
Lawrence Berkeley National Laboratory
LBL Publications

Title
OPM Schema Editor 2—A Graphical Editor for Specifying Object-Protocol Structures

Permalink
https://escholarship.org/uc/item/5kj802vj

Authors
Chen, I.-M. A
Markowitz, V M
Pang, F
et al.

Publication Date
1993-07-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kj802vj
https://escholarship.org/uc/item/5kj802vj#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


I l "\ ,. 
bl • 
l. ! 
I • • 

'8 

•I 

LBL-33410 
UC-405 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Information and Computing 
Sciences Division 

OPM Schema Editor 2-A Graphical Editor for 
Specifying Object-Protocol Structures 

L-M.A. Chen, V.M. Markowitz, F. Pang, and 0. Ben-Shachar 

July 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

OJ _, 
a. 
co . 
ln 
lSI 

r 
r OJ .... r 
0"0 I , 0 w 
111"0 w 
"1'< .j::o 
'<: ..... . N lSI 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



OPM Schema Editor 2-A Graphical Editor for 
Specifying Object-Protocol Structures 

LBL-33410 

I-Min A. Chen, Victor M. Markowitz, Francis Pang, and Ofer Ben-Shachar 

Information and Computing Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

July 1993 

*Issued as Technical Report LBL--33410. 1bis work is supported by the Office of Health and Environmental 
Research Program of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-
76SF00098. 

t Author's e-mail address: ichen@csr.lbl.gov 

*Author's e-mail address: VMMarkowitz@lbl.gov 

•• Author's e-mail address: fran @csr.lbl.gov 

tt Author's e-mail<address: ofer@netcom.com 

phone: (510) 486-7264, 

phone: (510) 486-6835, 

phone: (510) 486-4743, 

phone: (415) 325-1214, 

fax: (510)48~ 
fax: (510)48~ 

fax: (51 0) 486-4004 

fax: (415) 322-7470 



OPM SCHEMA EDITOR 2 

Contents 

1 lntrod.uction ······················································································•••o•••·············· 1 
1.1 The Object-Protocol Model ................................................................................................. 1 
1.2 The OPM Schema Editor ..................................................................................................... 3 

2 Starting tile OPM Scllema Editor ......................................................................... 5 

3 Thtorial ................................................................................................................... 6 
3.1 Basic Editor Usage .............................................................................................................. 6 

3.1.1 StartingtheEditor ................................................................................................. 6 
3.1.2 Looking at an Existing ScheiiUl ............................................................................. 7 

3.2 Specifying and Saving Scbemas ........................................................................................ 10 
3.2.1 Specifying Object Classes ................................................................................... II 
3.2.2 Specifying Protocol Classes ................................................................................ 13 

3.3 Specifying Attributes ......................................................................................................... 14 
3.3.1 Specifying Simple Attributes .............................................................................. 14 
3.3.2 Specifying Composite Attributes ........................................................................ 15 
3.3.3 Composing and Decomposing Attributes ........................................................... 16 
3.3.4 Specifying Input/Output Attributes ................................................... , ................. 17 

3.4 Specifying Value Classes ................................................................................................... 18 
3.4.1 Specifying Controlled Value Class ...................................................................... 18 
3.4.2 Specifying Abstract Value Classes ...................................................................... 19 

3.5 Specifying Attribute ·Derivations ....................................................................................... 21 
3.5.1 Specifying Attribute Inverse Derivations ............................................................ 21 
3.5.2 Specifying Attribute Match Derivations ............................................................. 22 
3.5.3 Specifying Arithmetic Expression Derivations ................................................... 24 
3.5.4 Specifying Aggregate Function Derivations ........................................................ 25 
3.5.5 Specifying Attribute Composition Derivations ................................................... 26 
3.5.6 Specifying Attribute Subvalue Derivations ........................................................ 27 
3.5.7 Specifying Attribute Union Derivations ............................................................. 28 

3.6 Specifying Protocol Expansions ........................................................................................ 28 
3.7 Specifying Protocol Connections ...................................................................................... 30 

3.7.1 Specifying Input or OutPut Is-a Connections ................................. , .................... 30 
3.7.2 Specifying Input From Connections ................................................................... 31 

4 OPM Scllema Editor Windows .......................................................................... 33 
4.1 General Window Structure ...................................................................... ~ ........................ 33 
4.2 
4.3 
4.4 

4.5 

Window Flow .................................................................................................................... 35 
Main Window .................................................................................................................... 35 
Define Object Class ........................................................................................................... 37 
4.4.1 Add Object Class ................................................................................................. 38 
4.4.2 Modify Object Class ........................................................................................... 38 
4.4.3 Delete Object Class ............................................................................................. 38 
Define Protocol Class ........................................................................................................ 39 
4.5.1 Add Protocol Class .............................................................................................. 39 
4.5.2 Modify Protocol Class ...................................................................... : .................. 40 
4.5.3 Delete Protocol Class .......................................................................................... 40 

4.6 Define Superclass .............................................................................................................. 40 

Contents 



OPM SCHEMA EDITOR 2 

4. 7 I:>efine Protocol Expansion ................................................................................................ 41 
4.8 I:>efine Simple Attribute ..................................................................................................... 43 

4.8.1 Add Simple Attribute .......................................................................................... 43 
4.8.2 Modify Simple Attribute ..................................................................................... 45 
4.8.3 I:>elete Simple Attribute ....................................................................................... 45 

4.9 I:>efine Composite Attribute ............................................................................................... 45 
4.9.1 Add Composite Attribute .................................................................................... 45 
4.9.2 Modify Cotnposite Attribute ............................................................................... 47 
4.9.3 I:>elete.Composite Attribute .................................................................................. 47 

4.10 I:>efine Component Attribute .............................................................................................. 47 
4.10.1 Add Component Attribute ................................................................................... 47 
4.10.2 Modify Component Attribute .............................................................................. 49 
4.10.3 I:>elete Component Attribute ............................................................................... 49 

4.11 Include Attributes into a Composite Attribute ................................................................. .49 
4.12 I:>efine Input/Output Attribute ................................................................................... , ....... 50 

4.12.1 Add Input/Output Attribute ................................................................................. 50 
4.12.2 Modify Input/Output Attribute ............................................................................ 52 
4.12.3 I:>elete Input/Output Attribute ............................................................................. 52 

4.13 I:>efine Controlled Value Class ........................................................................................... 52 
4.13.1 Add Controlled Value Class ................................................................................ 53 
4.13.2 Modify Controlled Value Class ........................................................................... 53 
4.13.3 I:>elete Controlled Value Class ...................................................... , ..................... 54 . 

4.14 Select Attribute Controlled Value Class ............................................................................ 54 
4.15 Select Primitive Value Class .............................................................................................. 56 
4.16 Select Abstract Value Class ............................................................................................... 56 
4.17 Select Metaclass Value Class ............................................................................................. 57 
4.18 I:>efine Attribute Inverse I>erivation .................................................................................. 57 
4.19 I:>efine Attribute Matching I>erivation ................................... .-........................................... 59 
4.20 I:>efine Arithmetic Expression Derivation ......................................................................... 62 
4.21 Define Aggregate Function Derivation .............................................................................. 63 
4.22 Define Attribute Composition Derivation ......................................................................... 64 
4.23 Define Attribute Subvalue Derivation ............... ; ............................................................... 65 
4.24 I:>efine Attribute Union Derivation .................................................................................... 66 
4.25 Define Input/Output Attribute Is-a Connection ................................................................. 67 
4.26 Define Input Attribute From Connection ........................................................................... 68 

4.26.1 Add Attribute Input-From Connection ....................... ~ ........................................ 69 
4.26.2 Modify Attribute Input-From Connection .......................................................... 70 
4.26.3 Delete Attribute Input-From Connection ............................................................ 70 

References ............................................................................................................ 71 

A The Object-Protocol Model ............................................................................... 72 
A.1 Attributes ........................................................................................................................... 72 
A.2 Object Classes ............................................................................................ ~ ....................... 73 
A.3 Protocol Classes ................................................................................................................. 73 
A.4 

A.5 
Input and Output Attributes ............................................................................................... 74 
Derived Attributes ............................................................................................................. 76 

Contents 



'· 

Abstract 

This document describes an X-window based Schema Editor for the Object-Protocol Model 

(OPM). OPM is a data model that supports the specification of complex object and protocol classes. 

Objects and protocols are qualified in OPM by attributes that are defined over (associated with) value 

classes. Connections of object and protocol classes are expressed in OPM via attributes. OPM supports 

the specification (expansion) of protocols in terms of alternative and sequences of component (sub) pro

tocols. 

· The OPM Schema Editor allows specifying. displaying. modifying. and browsing through OPM 

schemas. The OPM Schema Editor generates an output file that can be used as input to an OPM schema 

translation tool that maps OPM schemas into definitions for relational database management systems. 

The OPM Schema Editor was implemented using C++ and the Xll based Motif toolkit. on Sun 

SPARCstation under Sun Unix OS 4.1. 

This document consists of the following parts: 

1. A tutorial consisting of seven introductory lessons for the OPM Schema Editor. 

2. A reference manual describing all the windows and functions of the OPM Schema Editor. 

3. An appendix with an overview of OPM. 



.. 
OPM SCHEMA EDITOR 2 Introduction 

1 Introduction 

This document describes the Object-Protocol Model (OPM) Schema Editor, a user-friendly inter

active tool for specifying, displaying, modifying, and browsing OPM schemas. 

The introduction describes briefly OPM and overviews the OPM Schema Editor. Section 2 contains 

instructions on starting the OPM Schema Editor. Section 3 contains a tutorial for the OPM Schema Edi

tor. The main window as well as all the dialog windows of the editor are described in detail in Section 

4. The OPM data model is described in Appendix A 

1.1 The Object-Protocol Model 

The Object-Protocol Model (OPM) is a data model for specifying complex object and protocol 

structures. Such structures are specific to scientific applications such as molecular biology laboratory 

information management systems (LIMS). OPM supports the specification of object and protocol 

classes, object and protocol attributes, class hierarchies, derived attributes, and protocol expansion. 

In OPM, an object class is identified by a class name, has a class description, and is associated with 

attributes that qualify the object class. Attributes take values from value classes that are either other 

object classes or system provided primitive value classes such as INTEGER or TEXT. For example, an 

object class CHROMOSOME can have attributes name, map, and owner with value classes CHAR(80). 

MAP and PERSON, respectively. Attributes can be associated not only with single value classes, but also 

with union of value classes. 

Attributes in OPM can be simple or composite. A composite attribute consists of multiple com

ponent simple attributes. For example, attribute address of class PERSON cari be modeled using com

posite attribute (number, street, city, state, zip_code). 

Note that the support for composite attributes and for associating unions of value classes with 

attributes allows OPM schema designers to avoid the creation of object classes that are artificial, that is, 

object classes that do not represent entities in the underlying application. 

OPM supports the specification of subclass-superclass relationships in an object class (ISA) hier

archy. A subclass is a specialization of its superclasses, and inherits all the attributes associated with its 

superclasses. Multiple inheritance is supported in OPM. 

OPM supports the specification of derived attributes using derivation rules involving attribute 

inverse, attribute matching, attribute composition, attribute subvalue, attribute union, arithmetic expres-
' 

sions, and aggregate functions. Attribute inverse and matching provide capabilities for cross referencing 

values of two or more attributes. For example, let publication be an attribute of object class AUTHOR, 

1 



OPM SCHEMA EDITOR 2 Introduction 

and let authors be an attribute of object class PUBUCATION, where publication is associated with value ,, 

class PUBUCATlON, and authors is associated with value class AUTHOR. If publication is specified as the 

inverse of authors, then for every (value of) publication, say paper, of a given AUTHOR, say John, the 

value of attribute authors for PUBUCATlON paper is John. 

Protocol classes in OPM are used to model processes such as laboratory protocols. Each instance 

of a protocol class is an individual experiment. Given an input, a protocol instance (experiment) results 

in an output, where both input and output consist of objects. OPM supports the recursive specification 

(expansion) of protocolS. Protocol expansion in OPM allows specifying a protQCol in terms of alter

native subprotocols, sequences of subprotocols, and optional subprotocols. A protocol class can be 

associated with regular as well as input and output attributes. Input and output attributes are used for 

specifying input and output connections between protocols. An input (or output) attribute is a regular 

attribute with additional input (or output) statements indicating its relationship with other input or out

put attributes. For example, if the result (output) of a CUT protocol is cut_gel, and CUT is followed by a 

PURilY protocol that takes cut_gel (input) for purifying DNA, then CUT and PURIFY are related via their 

input and output attributes, that is cut_gel. 

OPM has constructs similar to other semantic and object-oriented data models. Thus, in OPM 

(1) objects (instances) are classified into object classes and are qualified by attributes that take val

ues from value classes; 

(2) object classes are interrelated via attributes and ~pecialization (isa) relationships; 

(3) attributes can be defined using various derivation mechanisms, such as inverse and matching. 

OPM has two constructs that do not appear in other semantic or object-oriented data models: 

(1) the association of attributes with union of value classes; 

(2) the definition of protocol classes. 

The OPM data model is described in more detail in Appendix A. A full description of OPM can be 

found in [1]. 

We intend to implement OPM interfaces on top of relational and object-oriented database manage

ment systems (DBMSs). Currently, we develop an OPM interface on top of the Sybase relational 

DBMS. For relational DBMSs such as Sybase, we use the Extended Entity-Relationship (EER) model 

as an intermediate level between OPM and the underlying relational DBMS. Thus, we map OPM sche

mas into EER schemas and queries, and subsequently map EER schemas and queries into relational 

database schema definitions and SQL queries using existing EER to DBMS translation tools [3, 4]. The 

mapping of OPM schemas into EER schemas and queries is described in [2]. 

2 



\, 

OPM SCHEMA EDITOR 2 Introduction 

1.2 The OPM Schema Editor 

The OPM Schema Editor is used to specify, display, modify, and browse OPM schemas. An OPM 

schema generally consists of objects and protocol classes. Each class is associated with attributes. 

The main menu of the OPM Schema Editor provides commands to create a new schema, load an 

existing schema, save a current schema to a file and to invoke dialog windows for defining or modifying 

OPM classes and attributes. 

The OPM Schema Editor starts by default a new schema. If an existing schema is needed, then 

Open menu item must be used in order to load the schema. The current definition of the OPM schema 

can be viewed via the editor windows. The New menu item resets the editor for a new schema. In order 

to save the current schema, Save or Save As menu items can be used. 

In order to add new object classes to the current schema, Define OPM Object Class menu item is 

used. A new (empty) Object Class Definition Window (see Figure 4) will pop up for defining a new 

object class. Define OPM Protocol Class or Define Controlled Value Class are used to add a new pro

tocol class or a controlled value class, respectively. 

The editor supports the definition of the following main OPM meta entities: 

l.Object Class. 

2.Protocol Class, 

3.Controlled Value Class, 

4.Simple Attribute (for an object or a protocol class), 

S.Composite Attribute (for an object or a protocol class), and 

6.Input/Output Attribute (for a protocol class). 

The OPM Editor supplies a dialog window to define, display and modify each of the constructs 

above. Each dialog window has buttons (such as New, Clear or Help) that invoke different actions or 

functions. It is important to note that invoking New or Modify commands in a window associated with 

one of the main OPM meta entities, entails changing the current internal definition of the schema. When 

a Modify command is invoked in another window of the editor, only the content of one of the main 

OPM meta entities is changed without changing the current definition of the schema; the schema will be 

changed only when the New, Modify or Delete button on the main OPM meta entity is invoked. Thus, 

the state of each of the OPM meta entities is always reflected by the dialog window that represents it. 

Print OPM in Latex and Print PostScript menu items output the current schema definition in 

3 



OPM SCHEMA EDITOR 2 Introduction 

OPM schema definition language to a Latex file and a PostScript file, respectively. 

Quit menu item allows leaving the editor. If there are schema changes that have not been saved, the 

user will be required to confirm the quit action. 

4 



OPM SCHEMA EDITOR 2 I Starting the OPM Schema Editor 

2 Starting the OPM Schema Editor 

The current version of the OPM Schema Editor can be run on a Sun SPARCstation running Sun OS 

4.1 (or above) and X-Wmdow R11.2 (or above). It is recommended to run the editor using the Motif 

window manager (mwm). The editor supports all the standard X toolkit command line options plus one 

of its own: nobell or nobells tum warning and error beeps off. 

The editor requires the following four files: the file containing the editor executable code, the X 

application defaults file: the UID file, and the configuration file. The editor executable code is called 

editor, the X application defaults file is called SchemaEditor, the UID file is called Editor.uid, and the 

configuration file is called metadb.i. The editor, Editor.uid, and metadb.i files should be in the current 

working directory. However, if you have the metadb.i and Editor.uid files stored in, for example I 

home/editor directory, you can use the following· command to specify them to the editor: 

setenv EDITOR_ UID /home/editor/Editor.uid 

setenv EDITOR_META /home/editor/metadb.i 

The directory where SchemaEditor is installed is indicated using the following command: 

setenv XAPPLRESDIR <directory> 

H the SchemaEditor is installed at a certain location in the system, such as: /usrflib/Xll/app-defaultsl 

SchemaEditor, then it is loaded automatically and this step is not required. 

