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Delocalized image surface states in free-standing hollow silica nanospheres populated with one or
two electrons or an exciton are theoretically predicted for a wide range of internal radii and shell
thicknesses. The driving force building up these surface states is the image self-polarization
potential originating from the dielectric mismatch between the nanoshell and the surrounding air.
The surface states are localized in a spherical crown beyond the nanoshell border. The transition
from volume to surface state will then have to overcome the spatial confining potential barrier of the
nanoshell. Owing to the different spatial confining barriers of electrons and holes in the silica
nanoshell, electron but no hole density can be concentrated in surface distributions. The
self-polarization potential looks like a double well potential, each well located just beyond the
nanoshell border, with the internal well deeper than the external one, so that an excess carrier is
attracted more strongly by the inner interface. This leads the electron density of a surface state to be
located mainly in the internal surface of the hollow nanosphere. The shorter the inner nanoshell
radius is, the stronger the binding of the excess electron to the surface will be. The volume/surface
ground state phase diagrams of the one-electron, two-electron, and exciton systems have been
calculated. All three diagrams are quite similar, thus revealing the monoelectronic character of the
driving force for the transition from volume to surface states. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2829802�

I. INTRODUCTION

The colloidal growth of free-standing nanocrystals
makes it possible to fabricate the smallest semiconductor
nanocrystallites with sizes of just a few nanometers and a
spherical shape.1–5 Wet chemistry methods also allow multi-
shell structures built of concentric layers to be synthesized
with highly controlled shell thicknesses and
compositions.1–3,6–10 Treating these core-shell composites
further �by calcining, chemistry, or photoetching methods�
one can finally obtain hollow spheres.11–13 Hollow spherical
materials have aroused a great deal of interest owing to their
numerous potential applications in fields such as chromatog-
raphy, the protection of biologically active agents, fillers,
drug delivery, controlled release, adsorption, and
catalysis.14–23 Among these hollow spheres, those made of
silica have attracted a lot of attention because of their low
cost and feasible synthesis. Both SiO2 micro- and nano-
spheres can be obtained with precisely controlled sizes and
shell thickness, with the hollow spheres retaining the same
size and morphologies as the precursor nanocomposite.24

It has been predicted that small free-standing SiO2 nano-
crystals can trap electrons in surface states25 and also that
electrons can be trapped in small nanocavities in bulk
SiO2;26 this trapping capability originates from image
charges produced by the dielectric mismatch at the SiO2 sur-
face. A key factor for this material to form surface states in
nanosized systems is its low electroaffinity25,26 of only about
0.9 eV.27 It should be stressed that this trapping capability is
not related to the presence of defects as, e.g., surface oxygen
vacancies or other morphological features at the surface that

have been well characterized as electron trapping sites yield-
ing localized electronic states at the surface of dielectric
materials.28,29

Despite the extensive potential applications of hollow
silica materials, theoretical investigations on their energy
structure are rather scarce.30 In this paper we carry out a
theoretical study of the electronic structure of ideal defect-
free hollow silica nanospheres in air, for a wide range of the
internal radii and thicknesses. We focus on image surface
states. One- and two-electron and excitonic states are ad-
dressed. As a major result it should be noted that �i� for a
large range of radii, image surface ground states are ob-
tained, �ii� electron �negative� density but no hole �positive�
density can be concentrated in the hollow nanocrystal sur-
face, and �iii� surface state electron density is basically lo-
cated in the internal surface. These findings suggest that solid
and hollow silica nanospheres will display quite different
behaviors when an excess electron comes into them. It
should also be noted that, in the case of hollow nanospheres,
this excess electron exerts most of its influence on the inter-
nal and most active surface of the hollow sphere.

II. THEORY

A. The self-polarization potential

Classical image potentials generated in a neutral solid
sphere with radius R and dielectric constant �1 in a medium
of permittivity �2 has the form31
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with �=�1 /�2. Its limit of a perfectly conducting sphere in
air, ��1→� ,�2=1�, Vs�r�R�=0, and Vs�r�R�=
−R3 / �2r2�r2−R2��, is well known.32 This potential decays as-
ymptotically as −1 /r4 and thus much faster than the image
potential of a planar surface �−1 /4d, where d=r−R�. Conse-
quently, flat surfaces apparently bind electrons in image
states more strongly than spheres.

