécaa + q3/\5300

Opdc + q'lx\aAaB

¢*8pdp + ¢*X?808p + ¢?A28pdc
—-qzz\zécac -+ q/\éaaA — q)\(q‘lx\ + 1)3,463.

These relations may be verified using the expressions for the hatted derivatives in terms
of unhatted ones (6.12) and the algebra of unhatted derivatives (5.2) .

Finally the algebra of the conjugate derivatives with the Lorentz generators is
given by (5.3) and (5.4) with hatted derivatives replacing the unhatted ones.

D Relations for Scalar Operators

In this section we list some relations involving the Lorentz scalar operators discussed
earlier. These formulas are useful in checking the properties of the conjugate derivatives

and differentials.

First, for the derivatives acting on the Minkowski length L we have

oL = q"2L3,'+g,'ij

The action of the Laplacians on the coordinates is

Acting on the Minkowski length the Laplacians give

é;L = quaA; + q'zg,-ij. (D'l)
AXD = XD+ 600, (D2)
AX' = ¢@X'A+q2g9;. :

éL = ¢ LA+ ¢ *E+(¢*+1) (D.3)

AL = ¢LA+E+q%qg?+1).
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The action of E and E on coordinates is

EX' = ¢2X'E+ X'+ q)\Lg"9;

EX' = ¢@X'E+ X' —q\Lg7b; (D-4)
and on the length is
EL = ¢ ?LE+(¢#+1)L
EL = PLE+(¢2+1)L. (D-3)
The algebra of the derivatives with E and E is
&GE = q?Ed;+0:i+ ¢ \gi;; X°A -
GE = E8: +0. (D-6)
Conjugation gives the algebra with hatted derivatives:
?,-133 = q2§7(§,~ +8; — grgii XA . (D7)
O;E = EO0;+0,.
Now we turn to the relations including £’s. First, with the scalars L, £ and A
L& =¢7¢L EE=¢E Af=¢¢0 A=A (D.8)
The operator W has the following action on the coordinates:
WX = X'W 4 ¢ I\ L. (D.9)
With derivatives it obeys
oW =Wao; + :q,-j(q'2§j + A X’d - ¢3AEE). (D.10)
The operator W has the fqllowing commutation relations with ¢':
WE = —q 2'W. (D.11)
The operators U and V commute with coordinates as
UX'=X'U VX' =¢2X'V+EA+¢\Ug70;. (D.12)

Now we list several relations involving the exterior derivative d. With the derivatives

d obeys _
a,'d = qzda,' - q-lAg“ijA (D.13)

and with the scalar operators

dA=q¢?Ad dL=W+Ld dW=-Wd

dE = d+ q-2Ed+ ¢ AWA. (D.14)
The Laplacian A with these quantities W and U obeys
AW = WA+ ¢*d AU =UA + Ad. (D.15)
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.

Several relevant relations with f ’s are:

Léi = q2éiL
WX = XW —qAL§ (D.16)
dL = ¢*W + Ld.

Finally we list some useful summation relations:

gijgik_an'f = (q+¢7')’+q'E
g;8EX? = ¢ *WE+¢A\Ld+W (D.17)
g;inde = (q2 + l)Ld + q2W )
gi;§'¢ = 0.

These are the relations needed in section 6.
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