In order to run the editor, first load the default environment with the following command 

xrdb -load SchemaEditor 

next, start the editor by typing 

editor 

then click Continue on the copyright notice window. 

For new users we recommend first the tutorial, a step-by-step, hands-on introduction to the editor 

and its features (see next section). 

5 



OPM SCHEMA EDITOR 2 Tutorial 

3 Tutorial 

This section contains a tutorial designed to help learning the OPM Schema Editor. The first part of 

the tutorial presents a predefined schema that represents a brief outline of the editor. The second part of 

the tutorial is a guided step-by-step specification of a schema for a simple database. This part consists 

of six lessons, each providing step-by-step instructions for completing the tasks. 

3.1 Basic Editor Usage 

3.1.1 Starting the Editor 

The files required to run the editor as well as the command starting the editor are described in the 

previous section. For running this part of the tutorial an additional file, called Thtorial.OPM is needed. 

For simplicity, put this file in the current working directory. 

Mter starting the editor and clicking on the Continue button of the copyright notice, the editor's 

main window is brought up . 

. -··~r 

I Object Classes 

The main window contains the main menu bar a~ross the top, the classes listbox and its associated " 

option menu at the left, and the main window drawing area in the remainder of the window. 

The first thing you can explore is the help tree: from the Help menu, select Help. The Help window 

displays the topic of the main window. Help about other windows can be obtained by clicking on the 

6 



OPM SCHEMA EDITOR 2 Tutorial 

topics listed in the Help Items List Listbox. 

For details on a topic (i.e., on its sub-topics) click Down; to return to a higher level, click Up. 

Help Parents Ust Help lte:ms List 

Hel Help Window 
~~----------------------1 About DB Schema Editor 

Class Dialog 
Attribute Dialog 
Co11ponent Att r1 bute De"fi ni t1 on Di a· 

The main window. For help ~ere within the application. c:llck on a Help button. or press FL 

Up II Down II B~c.~ Close II Help 

3.1.2 Looking at an Existing Schema 

This section illustrates the schema specification process of the OPM Schema Editor. 

Select Open from the Schema menu in the main menu bar. All the OPM schema files used by the 

editor are assumed to have file extension .OPM. Therefore, a standard Motif file selection dialog box 

listing all the files * .OPM in its Files Listb~x will appear. Double clicking on 'futoriai.OPM loads the 

file into the editor. 

Note that the Object Classes Listbox contains several entries: this is an alphabetically ordered list 

of the object classes defined in this schema. The list of the protocol classes in this schema can be dis

played by selecting Protocol Classes from the option menu heading the listbox. Similarly, the list of 

controlled value classes in this schema can be displayed by selecting Controlled Value Classes from 

the option menu heading the listbox. 

Display the list of object classes and click on PERSON. A graphical representation of the PERSON 

object class and its superclass is displayed in the main window drawing area. Now switch to Protocol 

Classes in the option menu heading the listbox, and click on CREATE_SCHEMA_FILE. For protocol classes 

7 



OPM SCHEMA EDITOR 2 Tutorial 

such as CREATE_SCHEMA_FILE, a graphical representation of their expansion (i.e., their decomposition 

into alternative or sequences of protocol steps), is shown (if specified, of course). Expansions are 

explained in more detail later. 

There are three modes for the graphical display in the main window. The default mode, which you 

are seeing now, is called Class Links mode. Bring down the Display menu from the main menu bar and 

switch to Class ffierarchy mode. Notice that now a complete hierarchy tree of the OPM object classes 

is displayed. Switch to Detailed Links mode. This looks very much like Class Links mode. 

Double clicking on any of the buttons displayed in the main window in any of the graphical display 

modes will open the class definition window for that class. This is an alternative to double clicking in 

the main window listbox. 

In Class Links mode or Detailed Links mode, single clicking on any button that represents a class, 

for example clicking on the SAVE_FILE button in the expansion diagram of CREATE_SCHEMA_ALE, will 

cause the graphical representation of that class to expand, that is, to replace the button. Clicking again 

will reverse this expansion. The expansion of the graphical display is limited to a maximum of six lev

els. 

Unlike in Class Links mode, in Detailed Links mode (sub)protocols that are expanded inside the 

expansion of another protocol are displayed without their attributes. Class Links mode therefore pro

vides a more concise graphical representation. 

Object Class Name: hPERSON 

~======~ Description: I information about a person 

Superdasses 

rUPERCLASS 

I Modify Superclass I 

I Choose a name·furthis class. 

address: (COMPOSITE) ~ 
name: (TEXT) 
sex: (SEX: { "'female 

.._ _________ ...... c 
.... _ ... 

Define Attribute: I Simple Cl I 

Return now to the list of object classes. You can look at the details of the PERSON class by double 

8 



OPM SCHEMA EDITOR 2 Tutorial 

clicking on its name in the listbox. The editor opens the Object Class Definition window.This window 

displays the name of the class, a description, its superclasses, and its attributes. 

Look at the name attribute of object class PERSON by double clicking it in the Attributes Listbox 

of the Object Class Definition window. Attribute name is a simple attribute, and a Simple Attribute 

Definition window is brought up. 

Deflnldon 

Ataibute Neme: I name 

::::===========:::: Class Name: I._P_ERS __ o_N _______ ___, 

Velue Class: 

Selea Type: I Primitive c:a I 

I The value classes for this attribute. 

Constraints 

Identifier: l No c:a I 
Values: I Single c:a J 

Null?: I Not AlloW'ed c:a I 
Derivation: 

Define Derivation: I none 

The attribute name and the name of the class for this attribute are displayed at the top of the win

dow. The value class of name is listed in the Value Class Listbox (it is primitive value class TEXT). The 

attribute constraints displayed in the upper right part show that name is not an Identifier attribute, it is 

Single valued, it is not allowed to have Null values. The Derivation Listbox is empty because name 

does not haye a derivation. 

H you have tried to modify something in these windows and want to close them, a warning message 

indicates that your work is not saved. Go ahead and close them anyway, up to the main window. In the 

main window, switch to the Protocol Classes option for the listbox. Double click on the CREATE_SCHE

MA_FILE protocol. 

Protocol Class Definition window is very similar to the Object Class Definition window. Proto

col classes do not have superclasses, but have protocol expansions displayed in the Protocol Expansion 

area. This window has. an expansion expressing the fact that the CREATE_SCHEMA_FILE protocol consists 

of three sub-protocols (steps), LEARN_OPM_EDITOR followed by ENTER_DEFINITIONS and SAVE_FILE. 

Close the CREATE_SCHEMA_FILE Protocol Class Definition window. 

9 



OPM SCHEMA EDITOR 2 

_I;::;:- ······--··---·-·---·----------·····-·····--·········. • .•• 

Protocol Class N arne: I }::::REA TE_SCHEMA_FILE 

Description: Ll _________ __.. 

Protocol Expansion 

LEARN_OPM_EDITOR. ENTER_DEFINlTIONS. 
SAVE_FILE 

Attributes 

output_file: (TEXT) 

n c 
L-------------------------------~11 czli:::::::::::::::::5tiel 

)Define Expansion I Define Attribute: I Simple c f 

Tutorial 

8EIEI~I 
I The list of attributes defined for this c:lass. 

In the main window, display the controlled value classes by switching to the Controlled Value 

Classes option of the main window Object Classes Listbox. Double click on the first entry. 

The Controlled Value Class/Value window displays a controlled value class called SEX, consisting 

of two values: male and female. The Value Type of both male and female is Character String. Any time 

an attribute can take values from a finite set of predefined (controlled) values, its value class can be 

defined as a controlled value class. Close this window. 

From the Schema menu in the main menu bar, select New. This selection clears the editor (i.e., 

removes the current schema, if any) and allows specifying a new schema from scratch. You are ready 

for the second part of the tutorial. 

3.2 Specifying and Saving Schemas 

This part of the tutorial guides you through a step-by-step specification of a schema for a simple 

database. Suppose that you need to fill a position in your group. You will specify the schema of a data

base that can be used by interviewers, keeping track of people,. resumes, and the steps in the interview 

process. The tutorial consists six lessons regarding the specification of: 

1. object classes and protocol classes; 

2. attributes for object and protocol classes; 

10 

t 



t 

\ 

OPM SCHEMA EDITOR 2 Tutorial 

Conttolled Value Class Name: f...._s_BX _____________ __. 

Value Type: f Character String c::t I 

Values 1n this class: 

NevrVelue: 

NevrValue I (ModifY Value I I Delete Velue II Clear Input 

I Nevr I I Modify I I Delete I Undo I I Clear I I Close I I Help 

I This button v.nll close t:his dialog. 

3. controlled value classes, a11d associating attributes with value classes; 

4. derivation expressions for attributes; 

5. expansions for protocol classes; 

6. connections for input/output attributes of protocol classes. 

Each stage of the schema specification process is based on the previous ones, so the lessons should 

be done in order. It is worth saving from time to time partially specified schemas. 

3.2.1 Specifying Object Classes 

In order to define an object class, select OPM Object Class from the Define menu in the· main 

menu bar. An empty Object Class Definition window is brought up. 

Call this class TRY by typing the name in the Object Class Name area. Note that you cannot type 

in lower-case characters. Class names are always in upper-case characters, and the window automati

cally converts the characters into upper-case. Type a short description in the Description area, and click 

11 



OPM SCHEMA EDITOR 2 

Description:''------------' 

Superdasses 

I Modify Superdass I 

(Choose anameforthis dass. 

Tutorial 

Define Attribute: I Simple c I 

the New button. This new object class has been added to your schema. The schema will consist of more 

than one object class, so you may want to change the name of this class. In the Object Class Name area 

backspace over TRY, and type DOCUMENt Try clicking Close to close this window. The name change 

has not been recorded, therefore a warning dialog box is brought up. Click Cancel in the warning dialog 

box, then click Modify to change the name of the class. 

H you want to reuse a class definition, then you can use a previously defined class and change the 

name. Starting with the DOCUMENT class definition, change the name to RESUME and click New. Now 

you have two classes. 

Click the Modify Superclass button for defining a superclass for RESUME. 

The Superclass Definition window shows that only DOCUMENT is a potential superclass for 

RESUME, because it is the only other class defined so far. Click on DOCUMENT in the Potential Super

classes Listbox. DOCUMENT is moved from this listbox to the Selected Superclasses Listbox. Click 

Modify in the Superclass Definition window. Note that the newly defined superclass is now displayed 

in the Superclasses Listbox of the Object Class Definition window. Click Close in the Superclass 

Definition window. 

Before proceeding with the schema specification, hit Fl on the keyboard. This is the help key; the 

Help window is brought up. The topic shown is the Superclass field of the Object Class Definition 

window. Anywhere in the application, if you are not sure how to use a button or what is the function of 

12 



\ 

OPM SCHEMA EDITOR 2 Tutorial 

Selected Sup erclasses Potential Supercl.asses 

DOCUMENT 

c c 
1:1 1:1 1:1 1:1 

11 Modify I I DcleteAll I Undo I I Close ! I Help II 
This button will :m.odify the supercl.ass of the current object class. 

a menu, etc., you can click Fl when keyboard focus is on the widget in question. The help is context 

sensitive and will display the appropriate topic. Click Modify in the Object Class Definition window. 

to save the newly defined superclass, imd close this window. 

3.2.2 Specifying Protocol Classes 

Protocol classes are used to keep track of procedures and processes. For this database, you may 

want to keep track of interviews and phone calls. Bring up the Protocol Class Definition window by 

selecting OPM Protocol Class from the Define menu in the main menu bar. An empty Protocol Class 

Definition window is brought up. 

Call this protocol class EVALUATE by entering this name into the Protocol Class Name area. Enter 

a short description(e.g. "Evaluate a potential employee.") in the Description area. Click New to add 

this protocol class to database schema. Clear the window by clicking Clear, and enter a new protocol 

class name, TELEPHONE. Click New. Clear the window again and enter INTERVIEW. Click New. Clear the 

window once more and enter HIRE. Click New. Three more protocol classes have been added to the 

schema. 

You then realize that hiring a successful candidate is done only for one person, so it is not necessary 

to keep track of the hiring in the database. To delete the HIRE protocol class, click the Delete button. A 

warning is issued: "Are you sure you want to delete the current class?". You confirm the deletion by 

clicking OK, and the class is deleted. 

You will define an expansion for a protocol class later. Now it is worth saving your work. From the 

13 



OPM SCHEMA EDITOR 2 Tutorial 

Protocol Class Name: I EVALUATE 

.::=:====~ Description: liBvaluate a potential employee. I 
Protocol Expansion 

I Define Expansion I Define Attribute: I Simple c I 

I The Jist of attributes defined for this dass. 

Schema menu. select Save As. The file selection listbox allows you to choose a name for your new 

schema. Remember to use a file name with extension .OPM such as Example.OPM or Employee. 

OPM. Now that you have chosen a name for the schema, using Save instead of Save As will save sub

sequent schema versions to the same file. 

3.3 Specifying Attributes 

3.3.1 Specifying Simple Attributes 

Open an empty Object Class Definition window from the main menu. Specify an object class 

called PERSON by typing this name in Object Class Name area. Click New to add this object class. In 

order to define a simple attribute for a PERSON, click Simple in the Define Attribute option menu. A 

Simple Attribute Definition window is brought up. 

Call this attribute experience by typing this name in the Attribute Name area. A person can have 

lots of job experience, so this attribute should be specified as multi-valued. Select Multiple from the 

Values option menu. If you click New now, you will get an error. Attributes cannot be created without 

a value class. You do not know what the value class is for this attribute, so you can try choosing a very 

general value class. Select Metaclass from the value class Select Type option menu. In the Attribute 

Metaclass Value Class window there are two choices: OBJECT_CLASSES and PROTOCOL_CLASSES 

14 



OPM SCHEMA EDITOR 2 

Definl.tian 

A~ute Nmne: I c:xperlenc:e 

:=:::::==========::::! Class Nmne: la..P_ERS __ o_N _______ ___. 

Value Class: 

Constraina 

Identifier: I N a Cl I 
Values: I Multiple c::::l I 

Nun?: l Allowed c::::l ( 

Derivation: I '----PI\OTOCOL_-CLASSES_____.I.____I _____. 

Select Type: I Metaclan .c::::l I Define Derivation: I none c::af 

Tutorial 

I UoW. I I Cleor I I Clo•~ I I Holp 11 
I The clerlvation far this attribute. 

(besides Undefined). Job experience refers to performing tasks in general, so let us choose PROTOCOL_

CLASSES. Click Modify and close the Attribute Metaclass Value Class window. Now click New in 

order to add this attribute to the schema. 

Note that the attribute and its value class are displayed and highlighted now in the Attributes List

box of the Object Class Definition window. The highlighting indicates that this is the selected (current) 

attribute. If you wish to delete or modify an attribute now, this is the one that would be affected. 

3.3.2 Specifying Composite Attributes 

The persons interviewed have addresses, and addresses are composite rather than simple attributes. 

Select Composite from the Define Attribute option menu in PERSON Object Class Definition window. 

Call this attribute address by typing it in the Attribute Name area. 

Now we show how to add the new component attribute street_ address. After you click the Define 

Component button, a new Component Attribute Definition window is brought up. 

Type in the attribute name in Comp_onent Attribute Name area in this window. This attribute is 

associated with primitive value class TEXT. Click Primitive iri Select Type option menu. Select TEXT in 

Primitive Classes Listbox in Attribute Primitive Value Class window, click Modify, and then close 

this window. Click New in the Component Attribute Definition window to add this component 

attribute. 

15 



OPM SCHEMA EDITOR 2 Tutorial 

Change the attribute name in Component Attribute Definition window to city and click New . A 

second component with value class TEXT has been defined. 

Component Attribute Name: ... 1 city ______________ __. 

Value Class: Derivation: 

TEXT 

Select Type: I Primitive c I DefineDerlvation: I none c I 

I The value classes for this attribute. 

Clear the component window by clicking Clear, enter a new name state and associate the attribute 

with primitive value class CHAR(n). In the Length area of the Attribute Primitive Value Class window 

enter the length for the CHAR(n) - in this case, 2. Click Modify, and state now is associated with value 

class CHAR(2). Click New again in the Component Attribute Definition window. Close the Compo

nent Attribute Definition window. 

Remember to click New in the Composite Attribute Definition window to add the new composite 

attribute to object class PERSON. 

3.3.3 Composing and Decomposing Attributes 

A composite attribute, such as the address attribute you have just created, can be broken into sim

ple attributes. Display the composite attribute address by double clicking on its name in the Attributes 

listbox of the PERSON Object Class Definition window. 