However, this image self-polarization potential diverges
as the source charge approaches the dielectric interface, i.e.,
as r→R. Therefore, the Schrödinger equation including this
single-particle potential is found to be nonintegrable, unless
we force a null electron density at the interface �e.g., by
imposing an impenetrable infinitely high barrier at the sphere
border�.

This pathological result prompts the question as to
whether or not it is sensible to employ classical electrody-
namics and the macroscopic parameter defining the dielectric
response of the medium when dealing with nanosystems in
the framework of a quantum mechanical treatment, as is
commonly assumed in the widely employed envelope func-
tion approach �EFA�.33 Within this approach, the electron
wave function of a nanocrystal is written as a product of
smooth envelope functions and Bloch functions, with the
Bloch functions having the periodicity of the nanocrystal lat-
tice. The integration of the periodic functions in the
Schrödinger equation then yields a set of coupled differential
equations for the envelopes. In the case of the one-band
model for the conduction electrons, the resulting differential
equation for the envelope function is mathematically identi-
cal to the Schrödinger equation, in which all integrated de-
tails of the unit cell go, on average, into the electron effective
mass and the nanocrystal border is reflected in a confining
steplike potential with a height amounting to the electroaf-
finity of the bulk nanocrystal material �or the band offset
between neighboring materials if the nanocrystal is buried in
a semiconductor matrix�. The interaction of conduction band
electrons with the rest of electrons and nuclei is averaged as
an interaction with a continuous medium capable of being
polarized. In other words, EFA retrieves the macroscopiclike
view of classical electrodynamics.

The issue of nonintegrability of the Schrödinger equa-
tion when self-polarization is included was overcome by
Bányai et al.,31 who proposed a “regularized” self-
polarization Vs potential, i.e., a linear interpolation replacing
the actual Vs in a thin layer at the interface with thickness of
the order of a lattice constant. The underlying assumption is
that the electrodynamics of continuous media breaks down in
the microscopic domain and that the above mentioned inter-
polation is a good average. However, this regularized image
potential does not have a proper scaling with size. The idea
that an appropriate description of Vs requires accounting for
the finite thickness of the dielectric interface led to the use of
a model in which the steplike dielectric transition is replaced
by a smooth continuous variation within a thin layer of the
order of a lattice constant located at the nanocrystal
interface.34 This model, which has a proper size scaling,

yields an integrable Schrödinger equation. In the present pa-
per we employ an implementation of this model for numeri-
cal calculation in multishell spherical systems reported in
Ref. 35.

B. The Hamiltonian

We will focus on one- and two-electron and exciton
states of hollow silica nanospheres. The present study has
been carried out within the framework of the effective mass
and envelope function approximations. Consequently, we
employ a macroscopiclike treatment of Coulombic interac-
tions, so that one parameter, the dielectric constant, charac-
terizes the dielectric response of the nanoshell. The corre-
sponding one-electron effective mass Hamiltonian reads �in
atomic units, a.u.�,

H = −
1

2
� � 1

m*�r�
� � + V�r� + Vs�r� , �3�

where the first term is the generalized kinetic energy operator
accounting for position-dependent effective masses, V�r�
represents the spatial confining potential and Vs�r� is the
self-polarization potential. When the effective mass approach
and the envelope function approximation are used, the con-
fining potential has a well-defined steplike character at inter-
faces separating two different media, with the rectangular
steps being determined in our silica nanoshell by the SiO2

bulk semiconductor electroaffinity.
The Hamiltonian �a.u.� for two interacting conduction

band electrons reads

H�r1,r2� = �
j=1,2

Hj�r j� + Vc�r1,r2� . �4�

Vc�r1 ,r2� stands for the generalized Coulomb electron-
electron interaction, including dielectric mismatch effects,
i.e., including the interaction between each electron and the
image charges induced by the others. The explicit expres-
sions for Vc�r1 ,r2� are given in Ref. 34. Then, to account for
two-electron states we first solve the one-particle eigenvalue
equation �3�. The radial parts of the exact single-electron
eigenfunctions �n�m�r� are determined numerically on the
grid extending far beyond the nanoshell border. Products of
the basis functions �n�m are then used to construct full
configuration-interaction �FCI� expansions �LS=� jcj� j of
the symmetry- and spin-adapted two-electron configurations
� j, where L and S are the total angular and total spin quan-
tum numbers, respectively. The two-electron Hamiltonian,
Eq. �4�, is then diagonalized in the FCI basis set. As a result,
we get two-particle wave functions �LS�r1 ,r2� and energies
E�2S+1L�. We use a very large orbital basis set �n�m including
the n=4 lowest-lying orbitals with �=0,1, the n=3 lowest-
lying orbitals with �=2–5, and the n=2 lowest-lying orbitals
with �=6–8, with this basis set being large enough to ensure
by far the required accuracy.

