Lawrence Berkeley National Laboratory
LBL Publications

Title
Proceedings of the Fourth Berkeley Conference on Distributed Data Management
and Computer Networks

Permalink
https://escholarship.org/uc/item/63s6h59x

Author
Lawrence Berkeley National Laboratory

Publication Date
1979-08-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/63s6h59x
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

" PROCEEDINGS of the L BL-0433
| o UC-32

F. u_ﬂ @ Tl}ﬂ L ‘ CONF-790834
BERKELEY CONFERENCE

DISTRIBUTED '
DATA MANAGEMENT AND
COMPUTER NETWORKS

Acmg@@ﬁ 28830, 1979

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA, BERKELEY

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT W-7405-ENG-48



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or ;
assumes any legal responsibility for the accuracy, completeness, or usefulness of any -
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
- University of California. ‘




LBL-9433

PROCEEDINGS_OF THE FOURTH
BERKELEY CONFERENCE ON DISTRIBUTED DATA MANAGEMENT

AND COMPUTER NETWORKS

‘Sponsored by

Computer Science & Applied Applied Mathematical Sciences
Mathematics Department Research Program
Lawrence Berkeley Laboratory Office of Energy Research

University of California U. S. Department of Energy

And in cooperation with ACM and IEEE

AUGUST 1979

General Chairman: Dennis Hall, Lawrence Berkeley Laboratory
Program Cochairmen: Michael Stonebraker, University of California,
’ Berkeley

Carl Sunshine, RAND Corporation
Program Committee:

Ed Birss, Hewlett-Packard Corporatioh
Gregor Bochmann, University of Montreal

Stephen Crocker, Information Sciences Institute

Yogen Dalal, Xerox SDD -

. John Day, Digital Technology Inc.

Ivan Frisch, Network Analysis Corporation
James Gray, IBM Research

Paula Hawthorn, Britton-Lee

Gerald Popek, UCLA

Lawrence Rowe, University of California, Berkeley

Daniel Sagalowicz, SRI International
Patricia Griffiths Selinger, IBM Research

David Shipman), Computer Corporation of America
Stewart Schuster, TANDEM Computers Incorporated

James White, Xerox SDD
John Wong, University of Waterloo



-iii-

ACKNOWLEDGMENTS

We would like to thank Dr. James C. T. Pool of the Office of
Energy Research in the Department of Energy for his continued support
of the conference.

The program cochairmen greatly appreciate the help.of the
following people who assisted in refereeing the papers.

~ E. Birss
G. Bochmann
D. Clark
S. Crocker
Y. Dalal
-J. Day
I. Frisch
L. Garlick
J. Gray
P. Hawthorn
S. Kimbleton
G. Popek
L. Rowe
D. Sagalowicz
J. Shoch
P. Griffiths Selinger
D. Shipman
S. Schuster
J. White
’ J. Wong



-y

CONTENTS

Acknowledgments

IMPLEMENTATION OF DISTRIBUTED SYSTEMS - I.

XNDM: An Experimental Network Data Manager : 3
S8.R. Kimbleton, P. Wang and E. N. Fong

An Architecture for Support of Network Operating System
Services ’ 18
R.W. Watson and J.G. Fletcher

The ADAPT Data Translation System and Applications ' 51
M.J. Bach, N.H. Goguen and M.M. Kaplan

DISTRIBUTED DATA BASE INTEGRITY

The Effects of Concurrency Control on the Performance of a
Distributed Data Management System 75
D.Ries :

A Concurrency Control Mechanism for Distributed Databases
Which Uses Centralized Locklng Controllers 113
H. Garcia-Molina

On Effic1ent.Monltor1ng of Database .Assertions in
Distributed Databases 125
D.Z. BadaZ

PROTOCOL MODELING

A Sstudy of the CSMA Protocol in Local Networks ’ ' - 141
S.S5. Lam

Global and Local Models for the Specifiéation and
Verification of Distributed Systems 155
M. Gouda, D. Boyd and W. Wood

Protocols for Dating Coordination ' ' 179
D. Cohen and Y. Yemini



-vi-

MULTIPLE COPY CONTROL TECHNIQUES

Distributed Control of Updates in Multiple-Copy Databases:
A Time Optimal Algorithm :
R.J. Ramivez and N. Santoro

Concurrency Control in a Multlple Copy Distributed
Database System
W.K. Lin

A New Concurrency Control, Algorlthm for Distributed
Database Systems
T. Minoura

NETWORK RESOURCE ALLOCATION

Synchronization of Dlstrlbuted Simulation. Using Broadcast Algorlthms
J.K. Peacock, E. Manning and J.W. Wong

The Updating Protocol of the ARPANET's New Routing Algorithm: A Case
Study in Malntalnlng Identical Copies of a Changing Distributed Data

Base
E.C. Rosen

The NIC Name Server—- A Datagram Based Information Utility
J.R. Pickens, E.J. Feinler and J.E. Mathis

A Protocol for Buffer Space Negotiation
D. Nessett '

"IMPLEMENTATION OF DISTRIBUTED SYSTEMS - II

Labeled Slot Multiplexing: A Technique for a High Speed; Fiber Optic
Based, Loop Network ‘ »
S.. Blauman

A Distributed Flle Manager for the TRW Experlmental Development System
S. Danforth

Network Support for a Distributed Data Base System
L.A. Rowe and K.P. Birman

Transaction Processing in the Distributed DBMS-POREL
U. Fauser and E.J. Neuhold

An Evolutionary System Architecture for a Distributed Data Base
Management System
H. Weber, D. Baum and R. Popescu-Zeletin

191

207

221

237

260

275

284

309
322
337
353

376



IMPLEMENTATION OF DISTRIBUTED SYSTEMS — | I



XNDM: ANEXPERIMENTAL NETWORK DATA MANAGER

Stephen R. Kimbleton
Pear! S..C. Wang
and
Elizabeth N. Fong

- National Bureau of Standards
- Washington, D.C. 20234

ABSTRACT

Data base access is increasingly important in a networking
environment.” Two alternative approaches can be identified: i)
implementation of distributed databases presenting the user with
one logical database implemented across a collection of computers
or, alternatively, ii)- .development of network data managers
providing a ' uniform - user . and _program. viewpoint .across
heterogenous DBMSs. While the first approach is the most
natural extension of thé concept of an individual DBMS, its
utilization imposes certain ;requirements’inc,luding‘ the necessity
for converting exnsting DBMSs if their data is to. be supported in
ellmlnates conversion problems, ‘however, it has not yet Leen
shown feasible.-. This paper describes an ongolng research. project
concerned with establishing the. feas:blhty, issues, alternatives,
and a technical approach for supporting a nétwork data manager.
Although implementation has not been. completed, the initial
evidence is positive and suggests that ‘network data managers
may well prove either an acceptable alternatwe .or useful
intermediate stage to.a dlstnbuted database :

1. INTRODUCTION -

Computer networks support the sharing of remote programs and data. .. The -gradual"
maturation of networking technology, as measured by the . increasingly sophlstlcated
protocols and applications being implemented = [ARPAN 76], [INWG 77] has resulted in
increasing demands for supportmg remote access to. data

This work is & contribution of . the National Bureau of Standards and is not subject to copyright. Partial

funding for the preparation of this paper was provided by . the U.S. Air Force Rome Air Development Center
(RADC) under Contract No. F 30602-77-0068. Certain commercial products are identified in this paper in

order to adequately specify the procedures being described. In no case does such identification imply
recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material -
' |dentmed is necessanly the best for the purpose. v



An individual user, interacting with a remote database management system (DBMS),
issues queries and updates in the data manipulation language (DML) used by the system
and receives data in response. Because of differences in: i) the data model used in
constructing DBMS supported data structures, ii) the functionality provided by the
software even if the underlying data models are the same, iii) data structure, e.g. data
base semantic differences which are also likely even if the same underlying data model is
employed, iv) DML differences, and v) computer system differences, the user wishing to
access multiple remote databases is faced with a substantial learning burden.

This paper argues that this learning burden can be substantially offloaded from the
user. Accomplishing this requires a network data manager. providing a uniform user
viewpoint across multiple remote heterogeneous DBMSs. The feasibility of this approach
is being explored through constructing an Experimental Network Data Manager (XNDM)
at the National Bureau of Standards. _

The basic assumption underlying the design of XNDM is heterogeneity of data
models, data structures, DBMSs, DMLs and computer systems on which these DBMSs
reside. Superimposing a - uniform user viewpoint in such an environment clearly
requires a substantial amount of software and may be a significant source of
delay in processing user requests.

To explore this issue, recall that information processing requirements can be divided
into three categories [ANTHR 65]: operational control, managerial control and
strategic planning. As one passes from operational control to strategic planning, the
bandwidth of the application decreases as does its predictability. Intuitively, we
believe that network data managers are inappropriate for operational control, highly
appropriate for strategic planning, and may be of help in managerial control. For
example, handling inventory out-of-stock conditions could be simplified through a means
for querying remote DBMSs to determine an alternative source of supply when
an out-of-stock is indicated by the local DBMS.

The preceding suggests that strategic planning and exception reporting constitute two
likely applications for a network data manager. Moreover, the nature of these applications
suggests that the additional overhead of supporting a network data manager is likely to
prove very acceptable in comparison with the burden of manually performing the
necessary translation processes in response to unpredictable and non-recurrent demands.

The remainder of this paper provides a more - detailed discussion of XNDM. To
provide context, section 2 establishes some comparisons between a network data
manager and a distributed database. Section 3 describes the user’s view provided by
XNDM. Section 4 discusses translation technology required to support this view and
observes that it differs substantially from that currently discussed in the data translation
literature. Section 5 describes the current XNDM implementation status and presents
some concluding remarks.

2. NETWORK DATA SUPPORT OPTIONS

A distributed DBMS (DDBMS) is usually viewed as one logical DBMS implemented across
several host computers. Thus, excluding performance differences, there is no
apparent difference to the user in accessing a DDBMS and accessing a DBMS resident on
a single host using the same data structures and data manipulation language.
Moreover, through redundancy, the DDBMS potentially permits increased reliability and
decreased access times to frequently used portions of the database. Redundancy does
require care in ensuring consistency of multiple data copies and in synchronizing
updates [ROTHJ 77], [STONM 77].



Using a DDBMS poses the need for conversion of existing DBMSs. The current state
of database conversion suggests that non-trivial costs are associated with this process
[NAVAS 76]. Moreover, even if these costs were insignificant, the resulting
organizational dislocation in adapting to the new DDBMS is likely to be extensive.
Consequently, the DDBMS approach may prove infeasible given the environment in which it
is to be implemented. '

A network data manager is intended to provide an alternative to the DDBMS through
providing an easy means for simplifying network access to multiple, heterogeneous DBMSs.
The basic relationship between a network data manager and the individual DBMSs is
illustrated in Figure 2-1 in the context of the NBS Experimental Network Data Manager
(XNDM). Thus, a process represented as a circle within one computer (PHOST) interacts in
a uniform way with multiple independent DBMSs located in one or more computer systems.

Our working hypothesis is that the network data manager approach is likely to prove
very acceptable in handling unpredictable and non-recurrent requests. Moreover, given
the cost of database conversion, it is also likely to be the only feasible way of easily
adapting to the opportunities for sharing information which are provided by networking.
Thus, we are motivated to consider its design and development in greater detail.

3. THE NETWORK USER ENVIRONMENT

The two essential functions of a Network Data Manager are provision of a uniform user
environment across individual (heterogeneous) local DBMSs (LDBMSs), and translating
between'this user environment and the LDBMSs. The remainder of this section structures
the basic components of the XNDM supported user environment while the following
section addresses translation technology.

3.1 Data Model/Data Language Selection

Developing a data language and data model for XNDM can be approached either as a
problem of developing a 'best’ data model and data language and then considering the
issues in translating to existing data models and languages or through selecting one of the
existing data models and languages. The former is a problem of independent interest.
Requiring its solution as the prerequisite to analyzing network data managers seems
undesirable. Instead, we have chosen to examine the existing alternatives, select a
reasonable candidate, and place primary emphasis on the data manager specific aspects
of the problem. This has expedited our consideration of the basic nature of the
problem. It will be interesting to see if future data model/data language research can
be easily accommodated as we expect or, instead, will require substantial revision.

Selection of a data model for XNDM has been driven by three basic assumptions. The
first is that the network user is naive vis-a-vis the access requirements of local DBMSs. The
second is that the network user should be assisted to ensure that queries and updates are
meaningful. The third is that the local DBMS should be provided with relatively tight
guarantees that the network user will not be able to adversely affect its operations
through ignorance or intent. Note that the second and third assumptions are closely
interrelated.

The first assumption motivates selection of a data mode! and data language minimizing the
knowledge and effort required to support access. That is, the data model should present
data in a way which is easy for the user to understand. Further, the Data Manipulation
Language (DML) should minimize procedural (extent to which the user must specify how
rather than what is to be retrieved or updated) and navigational (need for explicitly
specifying interrelationships between data elements) requirements.



PHOST

- EXPERIMENTAL
NETWORK DATA

- MANAGER

Figure 2-1. XNDM Interface between
and Multiple Remote DBM

User Program
Ss

(00T

DBMS 1

DBMS 2

DBMS3

-g9-



Of the three basic data models: relational, hierarchical, and network, it is our opinion that -
the relational model is the simplest to understand. Accordingly, we have chosen tables
as the basic mechanism for representing data. Although a properly chosen user schema
can result in an appropriately simple user viewpoint regardless of the particular global
schema employed, the static nature of such a schema conflicts with the random and
unpredicatable nature of arriving requests.

The requirements for our second assumption are met through a semantic integrity
system that ensures meaningful queries and updates as discussed below. Moreover, an
access control mechanism is also being implemented to ensure that the network user
is only permitted to access data appropriate to his/her access rights. This is the
basic tool for meeting the third requirement.

3.2 Global Schema Specification

Central to the specification of an XNDM global schema is the balancing of the conflicting
requirements of the network users so as to provide a design that can satisfy the need of the
"community"” of users - as opposed to the need of any individual user.

As discussed above, a basic XNDM assumption is that a uniform user environment is to
be superimposed on a highly heterogeneous collection of existing local DBMSs. This
requires: i) a common view of data to be presented to the network user, and ii) a means
for mapping from this common view to the target systems. Note that this common view
need not contain all of the data in the local DBMSs. Rather, it will probably comprise
only that data thought to be of common interest. This, in turn, is likely to be a subset
of the data which iocal DBMS management is willing to make available to the network user.
Since both of these selection processes are judgmental, we assume that the selection of
data and its attributes is performed by a team (of database administrators?) responsnble
for the overall utilization‘of the network data manager.

Given this selection, and the resulting structuring using the described data model, the
need arises for a suitable translation process. This translation process proves to be
substantially different from that currently discussed in the data translation literature. It is
discussed in some detail in the following section.

3.3 Experimental Network Data Language

The Experimental Network Data Language consists of three major components: i)
Experimental Network Data Manipulation Language (XNDML), ii) Experimental Network
Data Control Language (XNDCL), and iii) Experimental Network Data Definition Language
(XNDDL).

Since the basic XNDM objective was to explore the feasibility of providing a uniform
environment for the network user, we decided to adopt an existing DML and add any
extensions which proved necessary. After some consideration, we have chosen SEQUEL
[CHAMD 76] to provide the basic framework for XNDL since: i) it is a table based DML, and
ii) it has been subjected to human factors oriented investigations which have improved -
the quality of its user interface [REISP 75).

Currently, the design of both the query and update portions of XNDML has been completed
and implementation of the query portion is underway. Implementation of update
capabilities is being deferred pending completion of the design of XNDCL and XNDDL.



XNDML. ' is both a subset and extension of SEQUEL. XNDML is a subset since it does
not contain the SEQUEL sorting facilities and certain alternative ways of stating
predicates. Sorting was eliminated because it adds little to demonstrating the feasibility of
a network data manager and can be an expensive consumer of processing time on the
host containing the LDBMS. XNDML is invoked via subroutine CALLs. Thus it does not
have a host language interface corresponding to that provided by SEQUEL. Table 3-1 Ilsts
the six ma;or categorles of XNDML query commands

XNDML extends its SEQUEL subset to meet the need for 'specifying the target database.
Three major alternatives can be identified: explicit specification, implicit specification,
and specification of location as a virtual attribute.

The target databése can be explicitly -specified by using the statement D ATABASE 1S
'DATABASENAME'. The effect of this statement is to make all subsequent XNDML
‘statements refer to this DATABASE "until another target specification is encountered.

Implicit specification of the target database occurs when the user issues an XNDML
statement without any target database specification. In this case, XNDM maintained
information is used to identify the relevant databases . (those containing - information about
the entities and relationships. identified in the XNDML statement). The statement is
then applied against each such database and the results aggregated. -

The third and most. sophisticated specification is through treatment of location as a
virtual attribute. This logically attaches a location column to each relation seen by the user.
This permits one to construct queries in which the predicate applies to location as well as
to entities and their attributes. Thus, assuming that the distance between sites is known,
one can specify the site .of the location to replenish an out-of-stock condition as
a function of - conditions prevailing at each relevant location. For instance, an out-of- -
stock . replenishment rule might be to replenish in "an amount inversely proportional to
. distance and directly proportional to stock on hand. Distance proportionality can be used
to lower shipping cost overhead while stock on hand proportionality could be used to avoid
unduly impacting a site with a low stock level. _

- Two required XNDM suppert functions are data location and access paih determination.
Data location uses the Network - Wide Directory System contained within the NBS

Experimental Network Operating System [KIMB 78]. Access path |nformat|on is provnded by
the XNDDL processor. .

' TABLE 3-1. XNDML Query Categories,

C1 SELECT (columns)

C2 SELECT....WHERE (rows)
C3 PARTITION

C4 SET OPERATIONS

C5 AGGREGATION

C6 COMPOSITION



3.4 Semantic Integrity

Semantic integrity is a significant issue in the context of an individual DBMS since . it
provides a means of assuring that- the database is a valid representation of the
application environment. Two major reports [MCLED 76] and [BRODM 78] have appeared
on this subject as well as a variety of papers. The general objective is ensuring that if
one starts with a valid DBMS configuration, subsequent updates will not impair this
validity.

Semantic integrity is of greater importance in the context of a network data manager
since local DBMS management is likely to want strong assurances that remote, and
therefore presumably less knowledgeable users, will not affect DBMS integrity. This problem
varies somewhat from that for an individual DBMS. XNDM cannot assure that the
database is, initially, in a consistent state. Thus, the major concern is that updates are
semantically correct. A lesser concern is facilitating the correct structuring of queries
through supporting strong domain typing.

XNDM semantic integrity concerns also differ from the corresponding problem for an
individual DBMS because the network user’'s view of data is virtual. Thus, there is a
premium on performing all non-data dependent integrity checking before proceeding
with the data dependent checks. This may ultimately result in a partitioning of integrity
checking functions between XNDM and the LDBMS. In any event, the major issues
can be divided into two major categories: i) assurance of integrity at the network level,
and ii) assurance of integrity at the local DBMS level.

Although work on the XNDM Semantic Integrity System is in its preliminary stages
[FONGE 79}, some initial observations can be made. Semantic integrity can be expressed
at the giobal schema level through the (virtual) tabular data model. Assuring integrity
within an individual table can be subdivided into assurance of attribute integrity, row
integrity, column integrity, and predicate integrity.

Assurance of semantic integrity is provided via two facilities: strong domain typing
and predicate-based assertions. Strong domain typing facilities of XNDM permit the user
to define: i) the format of the data, ii) the acceptable range of values, iii) the collection
of legal (arithmetic, logical and string) operations, and iv) the interrelationships among
data elements in terms of the collection of legally acceptable operations.

Predicate-based assertions specify validity criteria which are to hold in the application
environment. The facility provided in XNDM will permit:- i) specification of rules for
consistency and correctness of data bases, ii) the time at which the assertion is to be
enforced, and iii) the actions to be taken when the assertions are not satisfied.

Assuring predicate-based integrity for either an individual relation or for a collection of
relations can imply significant overhead depending on the amount of data involved
and the types of checks which must be performed.

3.5 Access Controls

A second major support function required for acceptance of XNDM is provision of an
appropriate access control mechanism. Currently, many DBMSs provide access controls
via passwords on files [DATEC 77]). This is clearly insufficient for the level of
functionality intended to be provided by XNDM. The issue is whether a significantly
better system can be implemented. This issue has been discussed in [WOODH 79};
the following summary considerations are based on the discussion contained therein.



-10~

Access control mechanisms can be divided into two major categories [KARGP 77]:
non-discretionary access control mechanisms which support organizational constraints on
the sharing of information, and ii) discretionary access control mechanisms which permit
user directed controlled sharing of information. :

Security levels and compartments constitute a major example of non-discretionary
access control- mechanisms. Conceptually, a user is labelled with security level(s) and
compartments, e.g. level is SECRET, compartment is NATO, and is entitled to access all
information having the same, or lower levels, e.g. level is SECRET or CONFIDENTIAL,
compartment is NATO. ' '

System-R provides an example of a sophisticated DBMS discretionary access controf
mechanism [GRIFP 76]. Through its use, an individual user is permitted to grant a subset
of his/her access rights to another user. The supported functionality permits
READing, . INSERTing, DELETEiIng, UPDATEiIng, and DROPing (of an entire table).
Moreover, a GRANT command permits one user to provide another user with the ability to
GRANT rights. These mechanisms are supported for both an entire table and for individual
columns of a table. .

XNDM provides both discretionary and non-discretionary access controls. Their
combined support requires a mechanism for checking that discretionary grants do not
conflict with non-discretionary controls. Th|s checklng process has been implemented
using the lattice security model [DENND 76].

4. TRANSLATION TECHNOLOGY

This section: i) establishes the differences between data translation required to support
XNDM and that currently considered in the data translation literature, ii) discusses the two
“major alternatives in implementing a translation capability, and iii) describes the translation
process which we have selected. - Currently, translation has only been implemented for
the query portion of XNDML which, for simplicity, we refer to as the Experimental
Network Query Language (XNQL).

4.1 The Nature of the T;anSIation Process

Data translation can be characterized in two different dimensions: i) online vs.
offline, and ii) constraints on source and target data structures. = XNDM translation
" requirements differ from those usually discussed in the data translation literature since: i) it
is a real-time, online process, and ii) it is dependent upon both source and target data
structures. ' ' : :

The requirement that the transiation process be real-time and online forces a substantially
different translation process than that usuaily considered in the context of database
translation [NAVAS 76]. Specnf:cally, the need for explicit consideration of physical
representations of data is eliminated whnle the need for an online and realtime level of
functionality cannot be avoided. ‘

XNDM translation also differs from that usually associated with database front ends
and database terminals. (A database front end presents the user with data structures
differing from those actually employed by the DBMS being accessed and often based on
a different data model. Thus, there is substantial interest in relational front ends to
DBTG DBMSs. For a front end, the data structures presented to the user are 'fixed' and
the data structures employed by the target DBMS are derived from the user presented
data structures. Database terminals, in contrast, provide the user with a constant data
model and DML across heterogeneous DBMSs. The target data structures are fixed and



-11-

the data structures presented to the user are derived from these target data structures _
[KLUGA 78].)

In both of these cases only one set of data structures is fixed while the other is derived
from this fixed set. This allows substantial freedom in tailoring data structures to simplify
the translation process. Such freedom is not available in constructing a network data
manager in which the data structures presented to the network user are fixed (recall that
they were chosen by a commtttee) and the data structures of the target systems are also
fixed. : .

4.2 XNDM Translation Alternatives

~ An XNQL statement specifies the sequence of operations to be performed on the underlying
information structures. It is a high-level language, and by its very nature, does not
specify the step- by step, system-specific actions needed to evaluate the query by a given
target DBMS. It is the functlon of the translator to supply these details.

Since XNQL is a query language, the primitive information structures of the Ianguage are
aggregated, not simple, data. That is, the basic 'atoms’ of data expressed in an XNQL
statement are relations rather than individual data elements. The translator interprets
these data objects in terms of the primitive data constructs provided by the particular
target DBMS and its data structuring rules.

Construction of the XNQL translator is further complicated by the fact that different target
systems support different primitive operations and data structures; therefore we need not a
single translator but a family of translators. Two approaches. to their realization can
be identified:. construction of a collection of source-target specific translators or,
alternatively, construction of a single translator for the bulk of the translation process
common to all translators together with custom tailored front ends handling the. source
specific portion of the translation process and custom tailored back ends handling the
target specific portion of the translation process. _

Construction of independent translators has the advantage that design unity and run-time
efficiency is more achievable with a single translator for each target DBMS. However, an
entire translator is needed to support each additional target, whereas in the family
approach all the translators share a core design which defines the common (source
and target-independent) - part of the translator. Each new translator in the family is
obtained by building source and target-oriented specxalmes on top of the basic design.
Therefore the bulk of the implementation effort is available across different target systems
and new developments need not start from scratch.

An important side-effect of the family approach is the insight it provides for DBMS
data manipulation and structuring facilities. That is, a simple, coherent design for a
translator family is impossible without @bstracting the essential properties of target systems
and - recognizing their commonalities and differences. Thus, we have chosen the
approach of designing a good general framework, i.e. a consistent, efficiently
implementable translator allowing effective use of target system facilities. The insights
provided by this framework are augmented by those developed in preparing the mappings
to and from specific tazrget systems. _ v



-12-~

4.3 XNQGL Transiation

The complex semantic manipulations required for translation are achieved by means of step-
by-step transformations of an appropriately chosen internal representation of the input
text. We have chosen a tree as the intermediate representation because of the requirement
for flexibility in handling a wide range of target DML's and data structures.

Each transformation takes us somewhat closer to the target query by either changing the
original form of the input text to uncover the underlying "basic structure" of the query tree
which characterizes the system-independent organization of queries, or reshaping the basic
tree to incorporate the surface structure of the target language. The value of this
transformational approach is that it reduces the overall translator complexity and also
supports a simple, consistent, moduiar design [DEREF 76].

The translation process is (vertically) scgmented 'into five phases as illustrated in Figure 4-
1. A more extensive discussion is contained in [WANGP 79].

Lexical and Syntactic Analysis

The tasks of the lexical and syntactic analysis modules are conventional [GRIED
69]. They produce a source(XNQL)-specific. syntax tree representation of the input
query. This tree contains all the information originally present in the source text as
well as all the information that is inherent in the XNQL grammatical description. The
source syntax tree is the first of a sequence of trees used in the translator as
intermodular data structures. Each later module takes as input the tree produced by
the previous module and leaves a tree that is closer to the target query by
reshaping the tree, pruning source-specific information, from the  tree and/or
incorporating target-specific information into the tree. The basic task ' facing the
translator writer is diSentangling those aspects of the source and target queries
that reflect "essential" (language-independent) logical structures frem those that
characterize "incidental" (language-specific) representational details. :

Standardization

Processing beyond the syntactic level can be made simpler if the source syntax iree
is transformed into a standard form where each WHERE clause is represented as a binary
tree of predicates connected by AND and OR nodes arranged in conjunctive normal form
[STONM 76).

Static Semantic Processing

Since each XNQL query interacts with a data space which is the Cartesian product of
several relations subject to the restriction of the WHERE clause, and frequently these
restrictions are such that the Cartesian product becomes an equi-join (merging of two
relations based on a common column), differences in source and target structures at
the record level imply different join conditions in the queries. :

The static semantic level of the translator does the processing needed to account for data
structure differences at and below the record level by first resolving data item name
differences and then the differences in the joins.

The "data item renaming" module traverses the source syntax tree from the top down,
replacing all leaf references to source(user) data items with corresponding references to
target data items and depositing their attribute information at these nodes. The "record
structure mapping” module then deletes all predicate nodes representing joins between
" different source relations and inserts the appropriate join predicates for target records.



LEXICAL

LEVEL

SYNTACTIC

LEVEL

STATIC
SEMANTIC

CLEVEL

DYNAMIC

SEMANTIC

' LEVEL

Figure 4-1.

~-13-

|

INPUT

SCAN

ANALYZE

1

PARSE

STANDARDIZE

:

" RENAME
DATA ITEMS

MAP
RECORD STRUCT

R

DECOMPOSE

SEQUENCE

!

GENERATE
PRIMITIVES

GENERATE CODE

CHARACTERS
(XNOL QUERY)

TOKENS

SOURCE TREE

TARGET-DATA-STRUCTURE-

SPECIFIC TREE

TARGET TREE

SEQUENTIAL CODE
(TARGET QUERIES)

The XNQL Translator as a Tree Transformer



-14-

Dynamic Semantic Processing

The transformations happening at this level account for the differences in the logical
structures of the source and target query languages. Since the unit of data structure for
each target query may be smaller than for XNQL (e.g. each Codasyl DML statement can
only involve a single record (or set) type, whereas there is no limitation to the number of
different tuple types (relations) an XNQL statement can manipulate), we first decompose
the query tree into sub-trees, each of which involves a single unit- of data structure
that a target query can handle. The "sequence" module then chains the sub-trees
together in the order that the corresponding queries should be sequenced for the target
DBMS and selects the execution sequence of these chains that minimizes the amount of
intermediate records needed to be processed.

Code Generation

This is the final phase of the transiator and outputs the desired target DML statements
that can be executed by the local DBMSs. The first module interprets each of the sub-
trees along the chains produced by the Sequencer and generates CALL statements to
primitive target database operations. The second (code generatlon) module then expands
these CALLs into sequences of actual target DML statements.

The exact form of the primitives depend vupon the particular target system we are
considering. Their behavior characteristics fall, in general, into the following categories:
search or return the first/next instance of a specified record type, test the truth value
of some predicate expression of the record type, partition all instances of a record
type on the basis of some data item values and evaluate aggregate functions for the
specified record type. (These correspond roughly to the information algebra operations
[CODAS 62} of ‘searching/returning the first/next point of a line, bundling, glumping and
evaluating functions oflines.)

This extra level of indirection before the actual code generation allows us to separate
out the representational details of the target DMLs and makes it possible to have a standard
set of primitives for each general class of target systems, that is, Codasyl, relational
calculus and relational algebra systems. v '

The decision to set the primitives at a fairly procedural level (namely, one record
instance at a time) was driven by the flexibility it provides for expressing a variety of
access strategies. This allows easy incorporation of optimization modules which
selects the "best" access paths for the input query based upon knowledge = of how the
records are stored (keys, inversion indices, etc.). This is particularly important since the
value and usefulness of XNDM in a real environment depends critically upon its performance
and experiences with current relational DB8BMSs indicate that some form of optimization is
essential in bringing the performance to an acceptable level [SMITJ 75]. :

5. IMPLEMENTATION STATUS AND CONCLUDING REMARKS

This paper has described the design and ongoing imp'ementation of a collection of
functions for providing a uniform network view of data across a heterogeneous
collection of network accessible DBMSs. Our experience to date suggests that XNDM
is a realistic and pragmatic approach for achieving the advantages of networking given
a significant, in place, collection of DBMSs.



-15-

Perhaps the three key issues in ensuring user acceptance of a network data
manager are: i) access controls and semantic integrity, ii) developing more sophisticated
translation capabilities optimizing the allocation of the translation process among NDM
and LDBMS, and iii) performance. We believe the basic issues and a reasonable
approach for (i) have been discussed . in this paper. Developing a more sophisticated
translation capability is of obvious importance and closely relates to the performance
issue. Implementation of translators should be paraileled with research directed toward
a better understanding of the nature of the translation process. Some work is
beginning to appear in this area [KLUGA 78] establishing the theoretical limits of
translation feasibility. _ ' '

5.1 Implementation Status . | -

XNDM translation is performed on a PDP-11/45 attached to the Arpanet as are the
other host computers. The operating system for the PDP-11/45 is UNIX [THOMK 74]
and the translator is programmed in C. To provide a more uniform interface to the
translator, small support modules termed envelopes are implemented on the system on
which each LDBMS resides. Basic communications support between systems and the
ability to preserve meaning in transporting structured records between heterogeneous
systems is provided by an Experimental ‘Network Operating System (XNOS) [KIMBS
- 78]. Work on the XNQL translator is still in progress. The current version handies two
out of the six XNQL constructs (selections of columns and rows), for the following target
systems: the Multics Relational Data Store (MRDS) [HONEY 77], a relational calculus
system, and the Honeywell 600/6000 Integrated Data Store (IDS) [HONEY 71], a
Codasyl-like system. For MRDS, the translator can handle all target data structures in
general, but for IDS, target records with multiple owners and multiple members are
- excluded.

5.2 Implementation Approach _

Two different approaches.to implementing XNDM can be considered. The first distributes
the implementation across the supported host systems while the second, which we have
adopted, offloads the implementation, to the extent possible, onto a separate satellite
computer, : _ :

The tradeoffs between these two approaches are essentially those of evaluating the
cost of supporting an additional computer versus the cost of implementing common
modules on several different systems. Given the opportunity for centralized design,
implementation and support afforded by offloading and the mcreasmgly high cost of
software, we believe that offloading is the natural approach in an evolving technology
The alternatlve might be appropriate for an extremely static envuronment

6. ACKNOWLEDGMENTS |

The authors would like to express their appreciation to Gary Sockut, Helen Wood and Fran -
Nielsen who provnded many helpful comments and substantial assistance in preparing this -
paper.



-le6-

7. REFERENCES

[ANTHR 65] Anthony, R., "Planning and Control Systems: A Framework for Analysis,"
Division of Research, Graduate School of Business Administration, Harvard
,University, 1965. ‘

'[ARPAN 76] .Arpanet- Protocol Handbook, Network Information Center, Stanford Research
Institute, Menlo Park, CA, April, 1976

[BRODM 78] Brodie, Michael, L. "Specification and Verification of Data Base Semantic
Integrity”, University of Toronto, Computer System -Research Group, Technical
Report CSRG-91,'ApriI, 1978. :

[CHAMD 76] Chamberlin, D.D., et al., "SEQUEL 2: A Unified Control", IBM Journal of
Research -and Development Nov 1976, pp. 560-575. ’

[CODAS 62] Codasyl Development Committee, "An Information _Algebra"-, Comm. of the
ACM Vol. 5, No. 4, April, 1962, pp. 190-204. o

[DATEC 77] Date, C.J., An_Introduction to Database Systems, Addlson Wesley, Second
Edition, 1977

[DENND 76] Denning, Dorothy E, "A Lattice Model of Secure Information Flow," Comm. of
.the ACM, Vol. 19, No.5, May, 1976, pp. 236-243. :

[DEREF 76] DeRemer, F. L., "Transformational Grammars", in Bauer, F. L, andv Eickel,
J. (eds) Compller Techniques - An Advanced Course, Springer- Verlag 1976, pp.
- 121-145,

, [FONGE 79] Fong, Elizabeth, "Semantic Integrity System for an Experimental Network
Data Manager" in preparation.

[GRIFP 76] Griffiths, Patricia P. and Bradford W. Wade, "An Authorlzatlon Mechamsm For
' -a Relatlonal Data Base System”, |IBM Research RJ 1721 Feb. 1976.

v[HONEY 71] Honeywell lnformatlon Systems, Inc., Integrated Data Store, Order No. Br69,
Rev.1, December, 1971. ‘ _

[HONEY 77] Honeywell Information Systems, Inc.,  Multics Relational Data Store
(MRDS) Reference Manual, Order No. AW53, Rev.0, September 1977. .

[INWG 77] "A Network independent File Transfer Protocol," prepared by The High Level
Protocol Group, INWG Protocol 86, HLP/CP(78)1 December, 1977.

[KARGP 77] Karger, Paul "Non-Discretionary Access Control for Decentrahzed Computing
' Systems," SM Thesis, M.L.T. Dept. of Electrical Engineering and Computer
Science, May, 1977. (Also available as MIT/LCS/TR-179, Laboratory for
COmputer S_ience,M.L.T., May, 1977, NTIS AD A040808.)

[KIMBS 78] Kimbleton, Stephen R., Helen M. Wood, and M. L. Fitzgerald, "Network
Operating Systems An Implementation Approach", Proc. National Computer
Conference, AFIPS Press, Anaheim, CA, Vol. 47, June, 1978, pp.773-782.



-17-

[KLUGA 78] Kiug, Anthony C. "Theory of Database Mappings", Ph.D. Thesis, Department
of Computer Science, University of Toronto, 1978, -

[MCLED 76] McLeod, Dennis, "ngh Level Expression of Semantlc Integrity Specrhcatlons in
a Relational Data Base System", MIT Report MIT/LCS/TR 165, available from
DDC AD-A034184.

[NAVAS 76] Navathe, S.B. and J.P. Fry, "Restructurmg for Large Databases: Three
: Levels of ‘Abstraction,” ACM Transactuons on Database Systems, Vol. 1, No.2,
~June, 1976, pp. 138 158. ,

 [REISP 75] Reisner, P., R.F. Boyce and D.D. Chamberlin, Human Factors Evaluation of
: . Two Data Base Query Languages: SQUARE and SEQUEL", Proc. National
Computer Conference, Anahelm CA, VoI 44, May, 1975, pp. 447-452.

[ROTHJ 77] Rothnie, . James B. and Nathan Goodman, "An Overview of the
Preliminary Design of SDD-1:- A System for Distributed Databases", 1977
" Berkeley Workshop on Distributed Data Management and Computer Networks,
Lawrence Berkeley Laboratory, University of California, Berkeley, CA, May, 1977,
pp.39-57. : (Also available  from Computer Corporation. of America, 575
Technology Square, Cambridge, MA 02139, as Technlcal Report No. CCA-77-

04).

[SMITJ 75] Smith, John Miles and Philip Yen-Teng <Chang, "Optimizing the
- Performance of a Relational Algebra Database Interface", Comm. of the
ACM, Vol. 18, No. 10, October 1975, pp. 568-579. '

[STONM 76] Stonebraker, M., Eugene Wong, -Peter Krepts, and Gerald Held, "The Design
and Implementatlon of INGRES", ACM Transactrons on Database Systems, Vol.
1, No. 3 September, 1976 pp. 189 222, '

[STONM 77] Stonebraker, M., and E Neuhold "A .Distributed Database Version of
INGRES", 1977 Berkeley Workshop- on Distributed Data ‘Management and
Computer Networks, Lawrence Berkeley Laboratory, Umversuty of California,
Berkeley Callforma, May 1977, PP 19-36. :

[THOMK 74] Thompson, K. and D. Ritchie, "The UNIX Time-Sharing System,"
Comm. of the ACM Vol 17, No 7, July, 1974, pp. 365-375.

[WANGP ,79] Wang, Pearl S.-C., "Common Query Language for the Networking
‘ Environment: Design, Translatlon Structure, and - Initial .Implementation,”
in preparation. ' o

[WOODH 79] Wood Helen M and Stephen R Kumbleton ‘"Access Control Mechanisms
-for a Network Operating System " to appear, Proc. National Computer.
_ Conference, June, 1979. : S



-18-

AN ARCHITECTURE FOR SUPPORT OF NETWORK OPERATING SYSTEM SERVICES

Richard W. Watson
John G. Fletcher

Lawrence Llvermore Laboratory
Livermoré, Callfornta

This paper argues that network architectures should be designed
with the expliclt purpose of creating a coherent network operating
system (NOS). The resulting NOS must be capable of effliclent
implementation as the base (native) operating system on a g ven machline
or machlnes, or of being layered on top of exfstlng operat ng syskems
as a guest system.

The goals and elements of a network archltecture to support a NOS
are outlined. This.architecture consists of a NOS model and three
layers of protocol: an Interprocess communication (IPC) Jayer, with an
end-end protocol 'and lower sub—layer protocols as needed to support
rellable unintefipreted logical-message communicatlon; a service support
tayer (SSL), abstracting logical structures and needs common to most
services, Inc¢luding naming, protectlon, request/reply structure,
data—type translatlon, and session support; and a layer of standard
services, (flle, directory, termlinal, process, clock, etc.).



-19-

0. INTRODUCTION

Most current network architectures consist of one or more
function—ortlented .protocols, such as virtua!l terminal or file transfer
protocols, bullt on top of an Interprocess communicatlion (IPC) protocol
tayer [6,7,19,22,26,35,411. The potentlal of computer networklng for
resource sharing and distributed computing cannot be realfzed with such
archltectures because [17,24,44,491:

No basls Is provided for easlly creating, In a Iayéred
fashlon, new resources or services out of exIsting ones.

Each programmer desiring to provide or use a new network
sharable resource must face anew all the Issues of data-type
translatton, command and reply formatting and parsing,
naming, protection, and Tnterfacing to the IPC protocol
layer.

The terminal user or programmer must kdow the different
naming and other access mechanisms required by the network,
each host and each service,

The Setilng’up of accdmnts and othér administrative
procedures are awkward.

These problems can be ellmirated !f a network architecture Is
expllcitly deslgned to support the evolutlon of a network operating
system (NOS). Three Important NOS design goals are the followling.

The prime désign goal s that a process (program), terminal user,
or programmer. have a uniform coherent view of distributed resources.
Processes, programmers, and terminal users should not have to be
explict tly aware of whether a needed resource Is local or remote. This
does not mean that programs or users have no control over where a
process s to be run or other resource Is to be located or that they
cannot learn the locatlons of resources. It means that a user need not
(although he may) program dIfferently or use different terminal
procedures depending on resource location and that network operations
and the 7dlosyncrasles of local hosts can be largely or completely
hidden. There may however, depending on resource locatlon, be
performance differences. One consequence of this goal Is that If a
resource or its controlling service Is relocated for economic,
performance, or other reasons to another system In the network, then at
most a new name (address) 1s requlred, but no changes are requlired In
the program loglc or resource access mechanlsms. .

A second. goal I's that the NOS structure be effl clently
implementable and usable as the base (native) operating system on a
single system of common current archlitecture, as wel!ll as be
Imptementable as a "guest” layer on existlng operatling systems that
support approprilate Interprocess communicatlon [211. By the former
condition we mean that, when Implemented as the natlve operating
system, access by local user processes to local services should be as
- effictent and no more Tnvolved In terms of the number and kind of
messages or system calls exchanged than Is common on existing single



-20~-

systems 0S's. Inftlally NOS's wiil Itkely be Implemented, as guest
systems, on top of exlsting OS's, but over time, as part of the
evolution toward distributed computing, we expect that the structure of
base 05 design to evolve toward that required for a NOS.

A third important goal TIs extenslbillty, Tmpiyling:

That users can easily add new services bullt on exlsting services
wlithout reguliring system programmers to add new resident or

privileged code. (Some services may be made resident or
privileged for performance enhancement, but that Is a separate
Issue.)

That the basic NOS structure not require the NOS to spring full
blown into exlstence with all possible services to be useful; in
other words that It can start with a few services and evolve.

That systems desiring to participatge In the NOS as users of or
providers of a single service be able to do so with mlnlmal
impiementation.

A NOS must perform the same basic functions as an operating system
on a single host:

Turn a collectlon of hardware/software resources Into a coherent
set of abstract objects or resources (such as processes, files,
directories, clocks, accounts, etc.) and support thelr namling,
access, sharing, protection, synchronlzatlion, and
Intercommunication (including error recovery).

MultTplex and allocate these resources among many computations.

An NOS must solve the problems that exist for single host 0O5's and
must deal with the problems arlising from Its distributed nature and the
heterogeneous systems on which Tt Ts based: transiatlon problems due
to different encodings and data representatlons, distributed service
and resource structures, potentlally more complex error recovery,
multiple copy file or database update problems, multiple controlling
administrations, and speclal effliclency problems arising from distance
and bandwidth between components. Creating an extensible, coherent set
of services or resources in an environment of distributed and
heterogeneous systems requires a NOS model and supporting structure to
handle the above problems. This paper 1s focused on such a NOS
framework and the areas where we see coding, communicatlion, and other
standard conventlions to be required or useful to support the services
that will reside within an NOS. It !s beyond the scope of thls paper
to discuss design of specific NOS services, or many of the critical
implementation Tssues of an NOS.

- The Lawrence Livermore Laboratory’s high performance local network
(Octopus) [13,14] is currently undergolng a change In Its hardware
interconnection to Increase performance and be more modular, is being
extended to interconnect hundreds of local micro/mini/midl computers
~with each other and the high performance central faclllties, and
interconnect with other networks [4B]. The network architecture under
development described here will provide the new software base for this
evolution. A prototype operating system for a single machine using



-21-

mény of the features of the NOS structure to be described Is also
presently being Implemented.



-22-

1.. NETWORK OPERATING SYSTEM MODEL

Mode | Stfucture

We belleve that the first step In creating a network archltecture
Is to choose an NOS model [10,17,24,441. One approach s to use an
exlsting operating system as the NOS model and extend 1t Into a
distributed environment. The RSEXEC work at BBN Is a ploneering
example that extended some of the facl!ltles of an existing 0SS (TENEX)
to distrlbuted homogeneous systems and was later layered on 0S's of
other systems as well [431. We do not belleve this to be the preferred
approach, because most exlsting 0OS's have monolithic structures and
weaknesses In thelr Inteprorcess communlication mechan’sms [21] that
Inhibit thelr easy extenslon Into a distributed environment. The
National Software Works (NSW) [28,33] and the later BBN works on the
‘ELAN system represent documented approaches to designing NOS's from
scratch for expllicit distrtbutlon [17,44].

The NOS framework we have chosen 1s based on the obJect or _
resource mode!l of an operating system [23,38]. All communication among
processes Is by message passing. The model Ts shown In Figure 1.

Distributed NOS kernel

Distributed

\ message
\ exchange
\ IPC layer

s{S

peaue

Arbitrary length messages .
Servers (file,

directory, clock,
account, process,
database, etc.)

ustomers

Distributed
customer and server processes

Figure 1 NOS Structure



=23~

ObJjects or resources are entitles such as processes, flles,
directories, virtual 1/0 devices, databases, etc. Resources can be
~accessed or manlpulated only In terms of well-deflned functlons or
operations. FEach type of resource 1s specifled by 1) a loglcal set of
data structures, and 2) a set of operations that can be performed on
these data Structures Two resources are of the same type 1f they have
.the same speclificatl The abstract representation of a resource and
the operaklons on the representatlon are Implemented by one or more
modules called servers.

The implementation detalls of a resource representation are of
concern.only to the server. Two different servers of a resource of
type, say flle, might Internally represent the flles they manage qulte
differently, while presenting externally the same representation and
operatlons. Thls characteristic Is Important as we want to bulid the
NOS on top of existingioperating systems or Implement it as the base

“operating system on many vendors’ hardware. The system can be extended
by creating new resources, using exlsting ones as components.

A gtven process can operate In elther or both server and customer
roles at different times. A customer process accesses a resource by
sending requests contalng operatlon speciflication and parameters to the
approprlate server. ~The server may then satlsfy the request by
accessing data structures local to Tt or by sending additlonal requests
to other servers to ald 1t In carrylng out the orlginal request. When
a request Is satlsfled, the server sends replies contalning an
indicatton of success or fallure and results (If any).

Requests and replles consist of control and data parts. Besldes
the customer and server processes belng distinct, the handler of
replies may be a different process from the requester, or a different
address port on .the requester than that used to send the request,
Further, the sources and sinks for data may be at different locatlions
or addresses from the above as shown In Filgure 2. The basic NOS
request/reply model supports the followling distributed roles for
processes communicatlng by messages.

Requester — The" requesker Is the customer process desirling some
service, such as the copylng of Information from a source to a
sink. The requester controls the data source/slnk C.

Server - The server Ts the process prov Iding a service in terms of
abstract resources. The server controls the data source/sink E.

Source — There are a varlety of possible sources: a flle, an
Input device, the memory of a process, etc.

Sink — there are a vartlety of possible sinks: a file, an output
device, the memory of a process, etc. '

Reply—handler — The reply-handler Is where control Information
assoclated with the transfer Is to be sent. 'Nonmally this would
be a port of the requester, but In a distributed system this may
not be the case. Replles may be desired at difflerent times: only
when the request Is completed, or also when the legallty of the
request and parameters has been verifled, or also when some
Intermedlate polnt Tn the processing of the p€quest has been



-24__

reached, etc. A parameter of data movement requests, the
reply-optlon, Indlcates when repiles are to be sent and another
the reply—capablllty, Indicates where.

Reply
‘handler

Requester

Data
source or
sink

c Data movement

Figure 2 Request/Reply Data Movement Model

Another feature of ‘the data movement modei desired Is that data
not move untii source and sink are both ready. Besides normal
end—to-end flow control, each.end may be unwilling to allocate needed
resources until the other end has reached some state of "readlness"”.
For example, a sink may be unwiiling to allocate dlsk space until Just
before a transfer can take place. 1f the source Is a tape In a vault
which must first be fetched and then assigned a tape drlve, this could
take some time. A readiness negotlatlon abl!Tty and other higher level
conventlons necessary to support the request/reply, data movement mode!
are presented In Sectlon 4.

The NOS structure above has the following deslirable properties
needed for a distributed system.

It places no a prlor! restrictions on which processes can
communicate with which.others. Knowlng a process’'s address Is
sufficlent to communicate.



-25- -

1t allows all components, fncludlng datd sources and sinks, to be
distributed.

It provides for user extensibillity, location independence, and a
unlform user view, because communlicatlion among all processes use
the same mechanism and form, whether local or remote, user or
system provided.  Loglcal addressing, as the other aspect .of
locatlon Independence, 's discussed later.

[t allows a system to participate In the NOS by minftmally
supporting the baslc NOS message passing service deflned below.

Interprocess Communicatlion and Syncronlzation Services

The structure shown In Figure 1 supports an interprocess
communicattion (IPC) service of loglcal messages (letters). Logical -
messages, or Just messages, can be of arbltrary length. The IPC
provides for transmission of beginning—of-message (BOM) and
end—of-message (EOM) marks (as part of Tts "headers") between source
and destinatlion processes. These marks allow the source and
destinatlon processes to use different buffer sizes and management
strategles, allow messages to be fragmented In transmisslion, provide
. data resynchronizatlon after a fallure and provide well defined points
in the data stream for starting parsing or other operatlons. Messages
are rellably dellvered (not lost, misaddressed, mlissequenced, damaged,
or dupllcated). Messages are exchanged between network addresses,
viewed at this level as ports on processes. (All communicating
entities are loosely thought of as processes.) At the Interface to the
IPC layer there 1s no concept of establishing connectlons or virtual
clrcults, only that of sending and recelving messages, possibly In
pieces, bounded by BOM and EOM marks where approprlate.

The Informatlon at source and destinatlon transmitted across the
Interface to the IPC layer In the Send and Recelve primitives Includes:

Destinatlion and source address,
BOM,EOM marks,

Security level of the message,
Uninterpreted message content.