Click on the button Decompose. As a result, the composite attribute address is replaced by its com

ponents, street_address, city, and state, that are now simple attributes of the PERSON class. Close the 

composite attribute window and verify this by looking in the Attributes listbox. There is no composite 

attribute named address, but there are new simple attributes named street_address, city, and state. 

16 



OPM SCHEMA EDITOR 2 Tutorial 

The reverse action is also very easy to carry out. Instead of specifying components for a composite 

attribute one by one, a composite attribute can be defined by selecting its components from the list of 

existing simple attributes. 

In order to restore the composite attribute address, open the Composite Attribute window and 

type the name address in the name field. Open the Include Components window by clicking on the 

Include Components button below the Components Listbox. 

Selected Attributes 

c1ty: (TEXT) C 
state: (CHAR(2)) 
street_address: (TE 

II OK I 

c 

Potential Attributes 

experience: (PROTOC C 1'-----------

..... ,(__ .... 

I Close I I Help ~~ 
I Click to add an attribute to the list of components. I 

The Include Components window allows you to select the attributes that will be moved from the 

list of attributes to the list of component attributes for this composite attribute. Select street_address, 

city, and state by clicking on them in the Potential Attributes Listbox. Confirm these selections by 

clicking on the OK button. The Include Components window will be closed and the Composite 

Attribute window will show that you have selected three new components. Click the New button now 

in order to create the address attribute. 

Close the Composite Attribute Definition window and verify the changes in the Attributes list

box of the Object Class Definition window. PERSON class now has a new attribute called address, 

while street_address, city, and state attributes have been removed. 

3.3.4 Specifying Input/Output Attributes 

Only protocol classes can have input or output attributes. Double click on TELEPHONE to bring up 

the Protocol Class Definition window. Select Input/Output in the Define Attribute option menu, and 

the Input/Output Attribute Definition window is brought up" 

17 



OPM SCHEMA EDITOR 2 

r= -----··--------·-- . ''··· ~-
Definition 

Attrlbutr. Name:·l~m=e=~=~=co=tim=e======! 
Class Name: I TELEPHONE 

Value Class: 

Ccmstralnts 

V elues: I Single CJ I 
Null?: I Allowed CJ I 

Connec::tioD: I Output c I 

Tutorial 

.._DA-TET-IM-E ____ __. fi:ca ==========:aj~ 
Select Type: J Prlmidve c I Define Connecdon: I Owput is-a CJ I 

I Undo I I Cloar I I Clo« I I Help 11 
I The value classes for tb1s attribute. 

Let us specify an atuibute called meeting_time that represents a meeting time set up by telephone 

for an interview. Bring up the Attribute Primitive Value Class window, select DATETIME, click Modify, 

and then Close. The attribute has a name and a value class. This represents the result of an action (tele

phone call), so it is an output attribute. Select Output in the Connection option menu. Click New in 

order to associate this atuibute with the TELEPHONE protocol class. 

3.4 Specifying Value Classes 

Four types of value classes are supported by the OPM Schema Editor: controlled, primitive, 

abstract, and metaclass. Several primitive value classes and a metaclass have been already associated 

with attributes up to now. The other two types of value classes are explained below. 

3.4.1 Specifying Controlled Value Class 

You need to keep track of the interview results. An interview can result in hiring the candidate 

immediately, reject the candidate immediately, or postpone the decision (perhaps set up another inter

view). Open the INTERVIEW Protocol Class Definition window, and specify an input/output attribute 

called decision. Select Controlled from the value class Select Type option menu. 

An empty Attribute Controlled Value Class window is brought up, because there are no con

trolled value classes defined for this schema. 

18 



OPM SCHEMA EDITOR 2 Tutorial 

Click on the Define Controlled Value Class button to bring up the Controlled Value ClassNalue 

window; this window can also be brought up from the main menu bar, by selecting Controlled Value 

Class under the Define menu. 

Specify a controlled value class called DECISION by entering the name of the value class in the 

Controlled Value Class Name area at the top of the window. The first (controlled) value for DECISION, 

Hire, must be entered in the New Value area. Click the New Value button; Hire appears in the Values in 

this class Listbox. Enter Reject in the New Value area and click New Value again. Similarly, enter 

value Uncertain. Click the New button and then close the window. The new controlled value class DECI

SION is added to the schema. 

Con-.:rolle.d V"ol.u.e. C1e.• •: 

DECXSXON: 1: ••H1 re•• • ••Re:l ec::t.. • ••uncerta C 

I De.fi:ne. Con-.:rolle.d. 'V'ol.u.e. C1e.•• I 

I• Modify I I De1e.te. I 
S e.l.e.ct e. C ontrolle.d V" ol.u.e. C1e.• • to b e. 't:h.e. V"ol.u.e. cl.e.s • o~ the. e.-.:tri.bu.te. 

This new controlled value class is listed in the Controlled Value Class Listbox in the Attribute 

Controlled Value Class window. In order to associate this value class with attribute decision, select the 

DECISION in the listbox, and then click Modify. Close the Attribute Controlled Value Class window. 

In the Input/Output Attribute Definition window, the new value class is now displayed. Select the 

Output option for Connection and click New in order to associate this attribute with the INTERVIEW pro

tocol class. 

3.4.2 Specifying Abstract Value Classes 

Clear the Protocol Class Definition window and specify a new protocol class called 

READ_RESUME. Click New in order to add this class to the schema. Open the Input/Output Attribute 

Definition window, and specify input attribute resume; specify this attribute so that it is not allowed to 

19 



OPM SCHEMA EDITOR 2 Tutorial 

have null values. The value class of this new attribute should be RESUME, of course. Such a value class 

(defined as an OPM class) is called abstract. Select Abstract from the value class Select 1)pe option 

menu. The Attribute Abstract Value Class window is brought up. 

Select:ed. Value Classes: - Potential Value Classes: 

C! DOCUMENT 
EVALUATE 
INTERVIEW 
PERSON 
READ_RESUME 
TELEPHONE 

I Undo I ~ Close I I Help 

Abstract Value Classes to be the value class oft:he at:trlbut:e. select an item 

The Potential Value Classes Listbox contains all the classes that have been defined so far. Select 

RESUME from this listbox. RESUME is moved from the Potential Value Classes Listbox to the Selected 

Value Classes Listbox. Click Modify and Close in this window. Click New in the Input/Output 

Attribute Definition window in order to associate the attribute with its protocol class. 

An attribute can have more than one abstract value class. For example, suppose that a candidate has 

as reference a recommendation from a previous manager or co-worker. This reference could be in the 

form of a person to contact or in the form of a recorded reference letter. Open the PERSON object class. 

Open the Simple Attribute Definition window to add a simple multi-valued attribute reference. Open 

the Attribute Abstract Value Class window, and select two object classes DOCUMENT and PERSON. 

Click Modify. A reference attribute can be now either a DOCUMENT or a PERSON. 

Note that an attribute dcies not need to be multi-valued in order to be associated with several value 

classes. For example, a candidate can have only one reference, but the reference can be either a letter or 

a person. 

Troubleshooting: If you ever see the Abstract Value Class Definition window completely empty 

when you are trying to indicate an abstract value class, then you have not defined any classes yet. This 

window will be empty as long as there are no defined classes. 

20 



OPM SCHEMA EDITOR 2 Tutorial 

3.5 Specifying Attribute Derivations 

Derived attributes are associated with object or protocol classes, and are derived from other 

attribute(s) using a derivation rule. An attribute can be associated with at most one derivation rule. Each 

type of derivation has constraints and is defined in its own separate window. The seven types of deri

vations rules are: 

1. inverse: the derived attribute is the inverse of an attribute associated with another object or protocol 

class; 

2. match: the derived attribute matches an attribute of another object or protocol class on a component 

attribute; 

3. arithmetic: the derived attribute is computed from an arithmetic expression involving arithmetic 

operators, constants, and other numeric attributes of the same object or protocol class; 

4. aggregate: the derived attribute is computed by applying an aggregate function on a numeric 

attribute of the same object or protocol class, or by counting the values of another attribute of the 

same object or protocol class; 

5. composition: the derived attribute is a composition of other attributes; 

6. subvalue: the derived attribute is defined as a subvalue of another attribute from the same class; 

7. union: the derived attribute is defined as the union of other attributes from the same class. 

A derived attribute cannot be an identifier, nor an input or output attribute of a protocol class. Com

posite derived attributes are allowed in OPM only using attribute matching. 

3.5.1 Specifying Attribute Inverse Derivations 

Create a simple attribute candidate for object class RESUME, and associate this attribute with 

abstract value class PERSON. Also create a simple attribute resume for object class PERSON; associate it 

with abstract value class RESUME. After clicking New to add the attribute, do not close the Simple 

Attribute Definition window. Instead, select inverse in the Define Derivation option menu. The 

Attribute Inverse Definition window is brought up. 

Because attribute resume is associated with only one value class RESUME, its inverse attribute must 

be associated with RESUME. Conversely, the potential inverse attribute must be associated with value 

class PERSON. RESUME is listed in the Classes Listbox in Attribute Inverse Definition window. The 

RESUME object class has only one attribute, candidate, whose value class is PERSON and is listed in the 

21 



OPM SCHEMA EDITOR 2 · Tutorial 

~· 
Attrflnae Name: I 

::=====:::: 
Class Name: ._I __ P_ERS_o_N_...-.J 

Classes: At1ributel: 

candidate 

Inverse of; 

D •a D ,, 

I Select a class to fxlrm the inverse derivation. 

Attributes Listbox. 

Select candidate in the Attributes Listbox. The new inverse definition, RESUME.candidate, is 

listed in the Inverse of Listbox. Click Modify in order to update the attribute definition. 

Inverse specifications can be mutual, therefore the editor asks if you want to specify PERSON. 

resume as an inverse of attribute candidate of RES:JME • Select Yes , and close the Attribute Inverse 

Definition window. The inverse derivation is displayed in the Derivation area in the Simple Attribute 

Definition window. 

Note that a simple or component attribute associated with an abstract value class can have an 

inverse derivation, provided the attribute is not specified as an identifier. 

3.5.2 Specifying Attribute Match Derivations 

In the simplest case of matching, a simple attribute A of object or protocol class C1 can match an 

attribute B of object or protocol class Cz on attribute M only if (B, M) is defined as a composite attribute 

of Cz, A and B have identical value classes, and the value class of M includes C1• 

Suppose that there are several positions available, and the positions are offered to all qualified 

applic~nts by sending them letters on different dates. Furthermore, every applicant receiving an offer 

letter records the letter date and the letter. First, create a new object class called LETTER without 

attributes. Create a new object class called OFFERS associated with a composite attribute consisting of 

22 



OPM SCHEMA EDITOR 2 Tutorial 

three components: applicant, associated with abstract value class PERSON, send_date, associated with 

primitive value class DATETIME, and letter, associated with abstract value class LETTER. Save the OFFERS 

object class, and then associate object class PERSON with a new composite attribute consisting of two 

components: letter_date, associated with primitive value class DATETIME, and reply, associated with 

abstract value class LETTER. Click New on the Composite Attribute Definition window to make the 

change. Select match in the Define Derivation option menu in order to bring up the Attribute Matcb 

Definition window. 

ttrlbute Hatch Def'lnltlon 

Claas Nerne: I PBltSON I 
Matching Cia••: On AUribuuo.: 

~~•••m 

I~ 
rDEI~I!I!llll 

I~ 
Aurlb~ Ma'a:b: M a'I::Cbin.& Aa:ribu=s: 

"letter_date 

~ 
"letter 

~ 
rep"lv send_date 

ill Mo~ I I Dele.t:e All I I Add MaCchi IDele.t:e Macchi I Undo I I Close I I Help II 
I Select: a :rnatc:h.lng attribut:e t:o :match .....tt:h t:he selecced attribut:e on t:he Attribut:e. Match Ust:. J 

In the Attribute Match Definition window, the Matching Class Listbox lists only object class 

OFFERS, since only OFFERS is qualified to be involved in an attribute matching with an attribute of object 

class PERSON. The Attribute Match Listbox lists components (letter_ date and reply) of the new com

posite attribute of PERSON; they are used to match component attributes of OFFERS. 

Select OFFERS in the Matching Class Listbox. Component attribute applicant appears in the On 

Attribute Listbox. After selecting applicant in this listbox, the other two components of the same com

posite attribute appear in the Matching Attributes Listbox: they are send_date and letter. 

Select letter_date in the Attribute Match Listbox and send_date in the Matching Attributes 

Listbox, and then click the Add Match button in order to match these two component attributes. Select 

reply in the Attribute Match Listbox and then letter in the Matching Attributes Listbox, and then 

click the Add Match button again. Click the Modify button in order to record this match derivation for 

23 



OPM SCHEMA EDITOR 2 Tutorial 

the composite attribute of PERSON. The matching expression appears in the Derivation area in Com

posite Attribute Definition window. Click Modify button on the Composite Attribute Definition 

window in order to update schema. 

Note that only non-identifier simple or composite attributes can have a match derivation. 

3.5.3 Specifying Arithmetic Expression Derivations 

An arithmetic derivation defines the value of a numerical attribute in terms of the values of other 

numerical attributes of the same class. For example, an applicant can request a certain salary. In order to 

represent such a request, a new simple attribute called salary_requested is created for object class PER

SON; this attribute is associated with primitive value class MONEY. 

total_cost 

Class Name: I PERSON 

Aritlunetlc Expression: 

Attributes: 

exper1ence_count: 
salary_request:ed 

I Select attributes avafiable and insert them to the current derivation. 

The cost of a person, however, includes, in addition to the salary, benefits and overhead. Suppose 

that on the average, an employee costs twice her/his salary. Create a new simple attribute called 

totat_c6st for PERSON with value class MONEY. Click New to add this attribute. In the Simple Attribute 

Definition window, select arithmetic in the Define Derivation option menu. The A-rithmetic Expres

sion Definition window is brought up. 

Specify the arithmetic expression salary_requested "2 by first selecting salary_requested in 

Attributes Listbox, then clicking on the * function button, and finally by editing in the Arithmetic 

Expression area in order to add number 2. All this can be also done by typing directly the expression in 

24 



OPM SCHEMA EDITOR 2 Tutorial 

the Arithmetic Expression area. Click Modify in order to update the definition of attribute totol_cost. 

The derivation is displayed in the Derivation area in the Simple Attribute Definition window. 

Remember to click Modify in order to save the change. Only simple attributes with numerical primitive 

value classes INTEGER, SMAWNT, REAL, FLOAT, or MONEY can have arithmetic derivations, and such 

attributes cannot be specified as identifiers. 

3.5.4 Specifying Aggregate Function Derivations 

Similar to arithmetic derivations, aggregate function derivations define the value of a· numerical 

attribute in terms of other attributes of the same class. However, an aggregate derivation involves only 

one multi-valued attribute that is not restricted to have numerical value classes. For example, an appli

cant can have job experience from several positions. The number of positions held by an applicant can 

be represented using an attribute that counts the number of different values associated with (multi-val

ued) attribute experience. 

Attribute Name: I positions Attributes: 

Class Name: I PERSON 
ex et·i ence 
reference 

Function: I count r::::J I 

11 Modlfy ! I Delele AD I ~~I Case I~~ 
Select a Primitive Value Class to be the value dass of the attribute. 

Create a new simple attribute for PERSON called positions, associated with primitive value class 

SMALUNT. After clicking New in order to specify this attribute, open the Aggregate Function Defini

tion window by selecting aggregate in the Define Derivation option menu. The Aggregate Function 

Definition window is brought up. 

The Function option menu allows choosing one of several aggregate functions. Select the count 

25 



OPM SCHEMA EDITOR 2 Tutorial 

aggregate function. The Attributes Listbox lists all the multi-valued attributes of PERSON that could be 

involved in this derivation. Select experience from the listbox. Click Modify, and then close this win

dow. The new aggregate function derivation is displayed in the Derivation area in the Simple 

Attribute Definition window. Remember to click Modify in this window in order to associate the 

attribute definition with the new derivation expression. 

An attribute associated with an aggregate function derivation cannot be an identifier. 

3.5.5 Specifying Attribute Composition Derivations 

Create a simple attribute cover_letter for the object class PERSON, and associate this attribute with 

abstract value class LETTER. Click the New button on the Simple Attribute Definition window and 

select composition in the Define Derivation option menu. The Attribute Composition Definition 

window is brought up. 

Auzibute N .une.: I coverJe.ae:r 

Class N.une.: I PERSON 

~========~------------------~ Compo sidon D c:.rlvadon: I re.SU%ne.c:andiclate..re.ply 

Value Classes: 

LETTER 

~~ Ne~ I I Dde.te I .Undo I I Close. I I Hdp 11 

The Attributes Listbox displays all simple or component attributes of class PERSON that are non

derived or derived by inverse derivation and that are abstract Click resume on the Attributes Listbox, 

and it will be displayed in the Composition Derivation area. The value classes of resume will be dis

played in the Value Classes Listbox. For every value class selected in the Value Classes Listbox, its 

attributes that are non-derived or derived by inverse derivation will be displayed in the Attributes List

box. If you click on an attribute in the Attributes Listbox, the same composition procedure is repeated. 