From the wave function, we can define the radial density
��r�,
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��r� = 2� 	��r,r��	2r2r�2 sin 	 sin 	�d�d��d	d	�dr�.

�5�

Concerning excitons, as we are dealing with the funda-
mental exciton, which basically involves the fundamental
1Se electron and 1S3/2 hole states36,37 and thus has a strong
heavy-hole character, we employ the one-band model for the
hole, as we have done for the electron. Furthermore, we dis-
regard the electron-hole spin-exchange interaction that splits
the optically active exciton ground state into several
states,36,38,39 the lowest of which is optically passive. Thus,
the single-particle hole effective mass Schrödinger equation
is the same as that for the electron, Eq. �3�, but the hole
effective mass and confining potential should be inserted in
it. Same as above, the radial parts of the exact single-particle
eigenfunctions �n�m�rh� are determined numerically on the
grid extending far beyond the nanoshell border. Hartree
products of the basis functions �n�m�re� ·�n���m��rh� are then
used to construct FCI expansions �LM =� jcj� j of the
symmetry-adapted e-h configurations, where L and M are the
total and z-component angular quantum numbers, respec-
tively.

The e-h Hamiltonian H�re ,rh�=He�re�+Hh�rh�
+Vc�re ,rh� is then diagonalized in the FCI basis set. As a
result, we get two-particle wave functions �LM�re ,rh� and
energies E�L�. We employ the same orbital basis set �n�m as
that in the two-electron case �same for electron and hole�. It
is large enough to ensure by far the required accuracy.

Finally, from the wave function, we define the electron
radial density ��re� like in Eq. �5� where now r� ,	� ,�� rep-
resent the hole coordinates, and the factor 2 is dropped since
now we have just one electron.

We next summarize the parameters employed in our cal-
culations. Electron and hole effective mass and dielectric
constant in air have obviously been taken as being unity,
while in silica we have me

*=0.5, mh
*=10, electroaffinity 


=0.9 eV, and dielectric constant �=4, see Refs. 27 and 40–
43. Since we cannot promote holes in air or a vacuum, we
will assume an infinite height for the spatial confining barrier
of a hole in the nanoshell. As for electrons, we consider the
silica electroaffinity as being the confining barrier height.

C. Computational details

The radial part of the exact single-particle eigenfunc-
tions are determined by solving Eq. �3� numerically in a grid.
We discretize this differential equation using central finite
differences, following the scheme proposed by Harrison,44

which ensures the robustness of the method even for large
changes in the effective mass across the interfaces. Since a
part of the eigenstates are surface states, i.e., are mostly con-
centrated in a spherical shell about 1 nm thick, a very dense
grid is required. We employ 500 points /nm, which is more
than capable of rendering the required accuracy. The grid is
extended at least 4 nm beyond the external radius of the
nanoshell, with the calculations being insensitive to further
extension of the grid limit. All calculations employ the same
grid. The discretization of Eq. �3� yields eigenvalue problems

of asymmetric, huge, and sparse matrices. Energies and wave
functions are obtained by means of diagonalization. To this
end we use the Arnoldi solver45 implemented in the AR-
PACK package.46

Extensive many-body calculations employing these
monolectronic eigenvectors are computationally unfeasible.
Hence, out of the above eigenvectors, we built shorter vec-
tors by selecting equally spaced points. We then checked
that, using the same many-body basis set, the calculations
employing 50, 25, and 10 points /nm yield the same results,
within the required accuracy �differences in energy less than
0.1 meV�. Therefore, the extensive many-body calculations
have been carried out by employing these short single-
particle vectors.

III. RESULTS AND DISCUSSION

A. The self-polarization potential

Electrons in image states feel the attractive force of the
charge induced in the material even away from the surface,
due to the extremely long-ranged Coulomb potential. As dis-
cussed in the previous section, the sharp drop in dielectric
permittivity between a nanosphere and the surrounding air
yields an image potential that is repulsive inside and attrac-
tive outside and which may bind carriers in surface states. In
accordance with Eq. �2�, larger radii R bind more strongly.
However, a sharp dielectric drop yields nonintegrable Hamil-
tonian eigenvalue equations and should be replaced by a con-
tinuous variation of the dielectric constant within a lattice-
constant range at the sphere border. The resulting Vs�r�
profile is continuous, also repulsive inside and attractive out-
side, with a narrow deep well by the sphere border. In Figs.
1�b� and 1�c� we plot the self-polarization Vs potentials cor-
responding to two silica nanospheres in air with radii R=5
and 25 nm, respectively. We can see that, as in the case of
the sharp model, the attractive part of the potential decays
faster as R diminishes. However, as the well depth is finite,
this faster decay turns into a deeper well. Additionally, in the
region r�R, Vs is more repulsive for small values of R. As a
result, larger radii R no longer bind more strongly.