Wait and Abort are also primitives. Walt Is the baslc process
synchronlzation mechanism In the system. - A process can Wait or not, at
Tts option, for any of Its pending Sends or Recelves to complete.
Servers to support semaphores or other higher level synchronizatlon
mechanisms can be constructed on top of this primitive service [25,36].
Abort allows any pending or active Sends or Recelves to be cancelled or
stopped. ,

The followlng subsectlons dlscuss general NOS model Tssugs above
the IPC layer. :

Resource Namlnq

Two kinds of resource names are needed I'n a NOS, one cgnvenlent
for people and one convenient for machines [38]. The latter should
have the same form across all resources, be machine—orlented, contain



-26-

the ldentify of the server, be usable with different protection
mechanisms, and be storable In directories. The form for names that
meets these requlirements Is often called a capablllty, although as seen
betow, we use the term more genérally.than Is common [8,9,111. The
structure of a capabillity Is detalled in Sectlon 4, and conslsts of a
server network address, general resource propertles, and
server—dependent local resource name and other Information.
Capabllltles are used to name and valldate access to resources within
requests and replles. They are also used for other purposes, for
example, to ldent!fy partlicular transactlions unlquely, to Indlicate
sources or sink, of Informatfon, or to Indlcate places where repllies
are to be sént.

To support human—oriented naming of resources, we have chosen to
use naming graphs (resource path names) Implemented by directorles and
directory servers. Capabll Ttles for any type of resource can be placed
In a directory and glven a mnemonlic name. Slnce capablilities to
directories can themselves be placed In directorles, the directorlies
constltute a naming graph. The useful properties of naming graphs are
discussed by Saltzer [238]. It Is the machline-orlented address -obtalined
from capabllltles that is used In packet headers. Naming graph path
names are used as parameters In requests to servers supporting
directories. "

Resource Sharlng

Resources can be shared by exchanging capabilltlies in messages.
This sharing !s enhanced by belng able to exchange capabilities to
shared directorles.

Resource Protectton, Access Control, Security

Protectlon, access control, and securlty mechanlsms must be bullt
on some set of assumptlons about what can be trusted [15]. There are
three basic questions: To what extent can the communication system be
trusted; to what extent can each operating system trust another; and to
what extent cah customer and server processes trust one or mor e
authentication services?

We assume that the network environment can be partitioned Into
domalns of trust; that systems within a domaln cannot pose as sources
of messages from systems In another domaln (enforced by trusted network
gateway and routing nodes); that within a domalinm there Is a maxImum
possible securlty level; that operating systems within some domalns may
fully trust each other, such as within the Octopus central network,
while not trusting systems In other domalns, that there will exist an
authenticatlon service (central or distributed) that most domalns wlll
trust.” If communicatlions within a domain cannot be protected agalnst
theft, replay, duplication, etc., whole message encryptlon can be used
[307.

Capabilitles are used for protectlion. In the classlical capablllty
system, possesslon of a capabiilty constitutes proof of right of access
[8,3,11]. This Implies that It should not be possibfe to forge, copy,
or steal and then use capabilftles. 1In the classlical system  thl
protection of capablllitles is provided in a central place, normally the
kernel of the OS.



-27-

It Ts not-posstble In the environment described above to provlde
capabilTty protectlon as an NOS kernel service because we may not trust
the securlty of operating systems running in computers In some domalns;
we can make no assumptlons about thelr ablllty to prevent attempts to
forge or insert copled or stolen capabllities. Therefore, we conclude
that capabilities might as well be stored directly In user process
memory. Thls assumptfon also simplifies flow control and other
‘transport protocol design problems, because two types of data, stream
(capablllty and non—capabllity are not requlired. Use of passwords In,
or encryption of, capabllitles can protect agalnst forgery (5, 89]
However, passwords or encryptlon do not protect agalnst capabliltles
appearing In dumps or on termlinals, being seen by unauthorized persons,
and then beling relnserted Into another machine. To meet thls latter
threat, additlional mechanism Is requlired as now described.

Depending on the nature of the server, Tt can choose to support
either or both of two types of capabllities; uncontrolled or
controlled. Possessfon of an uncontrolled capabllity constitutes proof.

of right of access, with the access rights represented by that
capablltty. Uncontrolled capabllltles are typlcally protected agalnst
forgery with passwords or encryption. Controlled capabllities, on the
other hand, witl dnly be accepted If from a given source address or
demaln. Controlied capablilties can be protected by servers In three
equivalent ways: with access Iists, with encryption using the source
address as part of the key, or with "capabllity [1sts” named by the
source address. The last method, In particular, suggests the view that
the controlled capability Is ioglcally a name appearing in a
dlrectory—llke obJect malntalned by the server. The directory Is
identified by the source address, (which is In effect an uncontrolied
-capabllity; guaranteed by the network) the controlled capablllty In
turn names an uncéntrolled capablllty to the desired resource. Trusted
capabillty protection servers can be also created but they requ re all
customer/server communfcatlon to pass through them.

One of ‘the Importank properkles of a capabillty system, that we
desire to maintaln with both controlled and uncontrolled capabilities,
Is that resources can be shared by simply passing the appropriate
capabTilty In a message. Uncontrolled capabliltles can simply be sent
without additlonal mechanism. Valldation or authenticatlon protocols
"~ are required to allow controlled capabilities to be shared by customers
or used by a chain of servers involved In satlsfylng a customer’s
original request [301. The simplest such. protocol requires a
legitimate holder to request the server to add an intended reciplent of
- a capablilty to Its set of,valid users before transmitting the
“capabllifty.

We belleve Tt will not be difflcult to layer a capabllity
mechanism on an exlIsting OS service, such as an extsting flle system.
A mechanlsm using encryptlion to obtaln uncontrolled capabllities from
existing naming and access control conventlons has been suggested by
Needham [239]. The encryption key could use the source address to
obtaln a controlled capabiilty.

Error Recovery

We do not currently see how a single NOS-wide error recovery
mechanlsm Is appropriate for all services, except at the Interprocess



-28~

communicatlon level. Rather, each service may need none at all, a
qulte stmple one [19,22] or one that Is qulite complex [20,391. This
Issye Ts discussed further In reference [47], In the context of a file
service. The conventlons outlined below, we belleve, should allow a
range of error recovery strategles to be supported. In particular,
within certaln assumptlons, conventlions for crash detectlon and
separation of data and control are provlided. '

Resource Locatlon or Placement

: One of the NOS archltecture goals 1s that user or user processes
should not have to be explicitly aware of where a resource Is located.
For example, 'n a distributed fiie system, the location or level of
storage that Informatlon resides on can be made Invisible for many
applicatlions, and flles can migrate as appropriate. Reasonable flle
copying/caching and control strategles can also be envislioned as
outlined In references [Y4,471. (There are many difficult problems
assoclated with updating multiple coples [23.) Giobal resource
placement strategles across different types of servers may enventually
prove needed, but the Issues here are not well understood [17,37,44].
Our Initlal assumptlons are that each host computer system wil| .
multiplex Tts own local hardware resources, and, that In early versions
of the NOS, users can explicitly select where resources reside or
execute. Later, when these issues are better understood, automatic
allocatlon or location on a global basls can be added to the framework
presented here. The Natlonal Software Works represents ploneering work
In this area [28,331. The difficult problems assoclated with automatic
handling of dlstributed directory structures Is discussed In reference
fH41. :

Resourte.AlrocaQIOn Limitation and Accountling:

These Issues are not necessarlly related. Even on single systems,
they are confused by organlzatlon politics. The deslres for autonomy
of remote systems under local control, while yet allowlng participation
within the larger NOS, further complicate these Tssues. The NSW
represents inftlal work on this problem [28]. What 1s required here Is
a clean separatlion between basic mechanism and pollcy declslon and
implementation. The use of account capabifltles, In additlon to
principal capabllltles to represent users, and provision of account and
authenticatlon servers.using the baslc capablllity mechanlsm outlined
above should allow a variety of policles to be supported.




-29- -

2. NOS PROTOCOL-STRUCTURE'OVERVIEN

The protocol structure, to support the NOS model above, Ts buflt
on flve princliples:

Layered design — A layered deslign Is used to achleve
understanding, ease of evolution, and Implementation modularity
[10.,26,35]1. The Interfaces between each layer are kept as simple
as posslible. A

Transactlon orlentatlon — Most operating system services are
transactlion orlented: a customer process Issues a request, and
the server process replles and no additlonal conversation need
ever take place, and the protocol structure should not require the
overhead of.additlonal messages. The.structure permits, however,
the creatfon of extended conversatlons, called sesslons, where
they are useful. The IPC transactlon orlented service that we
wish to support Is different than that of' conventlonal datagrams
(347 tn that we want a rellable service, which is not usually
guaranteed for datagrams, and we want the messages-to. be of.
arbltrary length, also not usually supported for datagrams '

Symmetry — Processes can operate both In customer and server roles
during a conversation. The protoco! structure must allow for thi
shift in roles [49T. : :

Abstractlon of commonallity — Common aspects of servers and
resources, such as thelr. Ioglcal structure,.naming, protection,
and the commgn operatlons appllicable to them should be absiracted
and standardTzed.

Provislion of a complete set of primitive services — [t must
include those services necessary In slngle host systems to form a
complete set of bullding blocks. . The primitive operat ons must
facliltate, but not demand, thelr distribuklon :

For the purposes of th's paper a protocol 1s loosely deflined as
any agreed set of conventlons assoclated with the exchange of
Information by peer entlftles durlng communicatlon. Deflinitlons of data
and message formats are Included, as well as rules for control and data
Interchanges to achleve some deflned service.

The protocol hieranchy, described bottom up, consists of three
- layers:

Interprocess communication layer supplying ‘the IPC service
mentfioned earller.

Service Support Layer — Deflnes standard server and resource
logfcal structures, resource.naming, protectlion, data formats,
request/reply functlons and form, and sesslons.

Service Layer - supports baslc resources and services, i
authenticatlon, loggling, flles; directorles, proecesses, clocks,
accounting, terminals, etc.



~30-

The skructure I's deplcited In Figure 3. FEach of the followling sectlons
dlscusses a layer. ' ’

CUSTOMER LAYER ® Customer processes

——— e —— . _ customer/SL interface

SERVICE LAYER ® Higher level servers (data base, etc.)

® Basic servers {file, directory, process, clock, etc.)

SL/SSL interface

— e — . — ——— — — — o——

o ' ® Resource structure resource and resource name operatnons/replles

v Higher grouping {® Server state model (coservers), and .operations/replies

Request/reply, data movement conventions, and operations/replies

SERVICE SUPPORT

' Sessions
LAYER a

General request/reply form

°
v °
Lower grouping 4 @ Data types and encodings, including capability form
® Data and contrdl message mode forms »
® General logical message _

SSL/IPC interface.

® End-end (procéss—process) protocol (Delta-t) '

IPC LAYER L .Link protocols
® Other

-

Figure 3 Structure of Protocols and Conventlons



-31-

3. INTERPROCESS COMMUNICATION LAYER

Introduction

The bastc Interprocess communlicatlon service was defined In
Sectlon 1. To support thls service In a distrlbuted environment
requires a layered set of protocols. The main protocol relevant here,
which rests on !lnk—-level protocols, Is a transport or end—-end protocol
providing, addressing from a source fLorigin) to' a stnk (destinatlon)
process, dellvery assurance information Is not lost, damaged,
dupllcated mlssequenced, or misdellvered) and flow control to the
sink's rate of acceptance. A (source, sTnk) address palr Is called an
assoclatlon. This layer supports transport of uninterpreted arbltrary
fength logical messages delimited by BOM and EOM marks. The BOM, EOM
marks are carrled out—-of-band In packet headers. The two major areas
of addressing and assurance are now dlscussed briefly, as these are
where our approach may differ somewhat from that used In other .
transport protocols.

Addressing

Each source and sink Is Identtfled by a unlque hlerarchical
address that routing modules parse from left to right. The further
away the sink Is, In terms of the chosen hlerarchy, the sconer the
parse Is stopped. That Is, the address of a process reflects the
hlerarchical geometry of the network (network, cluster, host, process
etc.), which means that every node need not store Information about
every potential sink Individully. FEach branch down the tree could
contaln a different number of levels and a different fan-out at each
level. The network address space Is large enough that every process
can have several addresses (allowing 1t to have ports), and none of the
addresses has to be reused, even after the process Is destroyed
(assuming reasonable I1fetime for the network). - This feature Is
important as one element In achleving the transactlon orlentation of
the architecture, because a process does not first have to go to a well
known logger or connectlon establlshment port, present a higher level
name, and then be allocated a logical channel, socket or other reusable
network address before entering a data transfer phase.

Within this framework, we also provide for logical, generlc, or
functlonal addressing [27,31,44]. A portlon of the network—address
space, characterized by a standard value for the leftmost blts, Is set
aslde for this purpose. The routing tables In each node of the network
then point to the nearest "representative" of a generic 'service.

Communicatlon and, If necessary, synchronization among the _
representatives of a generlc service uses non-— generlc (phystcall
-addresses and I's a higher—level problem.

_ Loglcal addressling can also be handled at hlgher levels, with
translation from loglical to physical address takling place above the
end-end protocol. level at the source. 1In some cases, the network
address of a service appearing In a capablilty may actually be to a
higher level logical-address server whose only Job Is to forward
messages to the actual!l server, which It locates by means of records
("yellow pages") that It malntalns. Malntalnling the distributed or



-32-

centrallzed loglcal to physical address maps when processes move wiil
require forwardling protocols, not currently defined. We expect loglcal
addressing to be Important In certaln NOS servicees [471. [t has '
already proved useful within the NSW [28,311.

Assurance and Flow Control

To achieve assurance and flow control, while malntalining a
transactlon or single message orlentation, we have had to design our
own process—to—process (end—to—end) protocol. Publlished work on
message systems have generally not dealt with rellabiltty [1,12,31,45].
Well—-known ex!sting and proposed protocols such as INAG, and TCP
(4,32,33], and X.25 all requlre overhead messages to be sent between
source and sink In order to reltably set up and tear down a connectlon
or virtual clrcult, even If only one request and one reply are to be
exchanged [18,42]. In some network architectures this overhead has to
be borne at each of several levels. Thls overhead, we belleve, Is
unacceptable, not primartly because of ‘the raw bandw!dth consumed, but
because of the cost and delay Involved In generating messages, forming
them Into packets, placing them onto the transmission media, and
buffering 'and handling them along the way. Our experlence and that of
others [50] show that general OS overhead for packet handling may
require several times the time required for actual protocol processing.

[t has been demonstrated by Belsnes [3] that for rellable single
message transmission, the rellable connectlon set up overhead is
unavoldable unless the state Informatton kept by the two ends of a
conversation Is under timer control. Accordingly our protocol depends
on the use of timers and is . called Delta~t. Delta-t Is based on the -
fact that the total time of exIstence of a packet, Including the
Interval between Tts first and last transmission, Tts maximum |1fetime
within the routing network, and the delay before It Is acknowledged by
the sink, can be bounded. Thls bound Is expressed In terms of an
Interval &t, hence the name of the protocol.

Briefly, Delta—t works as follows. The state Informatlon used for
generating sequence numbers at thé source, packet acceptance at the
sink, achnowledgement, and flow control (normal window flow control)
are kept In connectlon records at each end, as for any non-timer
protocol. These records have a |Ifetime under control of a Send—tImer
at the source, and a Recelve—timer at the sink. MWhen elther of these
timers go to zero, the corresponding record can be destroyed. These
timers do not have to be synchronlzed, but are expected to run at the
.same rate. When Inltlalized or refreshed, these timers are set to
multiples of At. The rules for timer Intervals, control of the timers,
setting of header control flags, sequence number selectlon, and packet
acceptance are glven In references [16,48]1. The protoco! header for
the Delta—t protocol Is shown In Flgure Y.

“Simplified, the lifetime of a packet Is strictly controlled by
including a field In the packet header that Is Inltlalized by the
source and counted down by Intermediate nodes. Each node, Including
the end protocol module, must count at least once, more 1f It holds the
packet longer than one time unit (tick). Retransmissions start partly

‘counted down. The packet 1s discarded and nacked If the count reaches
zero before dellvery. Our Ilnk protocols, on IInks that have internal
buffering that could hold a packet for an Indefinite perlod of time,



~33-

have been augmented by a feature that guarantees knowledge of the

transit time. An entlre network could be such a loglcal |ink. The
ldea s that each [Ink frame Is time—stamped by the sender so that the
transtt time can be computed by the recelver. The two logical 1ink

clocks, send and recelve, are simply synchronlized whenever necessary by
the recefver sending 1ts clock value to the sender. This mechanlism
assures that the transit times are always overestimated, never
underestimated; the detalls are presented In references [40,487.

Routlng nodes also destroy all packets on recovery from a crash.

_ 0] 7 15 » 23 v 31
Total header |Security| At!" . Lifetime'2 Routing®
length level JExponent flags
Reserved for future Total packet length

Destination address

. Destination address
Routing header 4 :

Source address

Source address

Header checksum Data Checksum

L Data sequence number {(DSN)

Acknowledge sequence number {ASN)
Assurance flow :

control header $ Assurance'®
flow control Window
flags
{ Options (variable)

. | ? : Data : . T

Lengths and window are in octets. Sequence numbers are for octets.

() At-exponent allows the receiver to calculate senders At. At = K X 2 Atexponent
2 Lifetime equals number of “ticks’ remaining for oldest data octet in this packet.

At
Tick = 566 secs

K Routing flags F/R fragmentation allowed, BOM, EOM, NAK

4) Assurance flow control flags: DRF (all previous DSN's acted), ARF (ASN field
valid), WOF (window overflow)

Figure 4 Delta—-t Protocol Header



- -34-

4. SERVICE SUPPORT [ AYER

Introductlon

The service support layer (SSL) defines a hierarchy of conventlons
consisting of two malin groupings shown In Flgure 3. The first of these
(lower groupling) contalns conventlons to establish data and control
message separatlion, provide for data and control parameter-translatlon,
establish the general syntax of request/reply messages, and provide
crash detectlon. The second of these (higher grouplng) supports the
request/reply, data movement model of Figure 2, and abstracts common
server and resource structures and requests/reply semantics,

The purposes of the service support layer are the followling:

Each new service should not have to be designed from scratch,
dealtng with the above ftssues anew. This facilitates the
Introductlion of a new service. A run—tlime environment can. be
created embodying the common service support features In terms of
[Tbrary routlnes, uttllty processes, or other bullding block
mechanisms [497. )

A uniform user view Is created that eases the learning tIime and
other difflcultlies.of a customer trying to use a new service. As
seen by processes, an operating system or protocol Interface Is a
language and should meet good Ianguage design cr!terla such as
uniformity and compactness.

We now present the SSL Tssues and conventions In the order shown
in Flgure 3. ' :

Separation of Data and Control

~ The lowest conventlon of the SSL fdentifles each message as belng.
In one of at least two modes: <control or data. Control messages, In
general, are requests or repiles In a standard encoding that contaln
the semantics of the customer—-server dlalog. Data messages are, In
effect, parameters that are too large to be convenlentiy or efficlently
enclosed within-a control message; an obvious example 1s the contents
of 'a file belng transmitted. We want to be able to support data or
control messages on the same or different assoclations. For example,
in Figure 2, assocltatlon (C,E) may be as shown, or In fact be the same
as assoclatlons (B,D) or (A, D)

Knowlng the mode enables a process to qulickly and unambliguously
separate what It must Interpret from what 1t must stmply store, print
or pass on. It greatly reduces the danger that after a loss of state
information (e.g., at deadstart) It will treat raw data as a command.
[t permlits control informatton, such as a statement of an error
condltlon, multistream synchronlzatlon mark, or checkpolnt number to
occur In contexts where data Is expected, without causing confuston or
data scanning. Flinally, 1t cleanly separates control translatlon
Issues from data transiation Issues. Control needs to adhere to a
standard format so that all processes may understand one another, while
it Is often desirable that data be shipped In Tts raw form or be



-35-

translated In an appllication—-dependent way, the latter belng a

higher—level Issue.

The mode Indlcatfon could be elther an “out—of-band" signal in the
IPC protocol. heading (as, for example, the quallfler blt of X.20) or 1t
could be the first few blts of the message. We have chosen to make Tt
the flrst byte (the mode byte) of the message so that the SSL can we
used with transport protocols other than Delta—t. The SSL hlerarchlical
structuring of loglcal messages s shown In Flgure 3.

BOM

EOM
Uninterpreted bits or octets -
IPC level logical message
a}
Mode o
octet Data or control message
NOS message form
b}
Data
mode Data
octet
Data message
c)
Control -~ : -
mode Token1 Token, - Token,
octet
"
Control messages
d)
C;r;:;ol Function Parameter Parameter | . | - Parameter
€ token token token token
octet
General request/reply form
e)
Header Body Body = ~p|t bstrmg, text §tring,
) integer, capability, etc.
Token form -
f)
- Length = length of token
Length Usage Type . Usage = purpose of taken:
4

g)

Token header form

Type = date type of body

Figure 5 I'_ogl'cal Message Structure



-36-

Translatlon and Control Mode Message Structure

In order for transiation to be performed, expliclt or ITmpliclt
data type Information-must exIst. For the parameters In requests and
replys, expltclt typing of each parameter Is provided as described
below. It would be Inefflcient for each data Ttem 'n a data message to
be typed. For data messages, the data type Tnformation can be known In
- three ways: Impllcitly by the nature of the service or address, '
conveyed In control messages, or expllicltly encoded In the message mode
code.

Let us now consider the structure of control messges. Deslirable
goals are to allow parameters In functions to be omlitted and defaulted
(achleving data compression), appear In any order (allowlng services to
evolve by adding new parameters to functlons), to be varlable length,
and to be automatically transiated to and from a servers Internal
representation from and to standard network encodings. To achleve
these goals control messages are consldered a string of tokens. A
token consists of two maln parts: a header followed by a body. The
header describes the body, while the body represents the actual value
conveyed by the token. The header In turn consists of three parts:

The length defines the number of bytes included In the entire
token. ' ’

The usage defines the purpose of the token, such as functlon code,
source (resource) Identifier, source label (flrst-blit-address, for
examplel), count, etc.

The .type Indlcates the data type of the body, such as integer, bit
string, character string, capablility, etc. ‘

Type has been separated from usage because there are examples 05
usages that may be of varlous types; It permits a simpler common
translator to be designed for each programming language or system that
translates tokens to and from thelr iInternal representatlions to and
from the standard. The translator’s declsions are based only on the
type. The token encoding that we are developling s expected to make
the most commoniy—occurring, token headers only one byte long, with an
escape to two bytes for most of the remalning cases.

The tokens of a message are grouped 'nto statements. Each
statement begins with a token of usage "functlon code" and ends just
before the next token of that usage or at the end of message. (The
first token of a message should be of usage “functlon code."”) The
tokens of a statement followlng the functlon code are parameter tokens.
The function code token deflines an operatlon to be performed or
“indicates a reply; the parameter tokens supply arguments or results.
Allowing (not demanding) multliple statements per message helps reduce
message traffic.. '

Fach functlon, In general, expects parameters of several different
kinds of usage. - If a needed usage Is omltted, then a default value Is
assumed; for example, the default for usage "count" Is one. The .
concept of usage thus permits a form of Information compression. More
importantly, It permits new options to be added to a function, :
expressed by new parameters, wlthout Impacting exIsting customers.



-37-

When a parameter of a functlion actully occurs In a preceding or

followlng data message (possibly on.a separate assoclatlon), a

- parameter Is placed In the control message, In effect an "Indlrecting
.polnter," indlcating this fact.

Standard Data Types, Capablllty Form

Among the standard data types deflined by the SSL Is a standard
capablllty as shown In Figure 6. Human-orlented names are handled at a
higher fevel by naming graphs as mentloned earller. A’'standard
capabllTty Is a token body that Ident!fles a resource and confers right

of access to a partlcular resource. It conslists of the followlng
flelds.

The address Is the network address (logical or physical) of the
server that manages the resource. This would be D of Figure 2.
Often the customer uses the address of one .of the capabilitles In
a request messdge to determine where to send the request.

The propertles are a set of standard bits and fields that Indicate
to the customer the nature of the capabillty, such as
controlled/uncontrolled, resource type, access mode, resource
[tfetime, securlty level, etc.

The unlque Identifler is used by the server to Identify and locate
the spec!fic resource named, and possibly for other
server—dependent purposes.

The . password, 1f present, guards the unique Tdentifier part of the
capabillty agalnst forgery. The Idea Is that, If any process or
user trled t% forge a capabllity, It would not be accepted by the
server unless the password were correct. Encryptlion can also be
used for thls purpose [5,29].

) ! . . . . Network address
Password E v Unique identifier Properties of server -
— v I\ - T v N
* Variable up to ‘ ' . 32 bits 64 bits

152 bits

Flgure B Standard Capabillty Form

‘Other standard data types to be supported Inc!ude at Ieast
integer, blt string, and character string.



-38-

Sesslons

‘ ATl servers maintaln state Information for an assoclatlon for some
tength of time, depending on the nature of the server: during a single
operation, multiple operatlons (statements) in a single logical
message, or across multiple messages. In additlion some servers may
want to support parallellsm such as parallel operatlions, parallel
streams, etc. on a single assoclatlon. MWhile actlive state Information
Is being maintalned for an assoclation a session Is In exlistence.

The IPC layer end-end protocol with Tts BOM, EOM marks allows
customer or server processes to detect crashes with loss of memory
during a loglcal message, but cannot ald detection of crashes between
messages, although Tts rules protect agalnst lost, damaged, duplicate,
missequenced packets across crashes. Detectlon Is achleved because
after deadstart the server expects a BOM, and a customer generates a
BOM when the server Is expecting a EOM first. 1If state informatlion Is
being malntained across messages, tied to an assoclatlon, there Is a
need to provide a mechan sm for customer or server crash detectlon
between messages. This Is-the purpose of a sesslon. Sesslons are
delimlited explicltly or Implicltly with beginning—of-session (BOS) and
end-of-sesston (EOS) functlion tokens, depending.on whether or not a
service supports multiple message sessions. This allows crash
detectlon, as now described. : '

When a server crashes, Tt deadstarts with Inactive sessions
logically on atl assoclations, which expect a BOS as the first token
recelved. 1f the customer thought a sesslion was in progress It will
not Include -a BOS in the message sent the server, and the server will
generate an-error reply, forcing the customer to enter an error
recovery procedure. BlImilarly when a customer process deadstarts it
sends a BOS as part of Its recovery procedure and will be fnformed by
the server 1f a session was In progress. - Then the cutomer can take
whatever recovery action is appropriate. ' '

Request/Reply, Data Movement Mode|l SUDDOP%(

~To support the request/reply, data movement model of Figure 2,
conventions are requlired so that all communicating entitles can know
each others address, authenticate the right of a partner to send them a.
message, and detect a partner crash. These needs are met as follows:

The requester obtalns the server address D from a capabl!ity or
some a prlor!l way. The requester can detect a server crash by the
sesslon mechanlism above.

The server obtalns the address A of the reply-handler from a
capabliity passed as a parameter In the request. This address
defaults to that of the requester B, always provided by the IPC
tayer Interface. The server ‘may require. a capablllty passed as a-
parameter In the request to authenticate the requester’'s right to
make the request. Address B can be used by the server to protect
controllied capabllttles as mentlioned In Sectlon 1.

THe reply—handler and requester are worklng together and the
reply-handler can be sent the address D of the server If needed.
The reply-handler receives the reply-handlier capablllty In replies



-39~

from the server, authentlcating the server as the process with the
right to send 1t messages. Fallure to recelve a reply could
result from a server or reply—handler crash. A dupllcate request
could then be sent with an attendent risk of a dupllicate operation
not detectable by lower level IPC layer mechanism. Therefore,
duplicate requests are not recommended unless requests are
formulated such that duplicates can not cause harm. Instead, when
a reply falis to arrive within some timeout perlod or the
reply-handler detects !t has crashed, the state of the approprilate
coserver—state-record (see next subsectlon) can be Interrogated
for status to determine whether or not to relssue a request.

For servers supporting or requiring data movement In data mode
messages (normally only those Involved In bulk data movement such
as the flle server), a mechanlism Is required to exchange data
source/sink addresses C and E. Because these addresses cannot, In
general, be known ahead of time, a simple “open” protocol Is
required to be used before data movement can begin. The requester
sends the server an appropriate resource capabillity (such as to a
file), address C, and other parameters to Intlallze state.

Address C could also be provided 'n data movement primitives also
so that several cooperating customer processes could serve as
sources or sinks at different times. The server returns a
capabtlity to the "open-resource" with £ In Its address fleld.
Addresses E and C wil! only accept messages from each other. Note -
that therefore operatlons involving buik data movement are not of
the single request/reply form. Thls seems acceptable because the
"open" exchange Is small overhead relative to the expected large
data movement. Informatlon [n control messages can be sent on the
assoclation (C,E) for checkpolnt restart or higher—level checksums
1f deslired for grror detectlon and recovery mechanisms. A crash
at elther end would be detected by the IPC layer falllng to get a
message through or fallure to recefve the expected amount (count)
of data.

Data 1s actually moved wlth standard "read" or "write" operatlons
defined for sequentfal and random open—resources. These operatlons are
sent to address D. (We are conslidering whether or not to extend the
mode! to allow a different control address for the read and write
operations so that the module serving actual data movement could be
distributed without [ndirectlon through address D.) Besldes the normal
parameters for reads and wrlites (open—-resource capability, first
element address, count etc.), there Is an addlitlonal parameter for
"readiness" negotiatlon. Normally the customer process Is ready and so
no negotlation takes place. [f the customer des'res to beglin a
readiness negotlatfon Tt sends a read or write with the readiness
parameter Indicating Tts current state of readiness. The server sends
a reply Tndlcating Its readiness when It reaches a state "more" ready
than the requester. This cycle contlnues unt!] the customer sends a
request Indlicating fully ready. :

There is also a standard "copy" operation explilclitly speclfyling
two resources as source and sink to be used for "third party” data
movement requests. This-allows transfers directly from one flle to
another or speclal servers to support copyling from one arbltrary. _
resource to another wlthout having to Involve the orlglinal requester.
The "copy" server would Issue "opens” and successlve reads or writes to



-40-

the source and sink, or If the source or sink supported "copy", then a
“copy” could be forwarded to one of them, which would In turn "open"
the other, and then perform the reads or wrltes.

Coservers

As part of the goal of providing users (customer processes) as
uniform a view of servers as possible, the coserver concept has been
developed. The !dea of a coserver Is qulte paralle!l with the
conventional Tdea of a process and 's motlvated by the desire to:

Support server state Informatlon across many types of servers .in a
conslistent manner.

Support state informatlon across messages for data compresslon.

Allow state Informatlon after one operatlion to be defaulted as
Input parameters for succeeding operatlions.

Share state Informatlon across two or more assoclations.

Be able to operate on state records even when an assoclatlion Is
blocked by lower level flow control.

Support parallel services on a single assoclatlion

Be able to Interrogate the state of an operatloh while It.ls In
progress from the same or a different assoclation.

Be able to di stlngu sh and speclify when and where replles for an
operatlon arexto be sent and from which parallel entlty the reply
Is coming from.

Be able to abort, suspend, restart an operatlion

Provide for the above services In general, but only require a
minimal Tmplementation when, as Is expected to be common, a server
only supports sequentlial operatlions, and does not require state to
be saved across messages.

The coserver. mechanism or protocol brlefly 1s the following. For

a glven assoclatlion, a server may In some cases be viewed by the
customer process as loglcally providing Independent parallel servers.
It seems useful to make this notlon expliclt and to talk about server
processes that multiplex themselves to run abstract servers called
coservers (which are |lke coroutlines), each represented by a
coserver—state—record (CSR). The CSR conslsts of two parts, a set of
parameter—reqlisters (PR) readable and writable, and a set of
executlon—state-reglsters (ESR), read only. The way a coserver Is
“viewed as worklng is as follows:

It recelves Its operatlon stream from logical messages. The
-operations allowed are any accepted by a server. and permitted by
capablllty access rights.

The parameters In the message are loaded Into the PRs named by
usage. MWhen end—of-message (EOM) or the next operatlon token Is




-41-

reached, executlon begins, the parameters In the PRs needed by the
operatlon are used. Parameters. are thus defaulted from values In
these reglsters If they are not Included In the message.

As the operation proceeds ITts state evolves and Is recorded In the
ESR as advertlised by the server.

Replles are sent when specified In the reply-optlon parameter.

Replles are sent‘to the reply—handlier represented In the
capabillty In the reply—handler usage parameter.

A glven coserver Is sequentlal, that Is, It can perform only one
operation at a tlime.

At any glven time one and onfy one CSR Is selected as attached to
an assoclatton. The CSR Is In one of two states active or
Inactive. A sesslion Is In progress If the' selected CSR is actlve

At time O on :an assoclatlon a default CSR, containing Inltlal
default values for the PRs, Is logically-tTed to It and Is marked
Inactlive. -The only acceptable operation on an ITnactive CSR Is the
BOS token. Any other token wil] cause an error return. The BOS
operation makes the CSR active and now any advertlised server
operation Is acceptable.  There Is a corresponding EOS token which
detaches the current CSR from the assoclation (but does not
destroy Tt——therefore It can continue executing Its current
operatfon) and attaches an Tnactlve default CSR to the
assoclatlon.

A BOS will not be accepted on an active CSR and an error message
will be returned.

All coservers are named by capabllitles elther expllicitly returned
on CSR creatlon or left In the CSR for return 1f Interrogated.

If two or more assoclations are sharing a CSR (which Is
permitted), then they are assumed to be synchronizing themselves
at a higher Ievel.

There are a set of conventlons for deallng with replies from
detached coservers. Requirements are to provide options that
would elther 1) send such replles Into a "block hole" not
requiring the coserver to block, 2) requlire the coserver to block,
1f a reply s generated, unt!l 1t Is reattached to an assoclatlon,
3) allow all replys but the last to enter the blatk hole, but
allow the last reply to be obtalned by an Interrogatlon.

Coservers can also be expliclitly created, destroyed, Interrogated,
reattached, suspended restarted, aborted by a standard set of
operatlons. '

Conventlons are required to allow a command affecting the CSR
currently attached to an assoclatlon not to be blocked by flow
control on that assoclatlon or the fact that the attached coserver
Is executing a normal resource operatlon. A number of mechan I'sms
to meet this need are under consliderattion. ’



-42-

Uniform Resource View

We want to provide a uniform and cbmpact language for manfpulating
resources. Thls requlires a unliform view of resource structure. The
following uniform resource model ts under conslideratlion

A typlcal resource can be viewed as a data structure (possibly
distrlbuted) conslsting of two major parts:

The heading or resource state record contains named fixed flelds
of information of varying length and type, such as creation time,
last access tlime, account capablllty, security level, access
rights, tdentity veriflicatlon, mnemonics or other commentary, etc.

The body Is the resource proper. Its structure varies dependling
on the nature of a resource.

For example, a flle could be an array of blts or records labelled
by consecutive natural integers, while a directory Is a Ilst of
capabllilities labelled by character strings. For some resources, such
as most printers, only one Ttem of the body s accesslible at a tlme
and a label 1s not needed. We belleve all possibllltles can be treated
as spectal cases of one or a few general forms. A resource usually Ts
named by a token of type capablilty, while the items In Tts body are
labelled by tokens of varlous types.

Only a few functlons are requ'red to cover the vast bulk of
operatlions performed on resources. All uperatlons Involving querylng
or modifying coserver state records and rescurce headlngs, or readlng
or wrltling resource bodies are actually Speclal cases of generic read
and write functlons, Functlons are needed to "create" and "destroy"
entire resources and to "enter” and "delete” Ttems of a resource (as,
for example, In a directory where the ltems are nelther fixed in number
nor strictly consecutlivel. Another group of functions Is needed for
valldating or Invalidating controlled capablllities and creating a new
capabliity with different access privileges. Some Important functlons
apply to only certain kinds of resources; actlve resources, such as
coservers or processes, need to be "started," and "stopped,” while
synchronizers, such as semaphorés, have thelr own specliallzed
operatlons. Standard operatlons for coserver state record handling
were mentloned earller.

~ Speclifylng an essentlally complete smal!l set of functlons seems a
language goal well worth, pursulng. provided that we exclude servers
that perform primarily a processing functlion, such as edftors,
compllers, and applications In general, although we wolld expect server
designers to use the standard operatlions where appropriate.

One more standard function needs mention, Tt Is the one that
usually appears as the only functlon In a reply. The parameters
following 1t define the resulits or the status to be conveyed Including,
if approprlate, residual count and address. The most Important of
these parameters Is one that Indlcates elther no error or the nature of
an error, such as invalld capabliity, access denled, Improper label,
Insufficlent funds, inadequate securlty level, excesslve count, server
fault, resource deskroyed, etc.



-43-=

Other aspects of a uniform resource model that need speciflicatlon
Include the followlng: (1) standard access rlghts, as Indicated ‘In the
propertles fleld of a capabllity or the heading of a resource, such as
read, write, execute; (2) standard token usages that categorize the
parameters of functlons; and (3) standard token types.



-44-

5. SERVICE LEVEL o .

The service level (SL) deflnes standard kinds of servers, the
structure of the resources they manage, and those formats and protocols
that do not seem widely appllicable to many servers. Examples of Issues
we belleve to be server dependent are error handling and recovery;
optimal resource locatlon or placement strategles and protocols, such
as automatlic flle cachlng: and Internal server structure, centrallzed
or distributed [17,44,47]. : : ’

The maln goal of the service level 1s to try to assure a complete
set of baslc standard servers Is deflned, and that, for example, all
servers of a glven resource type are compatlble w1th one another and
present the same external appearance no matter where In the network
they are located or from where they are accessed. A discussion of
lssues and our current plans assoclated with a standard file server:ls
contalned In reference [471.

We are InTttally planning the following standard servers: flle,
directory, process, terminal, authentlication, clock, account,
synchronizatton. Most of the operatlons for these servers will be the
standard ones mentloned In the last sect!



-45-

6. CONCLUSION

We have outlined our goals for a NOS, a NOS model, and a protocol
structure to support thls modeil. Our curent status is that the '
transport level of the protocol structure 1s designed [481; the message
format sublayers of the service support layer are complete except for
minor detalls; the coserver and data movement models are still belng
reflned; and we are beginning speciflicatlion of the standard servers.

We belleve strongly that an Integrated approach to NOS and
protocol design Is required If true resource sharling, multiprocessing,
and distrtbuted computing are to evolve. We have further argued that
protocol structures must be bullt on a message or transaction base. We
have shown the maln elements required to provide the transactlion base,
adequate address space so that addresses do not have to be reused and
can be permanently assligned, timer based [PC layer assurance mechanlsm,
expllclt data typing, capablllity based naming, and a request/reply
dlalog structure. On top of this, single or multiple message sesslions
can be bullt.

The elements of a uniform customer/server model were presented;
which Tncluded a distributed request/réply data movement model, server
state model (coservers), and resource model. Using such an approach
should; 1) provide a firm basis for distributed application or service
design, and 2) allow a simpler, more consistent, easler to learn
operating system language, which we belleve wiil be important for a
extensible NOS with many services. The Ideas presented here also seem
useful for development of portable as well as distributed operating
systems. Increasedzintegratlion of protocol, 0OS, and language design
concepts should be encouraged. :

We do not belleve that a NOS must spring fully grown Into
exlstence. Even 1f ones Initlal need is for a single service such as
virtual terminal service or file transfer, If protocols for providing
these services are designed on the type of structure outlined In this
paper, then a foundation will exIst for smooth evolutlon toward a
fuller NOS as add!tlonal services are requlired. '

There 1s a large amount of work yet to be done to fully specify
the protocols outlined above, create Implementations both as a base 0S
and layered on existing OS's, and wrlite new dlistributed appllications
and servers.. Only when these tasks are completed will we belfeve we
realty have a handie on all the NOS Issues.



- -46-

Acknowledgements

We wish to acknowledge the many valuable past and continuing
discusslons with Garret Boer, Sam Coleman, Jed Donneltey, Bob Judd, DBan
Nessett, Lansing Sloan, Bing Young, and Mary Zose!. MWe particularly
wish to acknowledge Jed Donnelley’s central role In the evolutfon of
the NOS model. The work reported here was supported by the U.S.
Department of Energy under the contract number W-7405-ENG-38



—

10.

1.

1.

13.

4.

-47-

References

E. Akkoyunlu, A. Bernsteln, and R. Schantz, "Interprocess

Communicatton Facllltles for Network Operating Systems,“ Compuier
7, 8, 1974 :

P.A. Bernstein, N. GCoodman, "Approaches to Concurrency Control In
Distributed Data Base Systems," AFIPS Conference Proceedings,
Vol. 48, 1979 NCC, pp.813-820. '

D. Belsnes, "Single-Message Communication," IEEE Transactlons on
Communications COM-24, No. 2 (1976)

V. Cerf, A. McKenzle, R. Scantleburg,iH. Zlmmerman, “Proposal for
an Internetwork End-to-End Transport Protocol," INWNG S6.1, also In
Proceedings Computer Network Protocols, Llege, February 1978.

P. L. Chaum, R. S. Fabry, "lImplementing
Capablllty-Based—Protection Using Encryptlon,” University of
Callfornla, Berkeley, Electronics Research Laboratory, Memorandum
UCB/ERL M/8/46 July 17, 1978.

S. D. Crocker et al., "Functlon Orlented Protocols for the ARPA
Computer Network, AFIPS-SJCC, Vo!. 40, May 1972, pp. 271-279:

J. Davidson, N. Mimno, R. Thomas, D. Walden, W. Hathaway, and

J. Postel, "The Arpanet Telnet Protocol: Its Purpose, Principles,
Implementation and Impact on Host Operating System Design,”
Proceedlings~Fifth Data Communications Symposium, Snowbird, Utah,
September 1977, pop. 4-10-3-18.

P. J. Dehnlng, "Fault Tolerant Operating Systems," ACM Computing
Surveys, Vol. 8, No. 4, Dec. 1976, pp. 3B1-36.

J. B. Dennis, E. C. Van Horn, "Programming Semantlcs for
Multl programmed Computat]ons,‘ CACM Vol. 9, No. 3, March 1966,
pp. 143-155. ,

R. desdardins, G. Nhlte,'”ANSI Reference Model for Distributed
Systems,"” IEEE CompCon 78, Fall September 18978, pp. 144-149.

J. E. Donnelley, "A Distributed Capabllity Computlng System,"
Proceedlngs Third International Conference on Computer
Communicatton, August 197/6.

J. A. Feldman, J. R. Low, P. D. Rovner, "Programming Distributed
Systems, " Proceedlngs ACM 1978 Annual Conference, December 1978,
pp. 310-316.

J. G. Fletcher, "The Octopus Computer Network,” Datamatlon,
Vol. 19, No. 4, Apri! 1973, pp. D8-63.

J. G. Fletcher, et al., “Compuker Storage Structure and Utl!Tzatlon
at a Large Sclentiflic Laboratory,” Proceedings of the IEEE,
Vol. 63, No. 8, August 1975, pp. 1104-1113.



- 15.

16.

17.

18.

19. -

c0.

2l.

2.

23.

4.

5.

c7.

28.

-48-

J. G. Fletcher, "Software Protectlén of Information Networks,"
Infotec State-of-the-Art Report, Future Networks, Vol. 2, 1978,
pp. 149-164.

J. G. Fletcher, R. W. Watson, "Mechanisms for a Rellable
Timer—-Based Protocol ;" Computer Networks, Vol. 2, No. 4-3,
September/October, 1978, pp. 271-280. Also In Proceedings Computer
Network Protocols Symposium, Llege, Belglum, February 1978,

p. Co-1/Co-17.

H. C. Forsdlck, R. E. Schantz, R. H. Thomas, “Operatng Systems for
Computer Networks," Computer, Vol. 11, No. 1, January 1978,
pp. 48-59.

L. Garlick, R. Rom, and J. Postel, "Rellable Host to Host
Protocols: Problems and Technfques " Proceedlngs Sth Data
Communticatlons Symposium, IEEE/ACM, September 1977.

M. Glen, "A Flle Transfer Protocol,” Proceedlings Compuker Network
Protocols Sympostum, Llege, Belglum, February 1978,
pp. (D5-1)1-(D5-7).

J. V. Gray, "Notes on Data Base Operating Systems,” In Operating
Systems an Advanced Course, Springer Verlag, Berlin, N.Y., 1978,
pp. 393-381.

J. F. Havérky, R. O. Rettberg, "Inter—process Communicatlion for a
Server 1n UNIX, "Proceedings CompCon 78, September 1973,
pp. 312-315. C '

High Level Prototol Group, "A Network Independent File Transfer
Protocol," INWGBEB, December 1977. Avallable through Computer Alded
Destgn Centre, Cambridge, England.

A. K. Jones, "The Object Model: A Conceptual Tool for Structurling
Software," in Operating Systems and Advanced Course, '
Springer—Verlag, Beriin/N.Y., 1978, pp. 7-16.

S. R. Kimbleton, R. L. Mandel, "A Perspective on Nétwork'Operatlng
Systems," AFIPS-NCC, Vol. 45, 1976, pp. 551-553. -

]

K. Legally, “Synchronlzatlon.ln a.Layered System,

In Operating
Systems an Advanced Course, Springer—Verlag, :
Berlin/Heldelberg/N.Y. 1978, pp. 252-278.

J. M. McQutltan, V. G. Cerf, Tutorlal: A Practlca[ View of

Computer Communicatlons Protocols, IEEE Catalog No. EHO 137-0,
1978. ,

J. M. ‘McQuIllan "Enhanced Message Addressing Capabllitles for
Computer Networhks," Proceedings IEEE, Vol. 86, No. 11, November
1978, pp. 1517-1526.

R. E. Mlllskeln,:“The Nattonal Software Works: A Distrlbuted
Processing System," Proceeding ACM Annual Conference, 1977,
pp. H4+-52. :



30.

3.

32.

33..

39.

40.

41.
“He.

43,

-49-

R. M. Needham, "Adding Capabllitles Access to Conventlonal File
Services," ACM Operating Systems Review, Vol. 13, No. 1, January
1979, pp. 3-3.

R. M. Needham, M. D. Schroeder, "Using Encryption for
Authentlcation In Large Networking Computers,” CACM, Vol. 21,
No. 12, December 1978, pp. 993-998.

NSW Protocol Committee, "MSG: The Interprocess Communicatlon
Factli1ty for the Natlonal Software Works," BBN Report No. 3483;
also avallable as Massachusetts Computer Assoclates Document
No. CADD-7612-2411, December 1976. -

J. B. Postel, "Internetwork Protocol Specificatlon,” Version 4,
February 1979, IEN 80, Avallable through Defense Advanced Research-
Projects Agency, IPTO, Arlington, VA.

J. B. Postel, “Speclffcatlon of Internetwork Transmission Central .
Protocol," TCP Version 4, February 1979, IEN 81, Avaliable through
Defense Advanced Research ProJects Agency, IPTO, Arlington, VA.

L. Pouztin, "Virtual Circults vs. Datagrams - Téchnlcal and
Polttical Problems,” AFIPS NCC, June 1976, p. 4B3.

L. Pouzin and H. Zimmermann, "A Tutorlal on Protocols," Proceedings
IEEE, Vol. 66, No. 11, November 1978, pp. 1346-1370.

D. P. Reed, R. K. Kanodla, "Snychronlzatlon with Eventcoun£§ ‘and
Sequencers,” CACM Vol. 22, No. 2, Feb. 1979, pp. 115-123.

J. H. Saltzer,."Research Problems of Decentralized Systems wlith
Largely Autonomous Nodes," ACM Operating Systems Revliew, Vol. 12,
No. 1, January 1978, pp. 43-52. Also In QOperatling Systems an
Advanced Course, Springer—Verlag, Berlin N.Y., 1978, pp. 583-591.

J. H. Saltzer, "Naming and Binding of Ob]ecté,“ In Operatling
Systems an Advanced Course, Springer—Verlag, Beri!n N. Y. 1978,
pp.99-208.

R. M. Shapliro, R. E. Mitlsteln, "NSW.Reltabl[lty Plan,”
Mass. Computer. Assoc. CA-7701-1411, June 1977.

L. J. Sloan, "Limiting the Lifetime of Packets In Computer
Network,"” Prepared for ‘4th Conference on Local Computer Networks,
Minneapolls, October 1979. LLL Report UCRL 82325.

R. F. Sproutl, D. Cohen, "High Level Protocols,’”ProcéedlngS IEEE,
Vol. 68, No. 11, November 1978, pp. 1371-1385.

C. A. Sunshine and Y. K. Dalal, "Connection Manégement In Transport

Protocols, "Computer Networks, Vol. 2, No. 6, 1978, pp.454-373.

R: H. Thomas, "A Resource Sharing Executive for the Arpanet," AFIPS
Conference Proceedings, Vol. 42, 1973, SJCC, pp. 155-163.

R. H. Thomas, R. E. Schantz, H. C. FOPSdle.V“N8£W0Fk Operating



45.

46.
47.

48.
49,

50.

=50~

Systems," Rome Alr Development Center Technical Report TR-78-117,
March 1978, also Bolt Beranek and Newman Report 3796.

D. Walden, "A System for Interprocess Communication In a Resource
Shartng Network," CACM , March 15, 1972, pp. 221-330. ‘

R. W. Watson, "The LLL Octopus Network: - Some Lessons and Future
Directlons,” Proceedlngs Third USA- Japan Computer Conference, San
Franclsco, October 1978. :

R. W. Watson, "Network Architecture Deélgn Issues: WIith
Appllcation To Backend Storage Neiworks,“ To appear In [EEE
Computer late 1979.

R. W. Watson, "Delta—t Protocol Specification,” In preparation.
J. E. White, "A High-Level Framework.for Network-Based Resodrce
Sharing," AFIPS Conference Proceedlngs Vol . Y45, 1976,

pp. SB1-570. o :

M. A. Nlngfleld Unpubllshéﬂ experlencé with TCP Implementation,
June 1979. : : : .



-51-

The ADAPT Data Translation System and Applications
" Maurice J. Bach
Nancy H. Goguen
Michael M. Kaplan

Bell Laboratories

ABSTRACT

The ADAPT (A DAta Parsing and Transformation) sys-
tem provides an efficient generalized language
driven approach towards data translation. 1Its
high-level languages are easily learned and under-
stood. The data descriptions and transformations
can be easily modified as the conversion require-
ments evolve. It provides transformations on an
inter-record level as well as the power of stan-
dard text editors for intra-record transforma-
tions.