Click on candidate, and then click on reply. The Attributes Listbox now is empty because there is no 

26 



OPM SCHEMA EDITOR 2 Tutorial 

valid attribute associated with class LEITER. 

Click New in the Attribute Composition Definition, and then click Modify in the Simple 

Attribute Definition windows in order to save the changes. 

3.5.6 Specifying Attribute Subvalue Derivations 

First specify an object class MEMORANDUM with superclass LEITER, and then create a simple 

attribute response for the object class PERSON, and associate this attribute with the abstract value class 

MEMORANDUM. Click the New button on the Simple Attribute Definition window and select sub

value in the Define Derivation option menu. The Attribute Subvalue Definition window is brought 

up. 

All simple or component attributes of class PERSON that can be defined as subvalues of attribute · 

response are displayed in the Attributes Listbox. For the current schema, only attribute reply is dis-

A tt:ribu1:e N arne: 

Class Name: I PERSON ::::===========----. D erivadon: subvalue of .I 

&I 

11 Mo<Wy I I Dele'l:e I 

w 
Cl 

( Undo I ( Close I I Help ~~ 

Select: en attribute here e.s the subvelue derivation of the curren1: attribute. 

played in the listbox. The value class of response (i.e., MEMORANDUM) is an immediate subclass of the 

value class of attribute reply (i.e., LETTER). Click reply on the Attributes Listbox, and it will be displayed 

in the Derivation: subvalue of area. Click both Modify in the Attribute Subvalue Definition and the 

Simple Attribute Definition windows in order to save the changes. 

27 



OPM SCHEMA EDITOR 2 Tutorial 

3.5. 7 Specifying Attribute Union Derivations 

Specify three simple attributes for object class DOCUMENT: author, with abstract value class PER

SON, evaluate, with abstract value class EVALUATE, and contact, with abstract value class TELEPHONE. 

Class Nezne: I DOCUMENT 

Dertvauon: 

Scl~ Attribu.~es: 

r------------------------, c 

•========•c 
11 ModifY I I Dele~e. All I 

PatentLel Auribu.1:es: 

author 
conta.c't: 
eva,ua.'t:e 

I Undo I I Close I I Help II 
Sel~ en attribu.~e here vn1l :axLove 11: b ac:k. ~o d'1e Po1:endal Attributes Uct. and all 

Then specify another simple attribute, person_selected, and associate this attribute with abstract value 

class PERSON or EVALUATE or TELEPHONE. Click the New button in the Simple Attribute Definition 

window and select union in the Define Derivation option menu. The Attribute Union Definition win

dow is brought up. 

Attributes author, contact, and evaluate will be displayed in the Potential Attributes Listbox. 

The value class for attribute person_selected is the union of the value classes of attributes author, con

tact, and evaluate. Click on each of the attributes displayed in the Potential Attributes Listbox, and 

they will be entered into the Derivation area and listed in the Selected Attributes Listbox. Click Mod

ify in the Attribute Union Definition and in the Simple Attribute Definition windows in order to save 

the changes. 

3.6 Specifying Protocol Expansions 

Protocol EVALUATE can be expressed in terms of (expanded into) simpler (sub-)protocols (steps) that 

are involved in the evaluation process. 

28 



OPM SCHEMA EDITOR 2 · Tutorial 

First, specify an additional protocol class called REJECT representing the writing of rejection letters. 

After specifying REJECT, open the EVALUATE Protocol Class Definition window; Click the Define 

Expansion button in order to bring up the Protocol Expansion window. 

The Protocol Expansion area is empty, and the Protocols Listbox lists four protocols that can 

potentially be involved in this expansion. Note that EVALUATE is not listed because a protocol cannot be 

defined in terms of itself. The expansion can be specified by typing directly in the Protocol Expansion 

area or by using the Syntax buttons and selecting protocols from the Protocols Listbox. 

Pro'tOcol Bxpanston 

R.BAD R.BSUMB , (llEJBCT O:R. TBLBPHONB , fl 
[INTdVIBW]i IJ 

Pro'tOcols 

XNTERVXEW 
REAO_RESUME 
RE.JECT 
TELEPHONE 

•a 
_ - 7-RE.JECT ) 

--K:]RE~A~DQ_RE~SUHE:!![))----,~TELEPHONE ) X§>4C JHTERY.IEW ~ 

I Modif,y I l1ndo I I Clear I I Close I I Help 

T:vpe me cxpenslon here. or click In 1:he prococols Usc end on me syn1:ex bunons 1:0 build en cxpanslon 

The evaluation process consists of reading a resume, then either rejecting the applicant immediately 

or deciding to telephone for arranging an interview. If the telephone conversation is not successful, you 

may not wish to arrange an interview. Thus, EVALUATE is expanded as follows: 

READ_RESUME. (REJECT OR TELEPHONE. (INTERVIEW)) 

The parentheses group elements together. Commas represent sequential steps: first read the resume, 

then either reject or telephone. The square parentheses indicate an optional step: an interview may or 

may not be arranged. This expansion can be expressed as follows using the Syntax buttons: click on 

29 



OPM SCHEMA EDITOR 2 Tutorial 

READ _RESUME in the Protocols Listbox, click the comma button, click the left parenthesis button, click 

on REJECT, click the or button, click on TELEPHONE, click the comma button, click the left square paren

thesis button, click on INTERVIEW, click the right square parenthesis button, click the right parenthesis 

button. 

Click on Modify to associate EVALUATE with the new protocol expansion. The new protocol expan

sion will appear in the Protocol Expansion area in EVAWATE Protocol Class Definition window. More

over, a graphical representation of the expansion is represented graphically in the drawing area of the 

Protocol Expansion window. Remember to click Modify in the Protocol Class Definition window to 

save the change. 

Troubleshooting: Without parentheses the expansion (READ_RESYME. REJECT OR TELEPHONE. 

(INTERVIEW)) is quite different: it specifies the evaluation process as consisting of the following sequence 

of steps: either read the applicant's resume and then reject the applicant. or telephone the applicant and 

possibly arrange an interview (operator"," has higher precedence over or)! 

Now try reverting all parentheses into square parentheses in the expansion text. Click Modify. The 

protocol expansion parser cannot interpret this new expression, and warns you of the error by indicating 

the location of the error. 

3.7 Specifying Protocol Connections 

Connections between protocols are specified using input and output attributes. If an input or output 

attribute A of a protocol class P is identical to an input or output attribute B of one of the subprotocols 

of P. Q (i.e .• Q is involved in the expansion of P, and B represents A in Q), then B is specified as an 

Input is-a or Output is-a relative to A. If an input attribute A of protocol class P takes its input from an 

output attribute B of another protocol class Q, then A is specified as an Input from relative to B. 

3.7.1 Specifying Input or Output Is-a Connections 

The EVALUATE protocol class should have an input attribute representing resumes. Bring up the 

EVALUATE Protocol Class Definition window, and specify an input attribute called resume with abstract 

value class RESUME. 

Clearly, input attribute resume of sub-protocol READ_RESUME is identical to input attribute resume 

of the higher-level protocol EVALUATE. Bring up the READ_RESUME Protocol Class Definition window, • 

and then the Input/Output Attribute Definition window for resume. Select Input is-a from the Define 

Connection option menu. The Input/Output Is-a Definition window is brought up. 

30 



OPM SCHEMA EDITOR 2 

The attribute" s input is- a 

Protocol 

I EVALUATE 

Attributes 

I 

I !"Modify! ! Delete I 1: undo I r·9;o.~· I I H~ II 
(This button will close the I sa Dialog. ) 

Tutorial 

The higher-level protocol class, in this case EVALUATE, is automatically displayed in the Protocol 

area. The input attributes of this higher-level protocol class (in this case only one) are listed in the 

Attributes Listbox. Select resume from this listbox, click Modify, and close this window. The input is

a definition is displayed in the Connection area of the Input/Output Attribute Definition window. 

Remember to click Modify before closing Input/Output Attribute Definition window. 

An input attribute can have an input is-a connection if it is part of a higher level protocol, and the 

connection must refer to an input attribute of that higher level protocol. In the example above the names 

and value classes are identical for the connected attributes, but this is not a requirement. Similar con

straints apply to the output is-a connection. As an exercise, create an output attribute decision for the 

EVALUATE protocol class with a controlled value class DECISION, and connect output attribute decision of 

protocol class INTERVIEW to it. 

3. 7.2 Specifying Input From Connections 

The TELEPHONE protocol class has a meeting_time output attribute. A similar attribute can be con

sidered as an input attribute for the INTERVIEW protocol class. Accordingly, specify an input attribute 

time for protocol class INTERVIEW, and associate it with primitive value class DATETIME. In the Input/ 

Output Attribute Definition window select Input from from the Define Connection option menu. 

The Input From Definition window is brought up. 

31 



OPM SCHEMA EDITOR 2 

The attribute inputfromJ ... T_E_L_E_P_H_O_N_E ____ ___.I via I meetint....time 

From Protocol 

READ....RESUME 
REJECT 
TFL FPHO\!E 

a D 

Classes Attributes 

u1eeti n ti 111e 

a D a 

Tutorial 

D 

The From Protocol Listbox in this window lists all the protocol classes having output attributes 

that can be connected to the current attribute. Select TELEPHONE in the From Protocol Listbox. The 

name of the selected protocol appears in the The attribute input from area, and the Attributes Listbox 

lists the output attributes of the selected protocol class: in this case, meeting_tlme is listed. Select this 

. attribute by clicking on it; its name is displayed in tne via area. Click New, and the input from definition 

is displayed in the Connection area of the Input/Output Attribute Definition window. Remember to 

click Modify before closing the Input/Output Attribute Definition window. 

An input attribute of protocol class P can have an Input from connection either (I) if Pis not a 

sub-protocol of a higher-level protocol class, or (2) if P is a sub-protocol of protocol class Q, and there 

are other sub-protocols of Q preceding Pin the expansion definition. The via attribute must be an output 

attribute of the From Protocol. In some cases, there is a sequence of via attributes. In order to continue 

adding via attributes, the most recent via attribute must be of abstract value class and the new via 

attribute must be an attribute of that class. 

32 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

4 OPM Schema Editor Windows 

This section describes every window one may encounter while using the editor. The layout of every 

window, buttons in the window, and the functionality of each button are described. 

We start by presenting the general window structure, which is generic for all the windows in the 

editor (see Figure 1). Then we present the OPM Schema editor window flow diagram in Figure 2.The 

main menu, the functionality of each menu item, and how to use the main menu to start or end an appli

cation is then explained. Finally, we will concentrate on specific functions for every individual window. 

4.1 General Window Structure 

All the windows in the OPM Editor follow the general window structure shown in Figure· I. 

TITLE 

Specific Part 

Specific Buttons I Undo II [Clear] II Close II Help I 
Status Line 

FIGURE 1. General Window Structure 

A window can be divided into two parts: a window-specific part and a generic part. The latter is 
~ . 

(almost) identical in all the windows except the main window. In the generic part of a window; there are: 

1. a window title 

2. a status line with instructions for next action; 

3. an Undo button (undo the previous action); 

4. a Close button (close this window); 

33 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

5. a Help button (provide help for this window); and 

6. an optional Clear button (clear this window). 

All the command buttons are shown on the same row. Buttons common to all the windows are 

grouped to the right hand side of the command button row. 

4.2 Wmdow Flow 

The window flow for the OPM Editor is shown in Figure 2. Each box represents an editor window. 

Two boxes are connected by an arrow if the window represented by the box to which the arr<?w is 

directed, can be reached from the window represented by the box where the arrow starts, by selecting a 

menu item or clicking a button. 

4.3 Main Window 

The main window of the OPM Schema Editor is shown in Figure 3. 

I Object Classes 

FIGURE 3. OPM Schema Editor Main Window 

We list only the functions of all the menu items in this subsection. 

1. Schema 

(a) New - create a· new OPM schema. 

34 



OPM SCHEMA EDITOR 2 

DEFINITION 
WINDOW 

AGGREGATE 
FUNCilON 

DEFINITION 
WINDOW 

ATIRIBUTE 
UNION 

DEFINITION 
WINDOW 

AlTRIBUTE 
INVERSE 

DEFINITION 
WINDOW 

0 PM Schema Editor Windows 

ATIRIBUlE 
META CLASS 

VALUE CLASS 
WINDOW 

OPMSCHEMA 
EDITOR 
MAIN 

WINDOW 

COMPONENTS 
WINDOW 

FIGURE 2. Window Flow Diagram 

CONTROllED 
VALUE 

CALSSNALUE 
WINDOW 

EXPANSION 
WINDOW 

INPUT/OUTPUT 
ATIRIBUTE 
DEFINITION 
WINDOW 

INPUT/OUTPUT 
IS-A 

DEFIN1110N 
WINDOW 

INPUT 
FROM 

DEFINITION 
WINDOW 

35 



OPM SCHEMA EDITOR 2 

(b) Open - open an existing schema. 

(c) Append- append an existing schema to the current one. 

(d) Save- save current schema. 

(e) Save As- save current schema to a file. 

OPM Schema Editor Windows 

(0 Print OPM in Latex- output current OPM schema into a Latex file. 

(g) Print in PostScript - output current OPM schema into a PostScript file. 

(h) Quit- quit OPM editor. 

2. Display 

(a) Clear - reset (clear) the display window. 

(b) Class Hierarchy - the object class hierarchy of the current schema is graphically displayed if 

this mode is on. 

(c) Class Links -classes and their attributes are graphically displayed if this mode is on. 

(d) Detailed Links- attributes of subprotocols involved in an expansion are also graphically dis

played if this mode is on. 

3. Define 

(a) OPM Object Class - define a new object class. After this option is selected, a new (blank) 

Object Class Definition window (see Figure 4) is brought up for adding a new object class. If 

an existing object class is selected by double clicking the class name in the Object Classes 

Listbox, then the definition of the selected object class will be displayed in the Object Class 

Definition window (Figure 3). 

(b) OPM Protocol Class - define a new protocol class (similar operation as define object class, but 

using Protocol Class Definition window (see Figure 5) and Protocol Classes Listbox). 

(c) Controlled Value Class- define a new controlled value class (similar operation as define object 

class, but using Controlled Value ClassNalue window (see Figure 13) and Controlled Value 

Classes Listbox). 

4. Help 

(a) About 

(b) Help. 

The main window contains a listbox for listing in alphabetical order object classes, protocol classes 

~d controlled value classes. The listbox is headed by an option menu that allows selecting one of the 

following display types: 

36 

: 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

1. Object Classes for displaying the object class names. 

2. Protocol Classes for displaying the protocol class names. 

3. Controlled Value Classes for displaying the controlled value class names. 

Han object class is selected in the listbox (and the Class Links mode is on), a diagram representing 

the selected class, its superclasses, its subclasses, and its attributes is displayed in the main window 

drawing area. H a protocol class is selected in the listbox, a graphical representation of its expansion (if 

any) is displayed in the main window drawing area. These diagrammatic representations have buttons 

representing class names. Double clicking on these buttons, just like double clicking on list elements, 

brings up the class definition window for the selected class. 

H a controlled value class is selected in the listbox (and the Class Links mode is on), then the con

trolled value class name together with all the values and/or ranges of this class are displayed in the main 

window drawing area. 

4.4 Define Object Class 

An object class has a class name, an optional class description, and a set of associated attributes. A 

specialization class (subclass) has one or more superclasses. 

Description: I.__ _________ --' 
Superdasses 

I 
I Modify Superdass f Define Attribute: I Simple c ) 

I Choose anameforthis class. 

FIGURE 4. Object Class Definition Window 

37 



·• 
OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

A new object class can be added and an existing object class can be_ modified or deleted using the 

Object Class Definition window (Figure 4) 

4.4.1 Add Object Clas5 . 

Before being added, an object class must be associated with a non-null distinct (unique) class name. 

The class name must be in upper case letters and cannot exceed 32 characters. Class description is 

optional and cannot exceed 256 characters. 

The attributes and/or superclasses of an object class can be specified either before adding the class, 

or after adding the class using the New button. 

An object class can have multiple object superclasses. All the superclasses defined for the current 

object class are listed in the Superclasses Listbox. After Modify Superclass button is used, a Super

class Definition window (Figure 6) is brought up for adding new superclasses or for deleting existing 

superclasses. 

The attributes of the current object class are listed in the Attributes Listbox. An attribute can be 

added/modified/deleted using the Define Attribute button. If no attribute in the listbox is highlighted, 

then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), and 

using the Composite button brings up a new Composite Attribute Definition window (Figure 9). H 

there is a selected attribute, then using the above mentioned buttons brings up an attribute window for 

the selected attribllte. 

4.4.2 Modify Object Class 

Object class names, descriptions, superclasses and attributes can all be modified. The text in Object 

Class Name or Description area can be edited in order to change the class name or description, respec

tively. Clicking Modify Superclass or Define Attribute button allows modifying the superclasses or 

attributes of a class. The procedure to modify the superclasses and attributes is the same as the proce

dure described in previous subsection. After all the desired changes have been made, the schema is 

updated using the Modify button. 