In order to conduct a deeper analysis of Vs in Figs. 1�a�
and 1�b� we plot the self-polarization Vs potentials of an R
=5 nm air bubble in a silica matrix and that of an R=5 nm
silica nanocrystal, respectively. The figure is also completed
with the self-polarization potential of a hollow silica nano-
sphere with Rin=5 nm and Rout=25 nm �Fig. 1�d��. In Figs.
1�a� and 1�b� we can see that Vs has a plateau in the region
0�r�R that is attractive/repulsive in the air bubble/
nanocrystal. Then, Vs�r=0��0 while Vs�r→��→0. The
hollow sphere self-polarization potential, Fig. 1�d�, can be
viewed approximately as a superposition of the two kinds of
potentials mentioned above �Figs. 1�a� and 1�c��. As a result,
the inner well of this double well potential turns out to be
quite a lot more attractive than the external well, so that we
can predict that an excess electron will be bound more
strongly at the inner interface. Several open questions such
as whether the electron density of a surface one-electron
state will be distributed in one or both wells, whether or not
a second excess electron will be trapped in the same well as
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the first one, and whether the density distribution of the elec-
tron and hole of an exciton are influenced to a similar extent
by Vs or not will be addressed in the following sections.

B. Image surface states

In order to answer the questions posed at the end of Sec.
III A, we have carried out a comprehensive study of single-
electron, two-electron, single-hole, and exciton states in
silica nanoshells with internal radii Rin and shell thicknesses
d both ranging from 2 to 28 nm. Many experimentally syn-
thesized silica spherical shells fall within this range.24,30,47

We deal with single carrier states first in order to investigate
the single-particle distribution, which is only determined by
the interplay of spatial and self-polarization confining poten-
tials. We will show that in a wide range of geometries the
low-lying electron states are surface image states. The ex-
tremely high confining potential barrier acting on holes pre-
vents this from being the case for them. As a second electron
is introduced in the nanoshell, Coulomb interaction, includ-
ing the interaction between each electron and the image
charges induced by the other one, come into play. We will
show that, despite the electron-electron repulsion, the surface
ground state 1Sg only concentrates electronic density in the
inner face of the nanoshell. Only some excited two-electron
surface states show the electronic density simultaneously dis-
tributed in both faces. Finally, we will show that the hole

distribution of the fundamental exciton is always volumetric
while, in a large range of geometries, the electron concen-
trates at the inner interface of the nanoshell.

1. A single carrier in a nanoshell

Here we consider both single-electron and single-hole
stationary states. The main difference between electron and
hole density distributions in silica nanoshells comes from the
different heights of the potential barrier spatially confining
either particle. Thus, while it is relatively low for electrons
�0.9 eV�, it is extremely high for holes. Since the deep self-
polarization potential well is located in air, by the nanoshell
borders, only electrons can build surface density distribu-
tions. We actually find that only the low-lying electron states
are surface states. As for the low-lying part of the energy
spectra, since the lack of silica in the central core of the
nanoshell �0�r�Rin� energetically favors the radial node-
less orbitals �1,�m, we find that both for electrons and holes
and for the entire range of geometries that have been studied,
the low-lying states are radial nodeless �1,�m orbitals. The
electron low-lying orbitals with a radial node, particularly
the 2s orbital ��2,0,0�, find a source of energetic stabilization
in the self-polarization potential wells; this is not the case for
holes which are strongly confined within the nanoshell bor-
ders. Thus, in the case of the nanoshell that was calculated
with the deepest self-polarization potential wells �Rin=d

FIG. 1. Self-polarization potential profiles Vs corresponding to �a� an R=5 nm air bubble in a silica matrix, �b� an R=5 nm silica nanocrystal in air, �c� an
R=25 nm silica nanocrystal in air, and �d� a hollow silica nanosphere with Rin=5 nm and Rout=25 nm.
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=2 nm� the electron orbital sequence is 1s�1p�1d�2s. . .,
while for holes the 2s orbital appears to be energetically less
stable than at least the 1k orbital ��1,8,m�, with 1k being the
radial nodeless orbital with the largest � calculated. As Rin

increases and, consequently, the attractive wells of the self-
polarization potential become shallower, this differential be-
havior between one-radial-node orbitals of electrons and
holes vanishes. Thus, for Rin�22 nm, both electron and hole
2s orbitals appear energetically more excited than the corre-
sponding 1k orbital.