, ADAPT has other uses besides that of a one-
time data translation. Since the process of data
conversion may cover a long time frame, logically
consistent copies of the source and target data
bases must be maintained. The ADAPT system can be
used as a tool to insure consistency of the source
and target data bases, even if they exist on dif-

- ferent machines. Another use of the ADAPT system
is in a distributed data base context. Logical
records which are distributed to different nodes
of the data base can be "collected" by ADAPT and
presented as a single physical record to a user at
one node. This paper presents a functional over-
view of the ADAPT system and discusses applica-
tions of the ADAPT system to computer network
problems. ' : o

1. Introduction

The traditional approach to data conversion requires
development of independent hard-coded conversion systems for
every conversion process. Such systems consume valuable
resources in development and maintenance. The need for gen-

eralized high-level data translation systems has been well
- documented over the last few years. Such systems can make
the conversion process much simpler, as the conversion code
is easier to develop, easier to understand, easier to main-
tain, and easier to modify. Unfortunately, the appearance
of generalized translation systems in a production



-52-

environment has lagged far behind research into the concep-
tual problems surrounding data conversion.

: Significant work in the area of data conversion has

been done at the University of Michigan [3-9]. But the
emphasis in that work was to provide a foundation for future
research and development in data translation. Other signi-
ficant work in the area has been done by Smith [1¢-11],
Ramirez ([12-13), Sibley and Taylor {1], Shoshani ([14], and
Bakkom and Behymer [15]. Work by Housel, Shu, and Lum [16-
20) at IBM is based on two descriptive languages which drive
their translation system. The IBM work is principally
geared towards logical restructuring of hierarchical data
structures, but it is one of the only generalized transla-
tion systems being used in a production environment.

The ADAPT ( A DAta Parsing and Transformation) system
provides an efficient generalized language-driven approach
towards data translation. ADAPT provides the user with a
language for describing the source and target data formats
and structures, and a language for specifying the mappings
between the source and target data structures. ADAPT allows
transformations involving multiple record types, follows a
generative approach towards data conversion, provides logi-
cal restructuring and reformatting operations including
those performed by the UNIX* text editor, and provides a
neat modular scheme for crossing over machine boundaries.
Further, ADAPT was designed to be a production environment
translation tool. As such, efficiency and functional com-
pleteness for handling production translation requirements
were prime design criteria.

The ADAPT system lends itself to quick and simple
modifications of the data descriptions and transformations,
as the source data and conversion requirements become better
understood by the user. ADAPT can be used for other appli-

- cations besides a one-time translation system. It can be
used for <consistency control between the source and target
data bases during the conversion period. It can also be

used to control access to a distributed data base system.
In short, it can be used dynamically by any application
requiring transformation of a data stream from one format to
another. This paper presents a functional overview of the
ADAPT system and discusses applications of the ADAPT system
to data base network problems.

2. System Configuration

All components of ADAPT are written (or generated) in
the C language [23]. ADAPT was originally designed to run

* UNIX is a Trademark of Bell Laboratories.



-53-

on the PDP 11/70 computer under the MERT/UNIX operating sys-
tem [24]. ADAPT runs as a single process in that environ-
ment; communication with other (UNIX) processes is a natural
extension of this environment. ADAPT is also portable to
any machine/operating system which supports a C compiler.
If ADAPT is used as a sub-module of a larger process in
those environments, the appropriate inter-process communica-
tion protocols must be followed. Currently, ADAPT is port- .
able to the IBM 378 and UNIVAC 11¢@ series computers, and it
will soon be ported to the VAX 11/780 computer.

The ADAPT system consists of two compilers, and a run-
time system consisting primarily of code generated by the
two compilers. The user describes the format and structure
of the source and target data using the Description Language
for Data Parsing and Generation (DDPG). The Transformation
Programming Language (TPL) is then used to describe the map-
pings between the source and target data. Subsequent sec-
tions of this paper will present the DDPG and TPL languages
in more detail.

Based on the user data descriptions, the DDPG compiler
generates two data parsers - corresponding to the source and
target data descriptions. The target data parser is called
the Resrap module. The TPL compiler is then run on the
user's TPL specification and, using the user data descrip—
tions, generates the Transformer module. As can be seen,
with this generative approach, each executable ADAPT system
is automatically tailored to the particular application's
conversion requirements, thus optimizing the performance of
the conversion system for each application environment.

The run-time data flow through the ADAPT system |is
shown in Figure 1. The Translation Controller acts as the
main routine, controlling the execution of the other
modules, collecting statistics and performing error han-
dling. The Reader prepares the input data for the rest of
the system. After the data has been read, the Data Parser
parses the source data, matching it to the wuser source
description. The Data Parser also perforins hardware-
dependent data conversions, The Transformer then applies
the wuser-specified transformations to the source data and
produces the target data. The Resrap module does a
"reverse"™ parse of the target data, formatting it according
to the target description, and then sends the target data to
the Writer for target hardware-dependent conversions and
final output.

3. DDPG Compiler and Data Parser

As mentioned above, the DDPG language is a high 1level
language used to describe the format and structure of the



. -54-

 USER B USER [
- DDPG - ™ [

[ oy
DDPG TPL
COMPLIER ' A COMPLIER

¥ - . L4
: ~...~. '_'¢'
: Q~.~ "'

Cag P
i JRashl NS

', . |
DATA : - l
PARSER pmeet-| TRANSFORMER | RESRAP

7 X

READER B . ' wnlfen_

SOURCE TARGET
DATA - DATA
SO o CODE GENERATION
DATA FLOW

ADAPT SYSTEM ARCHITECTURE
FIGURE 1



-55-

source and target data bases., The user-supplied DDPG
description contains separate sections for the source and
target data. Each section is further subdivided 1into an
environment section, a cluster definition section, a data
filtering section, a table definition section, and a data
section. The environment section specifies such information
as the application machine and character code set. The data
filtering section allows the user to specify certain condi-
tions under which data should not be translated. This is
described further in the discussion below on the DUMP and
DISCARD commands. The table definition section contains the
descriptions of user supplied tables. Since these tables
can also be used by the TPL, their description will be given
in the section on TPL operators., The cluster section and
the data section contain the complete logical description of
the user data. ' ’

An item is the elementary data unit. A group 1is a
named ordered collection of items and/or other groups. The
named set of multi-level hierarchical structures formed by
nesting and concatenating groups and items is a record type.
A record is a collection of data conforming to a record
type. The complete DDPG data section consists of multiple
record types. The records described in the data section can
occur in different run-time combinations, called clusters.
The cluster section specifies the run-time conditions wunder
~which records occur, as well as the number of times they
occur. The ADAPT system processes clusters of records
sequentially. '

Some of the major data attributes which can be
described in the DDPG language are the following:

- specification of a variety of data types (e.g. charac-
ter, integer, packed decimal).

- fixed or variable length data fields, where the field
length can be expressed as an arithmetic expression or
can be determined by a character terminator.

- character justification, pads, null values, and string
terminators which can 'be expressed globally in the
record header or overridden at the item level. The
record header can also contain blocking information and
a record type indicator.

- specification of self-defining data using the MATCH
function. Match provides the user with the ability to
"look ahead" at data, returning "true" if a pattern |is
matched, "false" otherwise.

Match takes the form



-56-—

MATCH(offl,offz,pattern)

where offl and off2 are the byte offsets relative to
the current position of the Data Parser within the
record, and pattern is a character string expression to
be "used as the. pattern matching criteria. The charac-
ter string expressions used in patterns are equivalent
to those used in the UNIX text editor.

For example, the booclean expression
MATCH(2,4,"[ABC) [#-9]1{2}")

instructs the Data Parser to look ahead to byte posi-
tion 2 through 4 relative to the current position in
the record. If the characters in those bytes consist
of an A or B or C followed by any two numeric digits,
then the match is true; otherwise it is false.

optional data (at the GROUP or ITEM levelf .specified
with a conditional expression via the EXISTS clause.
For example, : : ,

GROUP gname EXISTS (boolean expression).

means that the group identified by gname exists in the
data stream if the boolean expression evaluates to

‘mutually-exclusive descriptions of the same data using
the VIEW construct. Views can be used at the group or
‘item level, and they can be nested. .

eogo: ) '

GROUP gname =

' VIEW vnamel (a == "YES")
(

] _ .
VIEW vname2 (a == "NO")

{ : _
other DDPG constructs
1 ,
. VIEW vname3 (a == "MAYBE")
other DDPG constructs
]

other DDPG constructs

.
’

In this example, for any instance of the gname group,
one and only one of the three views apply depending on
whether item a (previously parsed) is "YES", "NO", or
"MAYBE" . The "other" DDPG constructs associated with



-57-

the view describe the data for that particular instance
of gname. If no views apply, a run-time error results.

mutua11y+ekc1usive descriptions of data using the SET-
ELEMENT construct. :

eogo - : .
SET listing until ( match( @, 3,. "EOF") )
-ELEMENT name ( match{( @, 2, "NA") )
[ .
other DDPG constructs
]

ELEMENT addreéss ( match( @, 2, "AD") )
|

) . ,
ELEMENT phone_num ( match( @, 2, "PN") )
{

]

other DDPG constructs .

. other DDPG constructs
i

Syntactically, this is similar to views within repeat-

ing groups. Semantically, however, elements in a set

have a closer relationship to each other than views;

elements are later referenced in the TPL independent of

the order they were parsed, whereas views must be
referenced via subscripting. The set will be parsed

until its match expression ("EOF") is true. Elements

name, address and phone_num apply when their respective

match expressions are true. '

specification of repeating items or groups via the
OCCURS clause. This specification can be fixed or
variable. - :

specification of characters which must be stripped from
the middle of data fields, via composite items. For
-example, an ADAPT application requires that a number of
physical 1lines, = each of 1length 8@ characters, be
treated as a single logical line. But the blank char-
acters at the beginning of each physical line must be
omitted. The DDPG specification for this application
is

composite item logi_line until ( ! (match(@,1," ") )
. physi_line char (8@) just right pad " ";
end logi line;

The Parser parses 80 character fields, stripping off
the left-most blanks, until it encounters a 1line



- -58~

starting with a non-blank character. The concatenation
of the physical 1lines is treated as a single logical
line.

- record filtering criteria expressed via the DUMP and
DISCARD commands,

DUMP rname to fname (boolean expréssion)

The boolean expression is evaluated at data parse time.
~If true, the associated record or cluster is dumped to
the named file, an associated logging message is writ-
ten out, and processing continues with the parsing of
the next record or cluster. DISCARD performs a similar
function as DUMP except, in this case, the record or
- cluster is thrown away rather than dumped to a file.
Thus, DUMP can be used to control the order in which
records get translated (since the files built wvia the
DUMP commands could be translated at a later point in
time) without separately pre-processing the source data
and applying pre-determ1ned translation select1on cri-
teria.

- data validation criteria via the FORMAT clause.
iname CHAR(arithmetic expression) FORMAT (pattern)

- Here, as a record is being parsed, a character string
item whose 1length 1is given via an arithmetic expres-
sion, is validated according to the user-supplied pat-
tern. If the wvalidation test fails, the user can
filter the record or cluster to appropriate files.

- special constant data generation for the ‘target data
through use of the ATTACHL, ATTACHR, and VALUE clauses.
The ATTACHL and ATTACHR clauses can be used to attach
special user-supplied field identifiers to the left or
right of the actual target field value. The VALUE
clause can be wused to specify a fixed value to be
assigned to a target field. ' '

The Data Parser and Resrap modules can perform more
extensive validation than the FORMAT clause allows by means
of the elegant table handler provided by ADAPT (see next
section) .



-59~

4, TPL Compiler and Transformer

The Transformation Programming Language (TPL) is a high
‘level 1language used to perform the actual translation of
data from the source data base to the target data base. The
TPL compiler generates the Transformer module based on the
DDPG descriptions and the user-specified TPL transforma-
tions. !

The user's TPL code is divided into several translation
blocks. Each block consists of a set of many-to-one
transformations. That is, each block contains all of the
transformations involving one and only one target record
type regardless of how many source record types map into it.
Thus, the user has the ability to combine fields from dif--
ferent record types to produce fields in the target record

type.
e.g. TRANSLATE RECORDS a,b,c TO d;

tpl code

END_BLOCK;

would take source records a, b, and ¢ and produce target
record d. If the target record is only produced under cer- -
tain conditions, the translation block header would have the
following form:

TRANSLATE RECORDS a,b,c TO d WHEN (boolean condition);

- The operators currently supported by the TPL compiler
‘include assignment, selection, concatenation, extraction,
control flow, explicit type conversion, table handling, user
specified termination, looping mechanisms, and user supplied
functions. These operators interact among themselves and
with the usual Boolean and arithmetic operators to form the
~ expressions referred to below. A brief description of each
operator follows.

- ASSIGN. The assignment operator correlates the
~transformed data with the appropriate target field(s).

ASSIGN TO field name (expréssion);

- ASSIGN is designed to work in conjunction with the
other operators, 1in that these operators form TPL



" -60-

expressions which are evaluated at run time and
assigned to the target field(s).

- SELECT. The selection operators retrieve source data
entities: that is, they retrieve either source items or
groups of items. There are three variations of the
SELECT operator:

a. retrieval of subtrees from the source data struc-
tures.

SELECT subtree

b. retrieval of subtrees satisfying certain condi-
tions using the WHERE clause. ‘ ‘

SELECT subtree WHERE (boolean expression)

c. retrieval of entire data entities without nesting
other operators, 1i.e. retrieval where no further
transformations are to be performed other than
ASSIGN. : :

SELECT AS IS field_name
This is a more efficient form of
- ASSIGN TO field name2 (SELECT field_ namel)

~ CONCAT. The concatenatidn operator is used to concaten-
ate any number of data fields, constant values, or
other expressions. ' : :

CONCAT (expl, exp2, ... , expn)

- EXTRACT. The field extraction operator is used to match
a pattern in a character data field.

EXTRACT FROM (exp) pattern

The class of patterns which can be extracted is



L -6l-

equivalent " to- that of the UNIX text editor. For exam-
ple,

EXTRACT FROM (field_a) "[A-Z]{Z}[ﬂ—Q]*“

returns the string in field a which has two upper case
alphabetic characters followed by any number of numeric
characters.

.The fixed field extraction operator SPLIT is used
- to extract that portion of a data field lying between
specified byte offsets.

" SPLIT: (offsetl, offset2, exp)

IF-ELSE. The control flow operator allows blocks of TPL
statements to be executed dependent upon the evaluation
of a boolean expression. '

IF (boolean expression) tpl statement list;

ELSE tpl statement list; (optional)

Explicit Type Conversion. These operators allow the
user to specifically convert data from one type to a
second type. : '

o type (expression)

For instance, 1f line num were defined as a character
‘fleld then : :

INT (ling_num)

converts line num to its integer representation.

- Table Handler. 1In the table definition section of the
.DDPG, the user specifies the structure of a table, sort

keys, and the file containing the table data in the

following manner: B ' ' ‘



-62-

‘TABLE t {KEY type fieldl;...;type field n; }
FILE file name,

where "type" is the data type-such as "character".

ADAPT reads the table into the system and generates a
function to access it. The user references the table
by indicating the field whose value is to be returned,
qualified by values of the key fields. S

t.return field SUCH THAT (boolean condition on key
.fields of table t)

For instance, if the user had a file "directory" con-
taining a table "listings®™ with field names "name",
*address®”, and "phone" sorted by "name", then it would
be defined by '

TABLE listings (KEY char(l16) name;
char(40) address;
char(7) phone;
} FILE directory;

An expression such as
listings.phone SUCH THAT (name == 'kaplan')

retrieves the phone number of someone named °'kaplan'.
This facility can be used to return data values, or it
can be used by the Data Parser and Resrap modules to
perform data validation. :

User Specified Termination. This will cause an immedi-‘
ate return from the Transformer, presumably when some
error condition has been dlscovered.

IF (error condition) ABORT;

Run-time Variables. Special run-time variables can be
- assigned values in the TPL code. These improve effi-
ciency since repetitive calculations need only be per-
formed once, then assigned to the variables. In addi-
tion, run-time variables can be assigned from the



-63-

*command®™ line which starts execution of the ADAPT sys-
tem. These variables can participate in all arithmetic
and boolean expressions. Execution of entire blocks of
code may depend on their values. This gives the user
greater flexibility in running ADAPT from a uniform set
of descriptions and transformations without rewriting
and recompiling ADAPT code. :

Looping Mechanisms. The TPL allows two kinds of "for"

loops. The first kind uses explicit user indices, as
in -

FOR (i = 8; 1 < LIM; i++)
{ .

1

loop body

Here, the variable i is initialized to @ and incre-
mented by 1. (i++) after each execution of the body of
the loop until it is no longer less than LIM. The user
must explicitly subscript field names in this scheme.
The second kind of "for" loop uses implicit indices, as
in

FOR each gname
1
}

loop body

Here, gname was subject to an occurs clause in the DDPG
description.. For each occurrence of gname, the loop
body is executed; the appropriate indices are supplied
‘automatically to all field names in the loop body wh1ch
are in the scope of the gname structure.

<

- User Functions. The user may supply a set of special-

ized routines which perform operations particular to.
the given application but not supported by ADAPT. They
are called from the TPL code by the CALL operator.

CALL function_name(expl,exp2,...,expn)

The source code of the function can be written in any
language supported by the translation machine. It is
compiled on the translation machine, then 1linked with
the other modules of the ADAPT system. '



-64-

5. Clustering

As mentioned above, ADAPT processes clusters of records
sequentially. Applications frequently require that more
than one source record be utilized to produce target
records, and that several target records be produced from a
single set of source records. The specification of source
records appearing in a cluster and the target records output
in a cluster is given in the cluster section of ‘the source
and target data descriptions..

Records can be described as conditionally existing and
occurring a multiple number of times per cluster using the
same EXISTS and OCCURS constructs described in the data sec-
tion of the DDPG. EXISTS and OCCURS expressions in the
source cluster may depend on the values of fields in records
which were already parsed, or they may depend solely on
their existence in the data stream. The existence of
records in the data stream is determined by examining the
record type indicator as specified in the record header.
For instance, records named "BEE" may have an indicator "B"
in its third character position. When .a record is read, the
reader checks if it is a "BEE" reccrd, and if so, calls the
correct parse routine.

The target cluster is constructed by the Transformer
module. Conditional translation blocks control the creation
of target records. The target cluster section is then used
to validate the integrity of the records produced by the
Transformer.

Records in a cluster bear an implicit relationship to
other records in the same cluster, but for purposes of the
data translation process, they are considered unrelated to
records in other clusters. Assignment of run-time vari-
ables, however, allows information to be "remembered"
between clusters. When translating between arbitrary source
and target data bases, the record structures must be
"linearized"™ 1into the cluster format before entering the
ADAPT system, : '

Records in a cluster can be in different physical files
as specified in the DDPG description. -ADAPT accesses the
correct file when reading (writing) Trecords of particular
types. The only restriction is that all records of a par-
ticular type must be in the same physical file, and they
must appear in the order in which they are to be read. The
"logical® record stream 'input to (output from) the ADAPT
system is thus identical to the sorted physical record
stream input from (output to) the files..



—65—

6. Applications of ADAPT

Data base translation is a relatively infrequent opera-
tion, and hence, data base translators are usually only
thought of in terms of performing this one-time translation.
However, they could have much wider use in applications
involving transformations of data streams. ADAPT, in par-
ticular, can be used as a dynamic translation module in a
larger software system. Two such applications will be dis- .
cussed in this section.

Data conversion takes a long period of time even when
an efficient data translation program is used. The
‘translated data must be examined and tested against 1live
data before the original source system is replaced. During
this time, the source data base cannot always be frozen
since it must be constantly updated to reflect the real-
world situation. If source data which was already converted
is updated, the corresponding target data must also be
updated. For any significant volume of wupdate activity,
manually updating both data bases is difficult and subject
to error.

The ADAPT system can be utilized to overcome many of
these transition problems. ADAPT accepts the update request
to one data base and outputs two update requests: one for
each data base. The input data to the ADAPT system consists
of the update command to the first data base. ADAPT outputs
a cluster consisting of two target records. The first tar-
get record is identical to ADAPT's input record and |is
passed directly to the update facility of the first data
base. The second target record is the semantic equivalent
of the input (update) record, but is reformatted to conform
to the syntax and semantics of the update facility of the
second data base. Note that even though the input and out-
put records are really command lines, ADAPT treats them as
streams of data.

Since ADAPT can convert data from one machine format to
another, this scheme can also be used when converting across
machine boundaries. An application requiring conversion of
directory assistance products uses ADAPT in this fashion.
Communication between the machines 1is provided by an
independent computer network facility called BANCS [26],
which handles all of the physical machine . interfaces, and
has its own independent queuing facility. '

For example, suppose the user made the following
request to the data base:

SET PHONE_NUMBER EQUAL TO '4769' iN DIRECTORY
SUCH THAT NAME IS 'KAPLAN'



-66-

Two configurations exist depending on which machine the
ADAPT program resides. If it resides on the same machine
where the user request is made, then ADAPT accepts this
.request as an input record. It outputs the exact record to
the first data base, whose update facility accepts this
stream of data as a command, and performs the appropriate
~ operation on the data base. ADAPT's second output record
may have the following form:

UPDATE PHONE_NUMBER '4769' (DIRECTORY.NAME = 'KAPLAN

This record is sent to the BANCS communication facility
which transmits the record to the second data base. The
update facility of the second data base then treats this

data stream as a command and performs the appropriate opera-.

tion on the data base.

Alternatively, if ADAPT does not reside on the machine

where the' user request originates, then that request is
immediately transmitted via BANCS to the second machine and
input to ADAPT. ADAPT produces the two target records in
the manner described above but sends the original request
back to the first machine via BANCS.

The extension of this idea to distributed data bases is
straightforward. The data in a distributed data base exists
at all nodes of the hetwork, but a user at any node of the
distributed data base has no knowledge of the underlying
structure of the data base. For security reasons, the data
base administrator may not want particular users to access
certain fields of data so these data fields are invisible to
them., Using ADAPT, the data base administrator has an effi-
cient, easy way to accomplish these aims.

The data base administrator writes an ADAPT program for
each set of users, specifically geared to the users' appli-
cation requirements. The source description for the ADAPT
program accepts all allowable user queries to the distri-
buted data base. Based on the type of wuser command, the
associated data values supplied by the user, and the known
location of data types in the distributed data base network,
the ADAPT program outputs a cluster of records which are
really commands to be sent to different nodes of the data
base network. User requests which differ with regard to
command type or associated data values are automatically
routed by ADAPT to the proper nodes of the network. When
the nodes return the data to the user node, another ADAPT
program accepts all of these records as an input cluster.
From these records, a single output record 1is built and
returned to the user.

Since ADAPT can convert data across machine boundaries,
the distributed data base can exist on different machines,



-67-

provid1ng a true computer-data base network. As opposed to
"standard® distributed data base systems, individual data
bases at different nodes of the network can be of different
types. Synchronization of data transfer is handled by an
inter-machine communication facility such as BANCS, men-:
tioned above. The user interfaces with the distributed data
base through individualized ADAPT systems. This has the
added security advantage that the user is totally unaware of
other data in the data base.

An example of the use of ADAPT in a distributed data
base environment is depicted in Figure 2.

USER RESPONSE
REQUEST T0 USER
! J
ADAPT 1 ADAPT 2
, N \ .
\ NODE 1 .

NODE 2 : NODE 3

- USE DF ADAPT IN DISTRIBUTED DATA BASES
- FIGURE 2

Suppose a user enters a request at node 1 of a computer net-
work. The request is sent to the ADAPT 1 module which for-
mulates the request as (possibly different) queries to nodes
2 and 3 of the network. The two queries represent two
record types of an ADAPT target cluster. The ADAPT 1 module
directs the queries to the correct "channels"™ of the commun-
ications link, from where they are sent to the appropriate
nodes. When the responses from nodes 2 and 3 are received
at node 1, they are treated as records in the input cluster



-68-

to the ADAPT 2 module. The output from the ADAPT 2 module
is the response to the original user query.

7. Conclusions

The need for an efficient high-level language approach
to data conversion has been proven historically by the large
and expensive conversion effort experienced by almost every
data processing application. The ADAPT system provides a
generalized, efficient approach towards meeting the needs of
many of these applications. The functional capabilities pro-
vided by the ADAPT system are those that appear to be most
often required by applications. These facilities have been
tuned over a period of time and now operate in a manner that
provides a system throughput rate which is well within the
operational requirements of most applications.

v ADAPT's first major application was to translate a data
base comprising a set of directory assistance products. The
source data base resided on an IBM 370/168, and the target
data base was to reside on a PDP 11/78. The source records
had an average size of 340 bytes and the target records had
an average size of 165 bytes. For this application, ADAPT
was able to achieve a throughput rate of 30 records per
second running -on a PDP 11/790, and a throughput rate of 75
records per second running on an IBM 37¢/168. , '

The ADAPT system can also be used in a computer network
environment where a data translation step is required for
inter-node communication. For instance, concurrent copies
of source and target data bases can be synchronized during
the conversion process, using ADAPT.  On a larger scale,
ADAPT can be 1linked with an inter-machine communication
facility to support many of the concepts of distributed data
base systems,

8. Acknowledgements

The authors wish to acknowledge the contributions made
to the development of the ADAPT system by M.E. Mahon, S.C.
Stein, and E.M. Sondheim.

9. References

[1] sibley, E.H., and Taylor, R.W., "A Data Definition and
Mapping Language", Comm. ACM 16,12 (Dec.1973).

{2) Fry, J.P., Smith, D.P., and Taylor, R.W., "An Approach
to Stored Data Definition and Translation", Proc. ACM
SIGFIDET Workshop on Data Description, Access and



(3]

(4]

[5]

(6]

{71

(81

(91

(10]

(1]

(12]

(13]

-69-

Control, Denvet, Colo., Dec.'1972.

Taylor, R.W., "Generalized Data Base Management System
Data Structures and Their Mapping to Physical
Storage", Ph.D. Diss., University of Michigan, Ann
Arbor, Mich., 1971. '

Fry, J.P., Frank, R.L., and Hershey, E.S.III, "A
Developmental Model for Data Translation", Proc. ACM

. SIGFIDET Workshop on Data Description, Access and Con-

trol, San.Diego, Calif., Nov.1971.

Merten, A.G., and Fry, J.P., "A Data Description
Language Approach to File Translation", Proc. ACM SIG-

‘MOD Workshop on Data Description, Access and Control,

Ann Arbor, Mich., May 1974.

Birss, E.W., and Fry, J.P., "Generalized Software for
Translating Data", Proc. AFIPS 1976 NCC, AFIPS Press,
Montvale, N.J. - '

Deppe, M., Lewis, K., and Swartwout, D., "Operational
Software for Restructuring Network Data Bases", Work-
ing Paper DT3.2, Data Translation Project, University

-of Michigan, Ann Arbor, Mich., 1976. '

Navathe, S.B., and Fry, J.P., "Restructuring for Large
Databases:Three Levels of Abstraction®, ACM Transac-
tions on Database Systems 1,2 (June 1976).

Swartout, D., "An Access Path Specification Language
for Restructuring Network Databases", Proc. ACM SIGMOD
International Conference on Management of Data,
Toronto, Canada, August 1977.

Smith,‘D.P.,v"An Approach to Data Description and
Conversion”, Ph.D.Diss., University of Pennsylvania,
Philadelphia, Pa., 1971. ’

Smith, D.P., "A Method for Data Translation Using the
Stored Data Definition and Translation Task Groups
Languages®™, Proc. ACM SIGFIDET Workshop on Data
Description, Access and Control, Denver, Colo.,
Dec.1972. : : ’ :

Ramirez, J.A., "Automatic Generation of Data Conver-
sion Program Using a Data Description Language (DDL)",
Vols.I, I1I, University of Pennsylvania, Philadelphia,
Pa., May 1973. .

Ramirez, J.A., Rin, N.A,, and Prywes, N.S., "Automatic
Generation of Data Conversion Programs Using a Data
Description Language", Proc. ACM SIGMOD Workshop on



[14])

[15]

{16}

[17)

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

-70-

Data Description, Access and Control, Ann Arbor,
Mich., May 1974. '

Shoshani, A., "A Logical-Level Approach to Database
Conversion™, Proc.ADM SIGMOD Conference on Management
of Data, San Jose, Calif., 1975.

Bakkom, D.E., and Behymer, J.A., "Implementation of a
Prototype Generalized File Translator®, ibid.

Housel, B.C., Lum, V.Y., and Shu, N.C., "Architecture
to An Interactive Migration System (AIMS)", Proc.ACM
SIGMOD Workshop on Data Description, Access and Con-
trol, Ann Arbor, Mich., May 1974,

Housel, B.C., and Shu, N.C., "A High-Level Data Mani-

"pulation Language for Hierarchical Data Structures",

Proc. Conf. on Data Abstraction, Definition, and
Structure, Salt Lake City, Utah, Marqh 1976. :

Housel, B.C., Smith, D.P., Shu, N.C., and Lum, V.Y.,
"DEFINE-A Nonprocedural Data Description Language for
Defining Information Easily", Proc. ACM Pacific 75,
San Francisco, Calif., April 1975. '

Lum, V;Y;, Shu, N.C., and Housel, B.CQ, "A General

‘Methodology for Data Conversion and Restructuring®,

IBM J. Res. and Develop.20, 5(1976). *

shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P.,
and Lum, V.Y., "EXPRESS: A Data EXtraction, Process-
ing, and REstructuring System”, ACM Transactions on
Database Systems, Vol.2, No.2, June 1977. :

Bracchi, G., Fedeli, A., Paolini, P., "A Language for
a Relational Data Base Management System", Proc. Sixth

-Annual Princeton Conf. on Information Sciences. and

Systems, Princeton, N.J., March 1972,

Ritchie, D.M., and Thompson, K., "The - UNIX Time-
Sharing Sytem", Comm.ACM 17,7 (July 1974).

Kernighan, B.W., Ritchie, D.M., "The C Programming
Language", Prentice Hall Inc., Englewood Cliffs, N.J.,
1978. * .

MERT Programmer's Manual, Bell Telephone Laboratories,
Internal Publication. '

Date, C.J., "An Introduction to Database -Systems",
Addison-Wesley Publishing Co., Reading, Mass., 1975.



-71-~

{26] Leung, S., "'rhé Architecture of a Modern Network - The
BANCS Network", COMPCON Proceedings, Fall 1978,



DISTRIBUTED DATA BASE INTEGRITY




-75-

The Effects of Concurrency Contrel on

the Performance of a Distributed

Management System

. Daniel. R. Ries
Electronics Research Laberatory:
University of Califoernia,. Berkeley

ABSTRACT

Simulation modelé fer four concurrency cohtrol algo-
rithms were uSéd to study the éffeéts on a distributed data-
base. In a distributed database,‘the'data énd transactions
are _distributed ever several computer sites connected
threugh'somegiype of network. Some transactions access data
at only”oné site, while ethers access data at several of the

computer sites.

The ‘ooneuffenéy ceﬁtrol algofithms simulated can be
diQided intq two general classes: primaryISite control and
- decentralized eontr@lf In the primary site cénﬁrol modéls,
éll of the.iockiqg takes place at one of the nodes desig-
nated the brimary site. Note that’evenAﬁlocal transactions"
(transactions that just access data  at their originating

sites) must send lock requests to the primary site.

In the decentralized’e@ntrol models, the lecking of the
data items takes place at the site where the data being

accessed is stored. In these models, then, lecal transac-



-76~

tions need not send any messages over the computer network.

1. INTRODUCTION

Recently, considerable attention has been devoted to
the development and use of aisﬁributed databases. A distri-
buted database is a database which is stoered at multible
computer sites coennected by some type of coemputer network.
In this environment, a transaction eriginates at one of the
computer sites and potentially accesses data at-@ther sites

as well as at the originating site.

One of the primary_advantages of a distributed database
over a centralized database is that increased pérallelism is
possible because multiple.sites can be simultaneéusly pro-
eesSing'transaetions. Hewever, the distributed concurrency
voontrel'mechanism may have to expand additioenal everhead to
guarantee database consistency [ESWAT6, GRAY76] during this
simultaneous processing. This'additioﬁal overhead is due te
the costs required te set lecks at remete sites and/or the
costs which may be required to resclve deadleock between

transactions at'different sites.

.Several s@lutions to the cencurréncy céntroi preblems
f@f distributed databases have beeﬁ propesed ([BERN77],
[ROSETT], [GRAY78],' [MENAT8], fSTON78] and [THOM781).
Often, cene peffermanee goal of such propesals is te minimize

the number of concurrency control messages which have to be



-77-

sent acroess a computer network. In [BERN??j, it is shewn
ﬁhat if the transactions are known in advance, different
types of cencurrency control can be used for different types
 of transactions and thereby reduce even further the everhead

network traffic.

Unfertunétely, the ocount ef"overhead message traffic
does not, by itself, determine the effeets ef the oon-
gurrency contfel on the overall performance of a distributed
database systen. Othef factérs Sudh as the processing load
at each site, the overall network lcad and the tYpes'and

sizes of the transactions must alsc be considered.

Thus, simulatien models were devéleped to more ade-
quately = invesigate the performance = trade offs between
inecreased paféllelism and inéreased overheads of a distri-
buted database.v' These models simulated four concurrency
centrel algoerithms and were used to study the effects of
locking granularity .([GRAY75];» [RIESTT7], [RIES791), the
effects @f ‘the proepertioen. ef transactions requiring non-
“lecal dr remote resources, and the effects of different net-
werk.threughputs and bandwidths on the woverall -performance

of a-distributed management system.

In the next sectioen, the basic moedel of ‘a distributed
database that was simulated is described. 1In section 3, the
four different concurrency contrel algorithms are discussed.
In section 4, the simulation results for each of the four

algorithms are reported. In the final section, the major



-78-

conclusions are reiterated.

2.‘ The Simulatien Model

The: model of a distributed database system that was
- simulated eiesely,follows the basic model béing implemeﬁted
in distributed INGRES [STON??]. In ‘the 'simulaticn model,
thefdatabase was assumed te be distributed ameng a number of
different cohputer sites‘er nedes. connected by somevtype ef

network.

Transactions were submitted te the database_management-
system at each site. Some of the trénsactions, called
'local’ transactions, only accessed data at the site where
: they' originated.. Other ftrénsacti@ns,v ealléd 'non-local'
transadtiens, required some datébase aeeeés at ether than
the eriginating sites.

Such a non-loccal transaction was reélized by é_'MASTER'
transaction at the eriginating site and 'SLAVE' ﬁransactions
| at the other sites Qhére processing was:required. The MAS;
TER transaction initiated all of its SLAVES and waited for
}these siaves to oémpléte. In the simulation, transactions
were cycled around a élesed loop model (shown in Figure 1)
for each nede or.site in the disﬁributed database. Each of
these site models was very similar te the simuiation medels
in [RIES77], [RIES79]. At each site; the transactions ini-

tially arrived one simulatien time unit apart and went



T‘

-79-

!

ME SSAGE MESSAGE
ouT IN
~ QUEUE 4 QUEUE
_ Y 4
\ '\ /|
NN ./( /
\ \ /.
i N\ 7 [
N /) |
\ N\ / g
\ Zl;::' 1/0.
\ [_}-v QUEUE
\ IS
\ | ~ |
PENDING \ | N
QUEUE \ l
\ .
/.
’ —  _1 QUEUE
—
~N 4
~
_ N
NETWORK DATA
"DONE TRANSM.
QUEUE QUE UE

1

Figure

Node or Site Model




-80~

through the following steps: 1) left the pending_quehe, 2)

I/0 processing, 3) CPU processing, 4) data transmissioen, 5)

local preceésing cempletien,_and 6) distributed processing

synchronizatien. Each of these steps is described in more

detail below.

1y

2)

3)

W)

5)

When a transaction left the pending queue it was placed
on the I/0 queue. If the transaction was a MASTER, it

sent SLAVE oreatévmessages te the appropriate nedes.

The I/0 server was multiplexed ameng the transactions
en the I/0 queue. When a transaction had received its

share of I/0 rescurces, it was placed on the CPU queue.

The CPU server was multiplexed among the transactions
in the CPU queue. When a transaction had received its
share of CPU reseources, its next actioen depended on

whether or not the transaction was lecal.

Loecal transactiens were censidéred e@mplete_ ét 'this
peint and were reoydled.rte thev pgnding queﬁe. Non—
local transactions (both SLAVES and MASTERS) were
placed o¢n .the data transmissién-dueues. If any data

was to be transmitted teo aﬁether node, a data transmis-

sion message was sent.

When the data transmission message had been delivered

(or if no data was te be transmitted), the nen-local



-81~

transactien proceeded to the Network dene queue. At
this time, SLAVE transactions sent a SLAVE complete

message back to the MASTER transaction.

6) Depending on the concurrency contrel strategy, a SLAVE
either waited en the Network dene queue'ér was simply
released. The releése of 'a slave is discussed in more
detail in section 3. The MASTER transaction waited on

the Net&ork done queue until it had received "slave
éomplete" mességes fromvail its’slaves. At that peint,

the transaction was recyecled back te the pending queue.

Several simplifying aésumptiens sheuld be ﬁeted abeut
the model.‘ First, .all of the SLAVEs were identical te the
eriginatihg M%STER in terms of the prepertion of database
aceessedvéna whethé; er het data needed to be transferred.
’in distributed database applications,.‘the actual charac-
teristics of the SLAVEs could be qﬁite different from the
MASTER and frem:each other. Second, the only synehroniig—
tion between théHTSLAVEs and their ﬂASTER transaction
occurred at the beginning and end efvthe tfansaction. Some
apblications Qeuld reduire additiénal synchroﬁization; on

the data being transmitted [WONG77, EPST78].

Alse nete that a transaction is on each of the I/0, CPU
and data transmission queues ence ih the indicated serial
order. The total pfooessing required is the same as if the

transactien cyelieallyA accessed the 1I/0, CPU and data



-82~

transmission queues. ‘To send a message, a transaoter‘weuld
place the message en the message- out queue toegether wiph a
message destinatioen and 1ength,' Messages were taken from
the'message—out queue and'given to ﬁhe-Network Manager as
shown in:Figure 2. When a message.had reéeived the needed
amount of network servioé,:it was placed en the destinatien

message-in queue.

'B@th a speed and a bandWidth afe associated with‘the‘
Netwerk Manager. The network speed wasvreprésented by the
minimum time a message of any fype spent in' the network
where time was measured in the time units of the simulatien.
The Sandwidfh was represented by the maximum number of mes-

sages'whioh could be serviced in ene of these time units.

The - flow of a message in the Netwerk Manager oén‘be

deséribed as follows:

1) When a message entered the netweork manager;'the time
remaining for that message was initialized tec the mes-
sage iéngth in the time unifs of the simulatioen. The
message length can vary depending -on whéther or net
data is being sent but‘is at 1east_equa1 te the minimum

length mentiened above.

2) If MESSBDWH was the bandwidth of the Network Manager,
the times remaining ef the first MESSBDWH messages in

the Netwerk queue were reduced by one time unit.



-83-~

Network

manager
- : .
QUEUE SERVER
y v
MESSAGE - MESSAGE | MESSAGE MESSAGE
ouT IN ouT IN
QUEUE QUEUE QUEUE QUEUE

NODE o

Figure 2:

NODE N

Network Model




-84-

3) If the time remaining fer any message was zero, it was
deliveréd te the message-in queue ef the destinatien

node.

In several of the concurrency control schemes, a site
was allowed to send messages to itself. In these cases, the
netwerk manager was bypasSed and the message went directly

from the messége-eut Queue tq the messége—in-Queue.

3. .Cencurrency_Céntrel Algorithms

Four concurrency control aigerithms were simulated.

All eof the algorithms required that transactions ‘1ock' the
_partsiof the database they access and obey a 'two- phased;
locking prctécol'[ESWA76j. A 'lock' on ‘a certain portion or
granule e¢f the database was granted te one transactién_and
prevented any ether transactions frem accessing that portien
of the database untii the given transactien released the
lock. Note that in the simulation medels, each lock was
assumed te be exélUsive in that it could only be held-by one
transaétion at a time. Thus, in thevsimulatien medels, ne
- distinection was made bétwéén read and write access to the

database.

The 'twoéphased' protoecel required that a transaction
first acquired all of the needed lecks (called a 'growing'’
phase) before releasing any 1locks (during a ‘'shrinking'

phase). This pretocel, toegethér with the requirement'that



-85~

all accessed parts of the databése be locked, insured that
the effect of the transactions would be equivalent te the
effects of running the transéetions one at a time in some
serial disorders. This ‘'serializability' [ESWAT6] efA the

transactiens insures a certain level of database consistency

[GRAYT6].

The four oanourrenéy conrol algérithms simulated can be
'divided inte two general.elasses; primary site cencurrency
centrel ([ALSB761, ' [MENA78]) and decentralized contrel
([ELLI77], [GRAY781, ([ROSE77], [STON771). 1In twe primary
site moedels, one site was chosen to manage the 1®cking for
the‘ entire database. .  In both of these models, when any‘
transaction (local or MASTER) ‘left the pending queue (see
Figure f),‘a'global leck request was seht te the 'primary!
site. The transaction then waited until it received .an 'a11 
-locks granted' message and proceeded to the I1/0, CPU, and
data transmissien queues. Also at this point, a MASTER
‘translation, which was smart eneugh te request locks for all
its ‘Slaves, sent the 'SLAVE ereate’ messages  to the

apprqpriate<nedes.

Thus, when.a 'SLAVE.oreate' message was received at a
site, ﬁhe.SLAVE transactien went direétly te the I/0 queue.
When the SLAVE iransactien was threugh with the I1/0, CPU and
data transmissien queues, it sent an 'all done; message back
- toe the MASTER transactien and did net wait on the Network

Done Queue. When a local transaction completed, it sent a



-86-

'release locks' message to the PRIMARY site. When a MASTER
- had cempleted, however, it had te waitvfer all of the SLAVES
te complete before sending.the-'releasé loecks' message teo

the primary site.

The two primary site models.differed by the actiQities
at the primary sité. In the primary site one m@dgl (denoted
PS1),va fixed ordering was placed on all of the_Sites‘and
locks, fer a transaction was aeQuifed one site at a time in
that crder. In other werds, a tfansactien would be granted
locks fer the first site, then the‘éecond‘site, ete. If the
required lecks_/fer "a given vsite were already held by‘ a
secénd transaction, the first transaetien would wait fer the
second transactien'té.eempléte and re-request the lecks fer
the given site. When the'locks for ail of the sites had
been acquired, the primary site sent a 'locks granted' mes-
sage back te the__requesting transaction. Noete that the
fixed ordering of sites' is used te prevent.deadleok. Alse
nete that for 'local' transactions locks were only reqﬁested

at ene site.

- The primary site twe medel (PS2) differs from the P31
medel in only one respéct, In the PS2 medel, if the lécks
needed by a given transactien for a giQen site were already’
held, all of the locks a lewer numbered sites (in the fixed
erdering) that were granted te the given transaotieﬁ were
released. When the lecks in contentien were eventually

released, the acquisitioen of the given transaction locks for



! -87-

all of these nodes had to be re-requested. Note that in the
PS2 moedel, ne transactioens could held lécks fer one nede
while waiting for other locks for another nede. Alse note
that the PS2 medel would faver these transactiens which
required locks at a fewer number.ef'nedés. vThus the differ-
ence in the two primary si@e medels is essentially sne - of

transactién scheduling.

The ether tweo cencﬁrréney control algoriﬁh@s simulated

Qéfe decentralized in thaﬁ:a gencurrency éontrelvmeehaniém
at each site ménaged the lecks for fhe pertion ef the-déta—
ba#e at that site. 1In those models, a MASTER transaction
sent the ‘lock requiréménts for the SLAVE along with the

fSLAVE ereate'lmessages. A transéction requested its lecks

for a site when it 1eft.thé pending quéue (sée_Figure 1).

If the 1lecks were granted, the transaction éouid'preceed.
'If the locks were denied, the requesting transaction waited
for the blocking transaction to release its looks. Ngte
‘that at a site, the 1eoks feor a:transaetien were either all

granted or all denied.

When a lecal trahsactien had oempleted,'it weuld simply
felease its locks and be reoyeled back te the pehding queue.
A nen-lecal transaotien; however,'had to wait until its pro-
cessing had completed at all eof the‘nodes. Thus, in the
decentralized cencurrency coentrel médels, the SLAVE transac-
tions had to wait on the Network dene queue (again, see Fig-

ure 1) until they had received a 'release locks' message



-88~

from their MASTER. At that peint, the SLAVES could release
their lecks. The MASTER transaotieﬁ' waited fer the fall
dene messages frem each of the SLAVES before it could send

those 'release locks' messages.

Unfertunately, in the above decentralized cohcurrenoy
control models, deadleck is possible. Twe btranséotions'
could each be waitingv(direotly or indireetiy) at different
sites for the other te complete.- The'twevcencurrenoy con-
tfel models simﬁlated differed in the wéy they 501ved the

deadiook problem.

: A‘weundfwaif medel (denoted ww),.baéed en the algeriﬁhm
presented in [ROSE77];.prevented deadlock by using a uniqué
timestamp for each tfaﬁsactien te reselve canfliots betﬁeén
distributed transactions (note that SLAVES had the same
timestahp as their MASTER). In the WW simulation implemen-
tation, the fellewing éetiéns.teok place if one distributed
transaction, say T1 was blocked by another distributed tran-
saction, say T2: if T1 wasielder than T2, T2vwas "wounded".
When a transactioen was wounded, the MASTER and all eof the
SLAVES were notified. If T1vis younger than T2, T1 simply

waited for T2 to release its locks.

When a wounded transactioen (a SLAVE or MASTER) was
itself blocked by an elder distributed transactioen, the
weunded transaction "killed"™ itself. The killing of a tran-
saction invelved the release of all locks by'both SLAVES and

MASTERS and the reincarnation of the MASTER transaction back



-89-

on the pending queue.

The secend decentralized eontrol algerithm is based on
the SNOOP [STON78] or the glebal detecter [GRAY78] alge-
rithms. In the SNOOP simulation implementation, a conflict

'

between distributed transactiens were reported te a "SNOOP"

site which checked for deadlock. If deadleck was detected,
a transaction was "killed" and reincarnated as in the

weund-wait medel.

4. Simulatien Results

The ‘simﬁlati@n -models were jhighly' parameterized in
order to provide insights inte the effects of concurrency
contrel on the perfefmance'ef a wide variéty of distributed
_databases;‘ Simulatioh experiments were condu&ted varying
phé'locking granularity, the number of nedes in the ﬁetwerk,
the number of SLAVES for each distributed transaction, and
the number of distributed transactions. Different netweorks
evirnenments were:représented by varying the netwerk spegd,
the network Bandwidth, the messages hankdling overhead at
the nodes and the'perdentage and rates feor data'transfer.
Thé details of these experiments for all four cencurrency
contrel algerithms and twe c¢lasses of transaetions',are

presented in [RIES79].

In this paper, the discussion is limited to the parame-

ters of greatest significance including the locking granu-



-90-

larity, the percentage ef dis£ributed transactions, the net-
work bandwidth, the types (or classes) of transactiens and

the cencurrency coentrol algerithms.

For all of the experiments rep@rted,_the éther parame-
ters were set to simulate the fellowing scenarie. Ten tran-
sactions were aeti&e at each of the six nodes in the distri-
buted database. Each node oentained'10,000 entities of the
database wheré an entity can be theught ef as the unit of
data moved between the Qperating systém'and'the‘database7
management syStem; It toeck a transéetion‘30 miiliseoends on
beth the I/0 and CPU qpeues_te precess one entity and 3 mil-
lisecends of CPU timé t6 set one lock. It Loek 15 mil-
~ liseconds of CPU ‘vtime ‘t-e check for a déadlock“cénditﬁien.
The number of entities and lecks requifed by a:transaction

depended on the transaction class and is discuéséd‘belew.

Eéch distributed transaction had:S SLAVES and was ﬁhus
activevat all nedeslin the nétW@rk;' Forty peroent of these
transadtions transférred 25%. of their ehtities across a
megaheftz data transfer network. To transfer a simple mes-

sage across the network teck 90-millisecends.

Under the above scenarie, the parémeters shown in Table

1 were varied. Locking granularity, the LGRAN parameter,
refers to the number of lecks at each node. A value of 1
weuld imply that there were 6 locks - one for -each nede in

the database. A value of 10,000, on the ether hand, implies

that each entity has its own leck and allews for the maximum



-91-

poetential parallelism.

Thé transaction c¢lass parameter, TCLASS,' actﬁally
represénts a set of parameters geverning the transactieh
sizes and leck placement assumptions. With "Class i" tran-
sactions, a'hyperexpenential distribuﬁien of the number Qf
entities acoes§ed by ‘the transaetieﬁs was used. Ninety per;'
cent of the transactiens accessed on the average 5 entitiés
of the database while theletherb10% accessed on the average
250 entities. With "Class 1" transaqtiéns, the locks were
ceﬁgidefedv to be wellfpiaeed, in that a tranasactien
required the minimﬁm nqmbér of locks that oéuld cover the
entities acoéssed by thé transaction. This class of tran-
sactions implies ﬁhét the transactien access paths are all
sequential, most of the transactions afe small, but a few
are.relatiQely ;arge in terMs of the proportien of the data-

base they access.

With‘“Class_2"vtransaotiens, all ef-the transactions
. are accessed, on the average, only 5 entities in the data-
base aﬁd a randem placement of 1ooksiWas-assumed. The Class
2 transaction envirenment implies that the data access pat-
terns are primarily randem and that all eof the transactions

are small.

Tﬁe PREDIST parameter contrels how many transactions
were nen-local, A value ef zere, for example, would imply
that all of the transactiens were lecal. A value of 100

percent implied that each of the 10 transactiens at - each



-9 2 -

nede was a MASTER transaction and would spawn 5 SLAVE tran-

sactions at the other 5 nedes.

‘The message bandwidth parameter, MESBDNT, represents the
" number of messages which can be simultaneously prccessed by
the network manager. The four concurrency oontf@l -algo-

rithms have already been discussed. -

The results of varying the lecking 'granularity, the
percentage of distributed transactiens, and the message
bandwidth for the four CGnOUrrency control algerithms and

the two transaction classes is discussed below.