4.4.3 Delete Object Class 

Delete button allows deleting the current object class definition after the user confirms the action. 

38 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

4.5 Define Protocol Class 

A protocol class has a class name, an optional class description, and a set of associated attributes. 

If the protocol can be expanded into several subprotocols, then a protocol expansion is also specified. A 

new protocol class can be added and an existing protocol class can be modified or deleted using the Pro

tocol Class Definition window (Figure 5). 

Desaiptl.on: I._ ________ __. 
Protocol Expansion 

~----------~m~a======~·j 
fnetme Expansion I Define Attribute: I Simple c I 

I Choose anamefortbls class. 

FIGURE 5. Protocol Class Definition Window 

4.5.1 Add Protocol Class 

Before being added, a protocol class must be associated with a distinct non-null class name. The 

class name must be in upper case letters and cannot exceed 32 characters. Class description is optional 

and cannot exceed 256 characters. 

The attributes of a protocol class can be specified before adding the class, or after the class has been 

added using the New button. 

The attributes of the current protocol class are listed in the Attributes Listbox. An attribute can be 

added/modified/deleted using the Define Attribute button. If no attribute in the listbox is highlighted, 

then using the Simple button brings up a new Simple Attribute Definition window (Figure 8), using 

the Composite button brings up a new Composite Attribute· Definition window ( Figure 9), and using 

the Input/Output button brings up a new Input/Output Attribute Definition window ( Figure 12). If 

39 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

there is a selected attribute, then using the above mentioned buttons brings up an attribute window for 

the selected attribute. 

Protocol expansion can be specified only after an expanded protocol has been added to the schema 

using the New button. The protocol expansion is displayed in the Protocol Expansion area. Click the 

Define Expansion button to bring up a Protocol Expansion window (Figure 7) for specifying or mod

ifying a protocol expansion. 

4.5.2 Modify Protocol Class 

Protocol class names, descriptions, expansions and attributes can all be modified. In order to 

change a class name or a description, the text can be edited in the Protocol Class Name or the Descrip

tion area, respectively. Clic~ Define Expansion or Define Attribute button to modify protocol expan

sion or attributes of the class. The procedure to modify expansion and attributes is the same as the 

procedure described in previous subsection. Changes are finalized (i.e., recorded as schema updates) 

using the Modify button. 

4.5.3 Delete Protocol Class 

The current protocol class can be deleted using Delete button, after the user confirms the action. 

4.6 Define Superclass 

A subclass has one or more superclasses, and it inherits all the attributes of its superclasses.A class 

cannot be specified as a superclass of itself. Moreover, subclasses of a class cannot be specified as 

superclasses of this class. 

The Superclass Definition window (Figure 6) is used to define superclasses of an object class. 

There are two lists of class names displayed in this window. The Selected Superclasses Listbox and the 

Potential Superclasses Listbox are complementary. An object class (except for the current one and its 

subclasses) is listed in exactly one of the listboxes. The Selected Superclasses Listbox contains all the 

superclasses of the current class. Transitive superclasses can be either included or not. Clicking on a 

class name in the Selected Superclasses Listbox moves this class from the Selected Superclasses List

box to the Potential Superclasses Listbox, and vice versa 

The Delete All button allows clearing the Selected Superclasses Listbox, and moving all the object 

classes to the Potential Superclasses Listbox. 

After all the superclasses are properly selected, the Modify button must be used in order to update 

40 

; 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Selected Sup erclasses Potential Superclasses 

c c 
*> #I I> 

I LJndo I ! Close I I Help II 
This button willm.odifythe superclass ofthe current object class. 

FIGURE 6. Superclass Definition Window 

the Object Class Definition window with the new superclass infonnation. 

4.7 Define Protocol Expansion 

Protocol expansion allows specifying alternative protocols, sequences of protocols, and optional 

protocols; "or",",", 'T' and"]" are used to denote alternative, sequences of, and optional protocols, 

respectively, and parentheses are used for specifying complex protocol compositions. Operator"," has 

higher precedence than or. For example, if Pis a protocol whose expansion is (A, B, [C]) or D, then pro

tocol P is defined as either (i) the sequence of protocols A followed by B and followed by optional pro

tocol C, or (alternative) (ii) protocol D alone. The protocol expansion must be acyclic, that is, if a 

protocol class P, is involved in the expansion of protocol class Pi, then Pi cannot be involved in the 

expansion of P1 or any subprotocol of P,. 

The protocol expansion is displayed in the Protocol Expansion working area in the Protocol 

Expansion window (Figure 7). Protocol expansion can be directly specified in the working area, or can 

be specified using the listbox and function buttons provided for defining protocol expansion. 

The protocol class names that can appear in the protocol expansion of the current protocol class P, 

are listed in the Protocols Listbox. A protocol Pi can be used in the expansion of P, if P, and Pi are dif

ferent, and P1 does not appear in the expansion of Pi or any subprotocol of Pi (transitively). 

When a protocol name is clicked in the listbox, the selected protocol class name will be highlighted 

and inserted into the Protocol Expansion working area. Clicking the six function buttons ("or", ",", 

41 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

'T', "]", "(",")")causes the corresponding symbol to appear in the working area. In a protocol expan- · 

sion expression, two protocol names must be separated by operators "or' or",". If a protocol name is 

appended immediately after another protocol name in the expansion, then the editor automatically adds 

a"," between the two protocol names. 

' 
~ .. 
Prlnocol Bxpenstcm Protocols 

II ID 
Syntax 

It ( I I ) I I [ II ] I I or I I If a +> 

Undo I I Cle8r I I Close I I Help 11 

Type the expansion here. or dick In the protocols list and on the syntax buttons to bufid an expansion 

FIGURE 7. Protocol Expansion Window 

A protocol can have at most one higher level protocol. That is, if a protocol class Pi is contained in 

the expansion of protocol class P;, then Pi cannot be contained in the expansion of other protocol 

classes. 

A graphical representation of the protocol expansion is also displayed in the "protocol drawing 

area". This drawing area will be updated every time a new and correct protocol expansion is entered 

after Modify button is pressed. 

Clicking the Clear button clears the Protocol Expansion working area and the "protocol drawing 

area". 

After the protocol expansion is specified, the Modify button must be used in order to update the 

42 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Protocol Class Definition window with the new protocol expansion. 

4.8 Define Simple Attribute 

Each simple attribute has an attribute name, an associated value class, and a set of attribute con

straints. If the attribute is derived, then an attribute derivation is also specified. 

Definition 

Attribute N mne: 

Class N em.e: 

Value Class: 

Selea Type: I Controlled C I 

I The derivation for t:his attribute. 

Constraints 

Identifier: I No c::1 I 
Values: I Single c::l I 

Nun?: I Allowed c::l I 
Derivation: 

Define Derivation: I none 

lJndo I I Clear Close 

FIGURE 8. Simple Attribute Definition Window 

4.8.1 Add Simple Attribute 

c:af 

The name of the current (object or protocol) class is displayed in the Class Name area. An attribute 

name, a value class and associated constraints must be provided before a new attribute can be added. 

All the explicitly defined and inherited attributes of a class must have distinct, non-null names. 

Attribute names are in lower case letters and cannot exceed 32 characters. 

The Yes option for the Identifier button indicates that the attribute is (part of) an object identifier; 

No indicates that the attribute is not (part of) an object identifier. The Single option of the Values button 

indicates that the attribute can have only one value associated with it; if an attribute is associated with 

a set of values, then the Multiple option must be selected. 

The Allowed option of the Null button indicates that the attribute can have null values; if the 

attribute is not allowed to have null values, then the Not Allowed option must be selected. Note that an 

43 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

attribute that is (part of) an object identifier, cannot have null values. : 

Each attribute must have an associated value class. The value class of the current attribute is listed 

in the Value Class Listbox. The Select Type option menu can be used for defining or modifying the 

value class. An attribute can be associated with one of the following four types of value classes: 

1. Controlled: An Attribute Controlled Value ~lass window (Figure 14) is brought up. 

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up. 

3. Abstract: An Attribute Abstract Value Class window (Figure. 16) is brought up. 

4. Metaclass: An Attribute Metaclass Value Class window (Figure 17) is brought up. 

When the type of value class is changed, the user is informed that the previously defined value class 

is destroyed. Mter the attribute name, value class and attribute constraints are specified, the attribute is 

associated with the current class using the New button. 

For a derived attribute the derivation rule can be specified after the attribute has been associated 

with a class using the New button. 

The derivation rule of an attribute (if any) is displayed in the Derivation box. In order to define or 

modify a derivation rule, the Define Derivation option menu must be used. An attribute can have at 

most one derivation. There are eight options for attribute derivations: 

l. none: This attribute has no derivation. A previously defined derivation will be removed. 

2. arithmetic: An Arithmetic Expression Definition window (Figure 20) is brought up. 

3. aggregate: An Aggregate Function Definition window (Figure 21) is brought up. 

4. composition: An Attribute Composition Definition window (Figure 22) is brought up. 

5. inverse: An Attribute Inverse Definition window (Figure 18) is brought up. 

6. match: An Attribute Match Definition window (Figure 19) is brought up. 

7. subvalue: An Attribute Subvalue Definition window (Figure 23) is brought up. 

8. union: An Attribute Union Definition window (Figure 24) is brought up. 

If an attribute has been previously defined as derived and its derivation type is changed (e.g., from 

an inverse attribute to an arithmetic expression derived attribute), then a confirmation of the change will 

be required. 

Note that an attribute which is (part of) an identifier cannot be a derived attribute. Moreover, only 

simple, single-valued attributes can have arithmetic expression or aggregate function derivation. These 

44 



i. 

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

attributes must be primitive and associated with one of the following value classes: INTEGER. SMALUNT. 

REAL, FLOAT. or MONEY. 

4.8.2 Modify Simple Attribute 

Attribute names, value classes, constraints and derivation rules can be modified. Changes one final

ized (i.e., are recorded as schema updates) using the Modify button. 

The modification of attribute constraints, value classes, and derivation specifications are carried out 

as described in the subsection Add a Simple Attribute . 

4.8.3 Delete Simple Attribute 

An attribute can be deleted using the Delete button. Deletion is carried out only after the user con

firms the action. 

4.9 Define Composite Attribute 

Each composite attribute has an optional attribute name, a set of component attributes, and associ

ated constraints. The constraints on composite attribute are applied to each of the components. A com

posite attribute can be associated with an attribute matching derivation. 

4.9.1 Add Composite Attribute 

The name of current (object or protocol) class is displayed in the Class Name area. The name for 

a composite attribute is optional. If such a name is provided, then it must be unique within the class, in 

lower case letters, and must not exceed 32 characters. Constraints are defined as follows. The Yes option · 

for the Identifier button indicates that the composite attribute is (part of) an object identifier; No indi

cates that the attribute is not (part of) an object identifier. 

The Single option of the Values button indicates that every component attribute can have only one 

value associated with it; if all component attributes can be associated with sets of values, then the Mul

tiple option must be selected. The Allowed option of the Null button indicates that the attribute can 

have null values. Note that if the a~bute is (part of) an object identifier, then it cannot have null values. 

The component attributes of a composite attribute are listed in the Components Listbox. Compo

nent attributes can be added/modified/deleted using the Define Component button. If a component 

attribute is highlighted, then Define Component button brings up a Component Attribute Definition 

window (Figure 10) for modifying the attribute. Otherwise, a new Component Attribute Definition 

45 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

window (Figure 10) is displayed for the definition of a new attribute. After all the necesSary information 

(except the derivation) is specified, the attribute can be associated with the current class using the New 

button. If the composite attribute is derived, then the derivation can be specified after associating the 

attribute with the current class. 

r.-1------·-------·----,.- -· .. 
Definbion 

Attribute Name: I 
:=:::===========: 

O~sName: L~------------------~ 

Components: 

I Define Component I 

I Choose whether this attribute is Identifier or not. 

Constraims 

Identifier: I N 0 Cll I 
. Values: ( Single Cll I 

Null?: I Allowed Cll I 
Derivation: 

FIGURE 9. Composite Attribute Definition Window 

Help 

The derivation rule of a composite attribute (if any) is displayed in the Derivation box. The deri

vation rule can be defined or modified using the Define Derivation button: 

1. none: This attribute has no match derivation. A previously defined match d~rivation will be 

removed. 

2. match: An Attribute Match Definition window (Figure 19) is brought up. 

Whenever the derivation type for an attribute is changed, the user is asked to confirm the change. 

Note that an attribute which is (part oO an identifier cannot have a derivation. 

Component attributes of a composite attribute can also be defined by including existing simple 

attributes of the target object or protocol class. Selecting Include Components button will bring up an 

Include Components window (Figure 11) for including simple attributes as components of the current 

composite attribute. 

The Decompose button decomposes the composite attribute. That is, all the component attributes 

46 

I> 



' 

OPM SCHEMA EDITOR 2 OPM Sche11Ul Editor Windows 

become simple ~ttributes of the target class. 

4.9.2 Modify Composite Attribute 

Attribute names, component attributes, constraints and derivation rules can be modified. Changes 

are finalized (i.e., recorded as schema updates) using the Modify button. 

The modification of attribute constraints, components, and derivation specification is carried out as 

described in the subsection Add a Composite Attribute. 

4.9.3 Delete Composite Attribute 

An attribute can be deleted using the Delete button. Deletion is carried out only after the user con

firms the action. 

4.10 Define Component Attribute 

Each component attribute must have a distinct attribute name, and must be associated with a value 

class. A component attribute can have an attribute derivation. 

4.10.1 Add Component Attribute 

In order to add a component attribute to the composite, a name for the component attribute must be 

specified first. Although the name of the composite attribute is optional, every component attribute of a 

composite attribute must have a name. Such a name must be distinct, in lower case letters, and should 

not exceed 32 characters. 

Every component attribute must have an associated value class. The value class of the current com

ponent attribute is listed in the Value Class Listbox. The Select '!Ype option menu can be used for 

defining or modifying the value class. A component attribute can be associated with one of the follow

ing four types of value classes: 

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up. 

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up. 

3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up. 

4. Metaclass: An Attribute Metaclass Value Class window (Figure 17) is brought up. 

When the type of value class is changed, the user is informed that the previously defined value class 

is destroyed. 

47 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Co~onentAttrlbmeNmn~ ~~I ____________________________ _.I 
Value Class: Derivation: 

Select Type: I Controlled t:l I Define Derivation: I none c I 

I The value classes for this attribute.. 

FIGURE 10. Component Attribute Definition Wmdow 

Mter all the necessary infonnation (except the derivation) is specified, the component attribute is 

added to its composite attribute using the New button. H a component attribute has an attribute deriva

tion, then this derivation can be specified after adding the attribute. 

The derivation of a component attribute (if any) is displayed in the Derivation box. The derivation 

rule can be defined or modified using the Define Derivation button: 

1. none: This attribute has no derivation. Previously defined derivation will be removed. 

2. arithmetic: An Arithmetic Expression Definition window (Figure 20) is brought up. 

3. aggregate: An Aggregate Function Definition window (Figure 21) is brought up. 

4. composition: An Attribute Composition Definition window (Figure 22) is brought up. 

5. inverse: An Attribute Inverse Definition window (Figure 18) is brought up. 

6. subvalue: An Attribute Subv.alue Definition window (Figure 23) is brought up. 

7. union: An Attribute Union Definition window (Figure 24) is brought up. 

A component attribute can have at most one derivation. If the composite attribute containing the 

component attribute is an identifier or is derived using attribute match, then the component attribute 

cannot have a derivation. After attribute derivation is defined, click Modify button to associate the com-

48 

~.· 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

ponent attribute with the new derivation. 

4.10.2 Modify Component Attribute 

Attribute names, value classes and derivation rules of component attributes can be modified. 

Changes are finalized (i.e., recorded as schema updates) using the Modify button. 

The modification of value class associations and derivation specifications is carried out as 

described in the subsection Add a Component Attribute. 

4.10.3 Delete Component Attribute 

A component attribute can be deleted using the Delete button. Deletion is carried out only after the 

user confirms the action. 

4.11 Include Attributes into a Composite Attribute 

Component attributes of a composite attribute can be defined one by one using the Component 

Attribute Definition window. Alternatively, existing simple attributes of the target object or protocol 

class can be included as components of a composite attribute using the Include Components window 

(Figure 11 ). . 

Selected Attributes Potential Attributes 

11::::::~~:::] 
This button Vo1ill save your changes into the Composite Attribute Dialog_ 

FIGURE 11. Include Components Window 

The Selected Attributes Listbox and the Potential Attributes Listbox are complementary. An 

existing simple attribute of the current class is displayed in one (~d only one) of the two listboxes. 

49 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Selected Attributes Listbox contains all the attributes that will be included as components of the com

posite attribute. 