As pointed out above, only electrons can build surface
states. Our calculations also reveal that basically only low-
lying radial nodeless orbitals can come to the surface and, in
such a case, their electronic density is concentrated in the
inner nanoshell border. Also, orbitals with a radial node, par-
ticularly 2s, find a source of energetic stabilization in
nanoshells with small radius and thickness. As an illustra-
tion, in Fig. 2 we plot the electronic radial density distribu-
tion of the 1s and 2s orbitals of three different nanoshells

with Rin=d=2 nm, Rin=d=10 nm, and Rin=d=26 nm, re-
spectively. Interestingly, panel 2�a� shows that in the case of
the smallest nanoshell �Rin=d=2 nm� the 1s /2s orthogonal-
ity promotes the 2s electronic density to the external
nanoshell surface.

It has been reported26 that the largest radius of a spheri-
cal air bubble in bulk silica that is able to trap electrons in
surface states is about 13 nm. Our present calculations reveal
that this trapping capability is enhanced in nanoshells. We
find that an Rin=20 nm nanoshell still draws quite a large
amount of electronic density at the surface. Figure 3 shows
the 1s radial density distribution of several nanoshells with
Rin=20 nm and thickness d=4, 10, 20, and 28 nm. We see
that for d=10 nm the nanoshell still has more than 50% of
the ground state 1s electronic density at the surface, while
this is not the case if d�20 nm. The phase diagram is drawn
in Fig. 4. Below the line �smaller radii and shell thicknesses�
the electron builds surface ground states. Since no quantita-
tive definition of surface state can be established, here we
have assumed the following criterion. We calculate the
amount of electronic density within the region �Rin+� ,Rin

+d−��, where �=1.5 Å. If it is smaller than 0.3, i.e., 70%
of the electronic density is close to the shell border, we de-
fine the state as a surface state. The diagram in Fig. 4 shows
that surface trapping is larger as both the internal radius and
thickness of the shell decrease. Shorter internal radii yield
deeper self-polarization potentials, thus producing a larger
energetic stabilization of surface states. Shorter shell thick-
nesses yield stronger confinement, thus energetically desta-
bilizing the volume states to a larger extent. Figure 4 also

FIG. 2. 1s �full line� and 2s �dashed line� electron radial density distribu-
tions in hollow silica nanospheres with an internal radius Rin and shell
thickness d. �a� Rin=d=2 nm; �b� Rin=d=10 nm; and �c� Rin=d=26 nm.
Vertical dotted lines represent the nanoshell borders.

FIG. 3. 1s radial density distributions in hollow silica nanospheres popu-
lated with a single electron and dimensions defined by an internal radius
Rin=20 nm and shell thicknesses �a� d=4 nm, �b� d=10 nm, �c� d=20 nm,
and �d� d=28 nm. Vertical dotted lines represent the nanoshell borders, and
�v is the amount of electronic density within the region �Rin+� ,Rin+d
−��, where �=1.5 Å.
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reveals that beyond d=10 nm the single-electron phase dia-
gram border profile Rin�d� does not change by further in-
creasing d, i.e., a further increase in the shell thickness does
not produce a relevant energetic stabilization of volume
states.