1.1. Locking Granularity

Figure 3 shows the effects of varying the- locking
granularity on the "Useful I/0" utilizatien for each of the
feur oencurrendy contrel algerithms when 10% of the transac-

tions were . distributed and Class 1 transactions Were

Table 1
Parameter | Descriptien
LGRAN No. of locks at each node
TCLASS ~ Transaction class
PREDIST ' Pércentage of the Transactions

which are distributed
MESBDWT Message Bandwidth

CCALGORITH - Concurrency Contrel Algorithm



(xk time units )

Usefull0

lOOj

-93-

PS2 peak pS| peak |

_ SNOOP peak \
2_____\_:?: _gr/ww peak
E§§§§§§§§ PS2
,' ~WWsnoop
| PSI
T n
102 10° 104

. of locks '(Iog SCdIef

Figure 3: (lass.l Transactions
' PREDIST 10
MESBDWT <



-94-

’assumed.. The "Useful I/0" refers te the net Qtilizatien of
the i/O resources for processing fransactiens. The curves
for "Useful CPU" utilization were similar aﬁd net shown.
For all four eoneurrenoy’ control algerithms, the maximum
useful I/0 eccurred with 500 to 1060‘granu1es.A Fer the pri-
mary site 2 (PS2), the primary site 1 (PS1), and the global
deadleék‘detécﬁer (SNOOP) m@dels, tbe peak @oourred ap:SOO
granuies. Fer .the‘weund—waiﬁ (WW) médels,'1,000 graﬁulés
were optimal. 1In either 6ase, 99% of the maximum I/0 utili-

zation was reached with 500 er,1000 granu1eq.

Several observations about figuré 3 sheuld be néted.
First, the primary site twe'm@del.(PS2)‘achieved 98%ief;the
maximum I/O_utilizatien,With.1OO grénules_and-90% of that
maximum with as few as 50 granules. anh of the other three
medels required at least 250 gfahules;te reach QQ%vef its
respective'maximﬁm. In the primary'site é,medel, ﬁe tran=-
sactiens held locks at one nede while waiting fer'lecks‘ét
another node. In each of the other hedels this conditien
was net true. Alse nete that the differences in ihé perfor-
mances ef the differénqt oénoﬁrrency contrel models was very

small at the optimum grénulatieé.

The computer utilization for each of the four cen-
gurrency oentrol algerithms fer class 2 transactions are
shoewn in Figure 4. Under the randomly piaqéq lodks with
only small transactiens, the finest granularity, 10,000

looks in this case, was optimal. With this eptimal granu-



(xk time units)

UsefullO

100~

80 -

60—
40—

20—

~95-

l T T

e 102 10° 10

No. of locks (log scale)

Figure 4: Class 2 Transactions
: PREDIST 10%
MESBDWT o



=96~ .

larity, as with class 1 transactiens, only slight differ-
ences'in'eemputer utilizations were due te the cencurrency

centrel algoerithms.

However, the weund—wait and glebal deadieek déteotor
algerithms did censistently preduce semewhat better resuits
than the primary site algorithms over .a wide vabiety' of
granﬁlarities; In faot, enly with fewer than 50 locks at

each nede, were the primary site medels advantageous.

Ne difference in_“cemputer utilizati@n was observed
between thé twe primary site medels ence the. gfanulariﬁy
" became fine enough; Thisyrésult was ﬁrue for class 2 tran-
sactiens, since the probability of_suocess‘en a lock request
was extremely high. Thus, very_few ef‘these'transaotiens
waited for locks at one ﬁede, while holding lecks at another

node.

Similarly, once the granularity Qas less coarse (abeut
50 granules), little differehce in computer utilization is
realized between the "two deoentralized algorithms. This
result was also reaiiied because of the high prebability ef

success en a lock request.

1.2. Percentage of Distributed Transactions

Changes in the percentage of distributed Class 1 tran-
saétians affected the eptimum granularitios and the choice

of a "bést" algorithm. In general, finer granularity was



~97-

required to achieve the best computer utilizatien and
respense times for the PS1, WW and SNOOP medels. However,

with the PS2 model 500 granules. was always close te optimal.

Figure 5 shews the effects on the useful I/0 and the
average’reSpense time of the percent eé distributed:transao—‘
tioens for each of the four cencﬁrrency centrol élgofithms}
(For each percentage, and for each algerithm, the best use-

'ful I/O and average response time regardless of granularity

was plotted.)

The ‘'dish' shaped curves fer 170 utilization were
" surprising. As the percentagexof distributed transactions
was increased up to 50%, all four models shewed deoreasés in
useful cemputer utilization due to the additional overhead

(message handling and lecking) required toe run -distributed

transactions. Hewever, as the percentage increased beyond
75%, the useful cemputer utilizatien significantly
‘increased. -

That increasé was due to two factors. First, the

number of.traﬁsactiens running at éadh nede was greatly
increased. Fer example, when all of the transactions were
distributed, parts‘ef transactiens were active at each ﬁede;
Second, the average transaction size at each node was-

smaller as moere and mere transactiens were distributed.

The simulation parameters were medified to keep the
. number and sizes of active transactiens at each nede con-

stant as the ©percentage of distributed transactions



 -98-

Percent of distributed

Figure 5:

100
/PSSNZOOP
| 2 WW
- &s %/,
= W ”,,/”
- | '
60 —|
I T T ]
0 25 50 75 _'IOO
Percent of distributed transactions
. (o) |
600+ ' ) |
£ 500- o |
3 - \S\WW
C;’ l I 2 PSI
) ~~~-"“'2
$ 400 / T
v jgfé -
o
E .
S |
>
< A |
300 T T T 2
0 25 50 75 100

transactions

(b)

Class 1 Transactions
:  MESBDWT '



increased. Only when bdth_parameters were held fiked dia
the 'dish' shapéd cufves disappeaf. WHen enly one efbthe
parametefs were held constant, having all transactioens dis-
tributed produced mere usefuI‘I/O (and CPU) than when eonly

50% of the transactiens were distributed.

The average response ﬁime curves alse demenstrated dish
shaped curves. In'almést.all Cases,~the second primary site
medel (PS2), preduced -the best évefage response time of the
four medels. The helding of 1®cks.at_ene nede whiie waiting
fer locks at another was'quite detrimental te the throeughput
| of the.systeh and_eccurred with incfeasing‘fréquency in the
other three medels as the percentage of distributed transac—b
ﬁian'increased; |

With clasé 2'transactigﬁs, the finest granularity was
optimal, regafdless_ef the pereeﬁtage of distribﬁted tran-
\_sactiens}_ Furthermere, the perfar%gnce of ﬁhe concurrency
centrel algorithms alse changed consistently as thé percen-

tage of distributed transactions increased.

Figure S(a) shews the 1I/0 utilizafien for ﬁhe four
algorithms as that percentage inereased. The utilization
With the’decentralized algerithms was affected yer& little
by the increasé‘in nen-iecai trahsactions. Again, a siight
increase in usefpl”eemputer utilizatien was realized due to

the increased distribution of transaetion precessing.

In the primary site algerithms, on the other hand, the

everall computer utilizatien decreased as the percentage of



=100~

5 100 =3
_..‘2 Hmy -_=§/==-—'—'—"=ﬁ ?NN“(’)OP
S - Je— i 2m— - | | |
[¢3]
E | B
-— 8()_. a:::titstt:::
_ )
> : | PSI
- 2 P25
o | |
2 60 — T
@ 0 20 140 60 80 100
3 Percent of non-local transactions
(a)
) S Ps2.
B . /PSI
1204 ' % - ' ,
g i I / . |
g | 2 SNOOP, WW
= - . G
3 80 12 | 5,/ |
9,- -|,2 ‘Q/ ‘ ] . .
o & |
© 40
on
S |
Q
v i
a
0 T T ‘ T T | ' !
- O 20' 40 ) 60 80 'OO

! ) .
Percent of non-local transactions

Figure 6:

(b)

Class 1 Transactions

i MESBDWT o

LGRAN 10,000



-101-

non-local transactioens increased. The decrease was most

dramatic between 25 and 75 percent.'

The same advantage for the decentralized algerithms
~over the primary site aléefithm appeared in the average
response time, as shown in figure 6(b). Fer all four alge-
_ rifhms the reéponée times inereasg as the percentage of dis-
tributed transactiens'inoreased. ’H@wéver, the increase was
much less fer the deeentrélized concurrency centroel algé—
rithms than for the primar& site concurrency control'algof

rithms.

Twe facters caused the dramatic difference between the
primary site and decentralized models for class 2 transac-
tiens: the transactions were all small_and the primary site

c¢reated a bettleneck.

The transactions of class 2 were all small and the
results in Figure 6 Were for.the finest granularity. Under
these oenditiens, the prebability @f’ success on a lock
request was extremely high,.which censiderably reduced the
advantage that the primary site 2'medel‘exhibited fer class

1 type transactions.

The second factor which affected the perfermance'ef ﬁhe
eoncurrency c¢ontrel algerithms was the bettlenedk at the
primary site. Oyer 7,000 time units out of a  possible
20,000 were used for iecking at the primary site‘when,all of
the transactieons were nen-lecal. Mereover, all transactions

required some database processing at that primary site and



-102-

were thus all delayed by the 1locking overhead. This
bottleneck became increasingly werse as the percentage of

distributed transactions increased.

One soclution te the bottleneck preblem wéuld be lte
offload the primary site concurrency contrel te a separate
processer. The primary site 2 simulatien was medified’te
test this strategy and in fact then produced results very

similar te the decentralized models.

1.3. Message Bandwidth

The above observations changed when a lower network
bandwidth was assumed. MESBDWT settings_of 100,‘50, 10, 6
and 1 were tested for each of the feurteenourrency control

algerithms and each class of transactiens.

Fer Class 1‘transa0tiens; 10% of which were distri-
buted, MESBDWT settings eof 100;and 50 preduced useful com-
puter utilizatiens and averagé response time idéntiealbto
the infinite settiﬁg previously used. Slight df@ps in the
useful I/0 and CPU utilizatiens‘were realized with message
bandwidths of 10 and 6;v The dreps with a messagé bandwidth
éf 10, however, were less than 1% and not considered signi-

ficant. -

A message bandwidth of 6 did preduce more neticeable
reductions in the useful I/0 and CPU utilizatiens; The

dreps in useful utilization were enly abeut 2-3% with the



=103~

primary site and SNOOP_models."The wound-wait model, on‘phé
other hand, realiied a drop of almost 7%. Although the pri-
mary site models sent more lack meSsages, they were mainly
sent one message at a time; A wound or kill, however,
resulted in 5  messages beiag sent, or_broadcast over the
netwerk. These“"bUEsts" of messages were effected more by
the lawér bandwidth than the greater number of individual
messages in the primary site models. In the SNOOP model, on
_the other hand, a conflict only required 1 message. A kill
still required 5hmeSsages, but ocourréd very rarely.»

'MF;égfe-7ishaws the effects of the PREDIST parameter on
Class 1 transactions on a reduced bandwidth hetwerk; With
fewer than 40% of the transactions being non-local, the glo-
bal deadlock detector algerithm produced mere useful I/0
utilization than the other algerithms. When 45% or more of
the transacticens were distributed; the primary site 2 model
again broduoed better resulbs, In these_cases, the extra
two mesSages for lecking were not that significant; a dis-
| tributed transaction required at.leaat 2 % 5(no. of SLAVES)

messages anyway.-

Note alsovthatvthe 'dish' shape curves for Useful I/0
have practically disappeafed with a.limited bandwidth net-
work. In these casesﬂ the extra network delay overhead
causad by an increased PREDIST barameter more than offset

the increases in transaction parallelism.



)

(xk time units

UsefulI0

-104-

100
1%EQEE§F\~‘-\; :
ORI | |
80 — \\g Ss\ - 2 o
- N X@:\% . o SNOOP
_ \ww
404
20—
O T - U I
0 20 40 60 80

|
100
Percent of non -local transactions -

Figure 7: Class 1 Transactions
: MESBDWT > 6



-105-

For Class 1 transactioﬁs, enly the message bandwidth
parameter significantly affected the .perfermance of - the
database under the four c¢encurrency contrel algorithms."Fer
Class .2 transaotiess, hewever, seme‘ of the oether network
paramesers"aid effect the cheice of oeﬁourreney control
alger}thmss‘ The‘fesults are thus repeated for the message
‘speed'or tiﬁe te send a'sihple message, MESRATE; .the CPU
time te process (seﬁd er‘ receive) ‘a message a site,

MESCPURATE; as well as the netwerk bandwidth, MESBDWT.

The I/O'htilizatien and the average respense time (in
parenthesis) is given‘in Tablev2 for each of the-fouf con-
ourrencj centrei algerithms{ In the first set, the MESRATE
parameter was varied_while the MESCPURATE and MESBDWT were
fixed at .01 ‘and 1000 fespectively. As the message rate

inereases, the gap between the primary site and decentral-

Table 2: Effects of Network Parameters

PS1 PS2 | WW

SNOOP

MESRATE ' - '
1 94994(63) 94720(63)  96839(61) 97037(62)
3 93996(64) 193319(64) 97134(61) 96204(62)
10 87998(67). 88078(67) 96037(63) 96875(62)
MESCPURATE I _ o
.01 93996 (64) = 93319(64) 97145(65) 96204 (62)
.05 88953(67) 88767(68)  95048(63) 94710(64)
1 83273(72) 83086(73) 92394(65) 91860(65)
.3 58676(102) . 58372(102) 83313(72) 82690(73)
MESBDWT ' :
1000-50 93996(64) 93319(64) 97145(61) 96204(62)
10 - 8280u(72) 83234(72) 96827(62) 96979 (62)
6 55200(108) 55692(108) 95948(63) 96242(62)



-106~-

"ized control models widened. A MESRATE of 1 can be inter-

preted as requiring 30 milliseconds to.sendva'message.

‘A more dramatic change eoéurred when the mességevCPU
rate was Varied. During these experiments, the MESRATE and:
MESBDWT were fixed at 3 and 1000 respectively. With a 3
millisecend cost (MESCPURATE = .1) fer sending.a méssage,
the brimary site moedels preducedi@nly 89% of the useful ocom-
puter'utilizati@n that was realized with the decentralized
céncurrenoy control alg@rithms. With a 9 msec méssage rate

(MESCPURATE = .3) this percentage drops to 72%.

A dramatic change in oomputef’uﬁilizétien and fésponse
time for the primary'site models and Class 2 transéctions
was realized as the message bandwidth was restricted. While
the ‘perfermanée of the primary site model; was heavily
affected by the restricted ‘bandwidth, the dedentralized
models were hardly affected at all; -This result is due to
the fact that with the primary site models, almost 40,000
mere messages were sent thaﬁ with the deéenﬁralized alge-

rithms.

The PREDIST simulatien experiménts fer elass 2 transac-
tiens were repeated with a 1imited bandwidth netw@rki"In
these experiments, thelprimary site medels were best if m@rev
than 50% eof the transactions were distributed. In those
cases, the primary site models éctually sent'féwer lecking
messages than £he decentralized algorithms@ However, if

fewer slaves were used, the decentralized algorithms would



_l07_

send fewer messages even in 100% ef the transadétions were’

distributed.

5. Summary =

F@uf.d@néurréﬁcy contrel algerithms thus were simulated
in @rder te study bheir effects on the perfermance of a dis-
tributed database managemént system under a variety éf‘data—
base and netwerk conditions. Which medel was best in terms
of the overall database sysﬁem'perferhance‘is applieapien
dependenb”asvshown‘ianéble 3. Clasé 1 traﬁsaotians refer
fe a worklecad environment where the loéks are assumed to. be.
vwell-placed with resééot,t@-the-accessingbtransaotiens and
that these transacticns-are of mixed sizes. 'Class 2 tran-
saetions refer to wefkioads where all of the transactiéns

are'sma;l and randem placement of locks is assuméd.

In_semé cases, it appears that the céncurrency‘eentrel
mechanism is neot a_significaﬁt facter in the databaée syStem
perf@rménoe. For §lass 2'transactiens,:édditienal simula-~
fi@n runs shewed that_the'preferencg for decentralized con-
currency control ceuldvbe offset by reduoing the_database
léad-at the brimary-site. Thﬁs in these oases, the cheice-
ef cencurrency contreol alg@rithm may again net be signifi-

cant.

For class 1 transactions, when mest of the transactiens

only reduired local processing and a slower, lower bandwidth



Fast Net.

-~108~-

Table 3: Concurrency Control Medels

Classi
Transactions

Class?

Transactions

Primary Site er

Primary Site eor
Meost trans. Decentralized Decentralized
loecal '
Slow Net. SNOOP Decentralized
Mest trans. _
lecal
- Fast Net. Primary Site 2 Decentralized
Mest trans.
non-lecal
Slew Net. Primary Site 2 Primary Site
Mest trans. ’ :
non-local
network is assumed, the SNOOP algerithm is preferred. In

this case, the SNOOP'medel was favered because of the lower

- number of messages required.



ALSB76

BERNT7

ELLITT7

EPST78

-109-

REFERENCES

Alsberg, P.A., Belferd, G.G., Day, J.D. and

- Grapa, E., "Multi-cepy Resiliency Tech-

niques", CAC D@o.202, Center for Advanced
Cemputation, _University of Illineis at

Urbana—Champaigh, May 1976.

Bernstein, P.A., Shipman, D.W., Rethnie,

J.B., and G@edman; N., "The Cencurrency Con-

trol Mechanism of SDD-1: A System for Dis-

ttibuted Databases", Technical Report CCA=-

'77-09, December 1977.

Ellis, C.A., "A Robust Algorithm for Updat-

ing Duplicate Databases", Préceedings of the

" Second Berkeley Workshep on Distributed Data

Management and Computer Networks, May, 1977,

Berkeley, California, pp. 146-158.

- Epstein, R., Stonebraker, M., and Weng, E.,

"Distributed .Query Processing in a Rela-

tienal Data Base System", ACM SIGMOD Inter-

_national Conference on Management of Data,

Austin, Texas, pp. 169-180.



ESWAT6

GRAYT5

" GRAY76

GRAYT8

MENAT8

-110_

' Eswaran, K. P., Gray, J. N., Lorie, R. A.,

Traiger, L. I., "On the Notions of Con-
sistenecy and Predicate lacks‘in a data base
System ", Communicatiens of the ACM, Vel.19,

No.11,-N®vember,.1976. pp. 624-633.

Gray, J.N.,Lorie, R.A., and Putzolu, G.R.
"Grénularity ef Lecks in a Shared Data
Base", Proc. 1975 VLDB Conference, Framing-

ham, Mass.,_Sept., 1975. pp. 428-451.

Gray, J. N., Lerie, R. A., Putzélu; G. R.
and Traiger,»I. L., "Granularity of Loecks
and Dégrees of Consistency in'a Shared Data
Base." Preo. vIFIP Working Conference on
Modelling eof Data Base. MénégeméntvSystems,
Freudeﬁstadt, ‘Germany, ‘Januéry 1976. ~ Pp.

695~723.

Gréy, J., "Notes on Data Base Operating Sys-
tems", IBM Research Report, RJ 2188, San

Jose, Califernia, 1978.

Measce, D.A. and Muntz, R.R., "Locking and
Deadleck Detection 1in Distributed " Data-
bases", Proceedings of the Third Berkeley
W¢rkshep'on Distributed Data Management and

Cemputer Networks, August, 1978, Sah‘



RIESTT

RIES79

RIESTIA

ROSETT

 STONTT

-111-

Franeisco, Califernia, pp. 215-232.

Ries, D. R., S3tonebraker, M. "Effects of

Locking Gtanularity in a Database Management
System", ACM Transactiens en Database Sys-
tems, Vol.2, No.3, September, ﬂ977 pp. 233~
2u46.

Ries, D.R., Stenebraker, M., "Locking Granu-
1arity Revisited", ACM Transactions en Data-

base Systems, Vol.3, Ne.2, June, 1979.

Ries, D.R., "The Effects of Concurrency Con-

. trol on Database Management System Perfor-

mance", Ph.D. Thesis, University of Califer-

nia, Berkeley, March, 1979."

Rosenkrantz, D.J., Teams, R.E., and Lewis,

P.M.; "A éystem Level Concurrency Control
fer Distributed Database Systems", Proceed-
ingS of the Second Berkeley Werkshep en Dis-
tribuﬁedvData Management and Computer Net -
works, Méy,”1977, Berkeley, Caiifernia; pp.
132-145,

Stenebraker, M. and Neuhold, E., "A Distri-
buted Database Version of INGRES", Proceed-

ings of the Secend Berkeley wbrkshep on



STONTS8

THOMT8

WONGTT

-112-

Distributed Data Management and Computer
Networks, May, 1977, Berkeley, Califernia,
pp. 19-36.

Stonebraker, M., "Concurrency Control of

Multiple Copies of Data in Distributed

- INGRES", Proceedings of the Third Berkeley

Werkshep on Distributed Data Management and
Computer Networks, August, 1978, San Fran-

cisce, Califernia, pp. 235-258.

Themas, R.A., "A Solution to the Update
Problem fér Multiple Cepy Databases which
uses Distributed Control", BBN Repert 3340,

July 1978.

Wong, E., "Retrieving Dispersed Data from

SDD1: A System for Distributed Databases",

Proceedings of the Second Berkeley Workshop

en Distributed Data Management and Coemputer
Networks, May, 1977, Berkeley, California.

pp. 217-275.



-113~

A CONCURRENCY CONTROL MECHANISM FOR DISTRIBUTED DATABASES
WHICH USES CENTRALIZED LOCKING CONTROLLERS

: *
‘Hector Garcia-Molina

Computer Science Department
Stanford University .
Stanford, California 94305

Abstract

In this paper we present a new efficient concurrency control
mechanism for distributed databases. This general concurrency control
mechanism is based on the idea of having a centralized locking controller
for each replicated fragment of data. The independent centralized
controllers operate without explicit backup controllers. A simplified
two phase commit protocol is used to perform updates. In this protocol,
only a majority of acknowledgments from the copies of a fragment for the
"prepare" (first phase) messages 1is required before committing new data.
The major protocols required . for the concurrency mechanism are outlined.
These include the transaction cancelling protocol and the new controller
election protocol.

1. THE_MODEL.

In order to discuss transaction processing and concurrency control,
we. first define a simple model of a distributed database [5]. We view
the database as a collection of named items. Each item has a name and
some values associated with it; each value is stored at a different node
in the system. In addition, each item i has associated with it a set
" S(i). Set S(i) is the set of nodes which have a value for item i stored
in them. We assume that all sets S(i) are not empty. We represent the
values associated with item i by d[i,x], where x is a node in S(i). (For
nodes y not in S(i), d[i,y] is undefined.) The values for a given item i
at different nodes should be the same (i.e., d[i,x] should equal d[i,z]
for all nodes x, z in S(i)). However, due to the updating activity, the
values may be temporarily dlfferent

We can group items that have identical storage characteristics into
"fragments". A fragment F is a set of items that have the same S sets.
We use the notation S(F) for the set of nodes where F is stored. (That
is, S(F) ='S(i) for all items i in F).

* Author's current address: Department of Electrical Engineering and
Computer Science, Princeton University, Princeton, N. J. 08540



-114-

Operations on the data are grouped into transactions [2]. A
transaction T first specifies a subset of items it wants to read. The
transaction does not indicate where the items are to be read; it is up to
the system to select one of the available values for each item specified
by T. Based on the values read, transaction T performs some computations
and proceeds to update some items. In this final step, T produces a set
of new values for a subset of items. For each item 1 updated by T, the
system must make sure that the new value for i produced by T is stored at
all nodes in S(i). Notice that the data reading and computing phases of-
T may be interleaved. Also notice that transactions do not necessarily
update data. However, to simplify the discussion, we assume that all
transactions are update transactions. The concurrency control mechanism
of the system must guarantee that the effect of running transactions
concurrently is as if the transactions were run one at a time.

In this'paper we concentrate on the concurrency control issues of
transaction processing. We avoid two other important issues: directory
management and transaction optimization. That is, we assume that the S
set for each item (which is part of the directory) is known at all nodes.
We also assume that a transaction can read the items it needs in any
order and - at any node that has the values available. The directory
information, which constitutes a distributed database in itself, can be
updated (e.g., a new node can be added to an S set). However, the
concurrency control mechanism for this directory information is different
from the concurrency control mechanism we discuss in this paper because
more safeguards must be taken when modifying the directory. We will not
discuss directory updating here.

2. A _CONCURRENCY CONTROI, MECHANTSM,

In this section we will illustrate a common concurrency control -
mechanism for transaction processing [7] through an example. (The
description is simplified and we omit many details.) Suppose that item i
is duplicated at nodes x1 and x2, while item j is replicated at nodes x2,
x3 and x4. That is, S(i) = {x1,x2} and S(j) = {x2,x3,x4}. A transaction
T wishes to read item i and then update item j. The way T is processed
is by having T "visit" nodes x1, x2, x3 and x4 requesting locks for the
referenced items. Each node in the system has locks associated with each
value stored at the site. When a node grants a lock to a transaction, it
gives the transaction exclusive access - to the value (until the lock is
" released). Thus, after T obtains locks for d[i,x1], d[i,x2], d[j,x2],
d[j,x3] and d[j,x4], it can compute the new .values for item j without any
interference from other transactions.

When transaction T has computed the new value for item j, the system
updates j and releases the locks through a two phase commit protocol. 1In
the first phase of this protocol, a "master" node (which can be any node)
sends out "prepare" messages with the value for j and the lock release



-115-

information to all the nodes that participated in T (i.e., x1, x2, x3 and
x4). When these sites receive the information, they save it but do not
update j or release any 1locks. Instead, they acknowledge receipt of the
information to the master. After having received acknowledgments for all
‘participating nodes, the master starts the second phase of the protocol
by sending out "commit" messages to all sites involved. (The time when T
obtains all the necessary acknowledgments is called the commit point.)
When a node receives a "commit" message for T, it actually releases the
locks held by T and stores the new value for item j (except node x1 which
does not have a value of j). The two phase commit protocol guarantees
that T terminates correctly at all nodes.. ‘

3. A _NEW CONCURRENCY CONTROL MECHANISM,

We propose a variation of this transaction processing mechanism which
we believe has several important advantages over the mechanism we have
Just described. The main difference is in the way we propose to handle
replicated data in the system. The motivation for such a mechanism comes
from a performance analysis [6] which indicates that a centralized
control - strategy for managing - replicated data is superior to a
distributed control strategy. Notice that in the mechanism of section 2,
the control of an item i 'is distributed among the nodes in S(i). That
is, each node in S(i) has a ‘lock for the value of item i stored at the
-node, and in order to access the item, a transaction must secure all
" locks for the item. We will replace this control structure by creating a
central "controller" for item i which can grant exclusive access to the
values of item i at all nodes.

The idea of centralized control is not new. Alsberg and Day [1]
suggested having a primary site for executing all update transactions.
In the mechanism we are proposing, only the control of the data (i.e.,
the = locks) is centralized; reading the data needed and performing the
computations. for a transaction can be done at other nodes in the system.
This reduces the load at the central site. In turn, this can improve
performance because = the central site is usually a "bottleneck". Menasce
et al [8] have- also suggested the use of a. central controller. Their
lock controller is a unified control structure for the entire system;
here we propose a collection of independent ' controllers. The 1lock
controller in [8] has "local"™ controllers which act as backups for the
main controller. 1In our system, we do not have backup controllers. When
one of the controllers fails, we do not reconstruct its lock information.
Instead, we either cancel  or successfully terminate all pending
transactions that involve. the failed controller. This strategy
eliminates the overhead associated with backups. ‘



-ll6-

4. AN EXAMPLE.

Before we proceed, we 1illustrate how we propose to process
transactions with the example we used in section 2. Recall that item i
.is replicated at two nodes ( S(i) = {x1,x2} ), while item j is replicated
at three nodes ( S(j) = {x2,x3,x4} ). We select a controller for item i,
C(i). Controller C(i) is a "module" which can be located anywhere in the’
system, but for convenience we will assume that it is located at a node
in S(i). Suppose that C(i) is 1located at node x2. Similarly, assume
that the controller for item j, C(j), is located at node xi.

Transaction T reads item i and updates item j. To process T, we make
T "visit"™ controllers C(i) (at node x2) and C(j) (at node x¥) and request
locks for those items. After obtaining locks at both controllers, T has
exclusive access to the two items -and can proceed. (Notice that
.controllers C(i) and C(j) grant their locks without sending any messages
to backup nodes.) :

Once T has computed the new value for item j,‘the'system performs the
update and releases the locks using a modified two phase commit protocol.
In this protocol, the master (which can again be any node) sends out.
prepare messages informing all nodes involved in T (i.e., x1, x2, x3, xU)
that T has completed. But now, the master only has to wait for a
ma jority of acknowledgments from each S(i) set involved. For example, if
the master gets acknowledgments from nodes x1, x2 and x3, then it can
- send out the commit messages because a majority of nodes in each set
S(i), S(j) have responded. When a node receives a commit message, it
~updates item 'j if it has a copy of the item. If the node has a

controller involved in T, then the commit message also causes the locks
to be released. Notice that no acknowledgment is necessary for the
commit message. '

Due to - failures, some nodes that participated in T may not find out
about T's completion (e.g., node xU). These nodes will eventually
discover that they missed this information because of a sequence number
mechanism. (See section 6.3.) When a node discovers this, it obtains the
missing information from other nodes. If the information cannot be
found, the node attempts to cancel T. (See section 6.6.) '

5. ADVANTAGES OF THE PROPOSED CONCURRENCY MECHANISM,

The main advantages of the concurrency control mechanism we propose
are: (1) There is no need to lock an item at all nodes where a copy of
its value exists, (2) In the two phase commit protocol, only a majority
of acknowledgments (for each item referenced) are required, (3) No
explicit backup of the controllers and their lock information has to be’
maintained, and (4) Operation with missing nodes is straightforward
because a transaction that references item i can complete even if a
minority of the nodes in S(i) are unavailable.



-117-

The main disadvantages of our concurrency mechanism are: (1) When a
central controller fails, transactions involving the controller are
temporarily halted until a new controller is elected. In the process,
some transactions may be cancelled or aborted, and (2) The mechanism is
more complex than the one described in section 2. Thus, we are not
proposing our solution as the best for all cases. Our solution is an
interesting alternative which may be well suited for some cases. In
particular, our mechanism seems to be attractive for cases where
performance is important, where data replication is common, and where we
expect failures to be rare.

6. AN OUTLINE OF THE MECHANISM,

~Up to this point, we have only given a very informal description of
the concurrency control mechanism, omitting most of the details. In the
rest of this paper, we will attempt to convince the reader that such a
mechanism can operate correctly even in the face of (detectable)
failures. In the limited space available, we will give an extremely.
brief outline of the major concepts and protocols that. are required in
our mechanism. In [4] we discuss these ideas in detail. 1In that report
we also give a fairly detailed déscription of the concurrency mechanism
for the case of a single controller. The mechanism we present here is
simply an extension of the one controller case given in [4].

6.1 Controllers.

The basic idea in our concurrency control mechanism is that each item
i in the database has associated with it a controller C(i). Several
items can have. the same controller. In other words, each controller J
resides at a node N(J) and manages the locks for the items in the set
I(J). For simplicity, we assume that all items that share a controller
(i.e., the items in I(J)) are replicated at the same set of nodes. That
is, a controller is always in charge of a fragment of the data. (See
section 1.) We use the notation C(F) for the controller of fragment F
(i.e., C(F) = C(i) for all i in F).

Each node in S(F) must know where the (current) controller C(F) is
located. (This location amy change in the controller node crashes. See
section 6.7.) The 1location of C(F) may also be placed in the system
directory so that nodes not in S(F) may find C(F). However, this
directory information need not be current because if the controller is
not found, any node in S(F) can be interrogated to discover the true
location of the controller. '



-118-

6.2 The majority of nodes requirement.

In order to avoid the serious problems that arise when a network is
partitioned, we will require that a majority of nodes in S(F) be active
and able to communicate with each other before any transactions involving
F are processed. This restriction is embedded in the commit protocol
because a transaction needs a majority of acknowledgments from nodes in F
before any update involving F can be committed. This restriction is also
embedded in the new controller election protocol (section 6.7) because
only a majority of nodes in S(F) can elect a new.controller C(F) in case
the old one fails. No controller C(F) can be in operation if it cannot
communicate with a majority of the nodes in S(F).

6.3 Sequence and version numbers.

Anothe} important concept in the concurrency control mechanism is the
use of sequence and version numbers. Each transaction T that requests
locks from C(F) receives a sequence number.  This number must be appended
to all messages generated by T. This sequence number plays an important
role because it is used to order the operations of T with respect to the
operations of other transactions. For example, if T received sequence
number 15 from C(F), T must wait until all transactions with a sequence
number less than 15 are processed at node x before T can read data from F
at node x. To eliminate wunnecessary delays, additional sequencing
information can be assigned to T by C(F). For example, C(F) can give T a
"wait for"™ 1list which includes the sequence number of all previous
transactions that conflicted with T. This way, nodes that perform
operations. of T only have to wait wuntil they finish processing
transactions in this list [3]. (Sequence numbers also play an important
role in crash recovery. See sections 6.4 and 6.7.)

Since a fragment F may have several different controllers over time,
it 1is necessary to distinguish between these controllers and the
transactions that they authorized. (Of course, at any given instant,
there can only be one controller for F.) Version numbers are used to
differentiate controllers of F. A unique version number is associated to
each controller of F, and this number is appended to each sequence number
generated by the controller. All active nodes in S(F) are aware of the
current version number, and are thus able to detect any transactions
whose locks were not granted by the current controller. (See section
6.7.) :

When a transaction T spans several controllers, all the version and
sequence numbers obtained by T at the controllers are included in the
messages generated by T. Each sequence, version number pair carries with
it an indication of what fragment it corresponds to.



-119-

6.4 Update logs.

Any distributed database system needs a mechanism for recording

" completed transactions. To see this, consider what happens when a node

in S(F) crashes. (Assume that the controller C(F) was not at that node.)

Since this node will be out of operation, it will miss a set of updates.

This means that somehow the rest of the system will have to save these.
updates for the crashed node. There are many alternatives for doing

this.

One solution is to use update logs. An update log is a collection of
performed updates that is kept safely at a node. Each log entry contains
the database values that were modified by a transaction, plus the
sequence and version numbers of the transaction. For simplieity, in our
system we assume that a log is kept at each node. Each such log keeps
track of all the updates processed at that node. (It is also possible to
operate with fewer logs but we do not consider this case here.) When a
node x recovers from a failure, it brings each fragment F stored in x up
to date by requesting the missed updates from the logs at other nodes in
S(F). Sequence and version numbers are very helpful here because the
recovering node knows exactly what updates it missed.

6.5 The two phase commit protocol.

When a transaction T is ready to store values into the database, it
uses the modified two phase commit protocol described in section 4. This
guarantees that either no values are stored at all or that all values
produced by T are eventually stored at all nodes involved. When a node
- in S(F) acknowledges receipt of the preparé message for T, it makes a
commitment to remember T (and the values it produced) and to do
everything in its power to see that T completes correctly. The node
remembers T by placing the information in -the prepare message in a
~ "prepare" 1list. We assume that the information in this 1list cannot be
lost. (Log entries can be made to make the prepare list safe. In [7] we
discuss what happens when this and other state information is destroyed.)

When the master node for T receives a majority of acknowledgments
from the nodes in S(F), it knows that the update to F cannot be lost. 1In
the case of failures, we know that at least one member of any working
ma jority of nodes in S(F) will have a record of T and will "speak up" for
T. Thu§, after receiving a majority of acknowledgments from the nodes in
each S set involved in T, the master node can send out the commit
messages. When a node - in S(F) receives a commit message, it adds T's
sequence and version numbers to its list of performed transactions (which
is kept by all nodes); it writes out a log entry; it performs the update
“on F indicated by T; and finally it removes T from the prepare list.

Due to failures, a transaction may be unable to get the majority of
acknowledgments needed for committing. In such a case, the transaction
"times out" and the system attempts to cancel the transaction. This
cancelling protocol is described in the next section.



-120-

6.6 The transaction cancelling protocol,

In many cases a transaction will have to be cancelled. One such
instance is when a deadlock occurs and a transaction must be backed out.
" Another case occurs when a transaction which holds locks fails to release
its locks. For example, a transaction may have been computing at a node
which crashed. In this case, the transaction must be cancelled and its
locks reclaimed. :

A transaction will only be cancelled if no data has been committed by
the transaction. Thus, the first step in the cancelling protocol is to
verify that the transaction had not reached the commit point. Notice
that if a transaction T has reached the commit point, then a majority of
nodes in each S(F) set, for each fragment F referenced, have a record of
T. Hence, if a single fragment F can be found where a majority of nodes
in S(F) have no record of T, then T can be cancelled.

To cancel a transaction T we proceed as follows. First, a node w is
selected to be the master node for the cancellation. Any node can be the
master, and several such nodes may be attempting to cancel T
concurrently. We assume that node w knows that T referenced fragments F1,
F2, ..., Fk. (The protocol can easily be modified to handle the case
" where only one fragment is known initially.) Node w sends out messages
to controllers C(Ft1), C(F2), ..., C(Fk) asking them if they can cancel T.
Each controller responds either that T can be cancelled or that it does
not know if T can be cancelled. Controllers do not take any action on T
at this point. However, if a controller says that T can be cancelled, it
makes sure that T can not reach the commit point in the future.

~ Wheén node w receives answers from all cbntrollers, it decides if T
will be cancelled. If at least one controller said that T could be
cancelled, then T has not committed and is cancelled. If all controllers
say that they  do not know if T .can be cancelled, then T may have
committed and node w attempts to complete T. (Notice that in this case
all controllers found a record of T. Thus, all the update values
" produced by T are known and T can be completed.) The decision of node w
is broadcast to all controllers, which then carry out the decision.

When a controller C(F) wishes to know if T can be cancelled (in
response to node w's first message), C(F) sends out "propose to cancel T"
messages to all nodes in S(F). When a node y in S(F) receives the
" "propose to cancel T" message, it checks to see if it has a record for T.
That is, node y checks if it has previously received a prepare or a’
commit message for T. If y has such a record, it informs the controller.
If y has no record of T, then it sends a "have seen proposal to cancel T"
message to C(F). With that message, node y makes a commitment not to
acknowledge any prepare messages for T it might receive later. Thus,
node y remembers the "propose to cancel T" message until it hears from
the controller again. (We assume that node y cannot forget its
commitment.) ' :



-121-

If C(F) receives a majority of "have seen proposal to cancel T"
messages, then C(F) knows that T has not committed and that T will not
commit in the future. Thus, C(F) can answer node w that T can be
cancelled. On the other hand, if C(F) discovered a record of T among the
nodes in S(F), then it must answer that it does not know if T can be
cancelled because as far as it knows, T could have committed. In this
case, T's record (including its update values) is ‘sent to w.

When controller C(F) receives a command from node w to actually
cancel T, it does this using a two phase commit protocol similar to the
one used by transactions to commit. This guarantees either that T is
cancelled at all nodes in S(F) (as far as F is concerned) or that T is
not cancelled at all. A node in S(F) finally cancels T by recording a
null or dummy update. That is, T is processed as if T has committed,
except that no values are stored in the database. Similarly, a command
from w to complete T because it could not be cancelled causes C(F) to
distribute the update values for T to nodes in S(F) and to commit them
using a two phase commit protocol  (with a majority of acknowledgments
only). '

A nice feature of the cancelling protocol we have described is that
it .can be interrupted and restarted anywhere without undesirable
consequences. Thus,,fif the cancellation master node w or any of the
controllers crashes in the middle of the cancellation, the procedure can
simply be abandoned and then restarted by any node that notices that T is
still pending

6.7 The election protocol.

When a controller C(F) fails, a majority of nodes in S(F) elect a new
controller. As nodes in S(F) detect that the controller is not active,
they go into a special state where all normal processing is halted. (1If
a node x later finds out that C(F) did not really fail, then node x
recovers as if it was the one that failed.) When a halted node discovers
‘a majority of other halted nodes, it attempts to become the node with the
new controller. One way to do this is to try to "lock out" all other
nodes. If a node succeeds, it creates the new controller. If it fails
in locking out the other nodes, then it must release all nodes it was
able to lock out and must try again later '

A new controller is assigned a new version number differént from all
previous version numbers. Every node that participated in the election
is given and records the new version number. Before the new controller
starts operating, it must deal with the unfinished transactions left by
the old controller. Since the o0ld controller did not 1leave any backup
information behind, it is 1impossible . for the new controller to
reconstruct the locking information that existed before. Hence, the new
controller has to force the release of all locks by either cancelling or
completing all outstanding transactions involving fragment F. '



-122=

To do this, the new contrbller requests copies_of all pending prepare
messages 1in nodes in S(F), as well as the list of the committed
transactions at these nodes. ’ '

Let s be the largest sequence number from the old version observed in
this process by the new controller. If the new controller discovers that
a commit message has been received somewhere in S(F) for a transaction T,
then T has committed and must be completed using a two phase commit
protocol (with a majority of acknowledgments only). The new controller
~attempts to cancel all other transactions with sequence numbers between 1
and s issued by the old controller. This is done with the cancelling
protocol of section 6.6. Finally, notice that transactions with sequence
numbers s+1, s+2, ... may have been authorized by the old controller, but
no nodes in S(F) knew about these transactions before the crash of the
old controller. Thus the new controller must also cancel all
transactions with sequence numbers s+1, s8+2, ... 8since they have
definitely not committed. This is done through the version number
mechanism. Since the new controller and all the nodes in S(F) now have
the new version number, all uncommitted transactions (if any) with the
old version number will be unable to commit because they can no longer
get acknowledgments from the nodes in S(F). When these transactions time
out because they cannot commit, they will be cancelled entirely.

As a last step, a new central controller makes an entry into the logs
indicating what the largest sequence number of the old version was. This
information 1is used by recovering nodes in order to know what updates
they missed from older versions. After this, C(F) and the nodes in S(F)
can go back to normal operation. '

Like the cancelling protocol, the ‘election protocol can be safely
interrupted by failures (like the crash of a newly elected controller
node). Another working majority of nodes can then restart the protocol at
a later time. .

6.8 Deadlock ction

Deadlocks are possible with our concurrency control mechanism.
Deadlocks may be avoided by forcing all transactions to request locks
from the controllers in the same predefined order. In some systems, this
may not be feasible, so deadlocks must be detected and eliminated. Gray
[7] (among others) discusses several deadlock detection strategies that
may be used. Once we choose a transaction that must be backed out, it can
be cancelled with the protocol of section 6.6. Also notice that a
transaction may make several lock requests to the same controller, but
this should not cause any problems.



-123-

| 7. CONCLUSION,

We have proposed a new concurrency control mechanism for distributed
databases. We believe that this control strategy has some advantages
. over the other well known strategies. Work is currently underway to

evaluate the performance of this proposed mechanism, as well as to verify
its correctness. ' o :

8. ACKNOWLEDGMENTS.

Several useful suggestions and ideas were provided by Clarence Ellis,
Ramez El-Masri, Bruce Lindsay, Toshimi Minoura, Daniel Ries, Tom Rogers,
Gio Wiederhold, and others.

This work was partially supported by the Advanced Research Projects
Agency of the Department of Defense under contract MDA903-77-C-0322
(KBMS), by the SLAC Computation Research Group of the Stanford Linear
Accelerator Center under Department of Energy contract EY-76-3C-03-0515,
and by the Biotechnology Research Program of the National Institute of
Health under grant NIH RR-00785 (SUMEX).

9. REFERENCES.

[1] P. Alsberg and J. Day, "A Principle for Resilient Sharing of
Distributed Resources"; 2nd International Conference on Software
Engineering, San Francisco, California, 1976.

[2] k. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger,
"The Notions of Consistency and Predicate Locks in a Database
System"; Communications of the ACM, Vol. 19, No. 11, November 1976.

[3] H. Garcia-Molina, "Performance Comparison of Update Algorithms for
Distributed Databases, Part II"; Technical Note 146, Computer
Systems Laboratory, Departments of Electrical Engineering and
Computer Science, Stanford University, December 1978.

(4] H. Garcia-Molina, "Crash Recovery in the Centralized Locking
Algorithm"; Technical Note 153, Computer Systems Laboratory, -
Departments of Electrical Engineeing and Compute Science, Stanford
University, April 1979. ’

(51 H. Garcia-Molina, "Partitioned Data, Multiple. Controllers and
Transactions with an Initially Unspecified Base Set"; Technical Note
155, Computer Systems Laboratory, Depatments of Electical
Engineering and Computer Science, Stanford University, April 1979.



(6]

(7]

[8]

S =124~

H. Garcia-Molina, "Performance Comparison’of Two Update Algorithms
for Distributed Databases"; Proc. 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks, San Francisco,

‘August 1978.

J. Gray, "Notes on Database Operating Systems"; Advanced Course on
Operating Systems, Technical University Munich, July 1977.

D. A. Menasce, G. J. Popek, and R. R. Muntz, "A Locking
Protocol for Resource Coordination in Distributed Databases"; SIGMOD
Proceedings May 1978, to appear in TODS.



~-125-

ON EFFICIENT MONITORING OF DATABASE ASSERTIONS IN DISTRIBUTED

DATABASES

D. Z. Badal

Computer Sciénce Department, UCLA, Los Angeles, Ca 90024

Abstract

A principal problem with the use of database integrity
assertions for monitoring the integrity of dynamically
changing database is the high cost due to the evaluation of
such assertions. In this paper we analyze and compare the
cost and performance of several integrity validation methods
in distributed database environment where the communlcatlon
cost and delay are principal factors.

INTRODUCTION

It is often argued that the users of databases should
be able to specify semantic integrity (SI) assertions about
their data. Such assertions delimit values in the database
in terms of other database values or constants. Although
considerable work has been done on the specification
methodology for such assertions /McL 76, STO 74, BOY 75, ZLO
T4, GRA 75, MAC 76, FLO 74, MIN T4, WEB 76/, there seems to
be much less concern with 1mplementat10n issues /STO 75, ESW
75, ESW 76, STO 76, HAM 78/. :

A major problem in validating transactions with respect
to a set of SI assertions is the high overhead ( or cost)
caused by the dependency of transactions and SI assertions
on values stored in the database. Such dependencies prevent
a priori proofs of transaction correctness with respect to a
set of SI assertions. An example of such a database data
dependent transactlon T and SI assertion A could be as
follows: : '

T: 1increase the salary of employee J. Johnson by 10
percent

A: salary of employee < MAX (salary of manager,
~1.5%*3verage salary)



-126-

Transactions whose SI correctness cannot be proven must
be ‘dynamically monitored = to determine whether their final

values violate SI assertions. The subsystem which monitors

such SI assertion violations is properly a part of database
management and in this paper we analyze the cost and the
performance of .several methods of semantic integrity (SI)
validation of transactions.: ‘ '

SI VALIDATION METHODS

The validation of  transactions with respect to SI
assertions can occur at compile time (i.e. before
transaction execution), during transaction execution (i.e.
at run time), after transaction execution; or partially
during each of these phases. Each method of SI wvalidation
has advantages and drawbacks, and each method introduces
‘overhead. The cost of SI wvalidation consists of three
factors: ' ‘

(1) Accessing database data in order to evaluate 3SI
assertions, o

(2) vComputation to evaluate‘SI assertions, and

(3) The communication cost if SI ~assertion arguments
are stored at several sites of a distributed
database system.:

We assume here that the computational cost for SI
assertion evaluation is the same for ' any SI validation
method. Therefore, the major components of SI enforcement

cost result from -accessing database data for SI assertion . -

- evaluation and from communication cost due to SI validation
that requires access to -several sites of a distributed
‘database system.

Compile Time SI Validation

Compile time SI validation means that a transaction is
allowed to execute only after its SI assertions are

" evaluated and all assertions are found true. Hammer and

Sirin /HAM 78/ suggest compile time SI validation based on
SI tests. The purpose of these tests is to obtain those
values which database data would have had if the transaction
had been executed. The values are then wused for. SI
validation of the transaction, i.e. for evaluation of all SI

|



=127~

assertions which interact with the transaction. Compile time
SI validation has one obvious advantage - it does not
require transaction rollback when 'SI assertions are
violated. However, compile time SI wvalidation has the
following disadvantages:

(1) Validation and execution are séquential, slowing
response. :

(2) The database objects on which compile time SI
tests are run cannot be modified by any other
transaction until the transaction being wvalidated
is executed. Effectively, such database data
objects have to remain write-locked from SI
validation through transaction execution, since
compile time SI validation tests must execute on
the same database data values as the transaction
will during its execution. Otherwise revalidation
is required. : :

Run Time SI Validation

. Run time SI validation means that SI validation of
transactions is concurrent with transaction execution, where
the result of transaction execution is not committed, e.g.
the actual update is not performed, i.e. is not transferred
to the transaction write site and executed, until
transaction validation has been terminated without
violations of SI assertions /BAD 79/. Thus,  if transaction
execution 1is seen ( and implemented) as a sequence of read-
compute and write events, then all SI assertions can be
evaluated as part of transaction execution. After the
transaction executed its read-compute events SI assertions
can  be evaluated because the result of transaction is known
at that time. Then depending on the outcome of SI validation
the write events of the transaction can be executed, i.e.
the update messages are transferred to the transaction write
sites and performed there. The major advantages of this
approach result from concurrent execution; there is no need
for transaction rollback, the time interval during which the
database data must be locked for SI validation is reduced to
transaction execution time, and duplicate reads are avoided.

Another proposal based. on run time SI validation
appears in INGRES /STO 74, STO 75/ where single variable,
aggregate-free integrity assertions can be efficiently

evaluated during transaction run time by appending such °

assertions to the query. However, the evaluation of
integrity assertions 1involving aggregates occurs after
transaction execution, i.e. the resulting (updated) relation
is tested for the integrity assertions and then the update



- -128-

_is_ undone if the assertions are not satisfied. The strategy

is therefore mixed - partialy run time and partially
postexecution time. '

Post Execution SI Validation

The conventional method of SI validation is to execute
the transaction first and then to validate the results. The
proposal by Eswaran et al. /ESW 76/ employs postexecution
time SI wvalidation where the violation of SI assertions by
the transaction triggers corrective action. Transaction
rollback or some other compensating action, depending on the
semantics of the SI assertions and the transaction, may take

-place. One advantage of postexecution time SI validation is

its conceptual simplicity. The obvious disadvantage is the
need for transaction rollback and the longer time interval
during which the database objects modified by the
transaction may be 1locked. If the objects are not locked,

then any other transactions which access the database data

which were undone would have to be rolled back too.

A

COST AND PERFdRMANCE ANALYSIS OF SI VALIDATION METHODS 1IN
DISTRIBUTED DBS

In centralized database systems the only significant
factor of SI wvalidation cost 1is the number of database
accesses due to SI validation.It has been shown /BAD 79,BAD
79a/ that in terms of the cost of database accesses

a) the run time SI validatlon is superior to any of
the other methods for realistic database
operations, 1i.e. for systems without high
‘transaction rejection rates;

b) compile timer SI ~validation yields  Dbetter
performance than run time SI validation when the
compile time SI tests are very efficient, i.e.
require  substantially fewer database accesses
compared to the transaction reads and if DBS has a
relatively high rejection rate;

c) postexecution time SI validation has consistently
worse performance than = other SI validation
methods; : _

d) 'the use of faSt access memory to store data for
evaluation of some SI assertions results in



-129-

increased performance that differs for each SI
validation method.