Initially, the Selected Attributes Listbox is empty, and the Potential Attributes Listbox contains 

all the simple attributes defined for the current class. When an attribute name is selected in the Potential 

Attributes Listbox, this attribute is moved from the Potential Attributes Listbox to the Selected 

Attributes Listbox, and vice versa. 

Mter all the included attributes are properly selected, the OK button must be used in order to 

record the change to the schema 

4.12 Define Input/Output Attribute 

Input/output attributes are associated only with protocol classes. Every input/output attribute has an 

attribute name, attribute constraints. is associated with a value class. and has an input/output connection 

specification. 

Definition Constraints 

Values: I Single Cl I 
Null?: I Allowed c I 

Attribute Name: I 
::=========~ 

Class Name: ._I _________ __. 

Value Class: Connection: I Input Cl I 

a.--------a ~l ~J~ 
Select Type: I Controlled Cl I Define Connection: I Input is-a Cl I 

I u,dc I I Clcv II Cooe II Help 11 

I The connections for this attribute. 

FIGURE 12. Input/Output Attribute Definition Wmdow 

4.12.1 Add Input/Output Attribute 

The name of the current protocol class is displayed in the Class Name area. A new attribute must 

have an attribute name, a value class, defined constraints and an input/output connection specification 

before being associated with the protocol class. 

50 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

An input/output attribute must have a distinct non-null name within a protocol class. Such a name 

is in lower case letters and cannot exceed 32 characters. 

The Single option of the Values button indicates that the attribute can have only one value associ

ated with it; if the attribute can be associated with sets of values, then the Multiple option must be 

selected. 

The Allowed option of the Null button indicates that the attribute can have null values; if the 

attribute is not allowed to have null values, then the Not Allowed option must be selected. 

Every attribute must have an associated value class. The value class of the current input/output 

attribute is listed in the Value Class Listbox. The Select Type option menu can be used for defining or 

modifying the value class. An input/output attribute can be associated with one of the following three 

types of value classes: 

1. Controlled: An Attribute Controlled Value Class window (Figure 14) is brought up. 

2. Primitive: An Attribute Primitive Value Class window (Figure 15) is brought up. 

3. Abstract: An Attribute Abstract Value Class window (Figure 16) is brought up. 

When the type of value class is changed, the user is informed that the previously defined value class 

is destroyed. 

After all the necessary information is specified, the input/output attribute is associated with the pro

tocol class using the New button. 

An input/output attribute can have an associated connection statement. In order to define a correct 

input/output connection, the protocol expansion of the current protocol class should be first defined and 

savC?d, and the input/output attribute should be (correctly) associated with a value class. 

Input/output connections are listed in the Connection box. Connections are defined or modified 

using the Define Connection option menu: 

1. Input is-a: An Input/Output Is-a Definition window (Figure 25) is brought up. 

2. Input from: An Input From Definition window (Figure 26) is brought up. 

3. Output is-a: An Input/Output Is-a Definition window (Figure 25) is brought up. 

An attribute can be either an input attribute or an output attribute, but not both. If an attribute is 

changed from an input attribute to an output attribute, then the from-statement will be lost and the user 

is notified of this loss. 

After the input/output connection is specified, click Modify button to associate the connection to 

the current attribute. 

51 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

4.12.2 Modify Input/Output Attribute 

Attribute names, value classes, constraints and input/output connections of input/output attributes 

can be modified. Changes are finalized (i.e., recorded as schema updates) using the Modify button. 

The modification of attribute constraints, value classes, and connection specifications is canied out 

as described in the subsection Add an Input/Output Attribute. 

4.12.3 Delete Input/Output Attribute 

An input/output attribute can be deleted using the Delete button. Deletion is canied out only after 

the user confirms the action. 

4.13 Define Controlled Value Class 

A controlled value class is ·a primitive value class with enumerated atomic values or ranges. For 

example, a controlled value class COLOR with Character String type has values: red, yellow and green. 

Another controlled value class AGE_ GROUP with Numeric Constant type has values 20-55. 

A controlled value class can be defined or modified using the Controlled Value Class/Value win

dow (Figure 13). 

Cant:raUe.d Value. Class Nazne.: 

Value Type: I Character Saing c:::t I 

Values 1n t:his class: 

New Value.: 

I New Value. II ModifY Value. I I Dele1:e Value II Clear Input: I 

I Mod11Y I I Delete I Undo I I Clear Close I I Help 

FIGURE 13. Controlled Value Class/Value Window 

52 

: 



·. 
OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

4.13.1 Add Controlled Value Class 

Before being added, a controlled value class must be associated with a distinct non-null (unique) 

dass name. This name must be in upper case letters and cannot exceed 32 characters. 

A controlled value class can have Character String or Numeric Constant value type. The value type 

determines the data type of user's input Thus, an input value n is considered as a number if the value 

type is Numeric Constant, and is considered as a string "n" if the value type is Character String. 

The values of a controlled value class are added one by one as follows: first the new value is 

entered in the New Value area; then the insertion is finalized using the New Value button. The entered 

new value is listed in the Values in this class Listbox. 

Values in a controlled value class with Character String value type are distinct character strings that 

do not exceed 80 characters. Values in a controlled value class with Numeric Constant value type are 

numbers or ranges. A range is represented as: a - b, where a and b are both numbers. Negative numbers 

are enclosed in parentheses. For example, ( -5) - 10 is a range with lower bound -5 and upper bound 10. 

A value is modified or removed from the current value class as follows: 

1. the value is first selected by clicking on it in the Values in this class Listbox; 

2. the selected value is highlighted and copied to the New Value area; 

3. if the value is modified then 

(a) the value is modified in the New Value area, and the change is finalized using the Modify 

Value button; the highlighted value in the listbox is replaced by the new value; 

(b) if the New Value button is used instead of the Modify Value button in the previous step, then 

the edited value is inserted as a new value into the controlled value class; 

4. the highlighted value in the listbox can be removed by using the Delete Value button. 

The Clear Input button clears the New Value area. 

Mter all the values of a controlled value class are defined, the controlled value class is added to the 

current schema using the New button. 

4.13.2 Modify Controlled Value Class 

An existing controlled value class can be modified using the Modify button. All the values in a 

controlled value class as well as the name of the controlled value class can be modified. The procedure 

to add, modify or delete a value in an existing controlled value class is the same as the value modifi-

53 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

cation procedure described in Add a Controlled Value Class. 

The value type of a controlled value class can also be modified. It is always possible to convert 

Numeric Constant type to Character String type. All the numbers and ranges defined in the controlled 

value class are converted into strings. A controlled value class with Character String value type can be 

converted into Numeric Constant type only when all the values defined in this class. can be converted 

into numbers and/or ranges; otherwise, an error message will be issued and the value type remains 

Character String. 

4.13.3 Delete Controlled Value Class 

An existing controlled value class can be deleted using the Delete button. Deletion is carried out 

only after the user confirms the action. 

4.14 Select Attribute Controlled Value Class 

All the predefined controlled value classes together with their· values are listed in the Controlled 

Con:trolled Value Cle.ss: 

(·Define Controlled Value Cle.ss I 

It Modify I I Delete ~ I Undo I I Close I I Help n 
Selec:::t: a Controlled Value Class to be tl1e value class oftl1e 

FIGURE 14. Attribute Controlled Value Class Window 

Value Class Listbox. For example, if there is a controlled value class called COLOR with three values: 

red, yellow and green, then it is displayed as: COLOR: {"red ","yellow ","green"} (for the definition and 

54 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

modification of controlled value class see section Define Controlled Value Class). 

The highlighted value class in the listbox will be the value class associated with current attribute. 

For adding or modifying a controlled value class of an attribute, the desired value class name must be 

first selected in the listbox (the class name will be highlighted), and then the Modify button must be 

used. 

If the attribute is associated with a new (not previously defined) controlled value class, then the 

Define Controlled Value Class button must be used first in order to define the controlled value class. 

The Define Controlled Value Class button brings up the Controlled Value ClassNalue window 

(Figure 13) for the definition of a new controlled value class. After the new controlled value class is 

added, the name of this new class is listed and highlighted in the Controlled Value Class Listbox. The 

Modify button is then used in order to associate the attribute with this value class. 

The value class of an attribute is deleted using the Delete button. A controlled value class is pre

served in the current schema after such a deletion. 

Primitive Classes: BINARV(n) 
~iu)oi:'EAN- -
CHAR(n) 
DATETIME 
FLOAT 
IMAGE 
INTEGER 
MONEY 
REAL 
SMALLINT 
TEXT 
TIMESTAMP 
VARCHAR(n) 

L~gfu: -'--------------------~~ 

Select a Primitive Value Class to befuevalue class ofthe attribute on the 

FIGURE 15. Attribute Primitive Value Class Window 

55 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

4.15 Select Primitive Value Class 

In order to allow selecting a primitive value class, the Primitive Classes Listbox lists all the system 

defined primitive classes. 

A primitive value class can be selected by clicking on it in the listbox. The selected primitive value 

class will be highlighted. H this primitive value class has "(n)" at the end, then the attribute length must 

be specified; a length is a positive integer. 

Mter a value class is selected (and a length defined), the attribute is associated with the value class 

using the Modify button. 

4.16 Select Abstract Value Class 

An attribute can be associated with one or several abstract value classes (i.e., value classes that are 

defined as object classes). 

Sel.ect:ed Value Classes: Potential Value Classes: 

c ~ 

Abstract Value Classes available. select: an item. here will move it to the 

FIGURE 16. Attribute Abstract Value Class Window 

The Selected Value Classes Listbox and Potential Value Classes Listbox are complementary. The 

name of an OPM class (including the current one) is listed in exactly one of these listboxes. The 

Selected Value Classes Listbox contains the value classes selected for the attribute. 

A class selected (clicked on) in the Selected Value Classes Listbox, is moved from the Selected 

Value Classes Listbox to the Potential Value Classes Listbox, and vice versa. 

56 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

The Delete All button can be used to clear the Selected Value Classes Listbox, and thus move all 

the classes to the Potential Value Classes Listbox. 

The selected value classes are associated with the attribute using the Modify button. 

4.17 Select Metaclass Value Class 

There are two Metaclasses in OPM: OBJECT_CLASSES and PROTOCOLCLASSES. 

Metaclass:l"' ____ u_n_d_e.fin __ e_d _____ c___. 

This button will modify the value class of the attnbute on the 

FIGURE 17. Attribute Metaclass Value Class Window 

A user can select a metaclass using the Metaclass option menu; the default option is Undefined. 

The selected (option) metaclass is highlighted. The highlighted value class in the Metaclass option 

menu is associated with the attribute using the Modify button. 

A metaclass can be deleted as the value class of an attribute using the Delete button. 

4.18 Define Attribute Inverse Derivation 

The current class name and attribute name are displayed in the Attribute Name and Class Name 

areas, respectively (at the top of the window). An attribute can be specified as inverse of multiple 

attributes; all these attributes are listed in the Inverse of Listbox.The object classes that are defined as 

value classes of the current attribute are listed in the Classes Listbox. When a class name in the Classes 

Listbox is selected (clicked on), the (simple or component) attributes of that class will be listed in the 

Attributes Listbox. 

In order to define an attribute A as an inverse of the current attribute, class 0~. of A must be first 

57 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

.-1 . • 

Attribute. Name: I 
;=======~ 

Clasc Name: I._ _____ ___, 

Classes: Attributes: 

Inverse of: 

c• '' a a a ., 

I Select a class to form the Inverse derivation. 

FIGURE 18. Attribute Inverse Definition Window 

selected. As a result, the attributes of o .. are listed in the Attributes Listbox. Subsequently, the name of 

attribute A is selected in the Attributes Listbox and the name of the select attribute prefixed by the 

name of its class (i.e., o .. A) is inserted into the Inverse of Listbox 

An attribute inverse definition can be removed by selecting (clicking on) the attribute name in the 

Inverse of Listbox. In order to remove all attribute inverse definitions (i.e., clear the Inverse of List

box}, the Delete All button is used. 

Mter the inverse derivation of the current attribute is defined, the derivation is associated with the 

attribute using the Modify button. A message will be brought up to ask whether you want to make this 

attribute an inverse of corresponding attribute(s) of the selected class(es). Click Yes will add the current 

attribute to the attribute inverse derivations of all the attributes specified in the Inverse of Listbox. 

The following constraints must be satisfied-when an attribute inverse is defined: 

1. The value classes of the attributes defined as inverses of the current attribute must contain (or be 

equal to) the object class of the current attribute. 

2. Attributes defined as inverses must either be non-derived, or defined as inverses of the current 

attribute. 

3. Only one attribute can be selected from each class. 

58 



OPM SCHEMA EDITOR 2 0 PM Schema Editor Windows 

4. H the current attribute is associated with the union of value classes VI or ... or V., then only sim

ple attributes of these classes VI, ... , V. are listed in the Attributes Listbox (no composite or 

component attributes). 

4.19 Define Attribute Matching Derivation 

The name of the current class is displayed in the Class Name area at the top of the window. The 

name of the attribute that is to be matched (i.e., the attribute is associated with a match derivation) is 

listed in the Attribute Match Listbox as follows: if the attribute is a simple attribute, then its name is 

listed in the listbox; if the attribute is a composite attribute, then all the names of the component 

attributes are listed in the listbox. 

•tbute Match Def'ln ltt • Class N une: I I 
M~gClasc: On A'ttribttte: 

,:: J'! 

I: 

Anribute Match: Match!ng Attributes: 

!'! ~ 

t t 

II Mod!ry I I DeleteAU I IAdd.Matchl lnelete Match I I Und.o I I Close I I 
Help II 

I Select a :rnatc:hJng anribute to match v.rith the selected anribttte on the Attribute Match list. I 

FIGURE 19. Attribute Match Definition Window 

The Matching Class Listbox lists the classes that can be used in the matching derivation; how to 

determine whether a class can be used or not in the matching derivation of the current attribute is 

explained in more detail later in this subsection. 

The matching is defined as follows: 

59 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

1. A class name is selected in the Matching Class Listbox, and as a result the components of a • 

composite attribute of that class satisfying the matching constraints are listed in the On 

Attribute Listbox. 

2. Next, a match on attribute B, is selected in the On Attribute Listbox, and as a result the compo

nent attributes that belong to the same composite attribute as B ,, except B ,, are listed in the 

Matching Attributes Listbox. 

~ 3. An attribute is selected in the Attribute Match Listbox (listing the simple or components 

attributes to be matched) and then its matching attribute is selected in the Matching Attributes 

Listbox; 

4. The match association in the previous step is defined using the Add Match button. As a result, 

the selected matching attribute is included in parentheses in the Attribute Match Listbox 

appended after the matched attribute, and is removed from Matching Attributes Listbox. (For 

example, if attribute A, matches Az, then A, <Az) will replace the original item A, in the Attribute 

Match Listbox; Az is removed from Matching Attributes Listbox.) If an attribute already has a· 

matching attribute, then Add Match replaces the matching attribute. 

The matching attribute of an attribute selected in the Attribute Match Listbox can be removed 

using the Delete Matc'b button. A removed matching attribute is returned to the Matching Attributes 

Listbox. 

All the matching attributes can be removed from all attributes listed in the Attribute Match List

box using the Delete All button. The removed matching attributes are returned to the Matching 

Attributes Listbox. 

Note that after a matching is specified, the Matching Class Listbox cannot be changed. This list

box can be changed only if all matching attributes are removed (using Delete All). 

Mter the matching derivation is correctly defined, the match derivation is associated with the cur

rent attribute using the Modify button. 

The attribute matching derivation must satisfy the following additional constraints: 

1. In the Matching Class Listbox only classes that have a composite attribute that contain a com

ponent attribute whose value class includes the class of the current attribute are listed. 
/ 

2. A simple attribute can match only a composite attribute with two components. A composite 

attribute A with n components can match only another composite attribute B with (n+l) compo

nents. Consequently: 

60 



•. 
OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

(a) For a simple attribute match, only component attributes of binary composite attributes are listed 

in the On Attribute Listbox. 

(b) For a composite attribute match, if the attribute is an n-ary composite attribute, then only com

ponent attributes of (n+l)-ary composite attributes are listed in the Qn Attribute Listbox. 

3. An attribute A can match an attribute B from the Attribute Match listbox only if A and B have 

the same value class. 

4. The value class of an On Attribute must include the current object class. Consequently, in the 

On Attribute Listbox are listed only the names of attributes that are associated with value 

classes that include the current object class. 

An matching example is given immediately below. 

An Example; 

Let object classes TRANSLATES and GENE be defined as follows: 

OBJECT CLASS TRANSLATES: 

DESCRIPTION: gene translates protein at some cell 

ID: (gene, at_cell, protein) 

ATIRIBUTE (gene, at_cell, protein): (GENE, CELL, PROTEIN) single-valued not null 

OBJECT CLASS GENE: 

DESCRIPTION: gene 

ID: gene_name 

ATIRIBUTE gene_name: CHAR(80) 

ATIRIBUTE (translate~protein, translate_at): (PROTEIN, CELL) 

Suppose a match derivation for the composite attribute (translate_proteln, translate_at) of object 

class GENE is defined as: match (protein, at_ cell) oflRANSLATES on gene. Components translate _protein 

and translate_at are listed in the Attribute Match Listbox. 