2. Two electrons and excitons in a nanoshell

In this subsection we consider a second particle coming
into the nanoshell. If the second excess particle is a hole, we
know from previous sections that holes are so highly con-
fined within the nanoshell that they cannot overcome the
barrier and draw hole-surface-like distributions over the self-
polarization potential well. The �positive� hole distribution of
the exciton will therefore be volumetric. If the electron-hole
attraction is disregarded, then, for a wide range of nanoshell
radii and thicknesses, the �negative� electron distribution
forms surface states. We have calculated the phase diagram
for the electron distribution of an exciton when the electron-
hole interaction is taken fully into account. Our calculations
yield a phase diagram for the electron distribution of the
fundamental exciton close to that of a single electron in the
nanoshell �see Fig. 4�. However, while the ground state
single-electron phase diagram border profile Rin�d� has an
exponential-like decay, the corresponding profile for the
electron distribution of the ground state exciton shows a
shallow minimum at about d=14 nm. The phase diagram
border profile is now determined by two factors. On the one
hand, we have the same single-electron factors yielding an
exponential-like decay profile. As pointed out in the previous
subsection and as can be seen in Fig. 4, once a shell thick-
ness of about d=10 nm is reached, a further increase in d
does not change the surface trapping radius Rin�d�. At this
point, the many-body electron-hole attraction becomes rel-
evant. Since the hole distribution is necessarily volumetric,
the shorter the shell thickness is, the closer the electron and
hole distributions are and the stronger the electron-hole at-
traction becomes. This many-body effect thus produces an
increase in Rin�d� vs d. In other words, the trend of the phase
diagram border Rin�d� profile is determined by single-
particle/many-body effects at short/large d values. As a re-
sult, a shallow minimum appears in such a profile at about

d=14 nm. In Fig. 5 we include the electron density distribu-
tion of a set of nanoshells with Rin=20 nm and shell thick-
nesses d=4, 10, 20, and 28 nm, in order to compare them to
their partners in Fig. 3, which correspond to a single electron
in the same nanoshells. As a whole, our results reveal that the
presence of a �volume-distributed� hole has little influence
on the surface electron state density distribution. This evi-
dences, in turn, that the monoelectronic potential image
terms prevail over the many-body interactions as a driving
force for the transition from volume to surface states, which
is partially due to the screening of the bare Coulomb inter-
action by polarization charges.

We have also calculated the phase diagram for the
ground state electron density of two electrons in a nanoshell.
One early and surprising result is that we have not found
phases in which the electron density is distributed fifty-fifty
in volume and surface, or in either nanoshell surface �we
found this last phase in some excited states of the two-
electron system�. The 1Sg ground state has only two phases.
Namely, a phase where all of the density is volumetrically
distributed and a second phase in which all of the density is
located at the inner nanoshell border forming a surface state;
this phase diagram is hardly distinguishable from that of a
single electron in the nanoshell �see Fig. 4�. In this case, the
electron-electron interaction, which is particularly strong,
does not promote one of the electrons from the deep self-
polarization potential well at the inner nanoshell border to
the volume or to the shallow self-polarization potential well
at the external border. Both electrons remain at the inner
nanosell border but strongly correlated, leading to an angular
Wigner-like distribution.48 In other words, although the elec-

FIG. 4. Electron density phase diagram of hollow silica nanospheres popu-
lated with a single electron �full line�, an exciton �dotted line�, and two
electrons �dashed line� vs the internal radius Rin and shell thickness d. S/V
labels the region where the amount of electronic density close to the shell
border is larger/smaller than 70%.

FIG. 5. Electron radial density distribution of the exciton ground state in
hollow silica nanospheres with dimensions defined by an internal radius
Rin=20 nm and shell thicknesses �a� d=4 nm, �b� d=10 nm, �c� d=20 nm,
and �d� d=28 nm. The meanings of vertical dotted lines and �v are the same
as in Fig. 3.
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tron density distribution is strongly modified as the second
electron comes into play, no relevant amount of electronic
density is promoted into the nanoshell volume. The strongly
correlated two-electron surface state has the electron density
located over the deep self-polarization potential well at the
inner nanoshell border in diametrically opposite sites. For the
sake of completeness, in Fig. 6 we enclose the radial density
distribution ��r� of the 1Sg two-electron ground state of a
nanoshell with an internal radius Rin=20 nm and several
shell thicknesses d=4, 10, 20, and 28 nm, in order to com-
pare them with Figs. 3 and 5, which show the electron den-
sity distribution of a single electron and an exciton in the
same nanoshells.

IV. CONCLUDING REMARKS

We have calculated single-particle, two-electron, and ex-
citon states of free-standing silica nanoshells for a wide
range of internal radii and thicknesses. We have found that
the sharp dielectric drop at the nanoshell border can lead to
the formation of delocalized surface states. In such a case,
only electronic density but not hole density come to the �in-
ternal� surface of the nanoshell. The phase diagrams of one-
electron, two-electron, and exciton ground states have been
calculated. All three diagrams are quite similar, i.e., the sec-
ond excess �positive or negative� particle has little effect on
the position of the border separating volumetric and surface
states in the phase diagram, which reveals the monoelec-
tronic character of the driving force for the transition from
volume to surface states.
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