However, the principal cost and performance criterion
for SI wvalidation in nonlocal ( or 1loosely coupled )
distributed database systems is the communication cost and
communication delay, and the number of database accesses is
of secondary importance.Therefore,in our analysis we neglect
the cost overhead due to database accesses required for SI
validation at each site of distributed database system and
we consider the communication cost only.

We derive the cost of SI validation in distributed
~databases without considering transaction processing
strategy. We consider here only the number of messages
needed either to access sites or to set local locks there.
We assume that there is one control site which either does
evaluation of SI assertions (i.e. SI validation is
centralized) or it receives the results of distributed SI
validation. However, 1in both cases such site controls
subsequent transaction execution steps. Assuming a two-phase
locking /GRA 76, GRA 78, ESW T76a/ we analyze SI validation
methods in distributed database in terms of lock and unlock
messages. ’ : o :

Let

P be the average number of sites at which the
transaction during its execution reads and writes
or reads only.

Q be the average number of sites at which the
transaction during its execution writes only.

S be the average number of sites counted in P above at
which the transaction reads and that are also
accessed for SI validation. Clearly, S <= P.

V be the average number of sites counted in P above
at which the transaction writes. Clearly , V <= P

R be the average number of sites not accessed by the
transaction but accessed for SI validation ‘only.

The cost of compile time SI validation in distributed
database environment can be derived as follows. Since from n
transactions only m (m <= n) transactions will be accepted,
i.e. n - m transactions are rejected because they violated
SI assertions, then the communication cost of executing
those m transactions can be derived from the following



~130-

complle tlme SI valldatlon algorlthm

Algorlthm Ci1:

1) lock at R and S sites

2) R and S sites either evaluate SI assertions and
send the result to a control site or they send
data to the’control site which does SI validation

3) if SI validation results in SI violation, then
reject transaction and terminate, else do U4)

4) lock at:b + P ;'S sites anﬁlexecute traﬁsactioﬁ
5) unlock at Q + é + R sites and terminate
" The number of messages génerated at each step‘ of algorithm
(O § 1s '
1) n(R + S)
2) n(R + S)
3) (n-m(®R +S)
B m(P + Q- 8)
5) m(P + Q + R)
,,Thus,the total commuﬁication cost of the compile time

SI validation (i.e. the <cost of n transactions employing
compile time SI validation) is

Cl1 =2n(R + S) + (n - m)(R + S) + m(2P + 2Q + R - S) 3n(R
+ S) + 2m(P +Q - S)

-

(1)
where
n is the-numbef of transactions
m is tﬁe number of accepted transactions,

i.e. the number of transactions which
did not cause any SI violations; m <= n



-131-~

The communication cosf of postexecﬁtion time SI
validation can be derived from the following algorithm C2.

Algorithm Eg:

1) lock at P and Q sites and execute transaction

2) lock at R sites, send the SI assertion argumeat
values or SI validation results to the control
site and release locks after sending the above
message to the control site

3) control site requests and receives SI messages from
S sites . .

4y if SI validatlon results in SI violation, then send
reject messages to all sites at which transactlon
writes, i.e. to Q and V sites, else do 5)
5) unlock at P + Q sites and terminate
The number of messages generated at each step of algorithm

Ce is:

1) n(P + Q)

2) - 2nR
3) 2nS

4) (n - m)(Q + V)
5) n(P + Q)

Thus the communlcatlon "cost of postexecution time SI
validation is: '

v ' (2)
C2 =2n( P + Q) + 2n(R + S) + (n - m)(Q + V)

The communlcatlon cost of run time SI valldat1on can be
derived from the following algorithm C3.

Algorithm C3:

1) lock at P and R sites



-132-

'2) execute read-compute (i.e. generate ‘final update
messages at P sites) and read SI values at R sites

3) send SI assertion argument values or ﬁhe results of
SI validation from R and S sites to the control
site

4) if SI validation results in SI violation , then
‘reject transaction via unlock messages to R and P
sites and terminate, else do 5)

5) lock at Q siteés and execute updates

v6) unlock at P + Q + R sites and terminate

The number of meSsaées generated by the algorithm C3 is:
1 nP 4+ R) | |
_2) none.
3) An(R +8)
‘4) (n - m)(P + R) ‘
5) mQ o
6)‘ m(P + Q + R)

Thus the communicatibn cost of postexecution time SI
validation is: '

C3 = n(P + R) + m(R + S) + (n - m)(P + R) + mQ + m(P + Q +
R) . ' v S ‘

(3)
C3 =z2n(P + R + S) + 2mQ

The .communication cost of .- mixed run time and
postexecutlon time SI validation can be obtained by adaptlng
formulae (2) and (3) : :

C4 = (2n[11(P + R.+ SY + 2m{11Q) + (2nf[21(P + Q) ; 2n[2](¥u;
$) + (n[2] - m[21(Q + V)) |
where

n{1] 1is the number of transactions validated



-133-

at run time; nl[1] <= n

"n{2) 1is the number of transactions validated
‘ at postexecution time; n([2] <= n and
nf1]l + nf2] = n ' '

m[1] is the number of transactions  rejected
"~ due to run time SI validation; m[1] <= m

m[2] 1is the number of transactions rejected
(rolled back) due to postexecution time
SI'validation; m{2] <= m and m[1] + m[2]
= m . )

Now that 'a consistent, straightforward method of
expressing thé - communication cost of ‘the various SI
- validation methods has been provided, it 1is wuseful to

compare them. ' : _ : : o

Lemma 1:

- The communication cost of run time SI validation C3 is
greater than the communication <cost of compile time SI
validation C1 only if the accesses  for SI wvalidation at
transaction read sites or read and write sites are more
numerous than the accesses for SI validation at sites not
accessed by the transaction, i.e. C3 > C1 only if 0 <= R <=

S. ' - ' _ ' A : '

Proof:

Assume C1 > C3. Then substituting from (1) and (3) we

qbtain‘. -
» - - : | (4a)
3n(R + S) + 2m(P + Q - 3) < 2n(P + R + 8) + 2mQ '
(4a) reduces to the following condition’ ‘
(5)

m/n > 1/2(1 + (P - R)/(P - S))

Since m <= n we observe the followingﬁ

case 1: if R = 0, then (5) is not satisfied, i.e. C1°<
c3 :

case 2: if R = P, then (5) is satisfied, i.e. C3 < C1
ifm > .5n :



-134-

case 3: if R < P, then
if R < S <P, then (5) is not satisfied, i.e. C1 < C3
if P >R > S, then (5) is satisfied ,i.e. C3 < C1

if R = S,then (5) is not satisfied, i.e. C1 < C3

case 4: if R > P, then (5) is satisfied, i.e. €3 < C1

- Therefore, C3 > C1 if 0 <= R <= S and C3 < C1 if S < R. This
concludes the proof. : ) :
Lemma 2:

' The'communlcatlon cbst of compile tlme'SI vaiidatlon C1
is less than the communication cost of postexecution time SI
validation C2, i.e. C1 < C2 only if 0 <= R <= S.

Proof:
~Assume C1 > C2. Substltutlon from (1) ‘and (2) leads to
3n(R + S) + 2m(P + Q - S) > 2n(P + Q) + 2n(R + S) + (n
: (5a)
- m)(Q + V)

(5a) reduces to

4 : ' (6)
m/n > (2P + 3Q + V - R -8) /(2P + 3Q + V - 28)

Since m <= n we observe that if R = 0 or R =S or R <
S, then (6) is not satisfied, i.e. C1 < C2, otherwise (i.e.
1f R >S ) C1>cC2. This concludes the proof.

Lemma 3:

The communication cost of run time SI validation C3 1is
always less or equal to ( if m=n ) the communication cost of
postexecution time SI validation C2, i.e. C3 <= C2.

Proof: . |
Assume C3 <= C2.Substituting from (2) and (3) leads to

2n(P + R + S) + 2mQ <= 2n(P + Q) + 2n(R + S)
‘ (7)



-135-

+ (n - m)(Q + V)
(7) reduces to

(8)
(n - m)(V + 3Q) =>0

Since all terms are positive, and n => m then (8) 1is
. satisfied (for any transaction which affects database
consistency i.e.,which updates the database). This concludes
the proof.

Lemma i:

} -The communication <cost of mixed  run time and
postexecution time SI validation 1is at best equal to run
time SI validation and at worst as costly as - postexecution

tlme SI valldatlon. o

Proof: v
We want to show that C3 <= CY <= c2.

If in (4) n{1] = n,i.e. n[2] =0, then C4 = C3. If 1in
(4) nf2] = n, i.e. n{1} = 0 ,then C4 = C2. Since C2 > C3
(Lemma 3 ),then the lower bound for C4 is C3 and the upper
bound for C4 is C2. This concludes the proof.

CONCLUSION.

In this paper we have shown that- in the distributed
database when there 1is an extensive global SI validation,
i.e. when R > S, then in terms of communication cost the run
time SI validation is the least costly and the compile time
SI validation has the highest communication overhead, 1i.e.
C3 <= C2 < C1. However, if there is not an extensive global
SI validation, i.e. when 0 <= 5 <= R, then the compile time
SI wvalidation has the lowest communication overhead and the
postexecution time SI validation has the highest
communication overhead, i.e. C1 < C3 <= C2. We would like
to point out that the conclusions reached here apply to any
type of distributed database, i.e. they apply to fully
replicated, partially replicated or nonredundant distributed
databases. This 1is so because the obtained results do not
depend on the number of sites at which transaction writes
only, i.e. on Q. :



~136-

REFERENCES

BAD 79 Badal, D. Z. "Semantic integrity, consistency and -
concurrency in distributed = database systems," Ph.D.
dissertation, Computer Science Dept., UCLA, March 1979.

BAD79a Badal,D.Z. and Popek,G.J. "Cost and performance
analysis of semantic integrity validation methods " , Proc.
of ACM SIGMOD 79 International Conference on Management of
Data, Boston, May 1979, pp.109-115,

ESW 75 Eswaran, K. P. and Chambérlin, D. D. "Functional
specification of a subsystem for data base integrity," IBM
Research Report RJ 1601, June 1975.

ESW 76 Eswaran, K. P. "Specifications, implementations and
interactions of a trigger subsystem in an integrated
database system," IBM Research Report RJ 1820, November

ESW 76a Eswaran, K. P. etal. "The notions of consistency
and predicate 1locks 1in database system," CACM - 19, 11
(1976),pp.624-633.

FLO 74 Florentin, J. J. "Consistency auditing of data
bases," Computer Journal 17, 2 (1974), pp. 52-58. .

GRA 75 Graves, R. W, "Integrity control in a relational
data description language," Proc. of ACM Pacific Conference,
San Francisco, April 1975, pp. 108-113, .

GRA 76 Gray, J. etal. "Granularity of locks and degrees of
consistency in a shared data base," Modelling in Data Base
Management Systems, G.M. Nijssen(ed.), North Holland, 1976,
pp.365-395. .

GRAY78 Gray, J. "Notes on data base operating systems,"IBM
Research Report RJ 2188, February 1978.

HAM 78. Hammer, M. M. and Sarin, S. K. "Efficient monitoring
of database assertions," ACM/SIGMOD 78 . Int. Conference on
Management of Data, Dallas, June 1978, pp.38-48.

MAC 76 Machgeles, C. "A procedural language for expressing
integrity constraints in the coexistence model," Modelling
in Data Base Management Systems, ed. by G. M, Nijssen,
Amsterdam, North-Holland, 1976, pp. 293-301.

McL 76 McLeod, D. J. "High 1level expression of semantic
integrity specifications in a relational data base system,"
MIT/LCS/TR-165, September 1976.

MIN 74 Minsky, N. "On interaction with data ‘bases," Proc.



-137-

of CM SIGFIDET Workshop on Data Description, Access, and
Control, ACM, New York, 1974. : .

STO 74 Stonebbaker, M. "High level integrity assurance in
relational data management systems," Electr. Res. Lab. Memo
ERL-MU473, UC Berkeley, August 1974. o :

STO 75 Stonebraker, M. "Implementation = of integrity
constraints and views by query modification," Electronics
Res. Lab. Memo ERL-M514, UC Berkeley, March 1975.

STO 76 Stonebraker, M. and Neuhold, E. "A distributed data
base version of INGRES," Electronics Res. Lab. Memo ERL-
M612, UC Berkeley, September 1976. :

WEB 76 Weber, H. "A semantic model of integrity constraints
on a relational data base,"” Modelling 1in Data Base
Manamgement Systems, ed. by G. M. Nijssen, Amsterdam,
North-Holland, 1976, pp. 269-293. ‘

ZLO 74 Zloof, M. M., "Query by example," IBM Research Report
RC 4917, July 19T74. _ . '



' PROTOCOL MODELING




—1-41_

A STUDY OF THE CSMA PROTOCOL IN
LOCAL NETWORKS*

Simon S. Lam o
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas. 78712

Abstract

A consequence of bursty traffic in computer communications is that
among a large population of network users, at any one time only a small
number of them have data to send (ready users) In this environment,
the performance of an access protocol for a broadcast network - depends
mainly upon how qulckly one of the ready users can be identified and
given sole access to the shared channel. The relative merits of the
access protocols of polling, probing and carrier sense multiple access
(CSMA) with respect to this channel assignment delay in local networks
are considered. A central controller is. needed for polling and probing
while CSMA employs distributed control. A specific CSMA protocol is
defined which requires that "collisions! in the channel be detected and
that the users involved in a collision abort their transmissions quickly.
In addltlon, it is assumed that the- contention algorlthm is adaptive
and. gives rise to a stable channel. An analytic model is developed.
Our main result is the moment generating function of the distributed
queue size (number of ready users). . Mean value formulas for message
delay and channel assignment delay are also derived. These results on
queue size and delay are the major contribution of this paper, since
they are not available, in prior CSMA models in closed -analytical form.
Numerical results are given to illustrate the performance of the CSMA
protocol. When the channel utilization is light to moderate, the mean
" channel assignment delay of the CSMA protocol is significantly less than
that of both polling and probing; consequently, the mean message delay
is much smaller. It is also shown that when queueing of messages is
permitted at individual users, the maximum channel throughput of CSMA
approaches unity in the 1limit of very long queues.

1. INTRODUCTION .

Multipoint networkS'have been widely used in .local networking for
the interconnection of terminals to a central site: either a central
computing facility or a gateway to a resource sharing computer network.
The terminals are typically unintelltgent and access to the shared data
path (channel) ‘is managed by the central site using a polling protocol
[1]. With increasing interest in local networking and the availability

* This work was supported by the National Science Foundation uuder
Grant No. ENG78-01803.



-142-

of inexpensive microprocessors, other interconnection topologies,
transmission media and access protocols have been proposed and investi-
gated. They include loop networks with centralized control [2] or
distributed control. [3], a digital cable network using time-division
multiple access [4], the ALOHANET [5] and Packet Radio Network [6],
which pioneered the use of radio channels and contention protocols for
multiple access. Recently, considerable interest has been revived in
multipoint cable networks (based upon CATV technology) employing a
variety of multiple access protocols [7-10].

The multiple access problem in multipoint networks is addressed in
this paper. A multipoint cable network such as those in [8,9] can be
viewed upon as a broadcast channel shared by a population of distributed
users. Two major categories of multiple access protocols may be used:
polling and contention protocols [11]. Polling protocols require a
central controller. On the other hand, with contention protocols each
network user makes his own decision according to an algorithm which
is driven by observable outcomes in the ‘broadcast channel. We shall
consider multipoint networks that have short propagation delays between
users relative to the transmission time of a message. In a short
propagation delay environment, carrier sense multiple access (CSMA)
protocols have been found to be the most efficient among contention
protocols [12-15].

Consider a broadcast channel (the multipoint network) shared by-a
population of N users (terminals, computers, etc.). There are two
problems to be addressed by an access protocol: (1) among the N users,
identify those with data who desire access to the channel, the ready
users, .and (2) assign channel access to exactly one of the ready users
if at least one exists.

The ready users can be considered as forming a "distributed queue"
waiting to use the broadcast channel. We assume that each user
generates and holds for transmission at most one message of arbitrary
length at a time. (The effect of queuing 'messages at individual users
is discussed in the last section of this paper.) A consequence of the
conservation law in queuing theory [12] is that the average message
delay performance of an access protocol is independent of the order of
service but depends mainly upon the amount of overhead needed for
assigning channel access. Thus, when access protocols are compared
solely on the basis of average message delay performance for a given
channel throughput level, the above two problems reduce to just the
following: whenever the .channel is free and there are one or more ready
users, how quickly can channel access be assigned to a ready user?

In conventional polling protocols [1], the above problem is solved
by a_central controller that queries the N users one after the other.
Let w be. the average overhead associated with querying one user; W
includes propagation delay, polling message transmission time etc. To
find out who the ready users are, the overhead per polling cycle
(querying all N users) is Nw, regardless of the number of ready users
present. This overhead i1s an indirect measure of the responsiveness of
the access protocol; Konheim and Meister [16] showed that the mean
delay of a polled network is directly proportional to Nw.

Hayes [17] recently proposed and studied the method of probing:
polling a group of users all at one. The key idea is as follows. If a



-143-

group of users is probed and none responds, the whole group can be elim-
inated. If probing a group produces a positive response, it is subdiv-
.ided inté two groups which are then probed separately. Thus when the
network is lightly loaded, with few ready users, significant overhead
reduction results through eliminating groups of non-ready users all at
once. In the extreme case of only one out of the N users being ready,
the number of queries required by probing is 2(log.N) + 1 instead of N
required by polling. However, ifzall N users are Yeady, the number of
queries required by probing is (N°-1). (See [17] and [11].)  Thus
probing is penalized when the channel is heavily utilized. 'Hayes
proposed an adaptive algorithm which optimizes the performance of
probing and also avoids the above penalty by reverting to pure polling
beyond a certain level of channel utilization.

Unlike polling and probing, which require a central controller and
are designed for "passive" users, contention protocols require that
each ready user actively seek channel access and make his own decisions
in the process. We define below a CSMA protocol and show that the time
required by it to assign channel access to a ready user is independent
of N. Under this protocol, when there is exactly one ready user and
‘the channel is free, the ready user gets channel access immediately.
Thus the average ''channel assignment delay” is near zero when the
channel is lightly utilized. On .the other hand, when the channel is
heavily utilized the average channel assignment delay is bounded above
by a small constant (see below).

CSMA protocols have been studied extensively in the past within a
packet radio network environment by Kleinrock and Tobagi [13, 14] and
later by Hansen and Schwartz [15]. Analytic results in these references
are mainly concerned with the maximum channel '"throughput" achievable
by various protocols. Characterization of the number of ready users
and message delay is limited to approximate numerical solutions or
simulation results.

The main contribution of this paper is an analytic model of a CSMA
protocol. The protocol is defined and our assumptions stated in Section’
2. 1In Section 3, the moment generating function of the number of ready
users is obtained. Formulas for the average message delay and average
channel assignment delay are also derived. 1In Section 4, numerical
results are plotted to illustrate the performance of the CSMA protocol,
which is also compared with polling. We conclude by discussing possible
extensions of this work in Section 5. a : '

2. THE PROTOCOL AND ASSUMPTIONS

The main difference between the CSMA protocol studied in this paper
and the p-persistent CSMA protocol of Kleinrock and Tobagi [13, 14] is
as follows. We assume here that collisions in the channel are detected’
and that users involved in a collision abort their transmissions immedi-
ately upon detecting the collision. Mechanisms for detecting collisions
and aborting collided transmissions hawve been implemented in at least
two multipoint cable networks [8,9]. However, it appears to be much
more difficult to implement a ''collision abort'" capability in the radio
environment of interest in [13, 14].



-144-

Like the p-persistent protocol in [13,14] network users are
assumed to be time synchronized so that following each successful
transmission, the channel is slotted in time. (See Fig. 1.) Users
can start transmissions only at the beginning of a time slot. Let T be
the amount of time from the start of transmission by one user to when
all users sense the presence of this transmission. It is equal to the
maximum propagation delay between two users in- the network plus carrier
detection time. (The latter depends upon the modulation technique and
channel bandwidth. It was considered to be negligible relative to the
propagation delay in [14].) 1In order to implement the collision abort
capability described above, the minimum duration of a time slot is
T =21, so that within a time slot if a collision is detected and the
collided transmissions are aborted immediately, the channel will be
free of any transmissions at the beginning of the next time slot.

The slotted channel assumption is made to simplify our analysis.
(The practical problem of time synchronizing all users in the network
is a classical one and beyond the scope of this paper.) In a real
system, either . a slotted or unslotted channel may be implemented. We
discuss in Section 5 that the performance of an unslotted channel is
likely to be approximated by that of the slotted model in this paper.

The CSMA protocol in this paper is defined by the following two
possible courses of action for ready users:

(P1) TFollowing a successful transmission, each ready user transmits
with probability 1 into the next time slot. o

(P2) Upon detection of é collision, each ready user uses an adaptive
‘ algorithm for selecting its transmission probability (<1) in the
next time slot. '

It should be clear at this point that we have effectively reduced
the contention problem in CSMA to a slotted ALOHA problem. Slotted
ALOHA has been studied extensively in the past [18-25], from which we
learned that to prevent channel saturation (with zeéro probability of
a successful transmission), the transmission probability of each ready
‘user must be adaptively adjusted. Various control strategies have been
proposed and studied. Experimental results have shown that a slotted
ALOHA channel can be adaptively controlled to yield an equilibrium
throughput rate S close to the theoretical limit of 1/e (=0.368) for a
large population of users [21+-24]. With an asymmetric strategy, the
achievable S will be even higher [25]. _ '

For our analysis in the next section, we shall assume that in (P2)
a suitable adaptive algorithm is used so that the probability of a
successful transmission (slotted ALOHA throughput) in the next time slot
is equal to a constant S. This assumption is an approximation but has
been found to be a very good one in simulation studies [21-24].

’ We shall further assume that errors due to random noise are insig-
nificant relative to errors due to collisions and can be neglected.

The source of traffic to the broadcast channel consists of an infinite
population of users who collectively form an independent Poisson process
with an aggregate mean message generation rate of A messages per second.
This approximates a large but finite population in which each user
generates messages infrequently; each message can be transmitted in an



-145-

interval much less than the average time between successive messages
generated by a given user. Each user is allowed to store and attempt
to transmit at most one message at a time. Thus the generation of a new
message is equivalent to increasing the number of ready users by one.
The effect of queuing messages at individual users is discussed later.
Finally, the transmission time of ‘each message is an independent
identically distributed (i.1i. d.) random variable with the probability
distribution function (PDF) B(xX), mean value bl,'second moment b2 and
Laplace transform B*(s). '

3. THE ANALYSIS

The ready users can be considered to form a distributed queue with
random order of service for the broadcast channel. We are interested
in obtaining the equilibrium moment generating function of the distrib-
uted queue size. We shall use an imbedded Markov chain analysis.
Under the assumptions of Poisson arrivals and that messages arrive and
~depart one at-a time, the moment generating function of queue size
obtained for the imbedded points is valid for all points in time.

A snapshot of the channel is 111ustrated in Fig. 1. We define the'
following random variables:

q, = number of ready users left behlnd by the . departure of the

th :
n  transmission, Cn

Yot1 = time from the departure of Cn to the beginning of the next
' successful transmission

LT number of new (Poisson) arrivals during y_ +1

X" transmission time of Cn+1 :

Vol S number of new (Poissorn) arrivals during X4 + 1.

We assumed earlier that x has the PDF 8(x). We shall let B(x)

n+1

be the PDF of x L + 1. The corresponding‘Laplace transform is thus

B*(s) = B*(s)e ° ' : ,
The random variable Yo+l is the sum of two independent random time

intervals

Vo1 = Tpag ¥ Tpa)T o ,
where T is the duration of a slot, In+1 is the number of slots in an
idle period immediately following the departure of Ch’ and T 41 is the

number of slots.in'the contention period following a collision until

the next successful'transmission. The slot containing the initial

collision is included in ra We note that In+1 is nonzero only if
q, = 0. Also, if there has been no coliision when C +l begins T+l = 0.

Let pj'be the probability of j new arrivals (ready users) in a time
slot. ’ ' '



- -146-

j 31 | _ |
At the start of the next time slot, each new arrival executes (Pl) or
(P2) in exactly the same manner as all other ready users.

Given our earlier assumptions, we have

Prob[I 1 k/q = 0] = (l-po)p k-1 'k =1,2,...

= 0,1,2,...

Also,
n+1 = k/collision occurred] = S(l-S)k-'1 k=1,2,...
From this last result, the Laplace transform of the probability density

Prob[r

function (pdf) of a contention period (given a collision occurred) is

ge~8T
1-(1-S)e . 2(1 -s)
which has a mean of T/S and a second moment of T (l + =2,
: S
The following important relationship is ev1dent from Fig. 1.
Upp1 = Q+%vam1 1 ' A )
where v is ‘an independent random variable with the z-transform

% ntl
B (A-Az), while un+1

consequence of (Pl) and (P2). Given

depends upon 9, in the following manner as a

(1) q; = 0, >
1 : © with prob..-—;L—
, 1-p
u = T F0
1 pj
: j + number of arrivals during with prob.-f——-
o a contention period 0
(2) q, = 1, U1 " 0 | |
(3) qﬁ 4 2, un+_1 = number of arrivals during a contention period.
- (2)

Given the occurrence of a collision, the number of new arrivals during
a contention period is an independent random variable with the z-trans-
form C (A-Az) '

The equilibrium queue length probabillties

Qk 1im Prob[qn k = 0,1,2,...

Db )
exist if')\(b1 + T+ T/S) <1 (see below). Define the z-transform
o
Q(z) = I Q 2.
k=0



-147-

By considering Eqs. (1) and (2) and taking the n+w.1imit, we obtain
~after some algebraic manipulations the following important result:

Q

B*(X—Az){Qiz[1-C*(A—Az)]+I%;~[p1z(l-c*(k-kz))-Q#(A—Az)(1-§-AT(1-Z))]}
Q(z)= — % 0. *
z = B (x=2z) C (A-2z) ‘
' (3)

where .
1-x (bl+ T +T1/8) .
% 1 - (4)

and
Gm " T ) % ' G

. Using Egs (3).- (5), we can obtain the mean queue size. Application of
Little's result [12] yields. the mean message delay (time of arrival to
time of departure) to be

1-p.-
: = - l!“. 0
D=x+g+75 2[B*(A)S—(l-p0)] ( + ST - 3T)
M + 2 x+ P+ 258
S . 2 .
+ L s” - (6)
. T . X
2{1 - )\(x+-s’)]
where
X = b1 + 1T
and v
— . 5
x2 = b2 + 2bl T+ 7T

We next consider the channel assignment delay, that is, given that
the channel is free and that there is at least one ready user, we want
the pdf of the time from when the above conditions are satisfied to the start
‘of the next successful transmission. Let d_ be a random variable repre-~
senting the channel assignment delay immediately prior to the nth trans-
mission and

d =1lim d o
n

n->w




.=148-

It can be readily shown that

-

| | ‘ Q0 1—p0 + Ql k=0
Prob [d = k] = |
po Ci=2 (7).
The mean channel.assignment‘delay is thus
q = l - _].'_ - ' .
450G Tt W | R 1©)

. P
Note that Q —1 + Q is the fraction of transmiss1ons that incur zero
0 1I-p. -P~ . 1

delay in gaining channel access (given that the channel is free)
4.  PERFORMANCE OBSERVATIONS

An important performance parameter is the ratio of the carrier
sense time T to the mean message transmission time b1

o=t
by

The throughput of the CSMA channel is defined to be the fraction of
channel time utilized by data messages, which is .

p = Abl
.under equilibrium conditions.

In Fig. 2, we show the.delay performance of the. CSMA channel as a
function of a and p. The normallzed delay D/bj is plotted and it is
assumed that messages are of ‘constant length. Observe that the delay
performance of CSMA improves significantly as o becomes small. A small
o may come about either. by decreasing the carrier sense time T or by
inctreasing the duration by of each user transmission.

In these numerical calculations, the probability S of a successful
transmission during contention periods is assumed to be l/e which is the
slotted ALOHA throughput rate in an infinite population model. Experi-
ence with experimental results [21- 25] indicates that S = l/e is
pessimistic when the number of. contendlng ready users is small (small o)
and optimistic when the. number of contending ready users is large
(large p). Thus the same comments will apply to the CSMA delay results
in Fig. 2.

_ The delay-throughput performance of roll—call polling is also shown
using the delay formula in [16]. The delay results shown for polling
also assume Poisson message arrivals and constant message length. The
ratio of propagation delay to message transmission time is o= 0.05.

The ratio of data to polling message length is 10. Queuing of messages



'149,-.

at individual users is assumed; hence the maximum channel throughput is
one. Delay-throughput curves for both 10 users and 100 users are showm.
Note that the corresponding delay-throughput performance of CSMA at
= 0.05 is independent of the number of users. It also permits no
queulng of messages at individual users; hence the maximum throughput
is less than 1. We observe that CSMA is superior to polling when the
channel throughput is low but becomes inferior when the channel through-
put is increased to one. However, if queuing of messages is possible at
individual users for CSMA, more than one message may be transmitted
every time a user gains channel access. Hence, as the network load p
is increased from 0 to 1, the delay performance of CSMA is first given
by the a = 0.05 curve at a small channel throughput but switches to the
= 0.01 curve and then the o = 0.001 curve and so on as the channel
throughput increases and queues become long. The channel throughput of
CSMA is ome in the limit of infinitely long queues at individual users.
In Fig. 3, we show_the mean channel assignment delay d as a function
of a and p. Note that d decreases to zero when p is small. This is
because (P1l) in the CSMA protocol permits a ready user to access the
channel immediately. In Fig. 4 we plot the fraction of transmissions
that incur zero delay in gaining channel access given that the channel
is free. For comparison, recall that when only one ready user is present,
the polling cycle overhead is Nw for conventional polling and
[2(1og, N)+1]% for probing. o
Referring again to Fig. 3, observe that as p is increased, d/T
increases to the maximum value of 1/S. This desirable property is a
consequence of the presence of an adaptive algorithm that we assumed in
(P2) which guarantees channel stability during contention periods.
Another advantage that CSMA has over polling protocols is that the
time slot duration T is typically much smaller than its counterpart &
in polling protocols since % must include the transmission time of a
polling message.

5. CONCLUSIONS

We considered a CSMA protocol as a distributed control technique
for a population of users sharing a multipoint network. The capability
of abortlng collided transmissions is the main difference between our
" model and previous models of CSMA. It is also assumed that the channel
is stable during contention periods (presence of an adaptive control
algorithm). Our main results include the moment generating function of
the number of ready users, as well as mean value formulas for message:
delay and channel as31gnment delay. These results are new. The
modeling of the queue size and message delay has previously been limited
to numerical solutions or simulations.

We found that the CSMA protocol as defined in this paper has the
desirable property that when the channel is lightly utilized, the channel
assignment delay is extremely short. The performance of CSMA when the '
channel is heavily utilized depends upon the ratio a. We make the
following observation. If the number of users is finite and queuing of
messages is permitted at individual users,thenas p+tl, we must have o4O,
since the transmission time. of each user increases as a result of long
queues. In this case, the maximum channel throughput of CSMA is one



-150-

(the same as polling with queueing permitted at individual users).
Lastly, we discuss the issue of channel slotting. A slotted
channel was assumed in our analysis. In practice, either a slotted or

unslotted channel may be implemented. The analysis of an unslotted
protocol will be more involved. - However, the following observation
indicates that the performance of an unslotted protocol should be
approximated by our slotted model in this paper. In the analysis of
- slotted and pure ALOHA [12,18] it was found that the probability of
success of a transmission depends mainly upon the duration of its
"vulnerable period" to another transmission. . The vulnerable period in
-our slotted CSMA channel is the duration of a time slot T. On the
other hand, the vulnerable period in an unslotted version of our CSMA
protocol would be 21 (after a little thought) which is the sames as T.
Thus the probability that an attempted transmission is successful
during a contention period is approximately the same in both cases.

The author is pleased to acknowledge the programming assistance of
Luke Lien and typing assistance of Nancy DeGlandon. He is also
" indebted to an anonymous referee for his helpful comments. '

REFERENCES

[1] . Schwartz, M ,, Computer-Communication Network Design and Analysis,.
Prentice-Hall, Englewood Cliffs, N.J., 1977.
[2] Fraser, A., 'A Virtual Channel Network,"" Datamation, Vol. 21, Feb.
; 1975.: .
[3] Farber, D. J. and K. C, Larson, "The System Architecture of the
Distributed Computer System - the Communications Systems," Proc.

Institute of Brooklyn,. April 1972
[4] willard, D. G., "Mitrix° a Sophisticated Digital Cable Communica—

: Nov. 1973,

[5] Binder, R. et al, "ALOHA Packet Broadcasting - A Retrospect,"
"AFIPS Conf. Proc. Vol, 44, 1975.

[6] Kahn, R. E., "The Organization of Computer Resources into a Packet

. Radio Network," IEEE Trans. on Commun., Vol. COM-25, Jan. 1977.

[7} DeMarines, V. A. and L. W. Hill, "The Cable Bus in Data Communica-
tions," Datamation, August 1976. ' v ' :

[8] Metcalfe, R. M. and D. R. Boggs, "Ethernet: Distributed Packet
Switching for Local Computer Networks,' Communications of the ACM,
19, no. 7, July .1976.

[9] West, A. and A. Davison; "CNET ~ A Cheap Network for Distributed

' Computing," Department of Computer Science and Statistics, Queen
Mary College, University of London, Report TR120, March 1978.

.[10] Thornton, J.E. et al., "A New Approach to Network Storage Manage- "
ment,'’ Computer De31gn Nov. 1975.




[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

-151-

Lam, S. S., "Multiple Access Protocols,'" Dept. of Computer
Sc1ences, Un1ver31ty of Texas at Austln Tech Rep TR—88 Jan.

W11ey—Intersc1ence, N.Y., 1976. .

Tobagi, F. A., "Random-Access,Techniques for Data Transmission
over Packet Switched Radio Networks,'" Ph.D. Dissertation,
Computer Science Department University of California at Los
Angeles, Dec. 1974.

Kleinrock, L. and F. A. Tobagi, '"Packet Switching in Radio
Channels Part 1 ~ Carrier Sense Multlple Access Modes and their

'COM-23, December 1975.

Hansen, L. W. and M. Schwartz, "An Assigned-Slot Listen-Before- -
Transm1s31on Protocol for a Multlaccess Data Channel " Conf. Rec.

_Konheim, A. G. and B. Meister, "Walting Lines and Times in A
‘System with Polling," J.ACM, Vol. 21, July 1974,
"Hayes, J. F., "An Adaptive Technique for Local Dlstribution IEEE

Trans. on Commun s Vol. COM-26, August 1978.

Abramson, N. "Packet Switching with Satellites," AFIPS Conf.
Proc., Vol, 42, AFIPS Press, Montvale, New Jersey, 1973.
Kleinrock, L. and S. S§. Lam, "Packet- —-Switching in A Slotted
Satellite Channel," AFIPS Conf. Proc. > Vol. 42, AFIPS: Press,
Montvale, N.J.

Kleinrock, L.vand S. S. Lam, "Packet Switching in a Multiaccess
Broadcast Channel: Performance Evaluation," IEEE Trans, on
Commun., Vol. COM-23, April 1975.

Lam, S. S., "Packet Switching in a Multi—Access Broadcast Channel
with Application to Satellite Communication in a Computer Net-—
work," Ph.D. Dissertation, Computer Science Department Univ. of

- California, Los Angeles, March 1974.

Lam, S. S. and L. Kleinrock, "Dynamic Control Schemes for Packet
Switched Multi-access Broadcast Channel," AFIPS’ Conf ‘Proc., Vol.
44, AFIPS Press, Montvale, N.J., 1975,

Lam, S. S. and L. Kleinrock, "Packet Switching in a Multiaccess
Broadcast Channel: Dynamic Control Procedures," IEEE Trans. on
Commun. Vol. COM-23, Sept. 1975.

M. Gerla and L. Klelnrock "Closed Loop Stability Controls for
S-ALOHA Satellite Communlcatlons," Proc¢. Fifth Data Communications
Symposium, Snowbird, Utah, September 1977.

Kleinrock, L. and Y. Yemini, "An Optimal Adaptive Scheme for

Multiple Access Broadcast Communication," Conf. Rec. "ICC'78,
Toronto, June 1978. :




-152-

channel sensed

idle by oll users : collision detected

nth tronsmission | 1

D/b|‘

NORMALIZED MEAN DELAY

(Cpn departs)
end of —‘l success detected
tronsmission : . .
K e st —
| n+l transmission \
| 1 i !
_41’['_ __.I T "_ Alr"_ time —*
l'—— Yn+| —+'__ Xn+l —’|r+— _
. Y . .,

1

——

™ M

unHornvoIs Vn+|orrlvolsA

Figure 1. A snapshot of the broadcast channel.

100

: ; 7 T ]

- | | /0

| | | / | ’=

50 } | Ve : |

| : : | :

- POLLING _ : a

20 L K= 0.05 , N = /00//// ) :J

- N |

—— CSMA I

10 X - 0._/ I

|

[

| |

5 -

[

1

1|

.

2 Lo

| |

[

l | I
0] 0.2 0.4 0.6 0.8

THROUGHOUT O

Figure 2., Delay versus throughpdt.



~153-

THROUGHOUT P

3.0

0.5}

1 1 1
0 - O 0 o
N o - -

(si01s) .L/P - AVI3Q UININNSISSY szz<Io,z<wS

Channel assignment delay versus

throughput.

Figure. 3.



PROBABILITY OF ZERO CHANNEL ASSIGNMENT DELAY

0.8

0.6

0.4

0.2

-154-

[~ 4

1 S lv |

0./\ 0.05

0.0/

0.00/

0.2 0.4 0.6

THROUGHOUT p

Figure 4. Probability of zero channel éssignment

~ delay versus throughput.



-155-

GLOBAL AND LOCAL MODELS FOR THE
SPECIFICATION AND VERIFICATION
OF DISTRIBUTED SYSTEMS

Mohamed Gouda, Donald Boyd, and William Wood

Honéywe]] Corporate Techno]ogy Center
" Minneapolis, MN 55420 |

Abstract

Two models for the specification of distributed systems are presented;
they are named global and Tocal models. The global model can be used
to specify the system requirements without suggesting any specific
~design to achieve these requirements. The Tocal model can be used to
specify some particular system designs which satisfy the given
requirements. Some general verification techniques are proposed to
prove theorems about the specifications in both models. We use the
two models to specify a number of well-known distributed systems such
as shared resource systems, schedulers, readers and writers, and the
five dining philosophers. The proposed verification techniques are
also applied to some of these systems. '

Keywords

Specification
-Requirements
Distributed Systems
Verification

Formal Modeling

1.  INTRODUCTION

There has been a great interest in distributed systems in recent
years (Gouda 76), (Brinch Hansen 78), (Hoare 78), and (Lamport 78).
Part of this interest is due to the belief that these systems can
offer high degrees of extensibility, performance, and fault tolerance
(Jensen 78). However, there are still many problems concerning these
systems which need to be solved before distributed systems can be
realized and exploited in a practical way. One of these problems
is the specification of distributed systems (Greif:75), (Gouda 76),
(Boebert 79), (Laventhal 79), and (Riddle 79). In this paper, we
address this problem by introducing formal models to specify distributed
systems.



-156-

A distributed system consists of entities called processes whlch
communicate only by exchanging messages. Each process has
a number of lacal data objects which cannot be directly accessed by
other processes. However, any process P can send messages to any other
process Q requesting to read or to update the local variables of Q.
Then, according to the internal state of process Q, these requests can
be denled or honored.,  Thus, a process performs two kinds of operations,
external operations and interna] operations. The external operations
consist of sending (or receiving) messages to (or from) other processes
in the system. Tie internal operations cons1st of testing and updating
the local variables in the process.

There are abstract machines associated with each process in the
system. The abstract machines define the data types which can be used
inside the process. They also define the appropriate operations which
can be performed on each data types in the machine. Two (or more)
processes can share the same-abstract machine if the processes use the
same data types which are declared by the machine. Any of the known
techniques to specify abstract machines (Parnas 72), (Liskov 75),
(Guttag 77), (Robinson 77), (Boyd 78a), and (Boyd 78b) can be used in
conjunction with our models of a process to specify distributed systems.

In this paper, we present two models for the specification of
communicating processes in distributed systems; they are called
global and local models. - In the global model, we assume the existence
of a global controller which can read and update the internal states of
all the processes in the system. This assumption leads to concise
and compact spec1f1cat1ons. However, since the global controller is
not an acceptable notion in a distributed system, a global specification
does not specify a solution, (i.e.,a system design),it merely specifies
the problem (i.e., the system requirements). In order to solve such a
problem, the g]oba] controller should be replaced by subcontrollers
at the system processes such that.the total system behavior is preserved.
The result of this replacement is a local model specification.
Therefore, the global specification for a system defines the system
requ1rements whereas a local specification for the same system defines
a system design.

The global model is presented in section 2. Then ver1f1cat1on
techniques for global model specifications are discussed in section 3.
Some examples of global model specifications are given in section 4.

The local model is presented in section 5; and some examp]es of local
model specifications are given in section 6.

2. THE GLOBAL MODEL

In the global model, a distributed system with K processes is
specified as follows:



=157~

system system name; .
process  process name 1;

var  list of local variables in process 1;

Data Specification
N Section

 process  process name K;

var list of local variables in process K;

rules
. Control Specification
Tist of system transition rules _ ~ Section

end system name.

Reserved words such as system Aprocess rules, and end .are under11ned
The specification consists of two sections, a data specification sect1on
-and a control spec1f1cat10n section. In the data spec1f1cat1on section,
~ the local variables in each process are defined using a PASCAL-1ike
notation.

In the control spec1f1cat1on section, a set of transition rules
are defined. A transition rule has the f0110w1ng syntax:

condition— — ‘:>,resu1t

where both the "condition" énd the "result" have the foilowing'syntax:
Simple  Bool. Expr. gﬁg_. . . and Simple Bool. Expr.

A simple Boolean expressioneis as follows:
Expression Tf'fe1ation?_ExpreSSion 2

Both "Expression 1" and "Expression 2" are based on the local variables
of the system processes, and the *‘relation' is any one of the following

=, ¥, <, <. After specifying the syntax of transition rules, we
discuss their semantic next. . _

In the global model, the global state of a distributed system is
specified by the values (at that state) of all the variables in the
system. Thus, the initial global state is specified by the initial
values of the system variables. At the beginning, the system is at
its initial global state; then its global state changes due to the
"firing" of its transition rules. For a transition rule to fire at
some global state, its condition must be true at that state. The
firing of a transition rule consists of changing the global state such
that the result of the transition rule is true at the new state.



-158-

We assume that the firing of different transition rules is mutually
exclusive; i.e.,at most one transition rule can fire at a time.

There are a number of similarities between the global model and
other proposed models (Keller 76) and (Bochmann 78); but there are also
some differences. In particular, the global model does not have an
explicit control structure for each process in the system. Instead,
the transition rules in the global model describe the control structure
of a "global controller"; hence, the name global model. It is assumed
that the global contro]]er can read and update the 1nterna1 states of
all the processes in the system.

The global controller is a virtual entity; it is- not a process
in the system. However, its existence makes the system specification
more concise and compact. On the other hand, since the global
controller is not an acceptable notion in a distributed system, a
global specification does not specify a solution (i.e.,a system design);
it merely specifies the problem (i.e.,the system requirements). In
order to solve such a problem, we should get rid of the global
controller; i.e., replace its transition rules by sets of transition
rules and assign each set to some process in the system. The result
is a new system model ,called the local mode] The local model is
discussed in detail in section 5.

Now we give some examples of global spec1f1cat1ons

Bounded Buffer

The bounded buffer consists of three processes "producer",
"consumer", and "bufprs". The "producer" has two variables, "st"
(for state), and "indata" to hold the data which is to be sent to the
Yconsumer" via the buffering process "bufprs". The producer state,
referred to as "producer.st", can have one of two values "null" or
~ "ready". If "producer.st" is "null", it means that the producer has
no new data to store in the buffer. Whenever "“producer.st" is "ready",
it means that the content of the variable "indata" has a new value
which can be copied in the buffer (provided there is an available space
in it). Similarly, the."consumer" has the two variables "st" and
"outdata". The buffer process "bufprs" has an array of size N to
store the received data. It has also two integer variables "in" and
"out" ,where "in" is the total number of received data items from the
"producer", and "out" is the total number of data items sent to the
"consumer". The global specification is as follows:



-159~-

system bounded buffer (N);

‘process producer;

var st: (null,ready) init null; indata : real;

_process consumer;

var st: (nu]];ready) init null; outdata : real;

process bufprs: _
var buffer: array 0..N-1 of real;
in, out: integer init o;.

- rules

producer.st = null ———4 producer. st'4ready and indata'= input;
consumer.st = null --———a consumer.st'=ready and o utgut outdata;
in< out + N and producer st = ready -
———— in' = int1- and buffer'(in mod N) = indata and

| producer.st' = null; -

out < in and consumer.st = ready
— outf=out+1- and outdata = buffer (out mod N) and
consumer.st'=null: '

end bounded buffer.

Notes: (i) Because both "producer" and "consumer" have a variable
named "st", we concatenate the process name and the variable name to
d1st1ngu15h between the two variables.  (ii) There are four transition
rules in this system. . The first rule refers to "producer.st" in its
condition, and to."produeer.stﬁ" in its result to distinguish between
the value of this variable before and after the transition rule firing.
(ii1) The two reserved words input and output are used to imply
reading from and writing into the outside world.

Shared Resource

100 users shére a common resource which can be accessed by at most
one user at-a time. The 100 users are defined as a process array of
size 100. Each of them can be in any one of three states:



-160-

"null"... means the user does not need (nor use) the resource,
"need"... means the user does need the resource,
"busy"... means the user does use the resource.

system shared resource;

processarray user (0 .99);

var st: (null, need, busy) int nu11,

rules

]

nuT]--___€> user(i).st'=need;
need and (forall j:0. 99)(user( ).st # busy) |

user(i).st

user(i).st

4—-——-——-—€>'user(i).st =busy;

user(i).st=busy.-;_;__e, user(i).st'=null
ggg_ shared resource.

Notes: Each transition rule in this spec1f1cat1on is written in
terms of a free parameter "i", Since "{i" is used as an index of the
_ process array "user", its value ranges from 0 to 99. Therefore,
each transition rule is equivalent to 100 different rules. For example,
the first rule is equ1va1ent to: '

user(0).st = null user(O;.st' need;
user(1).st = null : user(1).st" = need;
~user(99).st = null —> user(99). st' = need.

But instead of writing all these rules, we adopt the above short hand
notat1on . ~

" n



-161-.

3.  VERIFICATION TECHNIQUES

_ In general, there are two classes of theorems which we may want to
prove about a distributed system. A theorem in the first class has the
form: . :

At any instant P
or ' P (for short)

where P is a first order predicate which contains some variables from
the system specification. P is called an invariant; and the theorem
is called an invariance theorem. The theorem implies that P is true in
all the system states which can be reached from the initial state by
any possible sequence of transition rule f1r1ng A two-step a]gor1thm
to prove an invariant theorem (Ke]ler 76) is as fo]]ows

Algorithm . -

step 1: Prove that the 1nvar1ant is true in the system initial
state'
. step-2: for all the transition rules in the system spec1f1cat1on
: do Prove that if the invariant is true before the rule fires
then it is also true after the rule fires od;.

From these two steps, the invariant is true at all reachable

- States by induction on the 1ength of the f1r1ng sequence. An example

is given later on.

Another class of theorems which may be of interest has the

_following form:
Pt D0

where P and Q are first order predicates which contain some variables
from the system specification. This theorem means that if the system
ever reaches a state Sy where P is true, then in a finite period of
time (starting from Sy ) the system will reach a state S, where Q is
true. More specifica]]y;'there is an upper bound on the number of
transitions which can fire after Sy before state S, is reached. The
proof of such a theorem consists o} finding this upper bound. These
theorems are called non-starvation theorems since as we will see most
non-starvation theorems can be written using this form.

Now we give some examples. Consiaer the shared resource system
in the previous section.- There are two .theorems which we want to
prove about this system: o ' '



-162-

Mutual Exclusion

if user(x).st = busy then (forall y:0..99)(if y # x then user{y).st#busy)

Non-Starvation

user(x).st = need —————3 user(x).st = busy

» : :

The first theorem states that at any instant at most one-user is.
busy using the resource. The second theorem states that if a user
needs the resource, then it will get it in a finite period of time.
The first theorem is from the class of invariant theorems, whereas
~ the second one is from the class of non-starvaticn theorems.

"To prove the invariant of the first theorem, we first show that
it is true at the initial state. Then, we show that if it is true
before the firing of each transition rule, then it will also be true
after the rule firing.

Define S{n) to be the system state in wh1ch exactly n users are
busy. Then, the initial state of the system is S(0); and the three
transition rules of the system can be defined in terms of S(n) as

follows: ) ( (n)s
S S
) S =35
(3) n>1 and S(n)-—i}S(n 1)

The mutual exclusion theorem can now be restated (then proved) as
follows: :

Mutual Exclusion Theorem

After the f1f1ng of any sequence.of transition rules (the empty -
sequence is included), the system can either be in state S(0) or in
state S(1). v

Proof: The proof is by induction on the length of the firing sequence.
First the tneorem is true after tie eipty firing sequence since the
initial state is S(0). Assume that the theorem is true after a firing
sequenﬁe of length n, we W%Ht to show that it will be true after the
(n+1)E0 firing.” The (n+1)X] firing can be of rule (1), rule (2), or rule
(3) If rule (1) is fired, then S{0)=>S(0), or S(1)—2S(1).

rule (2) is fired, it means that the system was in state S(0), and 1t will
become in state S(1). If rule (3) is fired, it means that the system

was in state S(1), and it will become in state S(0). In all cases, the
theorem is true after the (n+1)th firing. Thus, the theorem is true
after any firing sequence. :



-163-

To prove the non-starvation theorem, we need to show that if some
user, user (x) say, is in a "need" state, then in a finite period of
time his state will become "busy". Specifically, we want to show that
there is an upper bound K such that at most K transition rules will
fire, then the state of user(x) becomes "busy".