All the (object and protocol) classes that have attributes that satisfy the matching constraints are 

listed in the Matching Class Listbox. Suppose that lRANSLATES is selected in the Matching Class List

box. Since the current composite attribute has two components, only a composite attribute of TRANs

LATES consisting of three components can be selected for matching, that is, composite attribute (gene, 

61 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

at_cell, protein). 

Among the component attributes of (gene, at_cell, protein) only attribute gene has value class 

GENE , and therefore only attribute gene is listed in the On Attribute Listbox. 

If attribute gene is selected in the On Attribute Listbox, then the other two components, at_cell 

and protein, are listed in the Matching Attributes Listbox. 

Next, translate_protein is selected in Attribute Match Listbox, and protein is selected in the 

Matching Attribute Listbox; using the Add Match button the attribute name translate_protein in 

Attribute Match Listbox is replaced by: transtate_proteln (protein), and attribute protein is then 

removed from the Matching Attributes Listbox. 

The same procedure is repeated in order to match translate_at and at_cell. 

4.20 Define Arithmetic Expression Derivation 

The current class name and attribute name are displayed in the Class Name and Attribute Name 

. areas, respectively, at the top of the window. The arithmetic expression derivation to be associated with 

the attribute is displayed in the Arithmetic Expression working area. The arithmetic expression can be 

Class Name:l L. --------' 

Arithmetic Expression: 

I This text input shows the current derivation being edited. 

Attributes: 

FIGURE 20. Arithmetic Expression Definition Window 

directly edited in the Arithmetic Expression working area, or can be expressed using the Attributes 

Listbox and the operator buttons. 

62 

.~ 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

All the single-valued simple and component attributes of the current class (except the current 

attribute), associated with an INTEGER, SMALLINT, REAL, FLOAT, or MONEY value class are listed in the 

Attributes Listbox. Only these attributes can be used in the arithmetic derivation. 

An attribute name selected in the Attributes Listbox is inserted into the Arithmetic Expression 

working area. Selecting (clicking on) a special operator button ( +, -, * ,/, (,)) results in inserting the cor

responding symbol into the Arithmetic Expression working area as well. 

The Arithmetic Expression working area can be cleared using the Delete All button. 

After the arithmetic expression derivation has been defined, the attribute is associated with the 

arithmetic expression derivation using the Modify button. 

4.21 Define Aggregate Function Derivation 

The current class name and attribute name are displayed in the Class Name and Attribute Name 

areas, respectively, at the top of the window. An aggregate function derivation consists of an aggregate 

function (count, min, max, sum, average) and an attribute name. All the multi-valued (simple or com

ponent) attributes of the current class are listed in the Attributes Listbox. 

Attributes: 

Class Name: ... I ______ _.__, 
Function: I Undefined c I 

Select a Primitive Value Class to be the value class of the attribute. 

FIGURE 21. Aggregate Function Definition Window 

First, one of the functions in the Function option menu (count, min, max, sum, average) must be 

selected. Then, an attribute name listed in the Attributes Listbox is selected (clicked on); the selected 

63 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

attribute is highlighted. 

If the selected function is min , max , sum or average , then only multi-valued attributes associated 

with an INTEGER , SMAWNT , REAL , FLOAT , or MONEY value class are listed in the Attributes Listbox. 

The Function selection and the attribute selection in the Attributes Listbox can be cleared using 

the Delete All button. 

After the aggregate function derivation has been defined, the attribute is associated with the deri

vation using the Modify button. 

4.22 Define Attribute Composition Derivation 

A simple or component attribute C can be derived as: A,. Al ..... A. (n ~ 2), where A, is an attribute 

associated with the current class, Al is an attribute associated with the value class(es) of A 1 , etc. 

Attributes A,, A.h •.. , A,. are all simple or component attributes; they are either non-derived or derived 

by inverse derivation. Attribute A,. can either be an abstract attribute or a primitive attribute. 

Attribute composition derivation is defined in the Attribute Composition Definition window 

(Figure 22). 

Atuibu-ce Name: 

Class N arne: 

Co:rnpo sition D er1.vat1on: 

··-·-----······--~---···-·· .'---·-···-········-··--- --·---................................................ 

A'ttribut:es: Value Classes: 

c c 

~~ NeVT I I Dclet:e I I Undo I I Close I J Hclp ~~ 

FIGURE 22. Attribute Composition Definition Window 

The current attribute name and class name are displayed at the top of the window in the Attribute 

Name area and Class Name area, respectively. The attribute composition derivation is displayed in the 

64 

' 



• 

( 

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Composition Derivation area. 

In the beginning, all local (i.e., not inherited) non-derived or inverse derived, simple or component 

attributes (not composite attributes) associated with the current class, 0; , except the current attribute are 

displayed in the Attributes Listbox. 

When an attribute is selected in the Attributes Listbox, th~ attribute is highlig~ted and displayed 

in the Composition Derivation area. The value class(es) of this selected attribute will be listed in the 

Value Classes Listbox. This Value Classes Listbox is for display only; it is non-selectable. 

In the case of controlled value class, primitive value class or metaclass value class, the Attributes 

Listbox remains unchanged. 

In the case of an abstract value class: 

- if the value class consists of a single abstract object class, 01, then all locally simple or component 

attributes of 0 1 are displayed in the Attributes Listbox. 

-if the value class consists of a union of the object classes, Oi or ... or Oi , then local simple or 
I m 

component attributes that are associated with Oi and ... and Oi are displayed in the Attributes 
I m 

Listbox; for each such attribute, A, Oi A, ... , and Oi A must be associated same value class. 
1 m 

The selection in the Attributes Listbox can be repeated. The selected attribute name is appended at 

the end in Composition Derivation area. (A dot "." is automatically added between any two attribute 

names.) The value class of a newly selected attribute is again displayed in the Value Classes Listbox. 

The definition of composition derivation stops either at a non-abstract attribute, or when the user 

ends selecting attributes. 

After the derivation has been defined, the attribute is associated with the new derivation using the 

New button. The Delete button removes the composition derivation. 

4.23 Define Attribute Subvalue Derivation 

An attribute A 1 of an object or protocol class 0; can be defined as: subvalue of Az, if the value clas.s 

of A, is a subclass or subset of the value class of Az. Attribute subvalue derivation is defined in the 

Attribute Subvalue Definition Window (Figure 23). 

The current class name and attribute name are displayed in the Class Name area and Attribute 

Name area, respectively. Derivation: subvalue of area displays the attribute subvalue derivation. 

Suppose A is the current attribute. A simple or component attribute of the current class (except for 

the current attribute), B, is listed in the Attributes Listbox if: 

65 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Class Name: 

Derivation.: subve.lue of 

Att:rlbut:es: 

~~ Mo~ I I Delet:e I I Undo I J Close I I Help ~~ 
This button. "'W1ll:rnodifj7 the subve.lue d.erlve.Uon of the attribut:e on t:he Attribut:e 

FIGURE 23. Attribute Subvalue Definition Window 

l.attributeB is associated with a value class consisting of a single class, 0 8 , attribute A is asso

ciated with a value class consisting of a single class, 0 A , and 0 B is an immediate or transitive 

superclass of 0 A ; 

2.attribute B is associated with a value class consisting of a union of value classes, 0 8 or ... 
1 

or 0 B • Attribute A is associated with a value class consisting of a single or a union of classes, 
II 

0 A, and 0 A is contained in OB or ... or OB • 
1 . II 

After an attribute is selected in the Attributes Listbox, the selected attribute name is displayed in 

the Derivation: subvalue of area. The attribute is associated with the derivation using the Modify but

ton. 

Delete button removes the subvalue derivation. 

4.24 Define Attribute Union Derivation 

Attribute union derivation is defined in the Attribute Union Definition window (Figure 24). 

The current class name and attribute name are displayed in the Class Name area and Attribute 

Name area, respectively. Derivation area displays the attribute union derivation. 

Selected Attributes Listbox and Potential Attributes Listbox are complementary. Suppose that 

66 

! 

• 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

Class: Nazn.c: 

D erivatlon: 

Selc~ed. Anribu'l:es: P cncntlal A o:rtbu.'l:es: 

11 Mo~ I I Delc'l:e All I I Undo I I Close I I Help ~~ 

FIGURE 24. Attribute Union Definition Window 

the current attribute is B. Simple or component attributes (except B) associated with the current class 

and that have value classes that are subsets of (or equal to) the value class of Bare displayed in one (and 

only one) of the two listboxt..S. Selected Attributes Listbox contains the attributes that will be included 

in the derivation. 

An attribute that is selected (clicked on) in the Potential Attributes Listbox is moved from the 

Potential Attributes Listbox to the Selected Attributes Listbox, and vice versa. 

Delete All button removes the attribute union derivation; the Derivation area and Selected 

~ttributes Listbox are cleared, where the attributes in Selected Attributes Listbox are moved to the 

Potential Attributes Listbox. 

After the union derivation has been defined, the attribute is associated with the derivation using the 

Modify buttpn. 

4.25 Define Input/Output Attribute Is-a Connection 

This attribute is specified as associated with an inputloutput is-a connection; the type of connection 

(input is-a or output is-a) is displayed at the top of the window. 

If the protocol expansion of a protocol class P1 contains another protocol class P2, then protocol P1 

_is a direct generic (higher-level) protocol of P2• A protocol class can only have one direct generic pro-

67 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

tocol. An input (output) attribute cannot have an input (output) is-a statement unless the current protocol ... 

class has a generic protocol. If an input attribute A1 of protocol class P2 is-a P1A 1, then P1 must be the 

direct generic protocol of P1, and A1 must be an input attribute of P1• A similar constraint applies to out-

put attribute with is-a statement. 

The Protocol area displays the name of the direct generic protocol of the current protocol. Input 

attributes or output attributes (depending on whether the attribute is an input or an output attribute) of 

the generic protocol are listed in the Attributes Listbox. The input (output) is-a connection is specified 

by selecting an attribute from the Attributes Listbox; the selected attribute is highlighted in the listbox. 

The input (output) is-a connection is removed by using the Delete button; the highlight for the pre-

The attribute • s input is- a 

Protocol 

ISHOTGUN_PROTOCOL 

I Modify I ( Delete I 
I Choose an attribute forth!~ Isa. 

Attributes 

clones 

Close I I Help 

FIGURE 25. Input/Output Is-a Definition Window 

viously selected attribute in the Attributes Listbox removed. 

I 

After the input/output attribute connection has been defined, the attribute is associated with the con

nection using the Modify button. 

4.26 Define Input Attribute From Connectimi 

An input attribute from connection must satisfy the following constraints: if attribute A of protocol 

P; is an input attribute specified as input from Pi via B1, B2 , ••• , B,., then: 

68 



\ 

OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

1. if P; is mentioned in the protocol expansion of a protocol class P1c, then ~must also be mentioned 

in the same protocol expansion, and Pi must immediately precede P;; 

2. B 1 must be an output attribute of Pi; 

3. For every B .. , 2 s; m s; n: B. is an attribute of class o ... where 0 .. is a value class of attribute B_1 • 

4.26.1 Add Attribute Input-From Connection 

The From Protocol Listbox lists the names of the protocol classes that can be used in the input

from connection statement of the current attribute. If the current protocol class, P;, has been mentioned 

in a protocol expansion, then the From Protocol Listbox lists only the names of the protocol classes 

that immediately precede P; in the protocol expansion; otherwise, the From Protocol Listbox lists the 

names of all the protocol classes except P;. 

The attribute Input from I I via I 
From Protocol Classes Attributes · 

I~ I I~ I I~ 
a a a a a a 

IIS.IB I uu•o I 8 ~~~ 

FIGURE 26. Input From Definition Window 

An input attribute from connection is added as follows: 

1. A protocol name is selected (clicked on) in the From Protocol Listbox; the selected protocol 

name is highlighted, and is displayed in The attribute input from area. As a result of this selec

tion, the output attributes of the selected protocol class are listed in the Attributes Listbox. 

69 



OPM SCHEMA EDITOR 2 OPM Schema Editor Windows 

2. An attribute, B, is selected in the Attributes Listbox. As a result, the name of attribute B is listed 

in the via part (only the attribute name, not class-name.attribute-name, is listed). Following this 

selection, the value classes of B are listed in the Classes Listbox with the first value class high

lighted (selected by default). 

3. A class is selected in the Classes Listbox. The attributes of this highlighted class are listed in the 

Attributes Listbox. An attribute name is selected in Attributes Listbox. As a result of this selec

tion, the name of the selected attribute is appended to the list of attributes already in the via area; 

attribute names in the via area are separated by commas (,). 

4. The selection of a class name in the Classes Listbox and of an attribute name in the Attributes 

Listbox can be repeated until the input attribute from connection specification is completed. 

Mter the input attribute from connection has been defined, the attribute is associated with the con

nection using the Modify button. 

4.26.2 Modify Attribute Input-From Connection 

An input attribute from connection can be modified following a procedure similar to that described 

in the previous subsection. Mter the input attribute from connection has been modified, the attribute is 

associated with the modified connection using the Modify button. 

4.26.3 Delete Attribute Input-From Connection 

Delete button deletes this input-from connection. An input attribute from connection can be deleted 

using the Delete button. 

70 

! 



OPM SCHEMA EDITOR 2 References 

References 

[1] Chen, I-MinA, and Markowitz, V.M., The Object-Protocol Model, Lawrence Berkeley Labo

ratory Technical Report LBL-32738, 1993. 

[2] Chen, 1-Min A., and Markowitz, V.M., Mapping Object-Protocol Schemas into Extended 

Entity-Relationship Schemas and Queries, Lawrence Berkeley Laboratory Technical Report 

LBL-33048 1993. 

[3] Markowitz, V.M., Wang, J., Fang,W. SDT 6.1 .. A Schema Definition and Translation Tool for 

Extended Entity-Relationship Schemas, Lawrence Berkeley Laboratory Technical Report 

LBL-27843, 1993. 

[ 4] Markowitz, V.M., and Shoshani, A., Object Queries over Relational Databases: Language, 

Implementation, and Applications, Proceedings of the 9th International Conference on Data 

Engineering, 1993. 

71 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

A The Object-Protocol Model 

In the Object-Protocol Model, objects are qualified by attributes and are classified into object 

classes. Certain objects, called protocols, have additional specific characteristics and therefore are clas

sified into protocol classes. Each object or protocol class has a distinct class name. An OPM schema 

consists of one or several object and/or protocol classes. 

Object and protocol class names are classified in OPM into two system metaclasses called OBJECT_

CLASSES and PROTOCOL_CLASSES, respectively. OBJECT_CLASSES contains the names of the object 

classes defined in the current OPM schema, and PROTOCOL_ CLASSES contains the names of the protocol 

classes in the OPM schema. The content of the system metaclasses reflects the status of an OPM schema, 

and cannot be changed directly by users. 

A.l Attributes 

Attributes in OPM are identified by attribute names, take values from value classes, and can be char

acterized by attribute constraints. All the (local and inherited) attributes a.Ssociated with an object or pro

tocol class must have distinct names. 

An attribute can be simple or composite. A simple attribute is assigned an attribute name and is asso

ciated with either a single value class or a union of several value classes. A composite attribute consists 

of several component attributes enclosed within parentheses. The name of a composite attribute is 

optional. However, each component attribute must have a distinct name and an associated (single or 

union) value class. The constraints associated with a composite attribute apply to all the component 

attributes. Composite attributes in OPM cannot be nested; that is, a component attribute cannot be a com

posite attribute. 

Depending on the type of the associated value class, an attribute can be primitive or abstract. A 

primitive attribute is an attribute associated with one of the following primitive value classes: 

1. a controlled value class of enumerated atomic values, such as integers (e.g., CONTROLLED VALUE 

CLASS NUMBER_l { 1, 2, 3 }), or strings (e.g., CONTROLLED VALUE CLASS PROJ_TYPE{"overlap", 

"homo logs", "single", "nonoverlap"}); 

2. a class of atomic values of one of the following types: BOOLEAN, BINARV(n), CHAR(n), 

VARCHAR(n), INTEGER, SMALLINT, REAL, FLOAT. DATETIME, TIMESTAMP, MONEY, TEXT, IMAGE; 

3. one of the system metaclasses. 

An abstract attribute is an attribute whose associated value class is an OPM class or a union of OPM 

72 

/ 



• 

OPM SCHEMA EDITOR 2 The Object-Protocol Model 

classes. 

Attributes can be characterized by the following types of constraints: single-valued (the default) or 

multi-valued; and can be null (the default) or not null. 

A.2 Object Classes 

An object class is identified by a unique object class name, and can be described using a class 

description. Each object class is associated with one or several (member) attributes. 

An attribute can be associated directly only with one object class. However, subclasses inherit all the 

attributes of their superclasses. A subset of the attributes associated with an object class is specified as the 

identifier for the objects in that class; object identifiers are used to distinguish among the objects 

(instances) of an object class. 

There are two main types of object classes in OPM: base object classes and specialization (subset) 

object classes. Specialization is an abstraction mechanism that allows defining object classes consisting 

of subsets of objects of other (generic) object (super) classes. A base object class is an object class that 

is not specified as a specialization (subclass) of any other object class. A base object class must be asso

ciated with an object identifier. A specialization object class is not associated directly with an identifier, 

and inherits the attributes of all its (direct and transitive) object superclasses, including the identifier; 

these attributes are called its inherited attributes. The specialization object classes form directed acyclic 

graphs. 

The following is an example of a base object class called PROJECT: 

OBJECT CLASS PROJECT 

DESCRIPTION: Defines laboratory projects. 

ID: project_id 

ATIRIBUTE project_id: INTEGER 

ATTRIBUTE project_parent: PROJECT 

ATIRIBUTE sponsored: SPONSOR 

ATTRIBUTE project_team: PERSON 

A.3 Protocol Classes 

single-valued 

multi-valued 

multi-valued 

multi-valued 

not null 

can be null 

not null 

Laboratory (and other) protocols are modeled by protocol classes. Like base object classes, protocol 

classes have class names, (optional) class descriptions, identifiers and are associated with (member) 

attributes. 

73 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

A protocol may consist of several steps or subprotocols. Protocol modeling is characterized by the 

recursive specification of protocols in terms of component subprotocols, called protocol expansion. Pro

tocol expansion allows specifying alternative protocols, sequences of protocols, and optional protocols; 

"or",",", and 'l ]" are used to denote alternative, sequences of, and optional protocols, respectively, and 

parentheses are used for specifying complex protocol compositions. For example, if Pis a protocol 

whose expansion is (A, B, [C]) or D then protocol Pis defined as either (i) the sequence of protocols A 

followed by Band followed by optional protocol C, or (alternative) (ii) protocol D alone. 

In addition to regular attributes (e.g., representing various protocol parameters, such as time and tem

perature), a protocol class has in general attributes representing the input and output of the protocol. 

These input and output attributes can only be associated with protocol classes. Input and output attributes 

of protocol classes are defined immediately below. 

A.4 Input and Output Attributes 

Input and output attributes of a protocol class specify the input and output of this protocol, and the 

relationship between the protocol and its subprotocols and/or inter-protocol relationships (connections). 

Input and output attributes can be only simple attributes, and can be associated only with protocol classes. 

If a protocol P1 is expanded into several sub-protocols, then the input and output attributes of P1 must 

be referenced in the input and output attribute definitions of its sub-protocols. Relationships between 

input and output attributes of sub-protocols and input arid output attributes of higher level protocols are 

expressed in OPM using input is-a ... and output is-a ... statements. 

If a protocol P; is followed by protocol Pi, then the input of Pi will include some or all of the output 

of P;. Input-output protocol connections are expressed in OPM using input from ... via .•. statements. 

For example, suppose that a protocol for DNA packaging consists of three sub-protocols: PACKAGE, 

DIGEST and ADD. Part of the input of DIGEST comes from the output of PACKAGE. Therefore, protocol 

DIGEST is defined as: 

PROTOCOL CLASS DIGEST 

DESCRIPTION: digest 

ID: digest_id 

ATTRIBUTE digest_id: INTEGER single-valued 

ATTRIBUTE enzyme: ENZYME input 

ATTRIDUTE dna: PACKAGED_DNA input 

from PACKAGE via packaged_dna 

not null 

74 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

ATTRIBUTE linear_ dna: LINEAR_STICKY _DNAoutput 

As already mentioned above, input and output attributes specify how sub-protocols are connected. 

When an input or output attribute corresponds to an attribute of a higher-level (generic) protocol, this cor

respondence needs to be specified as shown in the following example: 

PROTOCOL CLASS DNA_PACKAGING 

DESCRIPTION: packaging DNA for insertion 

10: protocol_id 

EXPANSION: PACKAGE, DIGEST, ADD 

ATTRIBUTE protocol_id: INTEGER 

ATTRIBUTE dna_sample: DNA_SAMPLE 

ATTRIBUTE vector: VECTOR 

ATTRIBUTE enzyme: ENZYME 

single-valued 

input 

input 

input 

ATTRIBUTE markers: MARKERS input 

ATTRIBUTE repackaged_dna: REPACKAGED_DNA 

PROTOCOL CLASS PACKAGE 

10: package_id 

ATTRIBUTE package_id: INTEGER single-valued 

ATTRIBUTE dna_sample: DNA_SAMPLE input 

isa DNA_PACKAGING.dna_sample 

ATTRIBUTE vector: VECTOR input 

isa DNA_PACKAGING. vector 

ATTRffiUTE packaged_dna: PACKAGED-DNA 

PROTOCOL CLASS DIGEST 

10: digest_id 

ATTRffiUTE: INTEGER single-valued 

ATTRIBUTE enzyme: ENzyME input 

isa DNA_PACKAGING.enzyme 

ATTRIBUTE dna: PACKAGED_DNA input 

from PACKAGE via packaged_dna 

ATTRIBUTE linear_dna: LINEAR_STICKY_DNA 

not null 

output 

not null 

output 

not null 

output 

75 



OPM SCHEMA EDITOR 2 

PROTOCOL CLASS ADD 

ID: add_id 

ATIRIBUTE add_id: INTEGER single-valued 

ATIRIBUTE markers: MARKERS input 

isa DNA_PACKAGING.markers 

ATIRIBUTE linear_dna: LINEAR_STICKY _DNA 

from DIGEST via linear_dna 

ATIRIBUTE repackaged_dna: REPACKAGED_DNA 

isa DNA_PACKAGING.repackaged_dna 

A.S Derived Attributes 

The Object-Protocol Model 

not null 

input 

output 

Derived attributes are associated with an object or protocol class and are derived from other 

attributes using a derivation rule. There are seven types of derivation rules: 

1. arithmetic expression involving other attributes; 

2. aggregate functions involving other attributes; 

3. attribute inversion; 

4. attribute match; 

5. attribute composition; 

6. attribute subvalue; 

7. attribute union. 

A simple attribute can be associated wiih one of the seven types of the derivation rules listed above. 

A composite attribute can be associated only with attribute matching. However, composite attributes that 

are not specified using attribute matching can contain components that are specified using attribute 

inverse, attribute composition, attribute subvalue, attribute union, arithmetic expression or aggregate 

function derivation. 

An arithmetic derivation rule for a derived attribute associated with object or protocol class 0, con

sists of operators ( +, -, *, 1), constants, and other numeric attributes of o •. Attributes involved in an arith

metic expression must be single-valued, simple or component attributes that are not associated with 

derivation rules. (i 

An aggregate function derivation rule for ~ derived attribute associated with object or protocol class 

0, consists of aggregate functions min, max, sum, or avg applied on a numeric attribute of 0., or aggre-

76 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

·gate function count applied on an attribute of 0,. Attributes involved in an aggregate function derivation 

rule must be simple or component attributes that are multi-valued and are not associated with derivation 

rules. 

The following object class definition contains two examples of derived attributes involving aggre- · 

gate function expressions: 

OBJECT CLASS SPONSOR 

DESCRIPTION: sponsor of a project 

ID: sponsor_id 

ATIRIBUTE sponsor_id: INTEGER single-valued not null 

ATTRIBUTE sponsor_name: CHAR(80) 

ATIRIBUTE (account, project, amount): (ACCOUNT, PROJECT, MONEY) multi-valued 

ATIRIBUTE total_amount: MONEY 

DERIVATION: sum of amount 

ATIRIBUTE no_of_projects: INTEGER 

DERIVATION: count of project 

We use below the following notation: if A denotes an attribute of object or protocol class 0,, and x 

denotes an object instance of 0,, then A (x) denotes the set of A values for x. 

An attribute A of object or protocol class 0, can be defined as the inverse of an attribute B of object 

or protocol class oj iff 
1. the value class associated with A, V(A), is Oi and the value class associated with B, V(B ), is 0,; 

2. if A is a simple attribute, then B can be either specified as inverse of A or it is not specified as a 

derived attribute; 

3. if A is a component attribute, then B must be specified as inverse of attribute A. 

If A is defined as the inverse of B, then for every object x of 0,, whenever object y of Oi belongs to 

A (x), x belongs to B(y). 

An attribute A of object or protocol class 0, can be defined as the inverse of attributes B ,; .. , B,., where 

Bt is associated with class Ot and has value class V(BJ, 1 ~ k ~ m, iff 

1. A is associated with a union of value classes V(A,), ... , V(AJ, so that m = n and for every pair 

V(AJ and V(BJ, 1 ~ k ~ m, V(AJ is Ot and V(BJ is 0,; 

77 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

2. B can be specified as inverse of A or it is not specified as a derived attribute. 

If A is defined as the inverse of B 1 or ... or B .. then for every object x of 0,, whenever object y of 

oh 1 s k s m, belongs to A (x), X belongs to B, (y). 

The following object class definitions contain examples of derived attributes defined using inversion: 

OBJECT CLASS CHROMOSOME 

ID: chromosome_number 

ATfRIBUTE chromosome_number: INTEGER single-valued 

ATfRffiUTE has_map: MAP multi-valued 

DERIVATION: inverse of MAP.has_chromosome 

ATfRffiUTE owner: PERSON single-valued 

OBJECT CLASS MAP 

ID: map_id 

ATfRffiUTE map_id: INTEGER single-valued 

ATfRffiUTE has_chromosome: CHROMOSOME multi-valued 

DERIVATION: inverse of CHROMOSOME.has_map 

ATfRIBUTE owner: PERSON single-valued 

OBJECT CLASS PERSON 

ID: social_security _no 

ATIRIBUTE social_security_no: CHAR single-valued not null 

ATfRIBUTE owns: MAP or CHROMOSOME multi-valued 

DERIVATION: inverse of (MAP.owner or CHROMOSOME.owner) 

A simple attribute A of object or protocol class 0 1 can be defined as matching an attribute B of 

object or protocol class 0 1 on attribute, C, iff (B, C) is defined as a composite attribute of 0 1, the value 

class of C includes 0;, and the value classes of A and B are identical. 

If A is defined as matching B of 01 on C then for every object x of 0,: 

1. if there exists an object y of 0 1 so that object x of 0 1 belongs to C(y), then A(x) and B(y) are equal; 

78 

.. 



.} 

OPM SCHEMA EDITOR 2 The Object-Protocol Model 

\ 2. if there does not exist an objecty of 01 so that objectx of 0, belongs to C(y), thenA(x) is empty; if 

A does not allow null values, then for every objectx of 0, there must exist an objecty of 0 1 so that 

x belongs to C(y ). 

A composite attribute A = (A17 ••• , A.) of object or protocol class 0, can be defined as matching 

composite attribute (B1, ••• , B.) of 0 1 on attribute C, iff (B1, ••• , B., C) is defined as a composite 

attribute of OJt the value class of C includes 0 1, and the value classes of Ak and B, 1 S k S n, are identical. 

H A =(A,, . .. , A.) is defined as matching (B1, ••• , B.) of 0 1 on attribute C, then for every object 

xofO,: 

1. if there exists an object y of 01 so that object x of 0, belongs to C(y ), then the set of tuples (Alx), • 

. . , A.(x)) and the set of tuples (Bly), ... , B.(y)) are equal; 

2. if there does not exist an objecty of 01 so that objectx belongs to C(y), thenA(x) is empty; if A 

does not allow null values, then for every object x of 0, there must exist an object y of 01 so that x 

belongs to C(y ). 

The following object class definitions contain examples of derived attributes defined using match: 

OBJECT CLASS TRANSLATES 

DESCRIPTION: gene translates protein at some cell 

ID: (gene, at_cell, protein) 

ATTRIBUTE (gene, at_cell, protein): (GENE, CELL, PROTEIN) single-valued not null 

OBJECT CLASS GENE 

ID: gene_name 

ATTRIBUTE gene_name: VARCHAR(80) single-valued not null 

ATTRIBUTE (translate, at_cell): (PROTEIN, CELL) 

DERIVATION: match (protein, at_cell) of TRANSLATES on gene 

OBJECT CLASS PROTEIN 

ID: protein_name 

ATTRIBUTE protein_name: VARCHAR(80) single-valued not null 

ATTRIBUTE (gene, at_cell): (GENE, CELL) 

DERIVATION: match (gene, at_cell) of TRANSLATES on protein 

79 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

OBJECT CLASS CELL 

ID: cell_name 

ATIRIBUTE cell_name: VARCHAR(80) single-valued 

ATTRIBUTE (gene, protein): (GENE, PROTEIN) 

not null 

DERIVATION: match (gene, protein) of TRANSLATES on at_cell 

An attribute of an object or protocol class 0; , A, can be derived by composing attributes A, , Az, .. 

. , A,., n ~ 2, where each A1 (1 ~j ~ n) 

Lis a local attribute (not an inherited attribute); 

2.is either a simple or a component attribute; 

3.is either non-derived or an inverse attribute; 

4.cannot be an input or output attribute of a protocol class. 

The composition of attributes A,, Az, ... , A,. is denoted A, • A.z •...• A,.. 

Attribute A, must be a simple or composite attribute of 0;. If the value class of A1 (I S j S n - I) con-

sists of class 0 A.• then Ai+1 must be an attribute of 0 A .• IfA1 is associated with a value class consisting 
J . J 

of a union of classes, 0 A. or ... or 0 A. , then classes 0 A. , ••• , and 0 A. must have an attribute A1., 
IJ Jm IJ Jm 

associated with the same value classes. 

The following object class definition contains an example of a derived attribute defined using com

position: 

OBJECT CLASS PERSON 

ID: social_security _no 

ATIRIBUTE social_security _no: CHAR(ll) single-valued 

ATIRIBUTE primary _account: ACCOUNT 

ATIRIBUTE sponsor_names: CHAR(80) 

single-valued 

multi-valued 

not null 

DERIVATION: primary _account.sponsor.sponsor_name 

OBJECT CLASS ACCOUNT 

ID: account_no 

ATTRIBUTE account_no: INTEGER 

ATTRIBUTE sponsor: SPONSOR 

single-valued 

multi-valued 

not null 

80 

J 

( 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

OBJECT CLASS SPONSOR 

llD: sponsor_name 

ATIRIBUTE sponsor_name: CHAR(80) single-valued not null 

In the example above, the composition derivation for sp<:>nsor_names involves attribute 

prlmary_account which is an attribute of PERSON and has value class ACCOUNT; attribute sponsor which 

is an attribute of ACCOUNT and has value class SPONSOR; and attribute sponsor_name which is a prim

itive attribute of.SPONSOR. 

Let B be a simple or component attribute of an object or protocol class 0; , so that B is not a derived 

attribute, nor an input or output attribute. A simple or component attribute A of 0; can be defined as a 

subvalue attribute of B, if the value class of A is VA , the value class of B is V 8 , and 

1. 0 A = 0 8 , V 8 = 0 8 , and 0 A is an immediate or transitive subclass of 0 8 ; or 

2. V 8 consists of a union of classes, 0 8 or ... or 0 8 , and VA (consisting of a single class or a 
. 1 k 

union of classes) is a subset of V8 • 

The following is an example of an attribute defined using the subvalue derivation: 

OBJECT CLASS DEPARTMENT 

ID: department_name 

ATIRIBUTE department_name: CHAR(20) 

ATIRIBUTE employees: EMPLOYEE 

ATIRIBUTE engineers: ENGINEER 

single-valued 

multi-valued 

multi-valued 

DERIVATION: subvalue of employees 

not null 

not null 

Class ENGINEER is a subclass of EMPLOYEE. The range of attribute employees consists of the 

employees in a given department, and the range of attribute engineers consists of the subset employees 

who are engineers in the same department. 

A simple or component attribute A of an object or a protocol class 0; can be defined as the union 

attribute of other attributes, B1 , ••• , B,. (n ~ 2) if 

l.B1 , ... , and B,. are simple or component attributes of 0,; 

2.B1, ••• , and B,. are not derived, nor input or output attributes of a protocol; 

81 



OPM SCHEMA EDITOR 2 The Object-Protocol Model 

3.the union of the value classes of B 1, ••• , B. is equal to the value class of A. 

The following is an example of an attribute specified using union derivation: 

OBJECf CLASS PROJECf 

ID: project_id 

AITRIBUTE project_id: INTEGER 

AITRIBUTE company_sponsors: COMPANY 

single-valued not null 

multi-valued 

AITRIBUTE govemment_sponsors: GOV _DEPARTMENT multi-valued 

AITRIBUTE all_sponsors: COMPANY or GOV _DEPARTMENT multi-valued 

DERIVATION: company_sponsors or govemment_sponsors 

82 



~~...:.~ ...... ::: 
' 

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

~~;~ 

~ io ·;:: 

~''"'-C:U '"'~ .... 
1ffi :3 
ll\l)_...J 
''(~,..,... 

~~ ~ 

( 