Actually, we’ cannot prove this tneorem because the.system
specification in the previous section does permit starvation. To
show this, consider the system when user (x).st = need and user
(y).st = null. Starting from this state, if the transition rules in
the infinite sequence (1), (2), (3), (1), (2), (3), (1)... continue
to fire for user (y), then user (x) will continue to ‘be in a
“need" state forever. : s

. To prevent starvation from the system, we add an integer "count"
‘to each user. Initially, a user "count" has the value zero, and it is
incremented each time the user state is changed from "need" to "busy".
Thus, at each instant, the "count" value is the total number of times
the user had an access to the shared resource. Whenever a number of
users are in "need" states competing for the resource, the one with
the smallest "count" will win. If there are more than one, one of
them chosen arbitrarily will win. The system, after these modifications,
is as follows: :

system shared resource without starvation;

processarraXA user (0..99);

var st : (null, need, busy) init null;

count : integer init 0;

rules o o ,
users(i).st = null————3 user(i).st' = need;

user(i).st = need ggg
(forall j:0..99)(user(j).st # busy) and
(forall j:0..99)(if user(j).st = need then user(i).count <

| usér(j).count) _
> user(i).st'=busy and user(i).count'=user(i).count+1;

user(i).st = busy 3 user(i).st'=null;

end shared resource without starvation.



-164-

Now we can brove the non-starvation theorem for this system.

Non-Starvation Theorem

user (x).st = need. -2 '-%?user (x).st = busy.
Proof: Assume user (x).st = need, we Want to show that there is an
upper bound K such that at most K transition rules will fire before
user (x).st = busy. The worst case is when the "states" of every
other user is "null", and its "count" is zero. Starting from this
state, each other user can compete for the resource, get it, and
prevent user (x) from becoming "busy". This can continue until the
"counts" of .all other users exceeds ‘the "count" of user (x) by one.
Therefore,

K=99 x 3 x (user(x).count+1) + 99

‘where 99 is the number of other users in the'system, and ‘3 is the
number of rules that each user can fire to compete, get and release
the resource. _

In this section, the verification of a "simple" shared resource
system has been d1scussed Our intent was to demonstrate the use of
some genera] techniques for the verification of distributed systems
using our global model. Next, we extend the discussion to more
"elaborate" examples of distributed systems. In each example, we
specify some distributed system using the global model, and discuss the
theorems which need to be proven in the order to verify the.
specification.

4,  EXAMPLES OF GLOBAL MODEL SPECIFICATIONS

Three examples of global specifications are presented in this
section. The first example is intended to demonstrate how to use
abstract data types in conjunction with the global model to specify
distributed systems in terms of abstract data structures. The next
two examples are intended to express the model power in spec1fy1ng a
variety of distributed systems.

Bounded Buffer with Abstract Data Types

A bounded buffer system is specified in section 2.  Here, we
specify the same system except that the buffer is declared to be of
type "queue" (instead of an "array"). The data type "queue" can be
defined using any technique to specify data types such as (Guttag 77)
or (Boyd 78b§ Assume that the following four operations are defined
for the data type "queue":

length: queue— _ - integer
add: queue x element— —> queue
remove: queue - queue

top: queue —3> element



-165-

Since the exact definitions of these operations are of little
value to the discussion in this paper, we skip these definitions.
assuming that the reader has a reasonable idea about the meaning of -
these operations. These four operations can be used to specify the
bounded buffer system as follows: =~ ' ‘

system bounded buffer (N);

process producer; _ .
var st: (null, ready) init null; indata: real;

Erocess"consumer; o
“var st:  (null, ready) init null; outdata: real;

grocesé bufprs; |
var buffer: queue init length (buffer) = 0;

rules v _ .
producer.st = null——>> producer.st' = ready and indata' = input;
consumer.st = null—— consumer.st' = ready and output = outdata;

‘length (buffer) Z N and producer.st = ready
————> buffer' = add (buffer, indata) and producer.st' = null;

length (buffer)d 0 and consumer.st = réady_
———>outdata' = top (buffer) and
buffer' = remove (buffer) and consumer.st' = null;

end bounded buffer.

In order to verify this system, we need to prove the following two theorems:

Invariant Theorem: 0 _Z_.]engthv(buffer) LN
Non-Starvation Theorem: indata = X—2%-—3 outdata = X

The non-starvation theorem states that if the producer ever produces a value
X then in a finite period of time the consumer will get it.



-166-

Readers-and writers

100 users share a common resource. A user can read or write the
resource such that any number of users-can read the resource simulta-
neously, whereas a -writer needs a sole access to the resource. :

system readers writers;
process array user (0..99) :
var st = (null, need, busy) init null; rgst = (read, write);

~rules

user(i).st
input;’

Nulle————>user(i).st' = need and user(i).rgst' =

1
1}

user(i).st = need and user( ). rqst read and
(forall j: 0..99) (if user(j).rgst = write then user(j).st = null)
— suser(i).st' = busy;

user(i).st = need and user(i). rgst = write and
-~ .(foré]ﬂ,j; 0..99) (user(j).st #busy)
" e—————3user{i).st' = busy;

wser(i):st = busy——Puser(i).st' = nuTl;
end readers writers.

To verify this system, We'need to prove the following theorems:

Mutual Exclusion: There are two theorems to prove:
Theorem 1: If a user is reading, no user is writing} i.e.,
if user(x).st = busy and user(x).rgst = read
“then (forall y: O. 99) (if user(y) .rgst = wr1te then
user(v).st # busy)
Theorem 2: 1f a user is writing, no other user is busy, ile.,
if user(x).st = busy and user(x).rqst = write

.-then (forall y: 0..99) (if y #x then user(y).st # busy)




-167-

Non-Starvation: _
user(x).st = need and user(x).rqst = write
- ——* suser(y).st = busy and user(y).rgst = write

This theorem states that if a user needs to write, then in a
finite period of time a user (may be another one) will write. This is
a weak non-starvation theorem. To make it stronger, we need to modify
the specification as d1scussed in section 3. ,

Five D1n1ng Philosophers

Five philosophers spend their lives thinking and eating. The
“philosophers sit at a circular table with a bowl of spaghetti in its
center. The table is laid with five forks. On feeling hungry, a
philosopher picks up the fork on his left and the fork on his right,
eats, then puts down both forks. The system specification is as follows:

system dining philosophers;
process array fork (0..4); _
var st = (putdown, p1ckup) init putdown, _
process array ph (0..4); A '
var st: (think, hungry, eat) 1n1t th1nk

rules
ph(i).st = think——————%»ph(i).st' = hungry;
ph(i).st = hungry and fork(i).st = putdown and

fork(i+l1).st =‘putdown._____§>ph(i).st"= eat and
fork(i).st'= pickup and fork (i+1).st' = pickup;

ph(i).st = eat——-—-—;>ph(1) st' = think and
fork(i).st' = putdown and fork(1+l).st' putdown,

end dining philosophers.



-168-

5. THE LOCAL MODEL

As demonstrated by the above examples, the global model is a useful .
- tool to specify and "easily" verify distributed system specifications.
However, one of the model's problems is the lack of mechanisms to specify
potential parallelism within these systems (since transition rules can
only fire one at a time). On the other hand, it is this "non-parellel
behavior" which simplifies the verification of distributed system
- specifications. In general, one needs a compromise between these two
-seemingly: conflicting needs; i.e., introduce a scheme to specify
parallelism into the model while retaining most of the features which
ease verification. In this .section, such a compromise is discussed.
First, we present a scheme to specify parallelism into the global
model. The resulting model is called the local model. Then we show
that in a "large" '‘number of cases, proving a theorem for the local
model specification (i.e., with parallelism) is equivalent to proving
the same -theorem for a g]oba] model spec1f1cat1on (i.e., without
parallelism). -
. In the 1oca1 model, each trans1t10n ‘rule belongs to one process in
- the system, and each process has one or more transition rules. The
transition rules in one process can only fire one at a time, Parallel-
~ism is achieved when transition rules in different processes fire
simultaneously. Therefore, the maximum number of transition rules
which can fire s1mu1taneous]y equa]s the number of processes in the
system.
As an example, a local model specification for the bounded buffer
system defined in section 2 is as follows:

system bounded buffer (N);

Erotess producer; _
~ var st: (null, ready) iﬂiz‘ null; indata: real;
rules
producer.st = nu]]........e,producer st'— ready and
indata' = _ngg£

end producer;



-169-

process bufprs; _ .
var buffer: array o .. N.l of real; in, out = integer init o;
rules | _ _ .
in< out + N and
producer.st = readym———3in'= in +1 and
buffer' (in mod N ) = indata and
producek.s_tl = null

out < in and

ready.______.;>out' out +1 and

outdata' = buffer (out mod N) and

consumer.st

consumer.st' = null
egg_ bufprs; |
process consumer; .
var st: (null, ready) init ready; - outdata: real;
_consumer;st = M1 le———>consumer.st' = ready and output =

outdata;
end consumer;
- end bounded buffer.

For the sake of the local model, we assume a "discrete" view of time.
.The system state can be only observed at discrete iinstants of time ty, t2,...
At any 1nstant, say ti, the system state S. remains fixed, and no
~activity (i. tran51tlon rule firing) takes place. However, at the
next 1nstant t1+], the system state Si+1, may be different from Sj,

1mp1y1ng that some transition rules had fired in the unobserved time
per1od between t; and ti;7. As in the global model, a transition rule

in the local mode] f1res between a pair of observed time instants ti and
ti+1s only if its condition is true at tj. If the rule does fire between
~tj and tj4q then its result is true at tj,

Because of this discrete view of t1me the local model a]]ows only
an "ideal" type of parallelism. Two trans1t1on rules in different
processes can either fire simultaneously (i.e., between the same pair of
successive time instants), or in sequence (i.e., they fire between
different pairs of successive time instants). If the two transition
rules have disjoint variables then whether the two rules fire simul-
taneously or in sequence, the system still reaches the same global state.
This means that the introduced parallelism does not introduce "new"
reachable states to the system. The parallelism merely "speeds-up"
the reaching to the "ol1d" reachable states.



-170-

This property can be used to simplify theorem proving for the local
model. As an example, assume it is required to prove an invariant P
for some system S specified in the local model. One needs to show that
P is true for all the reachable states of S. To do so, one can ignore
the parallelism (implied by the local model) assuming that all the
transition rules in the system only fire one at a time (i.e., global
model). Then, the techniques outlined in section 3 can be used to
prove P. Hence, P is true if the transition rules are fired one at a
time. But, because the parallelism does not introduce new system states,
P is also true in the local model. Now that we have established
the importance of preventing parallelism from introducina new system
states, we need some way to achieve this property. 1In particular, we
need a set of restrictions (i.e., a d1sc1p11ne) to write transition rules
such that this property is achieved. A discipline to write transition
rules in the local model is discussed next.
‘ In the Tocal model, the transition rules in a process.can only
test (in their condition parts) and update (in their vesult parts) two
classes of variables, namely, the process local variables and sequencers.
A sequencer is a var1ab1e Tocal to some process but it can be tested
and updated by transition rules in other processes in the system.
There is no limit on the number of sequencers which are defined in a
process. A sequencer should satisfy the following conditions concerning
its declaration, testing, updating, and its associated variables.

Sequencer Declaration

A sequencer is a variable of an enumerative type. It is declared
using the reserved word seq. . For example, the following statement
declares a sequencer "x" which has five values:

seq x : (x1, x2, x3, x4, x5);

Segquencer Test1ng -

: A sequencer can be tested in the cond1t1on part of any transition
rule in the system. The test can only be of the form: seq name = seq
value. Moreover, if a transition rule in one process tests for one
value of a sequencer then no ‘transition rule in any other process can
test for this same value. This does not exclude the case when two
(or more) transition rules in the same process test for the same value.
As an example, assume that the following three transition rules
(which test sequencer x) belong. 1o the same process P:

= X eeee———— ;g;v“ = input and x = x2;
x =x2and z = 2e———3w' =v'+ 20 and z' =z + 2;
X =x2and z = f——mDx' = x4;



-171-

Then the fo]]oWing rule cannot belong to.any process in the system
other than P:

x = x1 » >x' ="x2;
since it tests for value x1 which is tested by some rule in P.

Sequencer Updat1ng

A sequencer can be updated ‘by. the result part of any transition
rule in the system if the rule tests the sequencer in its condition
part. Because of this condition, each sequencer shou]d have an

initial value.
' A sequencer update can only be of the form: seq name' = seq value.
For examp]e the -following transition rule correctly updates the above
sequencer "x":

X =x2and z = 4;5-4——-—-—£>x*-= x55

On-the other hand;'the'next two rules are wrong:

y=1 and z = 4 — _‘\‘x”7=,25;'

~ The first rule updates sequencer x in the result part without testing
its value in the condition part. The second rule updates sequencer x
using an inappropriate form. ‘ ' -

Sequencer Assoc1ated Variables

Let x be a sequencer local to some process P. A variable v local
to P is said to be associated with x if each transition rule in P :
which reads or updates v in its result part also tests x in its cond1t1on
part. If v is associated with sequencer x, ‘then any transition rule
in the system which tests x in its condition part can test, read, or
update v in its result part.

After stating the sequencer cond1t1ons, it is useful to discuss
the motivations behind these conditions. As mentioned earlier, the
basic motivation is to prevent the parallelism from introducing new
reachable states to the system spec1f1cat1on Specifica11y,'the
following theorem is true: :

Theorem 1

Let S be a distributed system specified in the Tocal model. If S
is at state S7 where some transition rules (in different processes) can
fire s1mu1taneous]y causing S to become in state Sy, then if these ru]es
fire in any sequence starting from Sy, S will become in So.

Proof: Let Fis Tns..., ' be the transition rules which can fire
1muitaneous1y caas1ng s Bo change its state from Sy to S To show that -

these rules can fire in any sequence cuasing the same sta%e change, it is

sufficient to show that no two of these rules share any variables.



-172-

In other words, it is sufficient to show that any two rules r; and

do not test (in their condition .parts), read or update (1n their
rgsult parts) any common variables., The condition parts of r. and
r; contain local variables and sequencers. But since they can fire.
siimultaneously, they belong to different processes; and their Tocal
variables are different. Moreover, they can only test the same
sequencer for different values; but since they can fire simultaneously
and a sequencer (1ike any variable) can only have one value at a time,
r; and rj must have different sequencers, if any, in their cond1t10n
parts.

The result parts of ry and rj can have local variables, sequencers,
and sequencer associated var1ab1es. Since. they don't test the same
sequencers in their condition parts, they can neither update the same
sequencers nor read nor update the same sequencer associated variables -
. in their result parts. Thus r; and r; do not have. any common
~variables; and the final state will bd the same 1f they f1re simulta-.
neously or if they fire in sequence. :

From the above theorem, it can be shown that prov1ng invariants
for a local model specification is equivalent to proving these invar-
iants for the same specification assuming that transition rules 1n the
system fire one at a time. . _

Theorem 2

Let P be an invariant for some distributed system specified in the
local model. If P is true when the transition rules in the system fire
one at a time, then P is true for the local model. _
Proof: 1In the local model, transition rules in different processes can
fire simultaneously. But from theorem 1 this parallelism does not
introduce "new" reachable states. Since P is true at all the "old"

" reachable states, then it is also true for the local model.

Another important motivation for defining sequencer condi tions
as they are defined in this section is to ease the checking of whether
or not a given local specification satisfies these conditions. ,
Actually these conditions can be verified purely on the basis of the
specification syntax. = Thus, the checking can occur at compile time,
and it can be easily automated
: Now, a word of caution. The concept of sequencers is intended to
specify synchronization in the local model specification. So it is a
specification tool. It is not intended to be an implementation tool.

It should not be viewed as a hint on how synchronization between
communicating processes should be implemented. Our only criterion for
selecting sequencers in the local model is ease of proofs.

6. EXAMPLES OF LOCAL MODEL SPECIFICATIONS -

In this section, we present some examples of distributed system
specifications using the local model. To compare between local and
global specifications, some examples in this section are for -
distributed systems whose global specifications are introduced earlier.



-173-

Shared Resource: . _
The shared resource problem is discussed in section 2. A local model

specification for the problem is as follows:
system shared resource using semaphore;

process array user (0:199&;.”. '
seq st: (null, need, busy) init null;

rules _ _
user(i).st = null—————>user(i).st' = need;
user(i).st = busy and sem(i) = one
——— >user(i).st' = null and sem(i) = zero;

end user;

‘process . semprs; .
- seq sem: array 0..9% of (zero, one) init zero;
rules o S
user(i).st = need and (forall j:0..99) (sem(j) = zero)
————>user(i).st' = busy and sem(i) = one;
end semprs;

end shared resource

Notes: (i) If this specification is compared with the global
specification in section 2, we note that a new process "semprs" is
added to the system to provide the required synchronization. (ii) The
new process contains 100 semaphores (defined as a sequencer array)
so that each user process can test and update its own:semaphore; thus,
the sequencer conditions are satisfied. (iii) The new process ,
represents a "central" controller for the system. To show that is not
a characteristic of the model but it is a characteristic of our chosen
solution, we present another specification for the same problem.

In this specification, there is a token which is being passed from one
user process to another (Lelann 77). If a user process needs the '
resource, it waits until it receives the token, keeps it, then
accesses the resource. When it is done, it gives the token to the
next user process:



-174-

system shared resource using token;

process array user (0.-33);
seq token: (act, 1nact) init user(0). token = act and
| . (forall j:1..99) (user(j).token=inact);
var st (nu]], need, busy) init null;

rules _
user(i).st = null

_._;_;__;>user(i)ust' = need;

user(1) = null and user(i). token = act and
' - user(i+1). token=inact

-——-————§>user(1) token' = inact and user (1+1) token' = act;

user(i).st = need and user(i). token = act
—————3user(i).st' = busy; '

user(i).st = busy
———3yser(i).st' = null;
end “user; '

end shared resource -

Note: Each of the above local specifications specifies'a_possib]e 7
solution for the same shared resource problem. The global specification
of the same problem (in section 2) specifies only the solution requ1re-
ments without suggest1ng any spe01f1c way to solve it.

Mi nimum Hold1ng Schedu]er -

_ Consider a system with 100 users who share a common resource which
can be accessed by, at most, one user ata time. The system has a
scheduler to assign the-resource to the user who will hold the resource
“the shortest time.. Each user has a local variable called "hldtim" of
type positiveninteger "When a user needs the resource, the value of
its "h1dtim" equals the expected holding time of the resource by the
user.. "Hldtim" is chosen to be of type positive intéger so that it has

a m1n1mum value namely one time unit. The system specification is as-
follows: :



_175_

system min hold scheduler;

process array user (O..QQ);
seq st: (null, need, busy) init null;
var hldtim: positiveinteger; |

rules
' user(i).st = null . ‘ ,
" ———>user(i).st' = need and user(i) .h]dtim':= input;

user(i).st = busy and state(i) = inuse
‘ . —————>user(i).st' = null and state'(i) = free;
end user; S ‘

. process scheduler;
' seq state: array 0..99 of (free, 1nuse) init free;
rules ' ‘

user(i).st = need and _

(forall j: 0..99) (stafe (j) = free) and _

(forall j: 0..99) (if user(j).st = need 'jiggln

user(i). hldtim L user(j).h1dtim) '

.__._;-{>user(f).st' = busy and state'(i) = inuse;
| end scheduler;

end min.hold.

Note: The scheduler has an array of 100 binary sequencers; one
sequencer for each user process. This array is introduced (instead of
a single binary variable) to satisfy the sequencer condition that each
process can only test a sequencer for some specific value for which no
other process can test the same sequencer. Local specifications tend
to increase the number of variables in the system.

7. CONCLUSIONS

We presented two formal mode]s to specify distributed systems, a
global model and a local model. The two models differ only in their
abilities to specify parallelism and in their needs to specify
synchronization explicitly.



~-176-

In the glabal model, eyvents are assumed to be effected -

one at a time by some g]obal controller. Therefore, potential parallel-
ism cannot be specified. Moreover, synchronization between conflicting
events is ‘achieved automatically; thus, no explicit synchronization
mechanism or policy is needed. These characteristics make global
specifications simple and straight- forward. In particular, the
mechanisms and/or policies which will be introduced to the system
(during the design phase) to achieve synchronization need not to be
present in the system global specification. For this reason, the
global model can be used to specify the system requirements without
suggesting how the system should be designed or implemented.

In the local model, non-conflicting events can occur in parallel,
and potentially conflicting events are serialized.by the aid of
"sequencers".. Therefore, potential parallelism can be specified and
explicit synchronization policy is required. Notice that "sequencers"
can be regarded as an exp]ic1t synchronization mechanism which is

built into the local model. - For this reason, the local model can be
“used to specify different system designs’ wh1ch achieve the system
requirements.

The two models have very similar syntax to ease the use of both
models during the requirement analysis phase and during the system
des1gn phase. From our experience, both models seem to provide
‘concise specifications for otherwise hard systems.

In the paper, we also discuss some general techn1ques to wr1te and
prove theorems about specifications in both models. So far, these
techniques have proven very convenient to reason about distributed
systems.

‘Acknowledgement

We are thankful to Debra Jones and Charlotte Zurn for typ1ng this manuscr1pt
(in parallel) in such short notice.



REFERENCES
(Bochmann 78)
(Boebert 79)
(Boyd 78a)
(Boyd 78b)

(Brinch Hansen 78)
(Gouda 76)

(Gouda 77)

(Guttag 77)
(Gtetf 75)
‘(Hoare 78)
(Jensen 78)
(Keller 76)
(Lamport 78)
(Lavéntha] 79)

(Lelann 77)

-177-

G. V. Bochmann, Synchronization in Distributed
System Modules. Proc. 3rd Berkeley Workshop, 1978.
W. E. Boebert, et. al. NPN: A Finite-State
Specification Technique for Distributed Software.
Proc. Specifications of Reliable’ Software,

April, 1979, pp. 139-149.

D. L. Boyd and A. Pizzarello, An Introduction to
the WELLMADE Design Methodology, ‘IEEE Transactions
on SE, Vol. SE-4, No. 4, July, 1978.

D. L. Boyd, A. Pizzarello and S. C. Vestal.

The Rational Design Methodology .- Final Report,
RADC-78-208. -

Per Brinch Hansen. Distributed Processes: A
Concurrent Programming Concept. Communications

- of ACM, Vol. 21, No. 11, November, 1978,

Pp. 934 941.

M. G. Gouda, et al. Protocol Machines: A Concise
Formal Mode] and its Automatic Implementation.
Proc. International Conference on Computer

- Communication, August, 1976.

M. G. Gouda. Toward a Logical Theory of

Communication Protocols. Ph.D. Thesis Department

of Computer Science, University of Waterloo,

Waterloo, Ontario, Canada, 1977. Also a CCNG

Tech. Report T-74, University of Waterloo.

J. V. Guttag, Abstract Data Types and the

Development of Data Structures. Communications of

the ACM, Vol. 20, No. 6, June, 1977, pp. 396-404.

I. Gre1f, Semantics of Communicatin Parallel

Processes. M.I.T. Project MAC TR-154, September,

1975. .

C.A.R. Hoare, Communicating Sequential Processes,

Communications of the ACM, Vol. 21, No. 8,

August, 1978, pp. 666-6/7.

E. D. Jensen, The Honeywell Experimental Distributed

Processor - An 0verv1ew Computer, January, 1978,

pp. 28-39.

R. M. Keller, Formal Verification of Paraliel

Programs. Communications of ACM, Vol. 19, No. 7,

July, 1976, pp. 371-384,

L. Lamport, Time, Clocks, and the Order1ng of

Events in a D1str1buted System. Communications

of the ACM, Vol. 21, No. 7, July, 1978, pp. 558-565.
Laventﬁal Synchron1zat1on Spec1f1cat1ons for

Data Abstract1ons. Proc. Specifications of

Reliable Software, April, 1979, pp. 119-125.

G. Lelann, Distributed Systems-Towards a Formal

Approach. Information Processing 77, edited by

B. Gilchrist, North-HolTand Co., 1977.




REFERENCES (cont.)
(Liskoy 75)
- (Parnas 72)

(Robfnson 77)

(Riddle 79)

-178-

B. H. Liskoy, et, al, Specification Techniques
for Data Abstractions. IEEE Transactions on
Software Engineering, Yol. SE«1, No. 1, March,
1975, pp. 7-19. :
D. L. Parnas, A Technique for Software Module
Specification with Examples. Communications of
the ACM, Vol. 15, No. 5, May, 1972, pp. 330-336.

L. Robinson, et. al, A formal Methodology for the

Design of Qperating System Software. In R. Yeh
(ed.?, Current Trends in Programming Methodology,
Yol. I, Prentice~Hall, Inc., Englewood Cliffs,
N.J., 1977. . ' .

W. E. Riddle, et. al, Abstract Monitor Types,

Proc. Specifications ‘of Reliable Software,
April, 1979, pp. 126-138. .



-179-

PROTOCOLS FOR DATING COORDINATION

Danny Cohen and Yechiam Yem1n1
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

Abstract

This paper is about the process of specifying protocols for computer

communication. It uses a dating coordination protocol as an example for
an interprocess communication. Since this problem has some timing
constraints built into it, the resulting discussion is different than

most of the more familiar protocols which do not have requirements
associated with timing. Several protocols are discussed here in order to
?fﬁstrate different aspects of the specification issue.

1. BACKGROUND

In the rural area of Oceanview, Kansas, people are too busy to arrange
their own dates. In order to alleviate this problem a dating center
(hereafter "C") was founded by the local church.

The dating center operation is generally simple. When a person
(hereafter "X") is interested in a date, he writes a letter to the
center, requesting a date with his sweetheart (hereafter "Y"), It is a
pity that there are not many phones in this area, isn't it?

Typically a requested date is blessed unless it is found to be in
conflict with the center's policy, due for example to the lack of common
approach to the arts. In the lucky event that the date is blessed a
time is assigned for X and 'Y to meet at the center. Letters are then
sent to both, notifying them about the particulars of the upcoming
event. Needless to say, church tradition strictly forbids X and Y from
being in direct communieatlon before their supervised meeting at the
center,

Sections 2 through 7 of this note discuss a protocol for this
coordination.



-180-

Most of the population of Oceanview is quite happy with this dating
service, However, the Japanese community of Oceanview found it hard to
take advantage of this dating service. Due to different cultural
background it is very hard to find a common approach to the arts with
the rest of the town people.

- Therefore the'lpcal Buddhist ‘temple decided to sponsor another dating
center operating with different rules.

Section 7 discusses a different dating coordination protbeol. geared to
the needs of the local Japanese community.

2. THE SPECIFICATION OF THE OBJECTIVES

The objective of this protocol is to allow X to cause C to dispense the
-same time and place assignment for blessed dates, both to himself (X)
and to the other party (Y). This operation should succeed in spite of
the postal communication which in that part of the country (unlike
others) may lose letters, delay them for an arbitrary amount of time

(hence causing occasional "out of order" delivery) and, believe it or
not, deliver several duplicates of the same letter. It is assumed.that '
no Y ever declines to accept a blessed date. '

3. THE SPECIFICATION OF THE PROTOCOL
The protocol employs the following letters:

[1] X=>C: <DATE-REQUEST>, X, Y, RX

- This letter is used by X to request C to issue the time and place
assignment to both X and Y. This issuance will have the effect of
notifying Y that X is interested in dating her. The RX in this letter
is a reference number that X assigns to this expected date.

[2] C=>X: <HEARD-YOU>, RX

This letter is sent by the center to acknowledge the reception of X's
letter. It constitutes neither an approval nor a denial of the date.

[3] C=>X,Y: <BLESSED>, X, Y, T&P, RX, RC -

This is an official notification of the blessed date which is sent to
both parties. T&P is the specification of the time and place assigned
for this date, and RC is the reference number assigned to it by C.

[4] C=>X: <DENIED>, RX, RC

This is the official denial of the date, which is sent only to X.
{51 X,Y= >C: <TNX>, RC

This is the letter that X and Y send to the center upon receiving either
a <BLESSED> or a <DENIED> letter.



-181-

4. THE OPERATION OF THE X AND Y PROCESSES

State Condition " Action | Next

———— ———————— —— : State
1 IDLE: wants to date send <DATE-REQUEST>
.- set timers T1 and T2 2
rec'd <BLESSED> send <TNX> Y

2 WAIT-FOR-ACK: T1 goesﬂdff send <DATE-REQUEST>
' LR set timer TI1 2
T2 goes off - - 1
rec'd <HEARD-YOU> set timer T3 3
rec'd <BLESSED> send <TNX> lu
rec'd <bEN£ED> send <TNX>, expunge RA 1
-3 WAIT-APPROVAL: T3 goes off —_— | 1
rec'd <BLESSED>  send <TNX> oy
' rec‘d <DEﬁIEﬁZ send <TNX>,.expunge RA 1
—_— 1

4 HAPPY: date termination

Any other event is ignored, T1 is présumably.Very much smaller than T2.



-182-

5. THE OPERATION OF THE C PROCESS

State . Condition Action , Next

----- | cm—— — State
1 IDLE . rec'd <DATE-REQUEST> send <HEARD-YOU> 2
2 CHECKING date approved send <BLESSED> to X and Y
_ _ set timers T4 and T5 3
date denied ' send <DENIED> to X
set timers T4 and T5 6
3 WAITXY rec'd <TNX> from X  ———- : 5
rec'd <TNX> from ¥  —-= N 4
T4 goes off send <BLESSED> to X and Y
. set timer T4 3
TS goes off — ‘ 1
4 WAITX  rec'd <TNX> from X  —=—= - _ 1
T4 goes off send <BLESSED> to X
set timer Ti y
T5 goes off _— 1
5 WAITY rec'd <TNX> from ¥ === - 1
T4 goes off send <BLESSED> to Y
- set timer TU 5
- T5 goes off _ —— 1
6 WAITXX rec'd <INX> from X  ==-m | 1
T4 goes off send <DENIED> to X |
set timer T4 : 6
TS5 goes off" : ———— 1

Any other event is ignored. T4 is bresumably very muéh smaller than T5.



-183-

The above is, obviously, the description of a single instance of C,
dedicated to handle a specific DATE-REQUEST. It is assumed that C has a
central process which identifies new requests, and creates new instances
to handle then. : '

6. DISCUSSION
He believe that this protocol is capable of"performing a good job.

However, it is obvious that the spécifications of the objectives, as
given in section 2, do not cover all the issues which are covered by the
design and by the implementation specification of this protocol.

‘We suggest that the reason is that the real objectives are not fully
specified. Therefore, the above protocol is an "overkill" for the
specification, and simpler protocols which meet the same given
specifications may be devised. '

6.1 Simpler Protocols

For example, in order to meet the objectives, as specified above, only
the <DATE-REQUEST> and the <BLESSED> messages are needed. Neither the
<HEARD-YOU>, nor the <DENIED>, nor the <TNX> are needed. Similarly,
neither the timeouts nor the retransmission are needed.

Hencé. a ppssible simpler protocol has only the <DATE-REQUEST> and the
<BLESSED> messages, without the <HEARD-YOU>, the <DENIED>, the <TNX> and
" any of the timeouts.

It is not hard to verify that this protocol meets the objectives as
specified in section 2. Obviously it is less robust in respect to
communication imperfections, but this was not specified there.

It is obvious that what we meant is to make sure that the transactions
‘are successfully conducted, in spite of the unreliability of the
supporting communication medium.

‘However, the term "sure" above has to be taken with a grain of salt.
Obviously it is impossible to have a perfectly reliable communication on
top of an unreliable medium. What if the Oceanview post office goes
suddenly on strike ?!! Even though federal employees are not expected
to strike, this is still a possibility.



-184-

In more precise terms, what-is meant is that the success probability, of
the entire transaction, should be above a certain threshold, in spite of
. a lower (positive) communication success probability.

The above protocol is probably a pretty good answer for this
interpretation of the objectives. : S

We suggest that in general the problem specification should include,
quantitatively, the reliability parameters and other relevant
information about the environment in which the problem is embedded, like
the performance of the supporting communication system, for example.

If only the increased success probability is added to the objectives,
then there is even a simpler protocol which still meets the objectives.

This protocol, as the previous one, has only the <DATE-REQUEST> and the
<BLESSED> messages. It does not have the <HEARD-YOU>, the <DENIED>, the
<TNX> messages and any of the timeouts. It achieved the desired increase
of reliability by flooding the communication system with multiple copies
of each message, ad infinitum. One can prove that if the probability of
a successful delivery of a message is arbitrarily small, but greater
than zero, then the probability of a successful conclusion of a
transaction is arbitrarily close to 100%. :

6.2 Efficiency and Cost Considerations

However this protocol is not considered acceptable since some cost is
associated with the transmission of messages. It results from both the
~communication cost, and/or processing limitations. 1In our story the
transmission cost is paid in postal stamps, and processing limitation
are reflected by the understanding that if too many copies of the first
<DATE-REQUEST> reach the center, the center may never have the chance to
notice another request.

Therefore, we suggest that in addition to specifying the desired
performance, the cost parameters must be specified, too. One should be
able to specify that he is very much interested in having a date, but
that he is not willing to pay more than so many stamps for it.

However, there is an even simpler protocol which is based on the center

continuously telling everyone to be always at the center, just in case

someone wants to date them. This can guarantee (i.e., with probability

arbitrarily close to 100%) that if your requested date is blessed (or
even if it is not) then when you go to the center, your date is there,

It is conceivable that some people may have some objections to this

procedure. Camping on the front lawn of the center for several weeks

before the data commences, is not that much fun.



-185-

The problem of missing knowledge in the protocol objectives
specification causes major difficulties not only to the protocol
designer eommunlty. but also to the protocol verification community.

6.3 Complete Specification

There are probably several other possible protocols which meet these
objectives, and have similar flavor. All of them result from the lack
of complete specification. : '

The missing specification includes typically the "obvious" details,
which do not require explicit mention, but are implied from our general
experience in dealing with communication protocols. They include the
performance parameters, the cost parameters both for the communication
and the processing resources, the cost associated with omission and
commission errors, and the like. :

One may argue that this type of specification does not belong to the
‘particular problem at hand, but to the general domain of message
communication, and separate the specifications into two parts, the
particulars of the given problem and the generalities of the domain.

We suggest that in message communication the domain has to be
parameterized, where the assignment of the parameters is a part of the
specification of a particular problem. The model of probabilistic
delivery, communication and processing costs, omission and commission
-errors ‘and the 1like belong to the domain, but the value of these
probabilities and the various‘costs are parameters which depends on each
spec1fic problem, :

It is unfortunate that we still do not know how to completely specify
the objectives of a protocols. These objectives must include the
parameters of the environment, such as the supporting communication
medium (below) and the expected traffic (abbve). the various costs
associated with usage of resources such as message transmission,
processing and storage, and with delays. communication errors, and the
like. : :

It is amazing that even though we do not yet possess the ability to
accurately specify protocol objectives, we have enough "engineering"
e&perlence to guide us in implementing protocols which do a remarkably
good job of message communication.

The nature of these performance and cost related parameters introduce
the notion of approximations. Protocols are not either correct or
incorrect, but are more 1like many numeric problems which have a
“eontinuous spectrum of accuracy. :



-186-

For some problems the objectives are such that the correctness of
message delivery is more important than its efficiency. File transfer
requires that each bit is reliably received, even if this implies
delays. Speech communication requires efficiency and low delays, more .
than perfect accuracy. For speech a certain amount of errors is
tolerated if this is necessary for delay considerations. Obviously, this
cannot be carried to the extreme in which a zero delay is achieved by
compromising (totally?) the accuracy of the signal.

7. THE JAPANESE DATING COORDINATION PROTOCOL

The Japanese community in Oceanview is much more permissive than their
neighbors downtown. Direct communication between the parties is not
only allowed before the date, it is even encouraged. The center role is
limited to providing consultation, addresses and other matters of
importance. ' :

. After choosing his sweetheart, a person writes her directly and invites
her to meet him, in the temple gardens, at a certain time. Typically
the recipient responds rather anxiously, and sends a letter of
confirmation. ‘ '

Due to old Japanese tradition one loses face if stood up for a date.
Losing face, in this community, results always in the tragic act of
harakiri. : :

When the number of these tfagic acts soared, the temple leaders were
-able to correlate it with the low quality of the local postal service.

Without delay they set out to design a protocol{whicﬁ would assure the
safety of all dates, thus eliminating the recurrence of these tragic
consequences., : '

Unfortunately this task proved to be more difficult than first expected.

The reason for this difficulty is that since losing face is a serious
matter, in fact a matter of life and death, the required level of safety
must be 100%, not a bit less. '

It turned out that no protocol could guarantee that absolute
reliability, even with any finite delay. When a young mathematician
managed to prove that such a protocol could not exist, the wise men at
the temple were very disappointed. :

. For the benefit of the interested reader the proof is sketched below.w

Suppose that P(N) is a protocol which under the existing conditions
could guarantee a safe date, where the probability of a message to be
successfully delivered is less than 100%. '



-187-

The last message, the Nth one, could not carry information which is
essential for the safety of the date, since its sender cannot be sure
that it was received by the other party. Since it carries no essential
information, it could be eliminated, and a ‘stamp can be saved. Since
P(N) is a safe protocol, so is P(N- 1), which is the protocol consisting
of the first N-1 messages of P(N).

Therefore a P(N-2) exists, too. So does P(N-3) and so on. Therefore,
P(0) exists. This means that a safe date can be arranged without ‘any
exchange of messages.

Since the dating process 1is essential for the well being of the
community, other communication alternatives are under study now.

8. CONCLUSIONS

Complete specification of protocols are needed ' for optimal
implementation and for verification, : '

Even though we, as a community; have gathered an impreSsive experience
in implementing protocols, our ability to specify accurately and
precisely the objectives of protocols still leaves a lot to be desired.

We suggest that the specifications of message communication protocols
should include the parameters of the environment, the parameters of the
performance and cost constraints. The cost should include the effects
of errors,. of both  kinds, It should be kept in mind that absolute
reliability cannot be guaranteed in environments which are less than
perfect.

It is probably possible to divide the specifications into (i) the
particulars of the specific problem at hand, and (ii) the generalities
of the message communication domain. However, due to the diversity of
this domain, (ii) may be specified only as a parameterized domain, where
" the specific values of its parameters are part of (i).

«9. AN IMPORTANT NOTICE

Throughout the paper pursuers are referred to as belonging to the male
gender, whereas females are considered always as lovely sweethearts who
are always anxious to be approached. We would like to emphasize that by
no means do we intend to suggest that this is a correct reflection of
the roles of human beings. We are well aware that in real life the
division between "pursuers" and “pursuees" does not follow the sex lines
as closely as we used to pretend.

As a matter of fact, the authors of this paper are quite aware that in
this day and age liberated women may play the "aggressive" role more
often than their counterparts.

We are well aware of it, and regret having been born too'early to enjoy
it.



~-188-

10. ACKNOWLEDGMENTS

We would like to thank our many colleagues who helped us putting these
ideas in this form. Our many discussions helped us understand these
issues in a better way. In particular we would like to thank Jon Postel
of ISI and Carl Sunshine of the Rand Corporation. Special thanks to.
Debe for advising us about the dating issues. '

6 April 1979



MULTIPLE COPY CONTROL TECHNIQUES




-191-~-

DISTRIBUTED CONTROL OF UPDATEG IN MULTIPLE-COPY DATABASE
-A TIME CPTIMAL ALGORITHM

R. J. Ramirez and N. Santoro*

Department of Computer Science
University of Waterloo
Waterlco, Ontarioc
Canada N2L 3G1

" Abstract

In this paper, the problem of updating a database with
multiple copies under distributed contrel is addressed.

An update synchronization algorithm for databases,
whose copies are distributed on a store-and-forward synchro-
nous network is presented and its complexity 1is analyzed.
The proposed algorithm is shown to be time cptimal within an
additive constant for networks of arbitrary topology. The
algorithm incorporates a simple priority scheme to resclve
concurrent updates. ‘ :

I. INTRODUCTION

When a single database is accessed by several users
through a communication network, it may be advantageous to
store the same data at more than one center in the network.
_For  example, consider a database for which the expected
number of "read" accesses is very large as compared to the
expected number of "update" accesses. If a copy of the data
is stored at each center of the network, then "read"
requests can be serviced locally, reducing the operaticnal
cost and the response time of the database. v

, The advantage of a multiple copy distributed database
are essentially based on the availability of duplicate data.
Namely, this redundancy offers an increased reliability, a
quicker query response, and a potential for upward scallng
of database capacity [11].

The disadvantages rest,on the facts that updates, ori-
ginated at various centers, must be reflected in every copy,
and that transmision delays, as well as the order in which.
updates are applied, must be taken into account to maintain
internal consistency in the detabase.

It could be desirable to centralize the contrel func-
tion, 1i.e. to make a single center responsible to maintain
the consistency and integrity of the database.. In such a
scheme, all other centers will request permission from the

* On leave from Institutec Scienze Informazione, Univer-
sity of Pisa, Corso Italia 40, 56100 Pisa, Italy.



-192-

control center to update the database and the control center
will deny or grant the request on the basis of current
locks. If the request 1is granted, then each copy is
updated, and acknocwledegement is sent to the contrcl center
that will then release the associated lock. For a more com-
plete discussion and some examples of centralized control
see [1, 4, 121.

An interesting alternative is represented by the dis-
tributed contrel scheme. In this model, the control func-
tion is distributed among all centers in the network. To
make the control possible, it is necessary for each center
to communicate (exchange messages) with other centers (its
neighbours); and, 'in order to maintain the internal con-
sistency in the database, a synchronization technique |is
needed. In the 1literature several algorithms for distri-
buted control have been presented; they are designed to work
with networks of a given topology. Namely, the centers of
the network must form & sequential chain [56, 71, a daisy
chain [3, 13, 14], or a star [2]; and each center must have:
knowledge of the network topology. '
~ In this paper we continue the analysis of multiple copy
databases with distributed contrel, and present a general
and efficient update synchronization algorithm for networks
of arbitrary topology. 1In crder for the algorithm to work,
each center needs only to know who are its neighbours, and
~no additional knowledge of the network topolegy is required.
Concurrent updates are resolved by a priority mechanism that
guarantees proper sequencing and avoids race conditions. 1In
‘the next section, the problem is stated formally., In sec-
tion III, a restricted environment is considered, a naive
algorithm is described, and an improved = algorithm- is
presented and proved to be optimal in the restricted con-
text. In section IV we show how to modify the algorithm to
work in-a general environment increasing the time complexity
only by a small constant, and we describe the proposed alge-
rithm formally. -

II. DEFINITIONS

Let us formally describe the framework and define some
terms that will be used throughout the paper. The network
is composed of n centers, each mantaining a copy of the
database. Each center replies to query and update requests
which are originated locally or received from some other
center. At each center, messages are sent to and received
from its neighbour centers. This. situation can be
represented wusing a.linear graph G=(N,A), where N is a set
of nodes and A a set of arcs: each node n(i) € N represents
a center where a copy of the database resides, and. each arc
a(i,j) € A represents a direct communication 1link between’
n(i) and n(j) (in our application a(i,j)=a(j,i}). If a(i,])
€ A then n(i) and n(j) are said to be neighbours. Each



-193-

center mantains a list D(i) of its neighbours,
D(i) = { n(j) €N | a(i,j) € a}.
At any given time, each node can be in one of the following
states : _ . 3
{available, Prepared, Countinq; Update}.

The model is based on the follow1ng ba51c assumptlons-
i) Synchronization.

The clocks at each center are synchronized. Imper fect

synchrenization could be included in our model by using

a quantity d(i,t) defined as the difference between the

clock at center i and the "time" t (see [5]).

ii) Partial Reliability.

: During an update, the topology of the network w111 not
change., = Partial reliability does not imply any other
assumption, neither on the topology ner cn the general
rellablllty of the network.

i) Consensus.
An update will be performed only 1f all centers agree
on the update (see [91). :

In the next section we will analyze a "naive" algorithm
for update synchronization. We will then show how to modify
it in order to speed up the. synchronizaticn time, and we
will prove that the resulting algorithm is time optimal.

III. RESTRICTED CONTEXT
In this section we will consider a restricted environ-
ment to simplify the presentation. In section IV we will
show how to extend the result to the general case. The res-

tricted context is as follows

i) the database is on an acycllc network, i.e. G is a
tree.

ii) at any given time there is at most one active update
request,

iii) to transmit a message across any link takes a single
unit of time,

The neive algorithm.

In a "naive" algorithm for the above environment, a
node n(C) receives an update request originated locally. It
enters state "Prepared", sends a "request" nmessage to all



~-194-

its neighbors, and waits for replies from them all. Node
n(0) at this time, does not have any information on the
topology of the network, except which centers are its neigh-
bors. In fact, the network topology might have changed
since the last update, due to breakdown or to the reactiva-
tion of a communication link. Therefore, it 1is necessary
for n(0) to obtain from all centers not only the consensus
to update, but also some information on the topology of the

network. Namely, it needs to know the radius, i.e. the time
required for a message from n(0) to reach the farthermost
center in the network.

Let us now continue the description of the algorithm.
In a recursive fashion, node n(i), upon receipt of a
"request" message from n(j), enters state "Prepared"; sets
sender(i)=n(j); sends a "request" message tc all its neigh-
bers except n(j); and waits for acknowledgement from them
all. : .
"If n(i) is a leaf then, after entering state.
"prepared", it sends to n(j) an "Ackowledgement" message
containing a counter T(i) <(in the restricted environment
T(i) will be a variable initially set to zero) and waits for
the "Update" sighal. ’

In a recursive manner, node n(j) waits for "Ackncwledg-
ment" messages containing the counter T from all its neigh-
bours (except sender(i)). Then, it sends to sender(i) an
"Acknowledgement" message containing the counter T(J)
defined as the last received counter T(k) incremented by
one.

When n(0) has received "Acknowledgement" messages from
all its neighbours, it can start the update.

In fact T(0) = max{T(i) | n(i) eD(0)} 1is exactly the
radius. ' -

The synchronization of the update proceeds as follows: .

i) nocde n(0) enters state "Counting" and sends to all its
neighbours an "update" message containing the "update
vector" [5] and a new counter TP(0)=T(0)+1.

ii) in a recursive fashion, node n(i), upon receipt of an.
"Update" message from n(j), enters state "Counting";
saves the "update vector"; sets TP(i)=TP(]j)-1; sends
the wupdate vecter and TP(i) to all its neighbours
except n(j), and starts the count down of TP(i). When
the counter reaches =zero, then node n(i) will change
its state to "Update". : )

iii) when in state "Update", node'n(i) performs = the wupdate
and, when completed, it enters state "Available". -

A state transition diagram is shown in Figure 1.



=198~

AVAILABLE [—=| PREPARED
1 I
UPDATE |« COUNTING

Figure 1. State transition diagram for the restricted context.

It is easy to show that all centers will count zero
simul taneously, and that the - time required by the naive
‘algeorithm to synchronize the network is 3#*T(0). In fact,
it takes T(0) steps for a "request" to reach the farthermost
node; the "acknowledgement" message from that node to n(0)
will 2lso take T(0) steps to arrive; and, finally, it takes
T(0) .steps for all nodes tc enter state "Update" simultane—
ously. -

The'improved algorithm,

We will now show how to modify the previous algorithm
to . reduce the synchronization time. The previous algorithm
performs basically two cperations: it finds the radius, and
then it sends the update signal. 1In order to speed up the
process, the above operations must be performed as simul-
taneously as possible. We will now describe the algorithm
for ‘the restricted environment with an example, and analyze
its complexity. In section IV weé will formdally present ‘the
general algorithm. ' . '

Consider' the graph ‘in Figure 2(a) ~where index - i
represents noede n(i). -~ =~ =~ R ' ‘ K

Figure 2(a).

Initially, the algorithm works as the naive method. At time
t=0, n(0) receives an update request generated lccally. It



~-196-

then enters state "Prepared" and sends a "request" message
to - all its neighbours, which in turn enter state "Prepared"
and send a "request" message to their neighbours.. This pro-
cess continues recursively. Eventually, a message reaches a
leaf node. 1In our example, at time t=2. (i.e. after two
steps), both n(3) and n(4) receive the "request" message.
.They enter state "Prepared" and send back an "Acknowledge-
ment" message with counter set to zero, (see Figure 2(b)).

g/

Figure 2(b).

At a bifurcation node, e.g. node n(2) in Figure 2(b), all
"Acknowledgement" messages, except the last one to arrive,
are destroyed. That is, only the last "Acknowledgement" and
counter are considered. When the last "Acknowledgement"
arrives to a node, for example n(l) at time t=3, this node
sends to its "father", n(0), an "Acknowledgement" message
and the counter T(1)=T(3)+1=1, At time t=4, the "Ack-
nowledgement” message has reached n(0). In our example, the
synchronization process can .now start, -In general, n(0)
waits until the message beéefore the last one has arrived.
Upon receipt of such "Acknowledgement", n(0) sends to the
~only unacknowledged neighbour an "Update" message containing
the "update ~vector" - and the counter
. TP(0)=received counter+l1=T(1)+1=2. This situation is shown
in Figure 2(c)~. S



~197~

Figure 2(c).

At time t=5, node n(2) sends the "update vector" and the
counter TP(2)=TP(0)+1=3 to the unacknowledged neighbour
n(5). If there is more than one unacknowledged neighbour,
then the node waits until all ne1ghbours except, the least
have sent an acknowledgment. This process is repeated in a
recursive “fashion until the. "Acknowledgement" message from
the farthermost node and the incoming "Update" message meet
in a node, as shown in figure 2(d) (actually, the two mes-~
sages may "jump" over each other; this case is easily solved
with a single test).

Figure 2(d).

Node n(f) now knows how distant is the farthermost node. 1In



-198~-

fact, this quantity is precisely TP(5)+1. Node n(6) enters
state "Counting", sends the synchrenization message and
TP(6) to its neighbours, and starts the count down of TP(f).
Analogously, when a node n(i) receives an update message and
the counter TP(j), it will set TP(i)=TP(j)-1, send the
update message to all its neighbours, enter state "Count-.
ing", and start the count down of TP(i). When the counter
reaches zero, the node changes its state to "Update" and
performs the required update. When the update has been com-
pleted, the node enters state “Avallable"

Analysis of the aigorithm.

Let us now analyze the complexity of the above algo-
rithm. We are interested in evaluating the delay between
the time an applicable request* is originated and the time
the update is actually performed. This delay can be

_expressed in terms of the number of steps needed for the
orlglnatlng node to reach state "Update". '

“In order to analyze the complexity of the algorithm,
"let’ us  introduce some terminology. Given a rooted tree T,
the radius r is the maximum distance’from a node in T to the
root, and the d1ameter d is the max1mum dlstance between any

“two nodes in T.
' When a node or1g1nates an update request, this node can
" be -regarded ~as’ the "root" of the tree. 1In Figure 8, only
the longest and the second longest path from the root, of
length a and b respectively, are shown. Obviously r=a; it
can be proved that d=a+b [10].

Figure 3. Radial path (a) and second longest path (b)
" from the root. ' ' '

~* An applicable request is a request that is not going
to ‘be ' preempted .by a higher. priority request. In the
resticted environment every request is applicable.



-199-

In ocur algorithm, after the root generates the wupdate
request, it will take b steps for the "request" signal to
reach the leaf in the second longest path; and it will take
b steps for the "acknowledgement" signal from that node to
reach the root. The “synchronization" signal (i.e. the
update message in our algorithm) will then be sent along the
radial path, and it will eventually meet the acknowledgement
signal <coming from the leaf of that path. ' The two signals
will meet (or jump over each other) after a-b steps. At
this point, the "Counting" signal is originated. Before the
update can be performed, this signal must reach all nodes,
including the farthermost ones. It can be shown that the
farthermost nodes are not more distant from the "meeting
node" than a bottom leaf in the second longest path. That
is, we need other (a-b)+b steps before we can perform the
update. In total, we need 2b+a-bt+ (a-b)+b=a+ (a+tb)=r+d steps.
That is, the algorlthm requires d + r steps to synchronize
an arbitrary tree network of radius r and diameter d. We
can now show that: ' '

.Prop051t10n. :
The proposed algerithm 1s time optimal for
tree networks.

The above result follows from the fact that at least d + 1
steps are needed to synchronize a tree. This lower-bound
has been proved for a tree of cellular automata ([10]. The
proof relies only on the tree-structure of the network and
~not on the computational power of the nodes. Therefore, it
holds for our model and proves the above proposition.

IV. GENERAL ENVIRONMENT

In .the above sections, we have presented a time optimal
algorithm for the restricted envircnment. >Namely, the fol-
lowing restrictions were made: (i) the network has a tree
structure; (ii) there are no concurrent updates; and (iii)
the time to transmit any message from a node to its neigh-
bours 1is unitary. These assumptions were made only to sim-
plify the description and analysis of the algorithm. In
fact, a concurrent update resolution mechanism can be easily
incorporated in the algorithm without increasing its com-~
plexity; more operations will be performed at each step, but
the number of steps will be the same. Analogously, the
algorithm can be easily modified to work on general graphs,
and with different transmissions times, increasing the time
complexity only by a small constant.

In next sections we will informally show how to modify
the algerithm to work on the general envircnment and for-:
mally describe the resulting algorithm.



-200~

Collision resclution.

In this section we show how to incorporate in the algo-
rithm " a collision resolution mechanism based on priorities
without increasing its time complexity.

- The proposed pricrity scheme is as follows:

- each node is assigned a unique index (e.g. an integer);
nodes do not need to know everyone else's index, but only
_that the indices are unique.

- the priority function & is avallable to all nodes. _
- when a node is in state "Prepared", it will accept an
upd ate request with higher priority, preempting. the
current one; the preempted request will be saved by its
originator in a queue for future process1ng.

- when a node is in state "Counting" or "Update", it will
ignore any update request.

The priority function can be formally described as a

mapping
: & : Z X R ->2Z ,

where Z is the set of positive integers, and R is the set of

reals; #(i,t) denotes the priority of an update request ori-

ginated at node n(i) at time t, and is such that:

(i) ¥ t' >t a&(i,t) > &(i,t')
(i) ¥ 3 <1 a(i,t) > 8(j,t)

" that is, @ is a decreasing function of the time and an
increasing function of the indices. 1In other words, if two
(or more) update requests originate at the same node, the
second request can proceed only after the completion of the
first update (this guarantees proper sequencing); if several
update Trequests are originating at the same time in dif-
ferent nodes, the request originating at the node with
highest index will be processed first (this avoids race con-
ditions and the consequent undeterministic behaviour of the
system). Let us note that because the requirement for con-
sensus, the transmission of negative acknowledgements is not
needed; the arrival of a higher-priority request will per-
form the same function.

General graphs.

Throughout the above discussion, we have been dealing
with tree networks., However, the proposed algorithm can be
used for a general network. In fact, given a network of
arbitrary topology and given a starting node (i.e. a node
originating an update request), we can construct a spanning
tree rooted in that node and apply the algorithm to the
obtained tree. Let us note that to construct ‘a spanning



-201~

tree T of a graph G is equivalent to determine for each node
n(i) €N the list L(i) of its neighbours in T. Obviously
L(i) ¢ D(i). 1In order not to greatly increase the time com-
plexity, this "tree reconstruction" must be done while exe-
cuting the algorithm, and the resulting tree must be of
minimum radius. This can be easily achieved in the follow-
ing manner: If a node n(0) is originating the update, then
it will send a "reconstruction" message to all its neigh-
bocurs in the graph and wait for acknowledgment. The set
L(0) will be formed by all the neighbours sending an ack-
nowledgment. In general, a node n(i) will ignore all
"reconstruction" signals, except the first, for a given
update. Let n(3j) be the sender of the first received recon-
struction signal for an update. Then, node n(i) will send
‘an acknowledgment +to  n(j); simultaneously send a "recon-
struction" signal to all its neighbours in the graph, except
n(j); and wait for acknowledgment. The set L(i) for the
given update will be formed by n(Jj) and by all nodes n(k) €
.D(i) that have replied (always within two time steps). It
can be shown that this technique constructs the tree of
minimum radius (8] and increases the total time complexity
by only two steps; i.e. the modified algorithm works 1in
d+r+2 steps. o : o ' v

The last assumption made in the restricted ‘environment
was on the time required  to transmit a message across a
link. 1In general, the time to transmit & message x from
‘node n(i) to node n(j) is t(i, j, x) # 1. To make the algo-
rithm work for this general case, where ¥ n(j) € L(i) ¥ x
t(i, j, x) is known at node n(i), we need only to modify -the
counters and to take into account what kind of message we
are sending or receiving. 2All these modifications do not
involve any major change, and for simplicity are not expli-
citly included in the algerithm.

The algorithm.

In order to describe the algorithm including the colli-
sion resclution  mechanism formally, let us review the four
possible messages: :

<"R" ,sender, originator, time>

1) update request

2) acknowl edgment - - <"A" ,sender, priority, counter>

3) synchronization - <"U",sender,update vector,priority,
counter>

4) counting - <"C" ,sender, update vector,counter>

where the counter is analogous to a time stamp, and sender
and originator are the indices of the sender node and of the
originator node of the request, respectively. The algorithm
is expressed in terms of which operations a node must per—
form, depending on its state and on the received message.



.~202-

We assume that each node n(i) already knows the set L(i).

node(i) is in state "Available".

<"R", n(k), n(3j), t1me>

begin , -

if n(i) = n(j) then {locally generated update request}
begin ' '
compute priority P, L(i) and update vector V
send <"R", n(i), n(i), time> to all n(p) € L (i)
vector (i) V; prepared(i) = n(i)
sender (i) n(i); priorlty(l) = P

if |L(i) | 1 then {it is also a leaf} '
send <"u" n(1),vector(1),pr10r1ty(1),O>to n(p)e L(1)
~end
el se
begin

compute priority P, L(i)

"prepared(i) = n(j); sender(i) =n(k); priority(i) = P
if L(i) - n(k) = g then { n(i) is a leaf}

send <"A", n(i), priority(i), 0> to n(k)

el se _ :
send <"R", n(i), n(j), time> to all n(p) € L (i)-n(k)
end
state(i) = "Prepared"
- Copy(i) = L (i) - sender(i)

end

Ignore other messages

node n(i) is in state "Prepared".

<"A", n(k), P, C>

begin -
if P < priority(i) then {1gnore message}
el se
~begin 3
Copy(i) =Copy(i) - n(k)
if prepared(i) = n(i)then {this node isthe originator}
if |Copy(i)|l = 1 then {start synchronization}

send <"U",n(i) ,vector (i) ,priority(i),C+1>
. to n(p) € Copy(i)
if holding(i) then {holding synchronization message}
begin , A ‘ g
if |Copy(i)! = 1 then {forward synchronization}
send <"U",n (i) ,vector (i) ,priority(i),C+l>
to n(p) € Copy(i)
end
else

if |Copy(i)l = 0 then { send ack to sender(i)}



-203-

send <"A", n(i), priority(i), C+1> to sender(i)
end ‘ ,
end_

<"U", n(k), vector, p, c>

‘begin : ,
if P # prlorlty(l) then {ignore message}
else
begin - ‘ ,
if |Copy(i)l = 1 then {forward synchronization}

send <"U", n(i), vector, priority(i), C+l>
‘to-n(p) € Copy(i)
el se - :
begin
if |Copy(i)| > 1 then {holdlng synchronization}
holding (i) = true

el se
begin : :
send <"C", n(i), vector, C+1> to n(p) e L(l)
vector(i) = wvector; counter(i) = C+1
state(i) = "Counting"
while counter(i) # 0 decrement counter(i)
state(i) = "Update"

Perform update as described by vector(i)
holding (i) = false
state(i) = "Available"
end ‘
- end
end
end

<"C", n(k), vector, C>

begin o _

Copy(i) =L (i) - n(k)

vector(l) = vector

send <"C", n(i), vector(i), C-1> to n(p) e Copy(l)
state(i) = "Counting"

while counter(i) # 0 decrement counter(n

state(i) = "Update" -

Perform update as described by vector(l)
holding (i) = false

state(i) = "Available"

end '

<"R", n(k), n(j), time>
begin
Compute priority P
if P < priority(i) then
if n(j) = n(i) then {new locally generafed
' ' update temporarily rejected}
save vector and retry later
{priority is higher than previous request}



-204-

el se
begin ' ‘
if prepared(i) = n(i) then {org. of old request
old update temporarily rejected}
save vector(l) and retry later
begin
if n(i) = n(j) then {locally generated update request}_
begin
cogpute prlorlty P, L(i) and update vector V
send <"R", n(i), n(i), time> to all n(p) € L (i)
.vector (i) ="V; prepared(i) = n(i)
sender (i) n(i); priority(i) =P =
if (L (i) 1 then {it is also a leaf}
send <"U", n(i), vector (i), pr10r1ty(1), 0)
to n(p) € L (i)

end -
el se
begin
- compute prlorlty P and L (i)
prepared(i) = n(j); sender(i)=n(k); priority(i)=P
if L(i) - n(k) = ¥ then { n(i) is a leaf}
send <"A", n(i), priority(i), 0> to n(k)
- else L
send <"R", n(i), n(j), time>
toe all n(p) € L (i)=-n(k)
end
Copy(i) = L (i) - sender(i)
end
end
end

node n(i) is in state "Counting".

Ignore all messages

node n(i) is in state "Update".

'Ignore all messages

V. CONCLUSIONS

In this paper, an update synchronization algorithm for
databases, whose copies are distributed on a store-and- -
forward synchronous network, has been presented and its com-
plexity analyzed. It has been shown that the algorithm is.
time optimal within a small additive constant, for networks
of arbitrary topology. -

There are some obvious limitations in the proposed
method, for example knowledge of the message transmission -
delays is required, and no provision for retransmission of



-205-

messages is included.

On the other hand, the algorithm does not require any
" knowledge of the general topology of the network; therefore
changes in tepolegy can occur " when there are no active
update requests on the network. '

Acknowl edgment. - -

The authors would like to thank Professor F. W. Tompa
- for his helpful comments. The financial support of the
University of Waterloo and of the Natural Sciences and
"Engineering Research Council Canada are also gratefully ack-
nowledged.

REFERENCES

[1] Alsberg P A., Belford‘G.G, Brunch S.R., Synchroniza-
- tion and 'deadlock, CAC document 185, University of
. Illinecis, 1976. : ‘

[2] - Chu w.w.; Performance of directory systems for data-
bases in star and distributed networks, Proc. AFIP
Conf. 1976. :

[3] Ellis C.A., A robust algorithm for wupdating dupli-
cate databases, Proc. 2nd Berkley Workshop on Dis-
tributed Data Management and Computer Networks,
1977.

[4] = Garcia-Molina H., Performance comparison of two
update algorithms for distributed databases, Proc.
3rd Berkley Workshop on Distributed Data Management
and Computer Networks,1978,

(5] Gelenbe E., Sevcik K., Analisys of update synchroni-
zation for multiple copy databases, Proc. 3rd Brek-
ley Workshop on Distributed Data Management and Com-
puter Networks,1978,

[6] ' Legoff H., 4vLe1ann.G.; Communications and synchron-
ization tools, 1lst ECI Conf., 1976,

[7] Lelann G., DiStributed systems - towards a formal
approach, Proc. IFIP Congress 1977,

[8] . Moore E.F.,vThé shortest path through a maze, Proc.
Int. Symp. in Theory of Switching 1959.

[9] Mullery A.P., The distfibuted control of multiple
' copies of data, IBM research report RC5782, 1975,



[10]

(11]

(12]

t13.]'

(14]

-206-

Roman i F., Cellular ahtomata synchronization, Infor-
mation Sciences 10, 1976.

Rothnie J.B., Goodman N., A survey of research and
development in distributed database management,
Proc. VLDB Conf. 1977 f

Stonebraker M., Neuhold E., A distribUted databaée
version of INGRES, Proc. 2nd Brekeley Workshop on
Distributed Data Management and <Computer Networks,
1977. - : o - :

" Thomas R.H., A solution to the update problem for

multiple copy databases which uses distributed con-
trel, BBN report 3340, 1975.

Thomas R.H.; A'majority concensus approach to con-
currency control for multiple copy databases, BBN
report 3733, 1977.



-207-

CONCURRENCY CONTROL IN A MULTIPLE COPY
DISTRIBUTED DATABASE SYSTEM

Wen-Te K. Lin

Sperry Research Center

Abstract

The concurrency control mechanism employed by the System for
Distributed Databases, SDD-1, avoids both central site control and
global data locking. This paper proposes modifications to the
- concurrency control mechanism of SDD-1 which eliminate the need for
timestamps on data items and weaken the constraints of some of the
read-write protocols. These modifications reduce the amount of
storage required and allow accommodation of existing databases which
- may make no provision for stored data item timestamps. A new protocol
W is introduced which requires that write actions which participate in
certain cycles in the class conflict graph be synchronized at certain
sites. This protocol may reduce the degree of concurrency supported
by the system., Existing SDD-1 protocols are augmented with weaker
forms of these protocols which allow more flexibility in scheduling
read and write actions under certain conditions. Timestamps of some
actions are allowed to be changed in order to reduce the
synchronization delay experienced by other actions, thereby increasing
concurrency. A proof of correctness is given.

1. INTRODUCTION

Several solutions for concurrent transaction control in a
multiple-copy distributed data base system have appeared in the
literature (1) - (4). Most of these solutions involve various degrees
of global locking, which requires a large number of intersite messages
ard reduces system concurrency. Some require primary sites as control
centers, which may create bottlenecks in the system, One solution,
presented in (4), employed by the System for Distributed Databases,
SDD-1, avoids global locking and primary sites, but requires stored
timestamps on all data items of the data base (or at least on all
recently updated data items). = This paper proposes modifications to
the concurrency control mechanism of SDD-1'which eliminate the need
for timestamps on data items and ease some of the synchronization
protocols between read and write actions. A proof of correctness is
given,

2., SUMMARY OF SDD-1 CONCURRENCY CONTROL

A ttansaction T is the unit of consistency and is modeled as a
series of read actions followed by write actions



-208-

T = R(T,ul)...R(T,un)W(T,vl)...W(T,vm)
where ul,...,un are distinct sites at which these actions are to be
executed. Similarly for vl,...,vm. Associated with each read action,
say R(T,ul), is a set of data to be retrieved, called the read set of
transaction T at site ul, which is also denoted by R(T',ul). Similarly
W(T,ul) denotes the write set of transaction T at site ul. Each
transaction T belongs to a transaction class T* which has a
pre-determined set of data to be read from and written into the
database at each site. These are called the read sets and write sets
of the transaction class (These read-sets and write-sets are physical
sets. For the purpose of this paper the concept of logical sets is
not needed). The read sets and write sets. of each transaction are
contained in the read sets and write sets of its class respectively.
We denote the read set and write set of class T* at- site u by R(T*,u)
and W(T*,u) respectively. R(T*,u) and W(T*,u) also denote the class
- of read - and write actions of transaction class T* sent to site u. A
class conflict graph is used to show the intersections among read sets
and write sets for all transaction classes in the system. For

example, in Figure 1, a transaction class is represented by nodes, one A

_for each read and write set connected by a central node. In the
figure the read set of transaction class T* intersects the write set
of class S* at site u, and write sets of T* and S* intersect at site
u. We draw an edge for every such intersection. We call such an edge
a heterogeneous edge.. An edge is also drawn between the central
point, and each read set and each write set of the same class; these
edges are called homogeneous edges. A path is a sequence of read
nodes and write nodes (S1, S2,...,5n) where (Si,Si+l) is either a
heterogeneous edge or an adjacent pair of homogeneous edges, and no
edge appears twice. If S1=Sn then the path is called a cycle. A

R(T*IV) R‘(T*Ix) R(T*,u) R(S*,u) R(S*ryj- R(T*,u)

Tk S*

W(T*,v) - W(T*,u) W(S*,u) W(T*,v) W(S*,u)

Figure 1 ' Figure 2

path, or a cycle, is called nomrredundant if each class appears in at
most two heterogeneous edges in the path. By analyzing such conflict
graphs, protocols are devised that make the system run correctly in
the sense of serializability and convergence of multiple-copy data
(4). Serializability means that if the system ceases to take any new
transactions and 1lets existing ones run to completion, the final
database state (which includes all external output) is the same as if




-209-

all transactions were run serially in some order. Convergence of
multiple-copy data means that if the system ceases to take any new
transactions and lets existing ones run to completion, all copies of
the database will be the same.

The following assumptions are made in SDD-1:

1., There is a umque tlmestamp associated with each transaction. One
way to ensure uniqueness is to take the originating site number as
the low order digits and the local clock time as the high order
digits of the timestamp.

2, Transactions are grouped into classes characterized by read sets,
write sets and originating site.

3. Transactions from the same class are pipelined, i.e., actions from
the same class designated for the same site are sent, received and
processed in timestamp order. (This constraint can be relaxed so
that if the read set and write set of a transaction class do not
overlap at some site, then actions from the class designated for
the site can be processed with the following three rules: (1) all
read  actions must be pipelined, (2) all write actions must be
pipelined, (3) each read action must precede the write action of
the same transaction).

4, There is a timestamp assoc1ated with each data item in the
database. (This assumption will be eliminated later).

5. Write actions of a transaction are sent out only after all its
read actions have been completed.

Protocols of SDD-1 as described in (4) are summarized in the
~ following:

Definition: T™M(S) denotes the timestamp of the transaction S.
™ (W(S,u)) denotes the timestamp of the action W(S,u) which is
initially equal to T™(S), but may be changed as discussed in later
sections.

Protocol R3: Whenever R(T*,u) and W(S*,u) intersect, and there exists
a non-redundant path in the conflict graph between W(S*,u) and
some write set of class T* (see Figure 2), then for every pair of
transactions T,S in classes T*,S* respectively, W(S,u) runs after
R('l‘,u) (denot:ed by Rﬂ‘,u)->W(S,u)), iff the timestamp ™(S) of S,
is larger than ™(T).

Protocol R2: If read sets of T* intersect write sets of S* and Q* (S¥
and Q* are not necessarily distinct) at sites u and v
respectively, and there is a nonrredundant path between these
write sets (Figure 3), then make sure that T* reads equally
up-to—date data from S* and Q* at sites u and v. In other words

W(S,u)->R(T1l,u) < R(T2,v)->W(Q,v) implies TM(S)<TM(Q)
where Tl and T2 are from transaction class T*, Tl and T2 are not
necessarily distinct, A->B means A runs before B, and A<B means
that the transaction containing action A has a timestamp which is



=210~

less than or equal to the timestamp of the transaction containing
action B.

Protocol Rl: In R2, if u=v, S*Q*, then make sure that T* reads
equally up—-to-date data from S* and Q* at site u (Figure 4). (In
fact this is a special case of R2)., .In other words :

“W(S,u)=->R(T1,u) R(T2,u)-M(Q,u) implies T™M(S)<TM(Q) :
where Tl and T2 are from the class T* and are not necessarily
‘distinct. ‘

'R(T*,u) R(T*,V) R(T*,u)

W(S*,u) WErY) W(S*,u) W(Q*,u)
Figure 3 — | . Figure 4

In implementing these protocols, SDD-1 uses a synchronization
primitive for coordinating an action A (always a read action in SDD-1)
with respect to a class of write actions W(S*,u) at a site u.. This

synchronization primitive, called SYNCHl1 here, is defined as follows:

Definition: SYNCH1 (A,W(S*,u),t) is a synchronization primitive which
is applied at site u to the action A with respect to the write
queue W(S*,u) and timestamp t. The primitive says that action A
be executed if and only if actions from the queue W(S*,u) have ‘
been executed up to but not beyond timestamp t.

when synchronization primitive SYNCHl is used, some read action
may wait indefinitely because transactions in the class S* with which
it synchronizes occur infrequently. In SDD-1, null-write messages are
used to minimize this kind of delay.

In SDD-1, timestamps on data items are used to ensure convergence
of multiple copies of data. Whenever a new data item is to overwrite
an existing data item, the timestamp of the existing data item is
retrieved and compared with the timestamp of the new data item.
!{pdate is carried out only if the timestamp of the new data item is

arger.

For brevity, protocol p4 for handling manticipéted transactions
is not described here. The results of this paper remain correct if p4
is included, however the proof of correctness becomes more tedious.



-211-

The execution symbol E is also eliminated from the transaction model,
because it serves no useful purpose as far as this analysis is
concerned. A more complete description may be found in (4). In the
next section we add a protocol to the system which makes data item
timestamps unnecessary.

3. THE WRITE PROTOCOL

The following protocol is added to the three protocols discussed
in Section 2. Together they make the system run correctly without
timestamps on data items. Of course a price must be paid for saving
storage space. This protocol requires some synchronization of write
actions at each site, which reduces concurrency among write actions.
However, it does not directly increase any inter—site synchronization.

Protocol W: If write sets of T* and S* - intersect at site u, i.e.
W(T*,u) A\W(S*,u)#0, and W(T*,u), W(S*,u) reside on a nomrredundant
-cycle (including cycles involving only write actions) as shown in
figure 5, then for all transactions T,S in classes T*,S*
respectively, W(T,u) runs after W(S,u) if and only if ™(T)>TM(S).

W(T*,u) W(S*,u)

Figure 5

Implementation: Apply SYNCH1 (W(T,u) ,W(S*,u),™(T)) at site u for every
transaction T from class T*%*, where ™(T) is timestamp of T.
(Similar procedure must be applied to every transaction S from
class S* against queue W(T*,u) at site u.)

4. PROOF OF CORRECTNESS

Correctness of a system here means the sSystem is serializable and
all copies of redundant data converge to the same values. A local log
at site u is defined to be a linear sequence of all actions executed
at site u which represents the actual order in which they are
executed, if the system obeys the partial order constraints imposed by
the assumptions and protocols discussed in the last two sections. A
system log is any merge of all the local logs which preserves the the
order among actions in the local logs. To prove that the system is -



-212~

serializable it must be shown that all the local logs are serializable
and the serial orders are consistent among all the 1local logs. It is
equivalent to prove that any system log composed of these local logs
is serializable.

In the following, it will be shown that all system 1logs are
serializable in the sense that if the following adjacent interchange
rules are applied to any system log, the log can be transformed into a-
serial log. A serial log is a log of serial execution of those
transactions in some order. The following table shows when two
adjacent actions in a log cannot be switched.

R(T1,u), R(T2,u) T1 and T2 are from the same class (pipelining)

-W(T,u), W(S,u) The write sets of T* and S* intersect at site u.
. T* and S* may be the same transactions class.
R(T,u), W(S,u) The read set of T* intersects the write set of
v of S* at site u, where S* and T* may be the
W(S,u), R(T,u) same class.

T and S are the same transaction.

The rules in the table above are less restrictive than in (4) in
that E actions and augmented conflict rules are eliminated. But it is
more restrictive in that any two write actions cannot, in general, be
switched.

In serializing a system log, we would try to move two actions of
the same transaction adjacent to each other by moving actions between
them either to the left or to the right, But in doing so adjacent
action symbols which belong to the same transaction must not be split
up. The following lemma will be stated without proof. For a detailed.
proof of the lemma see [10].

Lema T : Let L=,..X(A,u)...Y(B,v)ee. be a subsequence (not
necessarily contiguous) of a system log. Let us assume that at most
two consecutive action symbols between X(A,u) and Y(B,v) can belong to
the same transaction., Let us also assume that every action, (or
action with one of its neighbors, if this neighbor also belongs to the
same transaction), between X and Y is blocked by its (their) left and
right neighbors (the blocking can be due to protocol conflict or
pipelining rule). If there exists at least one action between X(A,u)
and Y(B,v) in the system log L, and one of the following conditions is
true, then M (X (A,u))(TM(Y(B,v)).

(1) A*=B*

(2) A*#B*, both X(A,u) and Y(B,v) are write actions, and there exists
- a non-redundant path between X(A,u) and Y(B,v) in the confhct graph
other than the path shown in the log L.



-213-

Theorem 1: System logs which obey the protocols and conditions in
Sections 2 and 3 are serializable.

Proof: Suppose, to the contrary, that there exists a system log L
which cannot be serialized. Then there are two action symbols from
the same transaction, separated by one or more action symbols from
other transactions, which cannot be moved adjacent to each other, say
X and Y in the following fragment of L,

L= ...X Sl S2...5n Y..., where X=50, and Y=Gn+l

where each one of S1,S52,...,5n is a group of actions belonging to the
same transaction, and cannot be moved to the left of X or to the right
of Y. Then each Si, where 1<i<n, must be blocked from the left and
right by some Sj and Sk, J<1<k Therefore there exists a subsequence
of the sequence (S1,52,...,5n) (not necessarily contiguous) which
forms a blocking path from X to Y in ' the sense that each Si on this
path is blocked by its left and right neighbors. Since for each Si on
this path at most two action symbols of Si are needed to have Si
blocked by its left and right neighbors, a blocking path from X to Y
can be derived which is composed of one or two action symbols from
each group Si. By lemma T (see Appendix) ™ (X)<MM(Y). But since X
and Y are of the same transaction, ™M(X) = ™(Y), a contradiction.
Therefore, the assumption that there exists a system log which is not
serializable is false.

QED
5. FURTHER WEAKENING OF PROTOCOLS

Before we present the modified protocols we define a partition on
the set of all read nodes and write nodes of a transaction class.

Let P(s*)={sl,S2,...,Sn} be a set consisting of all the read
nodes and write nodes of the transaction class S*, We define an
equivalence relation ~ on the set P(S*) as follows:

1. Si™si for all Si in the set P(S*),

2, Si"Sj 1if there exists an external path between Si and Sj. By
external path, we mean a path that does not include a homogeneous
edge of the class S*,

The equivalence relation = defined above partitions the set P(S*)
into disjoint blocks. We denote the block containing W(S*,u) by
BLOCK (W(S*,u)).

Definition: A write node W(S*,u) satisfies condition (a), {f
BLOCK (W(S*,u)) consists only of the node W(S*,u). :

Definition: A write node W(S*,u) satisfies condition (b), if the read
node R(S*,u) exists, and BLOCK (W(S*,u)) does not include any read
node R(S*,v) where v is not equal to u.




-214-

S.1 Protocol R3a and R3b

Under certain conditions, protocols R3, R2, Rl, and W are more
restrictive than necessary. The following protocols are relaxed
versions of protocol R3., Protocol R3a applies when W(S*,u) in figure -
2 satisfies condition (a); protocol R3b applies when W(S*,u). in figure
2 satisfies condition (b).

Protocol R3a: If W(S*,u) in figure 2 satisfies condition (a), then the
two rules as defined below must be followed.

(1) For every transaction S from class S*, the timestamp
™ (W(S,u)) can be changed. But for any pair of transactions Sl,S2
from class S*, ™(S2)>T™(S]1) if and only if
™(W(S2,u) )>™M(W(S1,u)).

(2) For every paif "of transactions T,S in classes T*,S*
- . respectively, W(S,u) runs after R(T,u) if and only Iif
T™M(W(S,u))>™M(R(T,u)).

Implementation: Attach the read condition (S*,M(T)) to R(T,u). When

- R(T,u) arrives at site u, apply synchronization primitive

SYNCH2 (R (T,u) ,W(S*,u) ,TM(T)) or SYNCH3(R(T,u) ,W(S*,u) ™(T)) as
described in the following two definitions.

Definition : SYNCH2(R(T,u) ,W(S*,u),t) is a synchronization primitive

which is applied at site u to the read action R(T,u) with respect
to the queue W(S*,u) and the timestamp t.
If the last write action executed from queue W(S*,u) is W(Sl,u)
with timestamp T™(S1) when R(T,u) arrives at site u, and if
t>™(S1), then instead of waiting for actions from queue W(S*,u)
to be processed up to but not beyond timestamp t as in SYNCHI,
site u can proceed to execute R(T,u) immediately. But site u must
also add (t“TM(S1)) to the timestamp of every action from class
W(S*,u) not yet executed. Or site u can choose a time t' anywhere
between ™M(S1) and t (inclusive) and execute R(T,u) only after
actions from class W(S*,u) have been executed up to timestamp t'.
But site u must add (t-t') to the timestamp of every action from
class W(S*,u) not yet executed. Of course if t<MM(Sl), then
R(T,u) will be rejected. In adding time to the timestamps of
write actions, care should be taken to ensure that the new
timestamps are unique, and that the new timestamps will not become
larger and larger which may delay the execution of these write
actions indefinitely. The only purpose of adding (t-M(S1l)) to
the timestamp of every action from class W(S*,u) not yet executed
is to ensure that these write actions have timestamps larger than
t, and that their order is preserved. There are implementations
other than simply adding (t-“TM(S1)) to the timestamps, which
achieve these two effects. Synchronization primitive SYNCH3,
which follows, is one such implementation.



-215-

Definition: SYNCH3 (R (T,u) ,W(S*,u),t) is a synchronization primitive
which is applied at site u to the read action R(T,u) with respect
to the queue W(S*,u) and the timestamp t.

At site u, associate with the queue W(S*,u) two timestamp
variables LAST (W(S*,u)) and NEXT(W(S*,u)) which are initially set
equal to 0., The variable LAST(W(S*,u)) stores the timestamp of
the last write action executed from the gqueuve W(S*,u). The
variable NEXT (W(S*,u)) is used to compute the timestamp of the
next write action to be executed from the queue W(S*,u). Let
W(S,u) be the earliest pending write action, if one exists, from
the queue, Define its (modified) timestamp ™(W(S,u)) as follows:

™(W(S,u)) = Max(TM(S), NEXT (W(S*,u))+1) ,

where one should be added to the 1local clock portion of the
timestamp. Whenever a write action W(S,u) is executed,
LAST W(S*,u)) and NEXT (W(S*,u)) are set equal to ™M(W(S,u)). Wwhen
.the read action R(T,u) arrives at site u the following occurs. If
LAST W(S*,u))<t then R(T,u) is executed immediately and
NEXT W(S*,u)) is set equal to Max(t,NEXT(W(S*,u))). Otherwise
R(T,u) is rejected.

Alternatively, if [L[AST(W(S*,u))<t then site u- chooses a
timestamp Tl such that LAST(W(S*,u))<Tl<t, Site u then delays
execution of R(T,u) until actions from class W(S*,u) have been
executed up to but not beyond timestamp Tl. On execution of
R(T,u), NEXT (W(S*,u)) is set equal to Max(t,NEXT (W(S*,u))).

Protocol R3b: If W(S*,u) in figure 2 satisfies condition (b), then
protocol R3a, augmented with the following rule, must be followed.

(1) Por every transaction S from class S*, all the actions in
BLOCK (W(S,u)) must have the same time stamp.

Implementation: Attach the read condition (S*,™(T)) to R(T,u). When

R(T,u) arrives at site u, apply the synchronization rule
SYNCH4 (R (T ,u) ,R(S*,u) ,W(S*,u) ,T™(T)), defined below.

Definition : SYNCH4 (R (T,u),R(S*,u) ,W(S*,u),t) is a synchronization

primitive which applies to the read action R(T,u) with respect to
the queues R(S*,u) and W(S*,u), and the timestamp t.
At site u, asscciate with the queue R(S*,u) of actions from class
S*, two timestamp variables LAST(R(S*,u)) and NEXT(R(S*,u)), and
associate with the queue W(S*,u) one timestamp variable
LAST(W(S*,u)) all of which are initially set equal to 0. Let
R(S,u) be the earliest pending read action, if one exists, from
the R(S*,u) queue., Let us define the timestamp NEW(R(S,u)) as
follows:

NEW(R(S,u)) = Max(TM(S), NEXT(R(S*,u))+l) .

If R(S*,u) is a member of BLOCK(W(S*,u)) then TM(R(S,u)) must be
changed to NEW(R(S,u)). Otherwise T(R(S,u)) stays unchanged.



-216-

wWhenever the read action R(S,u) 1{is executed, [AST(R(S*,u)) and
NEXT(R(S*,u)) are set equal to NEW(R(S,u)), no matter whether
™(R(S,u)) is changed or not, and site u must send a
- read-completion message together with the timestamp NEW(R(S,u)) to
the originating site of action R(S,u). The originating site must
use this timestamp to timestamp 211 the write actions in
BLOCK(W(S,u)). When a write action W(S,u) is executed at site u,
IAST(W(S*,u)) is set equal to TM(W(S,u)). Notice that at all
times LAST (W(S*,u)) < LAST(R(S*,u)).

. When a read action R(T,u) with read condition (S*,t) arrives
at site u the following occurs.

(1) If t<LAST (W(S*,u)) then R(T,u) would be rejected.

(2) If t<LAST(R(S*,u)) and ©OLAST(W(S*,u)) then R(T,u) must wait
until actions from the W(S*,u) queue have been executed up to but
not beyond timestamp t.

(3a) if OLAST(R(S*,u)) and ©LAST(W(S*,u)), then site u must wait
~until actions from queuve W(S*,u) have been executed up to but not
beyond timestamp LAST(R(S*,u)) before it executes R(T,u). After
execution of R(T,u), NEXT(R(S*,u)) is set equal to
MAX (t ,NEXT (R (S*,u))). Or,

(3b) Site u can choose a timestamp t', where LAST(R(S*,u))<t’'<t,
and wait until actions from both queues R(S*,u) and W(S*,u) have
been executed up to but not beyond timestamp t' before executing
R(T,u). After execution of R(T,u), NEXT(R(S*,u)) is set equal to
MAX (t ,NEXT (R (S*,u))).

5.2 Protocol R2a,R2ab and R2b

Similarly, under certain conditions protocol R2 can be relaxed.
The following protocols are the relaxed variations of protocol R2,

Protocol R2a: If W(S*,u) and W(Q*,v) in figure 3 both satisfy
condition (a) then the two rules as defined below must be
followed. ‘

(1) For every transaction S from class S*, the timestamp
™(W(S,u)) can be modified, But for every pair of transactions
S1,82 from class S* TM(S2)>M(Sl) if and only if
™(W(S2,u) )>™M(W(S1,u)). (Similarly for class Q%*.)

- (2) For every transaction S from class S*, Q from class Q*, Tl and
T2 from class T*, if W(S,u) runs before R(T1l,u),
™(R(T1,u))<M(R(T2,v)), and R(T2,v) runs before W(Q,v) then
™M(W(S,u) ) SM(W(Q,Vv)). In other words '
W(S,u)->R (rllu)S_R (T2,v)=->W(Q,V)
implies ™M (W(S,u))<M(W(Q,Vv)).

Implementation: Attach read condition (S*,t) and (Q*,t) to R(r',u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
originating site. Then apply SYNCH3(R(T,u),W(S*,u),t) and
SYNCH3 (R (T',v) ,W(Q*,v) ,t).




-217-

Protocol R2ab: If W(S*,u) and W(Q*,v) of figure 3 satisfy condition
(a) and (b) respectively, then protocol R2a, augmented with the
following rule, must be followed.

(1) For every transaction Q from class Q%, all the actions in
BLOCK (W(Q,v)) must have the same timestamp.

Implementation: Attach read condition (S*,t) and (Q%*,t) to R(T,u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
- originating site. Then apply SYNCH3(R(T,u),W(S*,u),t) and
SYNCH4 R (T,V) ,R(Q*,v) ,W(Q*,v),t).

Protocol R2b: If both W(S*,u) and W(Q*,v) of figure 3 satisfy
condition (b), then protocol R2ab .augmented with the following
rule, must be followed. :

(1) For every transaction § from class S*%, all the actions in
BLOCK (W(S,u)) must have the same timestamp. ' _

Implementation: Attach read condition (S*,t) and (Q%*,t) to R(T,u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
originating site. Then apply SYNCH4 (R (T,u) R(S*,u) ,W(S*,u) t) and
SYNCH4 (R (T, v) R(Q*JV) 'w(Q*lV) L)

5.3 Protocol Rla,Rlab, and Rlb

Slm1lat1y, protocol Rl can be relaxed under conditions as
discussed in the prevous section. :

. Protocol Rla: If W(S*,u) and W(Q*,u) in figure 4. satisfy condition
(a), then the two rules as defined below must be followed.

(1) For every transaction S from class = S*, the  timestamp
™(W(S,u)) can be modified. But for every pair of transactions
81,52 from classs S* TM(S2)>™M(S1l) - if and ‘only if
™ (W(S2,u) )>™(W(S1,u)). -(Similarly for Class Q%*.)

(2) For every transaction S from class S*, Q from class Q*, Tl and
T2 from class T*, . S "

W(S,u) >R(Tlru)<R(T2 U)->W(Qru)
implies 'IM(W(S,u))QM(w(Q,u)). :

Implementation. Attach read condltlons (S*,t) and (Q*,t) to R(T,u),
. where t will be chosen at site u. Let the timestamp variables
- associated with W(S*,u) and  W(Q*,u) as mentioned in
synchronization rule SYNCH3 be LAST(W(S*,u)) and LAST(W(Q¥*,u))
respectively. Site u then chooses a timestamp for t such that
t>Max (LAST (W(S*,u) ) ,LAST W(Q*,u))), and applies
SYNCH3 (R (T',u) ,W(S*,u) ,t) and SYNCH3 (R (T,u) ,W(Q*,u),t).

Protocol Rlab: If W(S*,u) and W(Q*,u) satisfy condition: (a) and (b)
respectively, then protocol Rla, augmented with the following




-218-

rule, must be followed.

(ii For every transaction Q@ from class Q*, all the actions in
BLOCK(W(Q,v)) must have the same timestamp. »

Implementation: Site u chooses a timestamp for t as discussed in the
prevous implementation. It then applies SYNCH3 (R(T,u) ,W(S*,u),t), -
and SYNCH4 (R (T,u) R(Q*,u) MQ*,u),t).

Protocol Rlb: If W(S*,u) and W(Q*,u) - both satlsfy condition (b), then
protocol - Rlab, augmented with the following rule, must be
followed. '

(1) For evefy transaction S from class  S*, all the actions in
BLOCK (W(S,u)) must have the same timestamp.

Inplementatmn. Choose a timestamp for t as discussed in protocol Rla.
. Then apply SYNCH4 (R (T, u) ,R(S*,u). ,W(S*,u) t) and -
' SYNCH4(R(T.U) (RQ*,u) ,W(Q*,u),t).

‘5 4 Protocol Wa and Wb

Protocol W can be relaxed under certain conditions too.

protoco ocol Wa: Assuming that W(T*,u) and W(S*,u) "intersect and both
reside on a nomrredundant cycle as shown in figure S5, and that

. W(S*,u) satisfies condition (a), then the two rules as defined
- below must be followed, ~ o

(1) For every transaction S from class S*, the timestamp

™ (W(S,u)) can be changed. But for any pair of transactions S1,S2

from class S¥*, ™(S2)>M(S1) if and only if
- ™M(W(S2,u) )>M(W(S1,u)). S '

(2) For evefy transction T from class T* and S from S*, W(T,u)
runs after W(S,u) if and.only if ™M(W(T,u))>TM(W(S,u)).

Implementation: Apply SYNCH3 (W(T,u) ,W(S*,u) ,T(T)) to  every
transaction T from class T*,

Protocol Wh: If W(T¥*,u) and W(S*,u) intersect and both reside on a
non—redundant cycle, and W(S*,u) satisfies condition (b), then
protocol Wa, augmented with the following mle,_ must be followed.

(1)' For every transaction S from class S*, all the actions in
. BLOCK (W(S,u)) rrust have the same timestamp. -

Implementauon: Apply SYNCH4(R(T,u) R(S*,u) ,W(S*,u) ,TM(T)) to every
transaction T from class T*. _

5.5 Su!m\azy of Protocols



-219-

The following ‘' table summarizes all the protocols discussed in
this paper. An "x" in the table means that the protocol uses the
corresponding synchronlzatlon primitive.

R3 R3a R3b R2 R2a R2abR2b Rl Rla RlabRlb W Wa Wb

SYNCH1 «x X X : X
SYNCH3 X X X X X ' X
SYNCH4 X X X X X X

6. PROOF OF CORRECTNESS

In the implementations of the new protocols described in
Section 5, timestamps of some read actions and write actions can be
changed. Therefore the assertion that any two actions from the same
transaction have the same timestamp as asserted in the proof of
theorem 1 and lemma T in section 4 is no longer true. But this
assertion is needed in the proof of theorem 1 and lemma T only when
two actions from the same transaction are involved in a cycle. But
for any two actions from the same transaction involved in a cycle,
either both of their timestamps have been changed to the same value
(if condition(b) is true), or both of their timestamps have not been
changed at all (if condition(b) is not true). Therefore, the proof of
theorem 1 and lemma T is still correct for these new protocols.

~ 7. CONCLUSION

A new protocol is introduced to eliminate the need for
timestamps on data items. This protocol reduces the concurrency of
write actions in each site. The degree of loss of concurrency depends
on the conflict graph structure of each application. For some
applications, for example, those in which changes to the data base do
not occur frequently or do not have to be processed immediately, the
saving of storage space may outweigh the loss of concurrency.

Existing read-write protocols are weakened under certain
conditions to allow some read and write actions to wait less. These
weaker protocols not only allow more flexible scheduling of some read
and write actions, but also reduce or even eliminate the requirement
for null-write messages, and yet improve system performance at the
same time. Preliminary results from a simulation study have confirmed
this. A proof of correctness is also given.

ACKNONLEDGEMENT

The author would 1like to thank Dr. Murray Edelberg for many
fruitful discussions.



-220-

REFERENCES

1.

2,

oo-.qo\m

.

10.

R. H. Thomas, "A Solution to the Update Problem for Multiple
Copy Databases Which Uses Distributed Control", BBN Report No.
3340, Bolt Beranek and Newman, Inc., July, 1975,

P. A Alsberg, "Research in Network Data Management and Resource
Sharing: Final Research Report®, CAC Document no. 210, Center for
Advanced Computation, Univ. of Illinois at Urbana-Champaign.
Sept. 30, 1976,

D. J. Rosenkrantz, et al., "A System Level Concurrency Control
for Distributed Database Systems", 1977 Berkeley Workshop on
Distributed Data Management and Computer Network Berkeley, May
1977.

P. A, Bernstein, et al., "The Concurrency Control Mechanism of
SDD-1: A System for Distributed Databases (The General Case)".
Technical Report, CCA-77-09, Computer Corporation of America,
Cambridge, MA., Dec. 1977, -

- J. Rothnie, et al., "Analysis of Serializability In SDD-1: A

System for Distributed Databases"™, COMPSAC 77, Nov. 1977,

J. Rothnie, et al., "The Redundant Update Methodology of SDD-1: A
System for Distributed Databases®, COMPSAC 77., Nov. 1977,

K. P. Eswaran, et al., “The Notions of Consistency and Predicate
Locks in a Database System", CACM, Nov. 1976.

C. H. Lee, et al., "Distributed Control Schemas for
Multiple-Copied File Access in a Network Environment"™, COMPSAC 77,
p. 722, Nov., 1977, _

C. A. Ellis, "A Robust Algorithm For Updating Duplicate
Databases", 1977 Berkeley Workshop on Distributed Data Management
and Computer Network, May 1977, -

Wen-Te K. Lin, "“Concurrency Control in a Multiple Copy
Distributed Database System", Research Paper RP#79-20, Sperry
Research Center, June 1979



-221-

A New Concurrency Control Algorithm
for Distributed Database Systems

Toshimi Minoura

Computer Systems Laboratory
Stanford University
Stanford, California

ABSTRACT

A new concurrency control algorithm for distributed database
systems that spatially extends the idea of "exclusive/share locks"
is presented. The new algorithm, extended true-copy token
algorithm, combines a locking mechanism and a "true-copy token"
mechanism. '"True-copy tokens'" handle partitioned data that cannot
be handled efficiently by locks alone.

1. INTRODUCTION

A distributed database system is one of the hottest issues
among many theorists and practitioners. The system must provide
an integrated interface to its wusers by hiding partition and
duplication of some data. Furthermore, although transactions are
processed concurrently, their effects on the system and the users
must be as if they were processed in sequence. Without reasonable
concurrency, most  distributed database systems will  Dbe
impractical.

The concurrency control problem in a distributed database
system has been studied by many researchers [BADA-78, BERN-78,
ELLI-77, GARC-78, GELE-78, GRAP-76, LELA-78, ROSE-78, STON-79,
THOM-78]. However, a satisfactory solution is yet to come. In
this paper we present still another algorithm that we thope gives
some new insights.

In section 2 we briefly introduce a formal model of a
distributed database system. Following [LAMP-78], an execution
- history of transactions is defined as a partial ordering on action
events, so we do not assume the existence of the totally ordered
global time. Also two operational consistency conditions used so
far in the literature are discussed.

In section 3 an '"extended true-copy token" algorithm is
-presented. A "true-copy token" is used to designate a "true-copy"
that provides the current "logical component" value when a logical
component 1s represented by multiple "physical components”. The
~algorithm efficiently supports "multiple migrating localities". A
new concept "effective global time" is introduced in section 4,
and its usefulness is shown in the correctness proof of the
extended true-copy token algorithm. :



-222-

In section 5 we briefly discuss the new algorithm and some
related algorithms. Although no discussion about the concurrency
- control problem for a distributed database system 1s complete
without discussing the resiliency problem, this is not addressed
in this paper. : :

2. DISTRIBUTED DATABASE SYSTEM MODEL

We assume that a distributed database system
DDBS = {X, Y, Z, «++} consists of a set of logical components,
each of which can be assigned a value independently. A logical
- component X = {xl, x2, x3, ...} is represented by a set of one or
more duplicated physical components that are supposed to assume
the same value except for transitional periods during update
operations: ' ‘

A site H of a distributed database system is a subset of - the
set of all  physical components in the system, 1.e.,
H< (X+Y+2Z+... ). Every two sites must be disjoint, and the
union of all sites is the set of all physical components.

Here the terms "logical" and "physical" are used to indicate
only a relative degree of abstraction. "Physical" does not mean
direct implementation by hardware; a "physical component'" may be
a "logical component" at another level of abstraction.

A transaction T = {A, B, «.«} 18 a set of actions. An
action 18 a group of operations that we find convenient to treat
as a single group. Operations in the action can be interpreted in
two ways: "logical™ or 'physical.” A 1logical operation is
considered to access logical components, and a physical operation
-'18 considered to access physical components. More specifically, a
- logical operation read(X) 1is equivalent to a physical operation
read(xi), any i, and a logical operation write(Y) is equivalent to
a set of physical operations { write(yl), write(y2), ... }. In
the sequel, we assume that operations are 'physical" unless we say
otherwise. A write operation to a physical component at a remote
site 1s informally called an update.

An action 1s executed on a single site. Actions belonging to
the same transaction, however, may be executed on different sites;
a transaction may migrate around different sites. A transaction
can even spawn multiple actions that operate concurrently. Thus
concurrent processing of actions belonging to the same transaction
as well as to different transactions may occur. What constitutes
a single action may vary according to the system designer’s
discretion - as long as the previous constraints are observed. For
‘ example, update operations of the same content to duplicated
physical components at different sites must belong to different
actions, but different update operations to. different components
at the same site can be grouped into a single action when these
operations belong to the same transaction. :

Unusual notations used in this paper: "+" for set union; "<" for
set inclusion; and "/" for negation.



-223-

The execution of an' action A 1is characterized“:by the
occurrences of its initiation event "a" and termination event "a",
which we will call action events. We define the partial ordering

on the set of action events following [LAMP-78]:

Definition. An execution history "<<" of a set of transactions is
an irreflexive partial ordering on the set of action events caused
~ by the execution of these transactions. For two events a and b,
a<<b iff ' :

l. Events a and b have taken place at the same site, and event a
preceded event b;

2. Event 'a is the sending of a message and event b is the receipt
of the same message at another site, and

3. The pair (a,b) is in the transitive closure of the ordering
obtained by the above two rules, i.e., a<<c and c<<b for some
. action event Ce.

A write operation; especially an updater to a duplicated
component, may be redundant because the value written by it is
overwritten by another write operation without being read by any
_ action. These redundant ‘write operations can be omitted. By
properly ignoring redundant write operations, the ' inter-site
‘traffic can be reduced, thus efficiency of the system operation
can be enhanced. : ‘ :

A consistent execution history of transactions 18 one in
which the system and the users see the database state as if the
transactions were processed sequentially. A concurrency control
algorithm is consistent 1ff any execution history realized by the
algorithm 'is consistent. [PAPA-77] has given the minimum
condition ' for ' comsistent transaction. processing, which we call
.consistency condition Cl; ‘and has shown that the consistency test
of an execution history is NP-complete. " Other authors [ESWA-76,
MINO-78, SCHL-78, STEA-76] have used a stricter condition that
allows a polynomial-time consistency test of an execution history.
The latter condition, which we call consistency condition C2, is
-gufficient but not necessary under the same premise with [PAPA-77,.
- BERN-78].

In this paper we use informal arguments, but more formal
treatment can be found in [MINO-79]. We can prove the following
statements about consistency conditions Cl and C2:

l. For any execution history of transactions, if C2 is true, then
Cl is truey and

2. Cl is equivalent to C2 if the range of A is a subset of the
domain of A for all actioms A.



¢ =-224-

The fact that consistency condition C2 is necessary and
sufficlent when a "read-set" 1s a subset of a "write-set" for any
action, has been observed in [ESWA-76, STEA-76].

3. EXTENDED TRUE-COPY TOKEN ALGORITHM

In this section we present a concurrency control algorithm
that spatially extends the notion of exclusive/share 1locks.
"Primary sites" [STON-79, GRAP-76] and a "circulating token" have
been used as consistency control mechanisms for duplicated data.
In [LELA-78], a "circulating token" is used for issuing "tickets";
a similar technique can be wused to designate a "true copy", a
version of data contained in a physical component whose value 1is
current. An "extended true-copy token" mechanism is a
generalization of these ideas; it wuses "exclusive-copy tokens"
and '"share-copy tokens" that designate "migrating primary sites".
Locking is performed over these migrating primary sites.

Two types of copies, namely "share" and "exclusive" copies,
are important in the following discussion. A true-copy indicator

Ix as well as lock Lx 1is associated with each physical component
X, and Ix can assume one of the three states, namely, '"void",
"share-copy" and "exclusive-copy". <Although an update operation

to a duplicated physical component 1s formally an action that’

belongs to some transaction, we may, in some sense, consider that
it is carried out by the system. A transaction needs to lock only
one copy of the duplicated physical components that it "directly"
accesses. A physical component whose true-copy indicator state is
either "share-copy" or "exclusive-copy" 1is informally called a
true copy, 1i.e., either an exclusive copy or a share copy. A
"void" copy is in a transient state and whose content cannot be
trusted. To visualize the transfer of access permission rights by
the mechanism described below, we assume that a true copy
possesses a true-copy token, i.e., either an exclusive-copy token

or a share-copy token.. Also two types of locks, mnamely "share"
and "exclusive" locks, are assumed in the following discussion.

We do not explicitly state the algorithm that implements
these mechanisms. However, it can be easily constructed observing

the following rules. We call such an algorithm an extended

true-copy token algorithm Al. Note that the following rules do
not assume the existence of global time. -

_ Rules.

1. At the point of system creation there exists one exclusive
copy for each logical component. An exclusive-copy token can
be transferred to another physical component. When the token
transfer occurs, all updates made so far to the new physical
component should precede or accompany the token transfer.

Updates to the new physical component must follow the logical:

execution order.

’



-225-

2. An exclusive copy can become a share copy. A share copy can
spawn multiple copies of itself. :

3. When an exclusive'eopy is required, all share copies must
shrink 1into a single share copy that may become an exclusive

copy-

4. A transaction can set an exclusive lock of a physical
component x only when the state of Ix is "exclusive-copy". An
exclusive copy cannot be revoked until the exclusive lock 1is
released.,,n. '

5. A transaction can set a share lock only when the state of Ix
is '"share-copy". A share copy cannot be revoked until all
share locks on it are released.

6. Locking on true copies by a transaction must be "two-phase".

In a sense, true-copy tokens are used to realize logical
components, and <locking 1is done over these logical components;
true-copy tokens handle duplicated copies that cannot Dbe
efficiently handled by 'a ‘locking mechanism “‘alone. Although
two-phase locking (refer.to [ESWA-76] for two-phase locking) 1is
used, 1t 1s not a complete locking; not all accesses to physical
components; are done with the phyéical components being locked.
Update operations to the physical components at remote sites are
performed without locking; true-copy tokens are used to .properly -
- sequence these update operations. '

Update operations can be performed in the right order either
by carrying the 1latest value of a logical.component with the
true-copy token or by .letting an exclusive: copy token issue
sequence numbers that are unique relative to the logical component
and performing updates according to these sequence numbers. Note
that updates originate only from an exclusive copy, and that they
can be uniquely ordered by these methods. Redundant updates can
be discarded to reduce the inter-site traffic as we mentioned in
section 2; 1if two write operations occur to the same physical
component at a remote site while an exclusive-copy token is held
at some site, the preceding write operation is redundant.

Fig. 2 diagramatically  shows which combination of
transactions shown 'in_ Fig. 1 can be processed concurrently.
"Active' means that by using local data a transaction can be
executed except for remote updates.

In Fig. 2(a), transaction P can proceed because x! 1is. an
exclusive copy, and yl 1is a share copy. Note that P makes
read/write accesses to logical component X and a read-only access
to logical component Y. The update to x2 by P can be discarded
because it is overwritten by the update by transaction Q; it 1is
redundant. ' '



read(x1)
read(yl)

-226-

read(y2)

writé(xlj vrite(x2)

write(yl)| . write(yzq_

Q

read(xl)

T

read(xZ)
read(y2)

write(xl) write(xiﬂ'

write(x1)] |write(x2)

feqd(yl)_

logical components:

" X'= {xi, x2}
Y = {yl, y2)

si;és:

 Ho=(xl, y1} ,
I= {xzy 72}

Fig. 1. Transactions.



-227-

(a) _ p. ' , - 3 » R

site H . site I.

{ x2 . y2. \

®» 9 R

site H : .. site T

*k o
Syl } x2 -
& s . ®r
site HV' ~site I ‘
. _ *k
yl x2 . y2
() . .S T

site H : site I
T , * - kk v *
- x1 vyl . : X2 y2

%% i exclusive COPY wm—g» active
* : ghare copy - e blocked

Fig; 2. Extended true-copy toke‘n‘ aigqrithm.



-228-

Also in Fig. 2(a), transaction R tries to make read/write
accesses to logical component Y; however, physical component y2
is a share copy and not an exclusive copy, 80 R cannot exclusively
lock y2 and is blocked.

Once P iS‘completed at site H and transaction Q - starts its
execution using only an exclusive copy x1, a share copy token of
yl can be released and y2 can become' an exclusive ‘copys R can
proceed. . In Fig. 2(b), both Q and R are running concurrently.
The update to x2 made by Q must be sent to site I before x2
becomes an exclusive copy and is accessed by T; in general, only
the last update made to an exclusive copy needs to be sent to the
other sites.

In Fig. 2(d) two share copies, yl and y2, exist in the system
at the same time, and both transactions S and T are active.
A transaction is two-phase locked iff no lock - requests are
released before all 1lock requests become active. An immediate
consequence of the two—phase locking is that all lock requests of
a transaction are active at some point during the execution of the
transaction. We define a binary relation "<<p" on a set of
transactions that use two-phase locking. R <<p S i1ff Rp << Sp,
where Rp and Sp are the times when all lock requests are active in
transactions R and S, respectively. Note that Rp and Sp are not
action events; we have extended the definition "<<" to cover
them. Note that both "<<" and "<<p" are acyclic.

Now we shall prove the correctness of the extended true-copy
token algorithm by showing that any execution history realizable
by the algorithm satisfy consistency condition C2; see [ESWA-76,
- MINO-78, MINO-79, SCHL-78] for consistency condition C2.

Theorem 3.1. Concurrency control algorithm Al is consistent.

Proof. We show that any execution history realizable by the
concurrency control algorithm Al satisfies consistency condition
c2. ' '

Assume that action A of tramsaction R and action B of
transaction S conflict over physical component xk. First, if xk
is locked by both transactions R and S, accesses to xk by actions

"A and B are made in the same .order with "<<p" on R and S. Second,
if xk is accessed by action A without locking but by B with
locking, A’s access must be an update operation. When an update
by A is completed before xk becomes lockable and is accessed by B,

i.e., A precedes B, R must have made a write access to some
exclusive copy xi (x1 /= xk) performing the same write operation
with' the update by A.: Then S can exclusively or share lock xk
only after the exclusive lock on xi 1is released by R, hence
Rp<<Sp. When an update by A occurs after action B, R can make an
access to some exclusive copy xi (xi /= xk) only after the
true-copy token is released by xk; Sp<<Rp. In both cases, A and
B are executed in the same order as R and S are ordered by "<<p".



-229-

Finally, if xk is accessed by both actions A and B without
locking, these accesses are update operations, and the ordering
-mechanism -of update operations guarantees that updates are done in
the same order with "<<p" on R and S. -

We have shown that conflicting operations are performed in
the same order with "<<p" on the transactions to which they
belong; consistency condition C2 is satisfied because "<<p" 1is
acyclic. /
b Q.E.D.

4. EFFECTIVE GLOBAL TIME

In the previous section we have directly proved that
algorithm Al maintains consistency condition C2. From a system
structuring standpoint; however, it 1is more desirable to
.presuppose that a logical component itself can assume a value. We
define the value of a logical component as follows: .

Definition. The value of a logical component is specified by the
value of the physical component xi that is either an "exclusive
copy" or a "share copy".

If we can globally pinpoint time, we can- assert that the
"value of each logical component is uniquély defined; there is at
most one exclusive copy, and when there are multiple share copies,
their contents are the same. However, our formalism does not
allow the use of global time.

o Fortuﬁetely,'we can define "effective global time" that is
totally ordered as far as a realizable exeécution history of
.- transactions is concerned.. .

Definition (effective global time). An effective global time for
a given execution history is defined as a "slice" of an execution
history of transactions.: A slice of the execution history is a
subset El of the set E of action events, such that for all action
event a in El and action event b in E - El, b << a ‘does not hold.

The above definition 1s not dintuitive, 8o we informally
represent an effective global time as a dividing line in the graph -
of an execution history as shown in Fig. 3, which gives a possible
execution history realizable by the algorithm Al for the
transactions shown in Fig. l. For example, the effective global
time Tl is the set of events to the left of the line labeled Tl.



-230-

site H:

site i:

" %%k 3 exclusive’ .copy

* E share copy

Fig. 3. Effective global times.

Definition (":<<"). We define the ordering ":<<".on the set of
effective global times as follows: For two effective global times
Tl and T2, Tl :<< T2 4iff Tl < T2, i.e., the effective global time
ordering is equivalent to the set inclusion relation.

‘ In Fig. 3, we have Tl :<< T2. Some effective global times
are incomparable as Tl and T3 in Fig. 3. Fortunately, however, we
have the following lemma for a realizable execution history.

Lemma 4.1. A realizable set of effective global times is totally
ordered. : ' : : ' :

Proof. In a realizable execution history, an action event that
once took place cannot be tevoked' the effective global time
monotonically increases. '
Q.E.D..

For example, in'Fig- 3 once the effective.global time T1 1is
reached there 18 no way to reach the effective global time T3;
- the effective global time T2 can be reached after Tl.

Now we shall nrove the correctness of the extended true-copy
token algorithm by showing that in effect logical components are
accessed under two-~phase locking. : :

Lemma 4.2. 1In algorithm Al we can assume that logical components.
are accessed, 1i.e., accesses are made only to the physical
components whose contents are equal to the values of their
respective logical components.



=231~

Proof. Accesses are made only to an exclusive copy or ‘a share
copy that defines the value of the logical component.
- , . . . . Q.E.D.

Lemma 4.3. A logical component value is uniquely defined at any
effective global time when it 1is accessed.

Proof. We prove that at any given ‘effective global time there
exists at most either one exclusive. copy or multiple share copies
of the same content for each logical componente. First, assume
that we have omne exclusive copy xi. Another exclusive or share
copy xj can exists only after xi ceases to be an exclusive copy or
before =xi becomes an exclusive copy. In the first case xj can be
a true copy only after a true-copy token 18 transferred from xi to
xj, and in the second case xi can be an exclusive copy only after
a true-copy token is transferred from xj to xi. Therefore 1in
either case time precedence can be established, and xi and xj
- cannot coexist at the same effective global time; if we have one
exclusive copy, we cannot have another exclusive copy or share

copy .

Second, when a share copy creates another - share copy their
contents are the same. Furthermore, the values of these share
copies will not change until all share copies are revoked and a
single exclusive copy 18 created. Therefore multiple share copies

for any logical component contain the same value at any effective
global time.

Consequently a logical component value is uniquely defined at
any given effective global time.
Q.E.D.

At global time T2 in Fig. 3, for example, . yl accessed by
transaction S and - y2 accessed by transaction T have the same
content. Also notice that at any realizable global timeé at most
one exclusive copy exists for each logical component.

 Lemma 4.4. In algorithm Al, two—phase locking 1is realized over
logical components; more precisely, at any given effective global
time write-write and read-write mutual exclusions are realized
over logical components. a

Proof. Assume that some logical component has been exclusively
locked by some transaction;  some physical component belonging to
the logical component must possess the exclusive-copy token, and
it must have been locked by that transaction. Then there cannot
be any other true copies, and the only true  copy 18 exclusively
locked; therefore, other transactions cannot access the logical
component, i.e., write-write and read-write mutual exclusions are
realized over the logical component.

Q.E.D.

The correct operation of algorithm Al can be concluded from
Lemmas 4.1 - 4.4. Although two-phase locking was specified as
part of the rules for the algorithm Al, . it is not mandatory;



-232-

other types of consistent locking méy be used.

In the extended true-copy token algorithm, transactions are
blocked in two ways: trying to lock a physical component that has
a true-copy token and waiting for a physical component, which the
transaction wants to access, to get a true-copy token.

Theorem 4.5. If a locking mechanism over logical components does
not cause deadlocks, an extended true-copy token algorithm can be
designed so that it may not introduce deadlocks.

Proof. Although we do not describe the details, we can show that
the "token transfer" mechanism for realizing logical components
can be designed so that it can not introduce deadlocks. The fact
ithat .the locking mechanism over logical components does not cause
deadlocks means that there are no deadlocks as long as we can
establish logical components (true copiles). In establishing
logical components, special care must be taken so that  the
different physical components belonging - to the same logical
component do not block each other by each getting a subset of the
share-copy tokens; this problem can be resolved by assigning a
priority to the physical components.
' ' QoEoD'

5. DISCUSSIONS

_ The merits of the extehdéd'true-copy token algorithm can'-be‘
summarized as follows:

1. It is intuitive.and has a simple structure.

. 2. Multiple copies of a file are supported while it is8 used for
read~-only purposes; also 1t can be wupdated by revoking
multiple copies. ' '

3. An exclusive copy may migrate among different sites.

- Multiple share copies are useful for a file that 1is mostly
ugsed in a read-only mode . at many sites but needs to be updated
occasionally at some site, e.g., a directory, a timetable, etc.

A migrating exclusive copy of a file is useful when more than
one site actively use it, e.g., an airline seat reservation table
for a flight from San Francisco to Tokyo;- the inter-site traffic
may be reduced by swapping the file at some interval.

One way to measure the capability of a concurrency control
algorithm is to see how various "localities" are supported. We do
not give a precise definition of the "localities", but it roughly
means a set of physical components that must be directly accessed
.to execute a transaction. A smaller locality i1is preferable to
- larger one. 'Primary site" mechanism supports "multiple static
localities" of transaction processing, but fails to support



-233-

"migrating localities". "Circulating token" mechanism supports a
"single migrating locality", but fails to support "multiple
localities". Most of other mechanisms currently proposed do not
support small localities well. The -extended true-copy token
algorithm is intended to support "multiple migrating localities"

The level of concurrency realized by the algorithms in
[BERN-78, LAMP-78] that use timestamps can be shown to be
equivalent to having only one exclusive-copy token in the system.
The similarity between a timestamp algorithm and a "single token"
algorithm can be understood if we assume that the site whose local
clock is the slowest has' the token; a token transfer is made in a
disguised form by sending a message whose timestamp is ahead of a
local clock of some other site. This is further discussed in
[MINO~79]. '

6. SUMMARY

A distributed database system with possible partitioned and
duplicated data has been formalized with the consequence that the
'same operational consistency conditions for a centralized system
were applicable for a distributed database system.

A new algorithm, extended true-copy token algorithm, was
presented. The new algorithm supports either ‘multiple read-only
copies or a single read/write copy for each ‘logical component
without violating the consistency condition. In its correctness
proof we introduced the new concept of effective global time.

' We hope that the ideas developed in this paper will help in
the design and analysis of better algorithms. Making a
concurrency control algorithm resilient is essential in a
practical environment. We hope to report on the resilient
extended true-copy token algorithm later. '

ACKNOWLEDGEMENTS

The author is much indebted to Hector = Garcia-Molina for
carefully reading the manuscript and making many valuable
corrections and suggestions. The author wishes to thank Sandy
Briggs for painstakingly correcting his English. Clarence Ellis
and Gio Wiederhold also contributed many important suggestions.
Keith Marzullo and Tim Gonsalvez also helped the author much with
his English.

- This work was partially supported by the Air Force Office of
Scientific Research under  contract No. F49620-77-C-0045.
REFERENCES

[BADA-78]1 Badal, D. and Popek, G. A proposal for distributed
concurrency control for partially redundant distributed data



base systems. Proc. 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978, pp. 273-285.

[BERN-78] Bernstein, P., Rothnie, J., Goodman, N. and
Papadimitriou, C. The concurrency control mechanism of SDD-1:
A system for distributed databases (the fully redundant case).
IEEE Tr. on Software Engineering SE-4, 3 (May 1978), 154-168.

[BERN-79]) Bernstein, P., Shipman, D., and Wong, W. Formal
aspects of serializability in database concurrency control.
IEEE Tr. on Software Engineering SE-5, 3 (May 1979), 203-216

[ELLI-77] Ellis, C. A robust algorithm for updating duplicate
databases. Proc. 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, May 1977, pp. 146-158.

[ESWA-76] Eswaran, K., Gray, J., Lorie, R. and Traiger, 1. The
notions of consistency and predicate locks in a database
system. CACM 19,11 (Nov. 1976), 624-633.

[GARC-78] Garcia-Molina, H. Performance comparison of update
algorithms for distributed databases. Computer Science
Department, Stanford University, Oct. 1978.

[GELE-78] Gelenbe, E. and Sevcik, K. Analysis of update
synchronization for multiple copy data-bases. Proc. 3rd
Berkeley Workshop on Distributed Data Management and Computer
Networks, Aug. 1978, pp. 69-90.

[GRAP-76] Grapa, E. Characterization of a distributed data base
system. UIUCDCS-R~-76-831, Dept. of CS, U. of Ill., Oct. 1976.

[LAMP-78] Lamport, L. Time, clocks and the ordering of events in
a distributed system. CACM 21, 7 (July 1978), 558-565.

[LELA-78] Le Lann, G. Algorithms for distributed data-sharing
systems which use tickets. Proc. 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks, Aug. 1978,
pp. 259-272.

[MINO-78] Minoura, T. Maximally concurrent transaction
processing. Proc. 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978, pp. 206-214.

[MINO-79] Minoura, T. Analysis of concurrency control mechanisms
for distributed database systems. Unpublished. 1979. ~

[{PAPA-77] Papadimitriou, C., Bernstein, P. and Rothnie, J. Some
computational problems related to database concurrency
control. Proc. Conf. Theoretical Comp. Sci., Waterloo, Canada,
Aug. 1977, pp. 275-282. '

[ROSE-78] Rosenkrantz, D., Stearns, R. and Lewis, P. System level
concurrency control for distributed database systems. ACM Tr.
on Database Systems 3, 2 (June 1978), 178-198.

[SCHL-78] Schlageter, G. Process synchronization in database
systems. ACM Tr. on Database ‘Systems 3, 3 (Sept. 1978),
248-271.

[STEA-76] Stearns, R., Lewis, P. and Rosenkrantz, D. Concurrency
control for database systems. IEEE Symp. on Foundations of-
Comp. Sci., Oct. 1976, pp. 19-32.

[STON-79] Stonebraker, M. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE Tr. on
Software Engineering SE-5, 3 (May 1979), 188-194.

[THOM-78] Thomas, R. A solution to the concurrency control
problem for multiple copy data bases. IEEE COMPCON 78, Feb.
1978, pp. 56-62.

I



NETWORK RESOURCE ALLOCATION




-237-

SYNCHRONIZATION'OF DISTRIBUTED SIMULATiON USING .
BROADCAST ALGORITHMS

J. Keﬁt_Peacock, Eric Manning, and J. w.Vang_

Department of Computer Science and -
Computer Communications Networks Group
Univérsity of Waterloo
Waterloo, Ontario N2L 3G1

Abstract

Simulation, particularly of networks of queues,( is an
épplication with a high-degree of inherent parallelism, and
is of considerable practical interest. We continue the
analysis of synchronization methods for distributed simula-
tion, defined by the éaxonomy in our previous paper.
Specifically, we develop algorithms for time-driven‘simula—
tion using a network of processors. For most of the syn-
chronization methods' considered, each nodé_k of an n-node
network simulation cahnot proéeed directly with its part of
a simulation. Rather, it must compute some function Bk(vl'
Vos ees 4 Vp), where v is some value Which'must be obtained
from node i. The value of v; at each node changes as the
simulation progresses, and must be broadcast to every other
node for the recomputation of the B-functions. 1In some
cases, it is advantageous to compute the B-function in a
distributed manner. Broadcast ‘algorithms for such
distributed computétion are presented. rsihce the perfor-
mance of a broadcast algorithm depends on the properties of
the inter-process communication facility, we characterize
some particular cases and give algorithms for each 6f them.



-238-

INTRODUCTION

Simulation 1is a widely used technique for system
performance evaluation. The conventional approach to
simulation is to develop a simulation program for a model,
and then execute this program - in a centralized computer
system, This approach has 1led to the development of
packages such as CSMP (7) for continuous simulation, and
GPSS (10) and SIMSCRIPT (11) for discrete simulation. .

The recent development of low-cost microprocessors has
suggested an alternative approach to simulation. In this
approach the simulated system is decomposed into components,
and  these ,cdmpbnents are simulated in a distributed manner
over a network of processors. This approach is particularly
attractive for the simulation of queueing network models
(17) because of the inherent parallelism typically found ‘in
these models, and of their wide-spread application to com-
puter systems and commuﬁication networks. Such parallelism
can be exploited in the decomposition to give a potentially
more cost-effective method of simulation. The distributed
approach, however, requires the proper synchronization of
the components before the simulation can be carried out cor-
rectly. _ . ;

In our previous paper (16), a taxonomy which charac-
terizes the different simulation methods was described. A
slightly modified version of this taxonomy is shown in
Figure 1. At the first level; we distinguish whether'therév
is one or a network of processors available. With a network
of processors, the simulation is decomposed into components
and distributed over the processors. No such decomposition
is assumed 1in the case of one processor only. The next
level deals with the event-driven or time-driven nature of
simulation. In event-driven simulation, the changes in
system state are simulated when an event occurs, and the se-
quence of the simulation time (which corresponds to the se-



-239-

- SIMULATION

ONE o ' NETWORK OF
PROCESSOR ~ PROCESSORS

EVENT  TME EVENT  TIME
" DRIVEN  DRIVEN DRIVEN ~ DRIVEN

TIGHT  LOOSE TIGHT  LOOSE

EXAMPLE: EVENT NUMERICAL VIRTUAL  LINK
© SCHEDULING 'METHODS ~ RING  TIME

Figure 1. Taxonomy Tree



. ;240_

quence of event times) is monotonically non-decreasing. In
time-driven simulation, the simulation time 1is incremented
by a fixed amount which defines a simulation interval. All
of the changes in system state in the present interval are
simulated before advancing the simulation time to the next
interval. |

For the case of a network of processbrs; we also have a
third level, depending on the value of simulation time at
each component. The method is tight if the value of simula-
tion time‘is:the same for all components at each instant of
real time.’ZOn the other hand, a loose method allows dif-
ferent components to have different values of simulation
time at a given instant of real time.“"Loose simulation
methods thus allow more exploitation of parallelism,

~Algorithms for event-driven simulation with a network
of processors have been developed by the authors (16), by
Chandy et al. (2,3,4), and by Bryant (1). Examples are the
virtual ring algorithm for tight event-driven and the 1link-
time algorithm fof loose, event-driven simulation. 1In this
paper, we consider the time-driven methods and present al-
: g6rithms for the synchronization of the components. A
fundamental feature of these algorithms is that a component
4 (ior’ a central controller) must broadcast a signal to every
“other componént.to indicate the end of a simulation inter-
val., This broadcast feature is'also observed in distributed
algorithms for event-driven simulation, as well as other ap-
plications, such as distributed data bases. A

We thus consider a class of algorithms called broad-

cast algorithms which are suitable for distributed simula-
tibﬁ using a network of processors. A recent paper by Dalal
and Metcal fe (8) has dealt with the-broadcaéﬁvof_péckets
throughout a packet-switching network, where the topology of
message passing is fixed according to' the network structure,
(By message-passing topology, we mean the structure chosen

for messages to follow in a broadcast from a source to all



-241-

other nodes of the network.) We shall be more interested in
exploring cases in which our network allows ahy message-
passing topology, and we shall look for topologies which
give the minimum time to complete a broadcast.

Por convenience, we will base our discussion on the .
simulation of a queueing network model with n nodes, where
each node corresponds to a component in our decomposition.
The general form of our broadcast algorithms requires that
each node k must maintain some function Bk(vl,vz,...,vn)
where vi is a value obtained from node i. The values of the
vi'svchange as the simulation progresses, and must be broad-
cast to every other node for the recomputation of the
-B-fﬁnctions. Of particular interest is the case that a node
k broadcast a request for the computation, in a distributed
manner, df Bx. Algorithms for such a distributed computa-
tion are presented. The performance of these algorithms
under three types of ‘communication facilities are in-
vestigated.

LOOSE TIME-DRIVEN METHODS

In distributed simulation using the loose time-driven
approach, simulation time advances by a fixed quantum size
g. Whenever conditions permit, a node simulates its compo-
nent over the time interval from s to s+q'(which we call a
tick), and then advances its simulation time to s+q. 1In the
case of a queueing network model, these conditions are met
when the node's immediate predecessors have all advanced
their simulation time to s. 1In this section, we outline two
algorithms for the loose time-driven method.

Centralized Algorithm

The centralized algorithm for lcose time-driven simula-
tion makes use of the interconnection graph of the simulated-



-242-

system. Each time a node finishes a tick, it sends an "ad-
vance” message to the synchronizer, which increments a clock -
for that node. For each immediate successor of this node,
~the algorithm checks if all of its immediate predeceésors
have advanced at least as far as the new time. If so, the
synchronizer sends a messagé to the successor node telling
it to start the next tick, including the minimum of its
predecessors' times in the message. This node may then
simulate up to that time. This algorithm has the desirable
property that it takes the minimum number of messages to do
the synchronization, that 'is, a maximum of two messages per

tick per node.

Distributed Algorithm

The distributed algorithm for loose event-driven
~ simulation bears a very»strong resemblance to the link time
algorithm for loose event-driven simulation (16). The méin»
difference is that the link time is defined as the simula-
tion time at the source noae of an empty link, rather than
as a lower bound on the next arrival, and it gets in-
cremented by one quantum after each tick,

TIGHT TIME-DRIVEN METHODS

. Synchronization of tight time-driven methods requires a
method of determining when all nodes have completed the tick
from s to s+q, and a means to inform all of the nodes thét
they should start simulating the next tick. '

We expect that the cost-effectiveness of this method is
heavily dependent'on the distribution of processing require-
ments among the components of the simulation. Let P; be the
processor timé per tick required at component i. If there
is a k such that Pk >> Py for all j # k then we would expect
this time to dominate the time required per quantum inter-



-243~

val. If each processor contains only one component, then we
would also expect that all processors except the one = con-
taining component k would be idle most of the time. If we
want to make maximum use of processors used or minimize the
number. of processors fequired, we may want to assign more
than one component to each processor. 1If each p;j is known
and constant, this is a bin packing problem with the
capacity of the bins set to the maximum P;j. The solution to
this problem gives optimal performance at the lowest cost,
neglecting the overhead-required'for synchronization.

Centralized Synchronization Algorithm

This synchronization algorithm consists of a central
process which keeps trackféf which components have finished
the current tick, and which tells the components when to
start the next tick. We note that with n components in the
simulation, we require n messages for all the components to
signal when done, and n messages to notify them that the

‘next tick should be startéd, for a total of 2n messages per
tick. ' I

In designing an algorithm td perform this synchroniza-
tion, we want to make the overhead per tick as low as
possible., Since the brqcessing time required per tick |is
dominated: by the component with the largest p;, we should
inform that éomponent first that time should be advanced.
Extending this, we adopt the approach that the components
are notified in the reverse order in which they signal the
completion of the previoﬁs tick. This approach is based on
the assumption that the Pi's are correlated, that is, pj for
time stq to s+2q is likely to be approximately equal to p;
for time s to s+q. v |

We can analyze the performance of this algorithm rela-
tive to the pi’s by considering rj, the number of nodes
which are sent timer-advance messages before node i. Then



-244-

the time for a tick is -going to be at least
max; (pj+(r;j+2)m) , where m is the time for a messa‘ige
transfer. This could be larger due to the fact that only
one message may be received at a time, so that messages ar-
riving ‘at the same time will suffer additional queueing

delays.

‘Distributed Polling Algorithm

This algorithm performs a function similar to the cen-
tralized algorithm presented abbve, but does not keep track
of the order of completion for each tick. It works in  two
‘phases: one phase for keeping track of which components’have
finished the current tick, and the other for notifying all
components that the next tick may be started.

A " In the first phase, a message containing an n—bit field

and a count of the number of nodes yet to complete the cur-
rent tick is passed from node to node. The i'th bit of the
_n-bit field is 1 if the i'th component has finished the cur-
- rent tick and 0 otherwise. When the message arrives at com-
‘ponent i, the component waits until processing of the cur-
rent tick is complete, and then turns on the i'th bit " and
decrements the couhter.v If the counter is now zero, it is
changed to n and. the sécond phase is entered. Otherwise,
the message is sent to a component whose entry in the bit
vector is 0. ' '

In the -second phase, a message containing  just a
counter is sent around a virtual ring. When a node receives
the message, the counter is decremented, and if it is not
now zero, the message is passed onto the next node in the
rihg. once a node has passed on the message, it starts
processing the next tick. If the counter is 0, then it has
returned to the node which initiated phase twb, and this
node starts off a phase one messaée with the bit vector set
to 0's and thevcounter set to N. | |



-245-

Both this and the centralized algorithm are required to
broadcast a "start next tick"™ message to all nodes. 1In the
centralized case, the cent;allcontroller sends the message
to every node, whereas in the distributed case,vthe message
passes around a virtual ring.~ Also, the virtual ring al-
gorithm for the case of tight event-driven simulation given
in our previous paper (16) broadcasts a new next event timg
to all nodes using a virtuai ring. Neither of‘ these
message-passing 'topologies was chosen because of any virtue
other than simpliéity. It seems 1likely that there exist
other ways of passing the messages to all the nodes which
would offer better performance,'and so we have developed and
investigated some other algorithms fof performing this
broadcast, These are presented in the next section, which
deals with broadcasting in a more general way.

BROADCAST ALGORITHMS

We consider the general case that node k of an n-node
network simulator maintains some function Bk(vl' Vor eee 4
vn), where Vi is some value which must be obtained from node
i. The value of this function is used to determine whether
node k may proceed with its portion of the simulation or
not. The value of v; at each node changes as the simulation
progresses, and hence so does the value of each function B .
If each node maintains a copy of each v;, then a change at
~node j from vj to vj'-requires only that vj' be broadcast to:
all other nodes in order for the new value B ' to be com-
puted. On the other hand, if the nodes do not maintain
cqpies of the vifs, then a change in V3 could in general re-
quire that every v; be broadcast, since the By functions
'wbuld have to be recomputed from scratch. So, there is a
classical time/space tradeoff to be made here,

Of special interest to this study are B-functions of

the form Vi Op V5 OPp ... Op V,, where op is a commutative,



_246_

associative operator. In this case, one could distribute
the computation of the By among the entire set of nodes.
Instead of broadcasting changes-in vj, ;he node would broad-
cast a request to compute the function By. We thus have two
separate kinds of broadcast to consider: simple broadcast
where every node eventually gets a message  containing the
new vjf, and broadcast with reply where'each-nodevregeiving
a broadcast from node k computes some sub-expression of By
and . replies with the_reSult. The broadcast with reply has
the important property that it can be used to implement
broadcast with positive acknowledgment, where the B function
is simply the logical function "all nodes have received the
message"” . : - ‘

There is no fequirement that all of the B-functions be
the same; but this is an interesting sub-case. Tight event-
dfiven simulation uses the function M = By = mini(neti), and
net; is the next event time at node i. Besides having the
same function at all nodes, the minimum is also a commuta-
tive and associative binary operator, so that we cdu}d let a
designated node initiate a.broadcast with reply to compute'M
'in a distributed fashion. Once that node received the reply
with the value of M, it would broadcast it to the others.
Nodes for whicﬁ net; = M would then be able to proceed with
their parts of the simulation.

Some Broadcast Algorithmé”

We now consider algorithms to accomplish a broadcast
and relate their performance to properties of the inter- -
process communication facility. For the moment, we assume
that the inter-process communication is such. that messagev 
delays between any two pfocesses are constant and identical.
We also consider the simple case in which only bne'broadcast
is active at a time. '



-247-

The particular algorithm which takes the minimum time
depends heavily on the amount of interference there is
between messages in the message transmission network. With
heavy interference, aSAwhen all processes are assigned to a
single processor, the minimum time tec complete a broadcast
with reply is proportional to the number of messages. = On
the other hand,  with low interference, the number of mes-
sages is less important and the topology of the message
passing dominates the minimum time. We consider the fol-
lowing cases: 1) complete interference, where only one mes-
sage can be in transmission at a time; 2) interference at
each node, where any number of messages are in transmission,
but only one message per node can be sent or received at a
- time; and 3) broadcast facility, where one node at a time is
allowed to send the same meséage,to all others.

Complete Interference. An example of complete inter-

ference is the assignment of all processes to a single
processor, The minimum time solution to this problem is to
pass the request around a’virtual ring. Upon reaching the
last node, it is sent back to the source.

To argue that this solution takes the minimum time, we
- first note that the'time»is proportional to the total number
of messages required to inform all nodes of the request and
to collect the replies. Hence, minimizing the number of
mességes is equivalent to minimizing the time. Since each
node besides the source must receive at least one request,
and sénd at least one reply, and the source must send at
least one request, ‘and receive at‘leaét one repiy,'n is a
lower bound on the total number of messages required, which
the wvirtual ,rihg meets. The essential feature of the ring
which makes this possible, is that the request to é node's
successor is also that node's reply, so the two functions
are combined into one message. To see that this is the only
structure which achieves this 1lower bound, we consider a.



-248-

topology in which one node sends the request and reply
separately. Since every other node sends at least one mes-
sage, the sum of messages sent is at least n+l. Therefore,
to use only n messages, each'node must receive and send only
one méssage. The only topology for which this is possible
is a ring. |

No Interference Between Nodes. An example of this type
of facility, where there is no interference between nodes to

send to different destinations is a fixed time-divisiOn'mul-
tiplexed (TDM) bus. This case is treated by having every
node which has received the broadcast send messages to nodes
which haven't. For example, the source (say node 0) informs
node 1. Then nodes 0 and 1 inform nodes 2 and 3, giving 4
nodes which now have received the broadcast. Then nodes 0
thrdugh 3 inform nodes 4 through 7, and so on. Thus we see
that at each stage, we double the number of nodes which have
received the broadcast. After p message-passing time units,
the .structure of the tree produced ocutlines a subset of the
‘edges of a p-dimensional Hypercube. This is illustrated in
Figure 2, which shows how a tree with 8 nodes can be mapped
onto a cube. This approach is optimal because no other ap-
proach can b:oadcaSt the message to more nodes at each
stage. . '

If this is a broadcast with reply, then when all of the
nodes have received the message, the reply phase begins.
The replies are returned in the opposite direction to the
broadcast messages. A node does not reply until all of the
nodes to which it sent a hessage have replied. Thus, leaves
in the tree reply immediately with the Vi requested. As
each reply is received at an intermediate node, the result
of the function for the subtree of that node is_accumulated,
and when all replies have been received and processed, the
result is sent to the requestor of the node. The tree of
nodes which haQen't replied therefore halves in size at each



-249-

Figure 2. Hypercube Broadcast Representation

stage, just as it doubled its size during the request phase,
until eventually only node 0 remains. We see that this.
takes a total of 2n-2 messages, and a time of 2 ceil(logzn)

to complete the computétion-of the function, where ceil(x)

denotes the smallest integer > x. Note that for n < 6, 2
ceil(1092 n) > n, so that the virtual ring solution is at
least as good for these values, and we choose to use it

since its implementation is simpler.

This partxcular reply scheme falls into a class of so-
called "echo algorithms" studied by Chang (6). We notice
that this approach to the reply is not optimal since it does
not take advantage of the fact that sub-expressions of By
can be computed as the broadcast is propagated in the for-
ward direction. If this is done, the number of sub-
expressions left to be merged at the end of the broadcast



-250-

phase is the number of leaves in the tree, rather than the
number of nodes. It should be possible in most cases to
combine the smaller number of sub-éxpressions in less time.
We have assumed thus far that sending and receiving are
synchronized, that Iis, n§de a in the'process of sending a.
message to node b cannot start to send another message until
the first has been received at node b. it will be useful to
define the characteristics of message passing more formally
as follows. -Suppose‘that node a starts to send a message to
node b at t; and can start anothér send at t,, and that node
b starts to receive the message at ty and finishes receiving
it at t,. We can now define S = £2'4 ty. as the send 5325 and
D=ty - tl‘as the delay time. Thus far, we have considered

only the case in which S = D = constant. We will next
generalize this to the case in which S # D, where.S and D
are still constants. For simplicity, we only consider .the
broadcast without tepiy case in the remainder of this sec-
tion. , . : .

It will be useful in the subsequent discussibn,to use
the broadcast tree} which we now define. An example of such

a tree for D = S 'is shown in Figure 3. All nodes on a
horizontal line receive the broadcast from the same . node,
and that node is connected vertically to the left ehd of the
horizontal - line. Also} the horizontal directionﬁ_ is
calibrated to represent the time at which a node receives
the broadcast. ] B

We first consider the case for which D > S. An example
of this is the use of a non-blocking send primitive (15),
where the sender is free to'start‘another.message without
,wéiting for completion of those in transit. For éase of
analysis, we 1let D = kS, k a positive integer, and give.an
example of a broadcast tree in Figure 4 for k = 3. Let N(i)
be the number of nodes which have received a brbadcast'at
time t = is; -With our optimal strategy, there will thus be
N(i) nodes starting to send a meésage at iS. These messages



-251~

)
o

!

I

O
)
o

—e
et —
——ﬁ)

i

o

—-———ﬁb
—$ —0
il

L

Il

:

I

- -

(&, =

' 6
6 . 32 64
8 16 32

ﬂN—‘_‘_
AN+
H oWt

e LEFTMOST NODES
o NON- LEFTMOST NODES

Figure 3. Broadcast Tree for D = S

[

>
o

4 = t =D

NGI)
DELTA N(i )



-252-

are not -received until time iS + D = (i + k)S. Since we
send to destinations that do not know of the broadcast, N(i)
’_new nodes are informed - at time (i + k)S, and so we can
write, replacing i by i-k, N(i) = N(i-1) + N(i-k). = Since
the first message from the originator of the broadcast is
received at time kS, we havé the initial conditions, N{i) =
1 for 0 < i < k-1.

t

oo +—t b—tp—— -t = S

o 1 2 3 4 5 6 7 8 9 10 N i

Tt 1 1 2 3 4 6 9 13 19 28 41 N(i)
0o o 1.1 1 2 '3 4 6 9 13 DELTAN(I)

® LEFTMOST NODES
© NON- LEFTMOST NODES

Figure 4. Broadcast Tree for D = 3S

To find the time taken for a broadcast to n nodes, we
must find the minimum i such that n < N(i). We observe that
for k = 1, this givesvthe same result as we obtained from'
our previous analysis of this case, namely that N(i) = 2i
and hence the broadcast time is ceil(logz_n).' Also, for k >
n-1, the originating node sends messages to all of the n-1
remaining nodes. '



-253-

The case D < S occurs when blocking primitives (15) are
used, where the sender is not re-activated until an acknow-
ledgment 1is obtained from the receiver. To ease the
‘analysis, we consider the sub-case in which S = kD, k a
positive integer. We define N(i) to be the maximum number
of nodes that can be informed of the broadcast at time iD.

In this case, N(i) is the number of nodes in the broad-

cast tree at time iD. It will be more convenient to study
the behavidur of AN(i) = N (i) - N(i-1) rather than N(i),
since AN(i) is the number'of nodes which receive broadcast
messages at time 1iD, It will be helpful to visuvalize a
broadcast tree, as shown in Fiéure 5 for the case k = 3,
The messages received at time t = iD will be of two types:
those leftmost on a horizontal branch of a fbroadcast tree,
and those not leftmost. The number of messages received
which are not leftmost is the same as the number received at
time t - S = (i - k)D. This follows from the fact that
every nodé which sends a message that is received at time t
- § .also sends a message which is received at time t. The
number of messages received which are leftmost is the same
as the number of nodes which received the broadcast at time
t - D because each of these nodes immediately sent a message
which is received at +time t. We can thus write AN(i) =
AN(i-l) + AN(i-k). Here we have the initial conditions
AN(i) = 1 for 1 < i< k and N(0) = 1. We notice that the
recurrence for the AN(i)'s is the same recurrence as we
found for the case D > S. 1In this case, however, if k >
n-1, the optimum solution is a virtual ring for broadcast
reply, and a virtual ring without the last edge for the
simple broadcast. |

We notice that we can also write the recurrence for the
case D > S-in the form AN(i) = AN(i-1) + AN(i-k), with
suitable initial conditions. This suggests that there may
be a general recurrence relation which covers both cases.
Let t = iq, where g is a quantum size and let D = jgq and S =



-254-

® LEFTMOST NODES
© NON- LEFTMOST NODES

Figure S. Broadcast Tree for S

T . - IR
H—t_:
1—1;‘_:
i—v__‘_: |
T T
0O 1 2 3 4 5 6 7 8 9
1 2 3 4 6 9 13 19 28 41
1 1 1 2 3 4 6 9 13

w1 = iD

1=
NG
DELTA N (i)

3D



-255-

kq. Then, by an argument similat to the one for D < S, we
obtain the recurrence AN(i) = AN(i-Jj) + AN(i-k). Since
the first message sent arrives at time D, we have the ini-
tial conditions AN(i) = 0 for i < j, and AN(j). = N(0) = 1,

It is wuseful to consider the generating function for
the AN(i) sequence. Using a derivation similar to that in.
Knuth * (13) for the Fibonacci sequence, we obtain the
-generat1ng function G(z) = zj / (1 - zjv- zk). One could
obtain a closed-form ~solution- for AN(i) by finding the
roots of the denominator of JG(z), obtaining the partial
fraction expansion, and inverfing the result. (In order to
minimize the order of the denominator, it is best to choose
q so that the greatestvdommon divisor of j and k is 1.) It
is'rather;interesting'that'the denominator of G(2) is sym-
metric‘in j and k, since this means that interchanging D and
S results in a AN(i) which is the same except for aA shift

along the i-axis of j - k.

Hardware Broadcast Fac111ty. - The final case is one in

which there is some broadcast facility available which al-
lows a node to send the same message to all other nodes. An
example of a facility which has the potential to perform
“this  type of broadcast 1is Ethernet (14), even though it
could also be considered to fall in the class of total
interference. - In. this case, the source node sends its re-
quest to all nodes at once, but cannot receive their replies
all at once, so we could use the same tree structure as the
previous case, during the reply phase only. ' If the broad-
cast takes time T, then the total time to do a broadcast
with reply for the case S =D is T + ceil(logz n)D.



-256-

IMPLICATIONS AND FUTURE WORK

The results of the previous section have given us the
capability to genérate a broadcast tree which provides
- broadcasting in the minimum time, provided that the S and D
values can be determined. However, the analysis of these
broadcast trees assumes that only one request is active at a
time. 1If this is not the case, then queueing delays caused
by competing requests will tend to make the message
.switching mechanism behave as one with higher interferehce,
'so that 'the choice of optimum message passing topology
becomes unclear. : 4 ‘

An approach to this problem which we intend to in-
vestigate is the inclusion of queueing delay into the value
of D. In general, the latger‘the number of broadcasts ac-
tive at any one time, the larger is the queueing delay, and
the larger will be the D value used. On the other hand, if
the simulation is processor—boﬁnd, it may be desirable to
restrict processor time for broadcasts, so that messages are
not sent at the maximum rate possible. This corresponds to
an effective increase in S.

The analysis of the case with no interference 1is the
most general result of the previous section. We note that
the total interference case is approximated by S >> ‘D, and
that the hardware broadcast case is approximated by S << D,
It will be useful to explore the ways in which S and D can
be traded off against one another, and then look for the
best values,

The assumption of constant S and D between all node
pairs of a network may not be realistic for some syStems.
Thus, the extension of these results to cases in which the D
and S values are not the same for all nodes, and 'in which
they are not constant is worthwhile, |

Finally, the generating function for the general recur-
rence, G(z) = zK / (1 - zj - zk), requires further inf



- S -257-

vestigatioh. The denominator of. G(z) has one real root
between 0 and 1, as can be readily seen from the .fact that
G(0) =1 and G(1) = -1. It is our conjecture that this root
dominates the asymptotic behaviour of AN(i), which, if
true, would allow us to write AN(i) approximately as cri
for large i. Here, r = 1/r', where r' is the value of the
root between 0 and 1. |

REFERENCES

1. Bryant, R.E., "Simulation of Packet Communication Ar-
chitecture Computer Systems", MIT/LCS/TR-188, Mas-
sachusetts Institute of Technology, Cambridge, Mas-
sachusetts, (Novv1977); '

2. Chandy, K.M., Holmes, V., and Misra, J., "Distributed

\ Simulation of Networks," Technical Report 81, Depart-
ment of Computer Sciences,‘ ﬁniversity' of Texas at
'Austin, Texas 78712;_ also submitted to Computer
Networks, |

3. Chandy, K.M. and Misra,vJ;,'"A Non-Trivial Example of
Concurrent Processing: Distributed Simulatioh,“ Tech-
nical Report 82, Department of Computer Sciences,
University of Texas at Austin, Texas 78712, also in
Proceedings COMPSAC, Chicago, Nov, 16-18, 1978.

4. Chandy, K.M. and Misra, J., "Specification, Synthesis,
Verification, and Performance Analysis of Distributed
Programs; A Case Study: Distributed Simulation," Tech-
nical .= Report 86, Department of Computer Sciences,
University of Texas at Austin, Texas 78712,

5. Chang, E., and Roberts, R., "An Improved Algorithm for



10.

11.

12,

13.

14.

-258-"

Decentralized Extrema-Finding in Circular Configura-
tions of Processes", CACM Vol 22 No 8, pp 281-283, (May
1979).

Chang, E., "Echo Algorlthms- Depth Parallel Operations
on General Graphs", submitted to SlComp. )

Continuous System Modelling Program, IBM Document No
GH20-0367-4, (Jan 1972). | |

Dalal, Yogen K., and Metcalfe, Robert M., "Reverse Path

" 'Forwarding of Broadcast Packets", CACM, Vol 21-12, (Dec

1978).

Emshoff, J.R., and Sisson, R.L., Design and Use of Com-
puter Simulation Models, Macmillan, New York, (1970).

IBM, General Purpose Simulation System System/360
User's Manual, GH 20-0326, White Plains, N.Y., (1970).

Kiviat, P.J., Villanueva, R., Markowitz, H.M.,
Simscript II.5 Programming Language, Consolidated
Analysis Centers Inc., Los Angeles, California, (1973).

Kernighan, B.W., Ritchie, D.M., The C Programming
Language, Prentice-Hall, Toronto, (1978).

Knuth, Donald E., Fundamental Algorithms The Art of
Computer Programming, Vol "1, Second Ed., pp 78-83,
Addison—Weslgy, Reading, Mass., 11973);

‘ Metcalfe, Robert M., and Boggs, David R., "Ethernet:

Distributed Packet Switching for Local Computer
Networks", CACM, Vol 19 No 7, (July 1976).



-259-

15. Meisnet, N;L., "Process Management and Communication
Facilities for Distributed Operating Systems", Master's
Thesis, University of Waterloo, Waterloo, Ohtario
(1979).

16. Peacock, J.K, Wong, J.W., and Manning, Eric,
"Distributed Simulation using a Network of Micro-
Processors”, Proc. Third Berkeley Workshop on
Distributed Data Management and Computer Networks, (Aug
1978), and Comphter’Networks, Vol 3, No 1, pp 44-56,
(Feb 1979). '

17. ACM Computing Surveys, Special 1Issue on Queueing
Network Models of Computer System Performance, (Sept
1978).

ACKNOWLEDGMENT

This research was supported by grants from the Natural
Sciences and Engineering Research Council of Canada.



~-260-

THE UPDATING PROTOCOL OF THE ARPANET'S NEW.ROUTING ALGORITHM:
' A CASE STUDY IN MAINTAINING IDENTICAL COPIES OF A
CHANGING DISTRIBUTED DATA BASE

Eric C. Rosen

Bolt Beranek and Newman Inc.

Abstract

In May 1978 a new routing algorithm was installed. in
+the ARPANET. 1In this algorithm, each network node makes an
.independent routing decision, based on information about
delays throughout the network. The delay on a particular
line is measured at the nodes attached +to that 1line, and
disseminated to the rest of the network in the form of a
"routing update." This paper discusses one aspect of - the
routing algorithm, viz. its updating protocol (i.e. the
protocol used to disseminate the updates). The problem of
devising a good updating protocol is shown to be a problem
in the management of a distributed data base. = The
requirements which any such protocol must meet in order to
be satisfactory are presented and discussed. The protocol
is then developed so as to meet these requirements. Other
possible protocols are discussed, and shown not to meet the
requirements.

1. INTRODUCTION

The design of distributed adaptive routing algorithms
for packet-switching computer networks gives rise +to many
and varied problems. In this paper we discuss one such
problem, as well as the solution we devised as part of the
design of a new routing algorithm for the ARPANET. (This
new algorithm, described in [1], became operational in May
1979.) The problem arises from the fact that although each
packet switch (node) in the network must make an independent
decision on how to route packets, the data base it needs to-
make these decisions is a distributed data base. That is,
each node has direct access to only a small portion of +the
data base; *to 'gain access to the rest, the nodes must
communicate with each other. The messages used to transmit
the routing data base information are known as "routing
updates." Choosing a good routing update protocol is a
problem in distributed data Dbase management; it is this
problem that will be discussed here. '



-261-

2. THE PROBLEM

In distributed routing, each node,runs an independent
"shortest-path computation" which maps certain state
information about the network into a set of routes from the
given node to each other node. A routing algorithm may be
said to be adaptive insofar as the chosen routes adapt
systematically to changes in this state information. If one
wants to have routing which adapts only to changes in the
network's topology, then the only state information which is
necessary is the up/down status of each network 1line. If,
on the other hand, one wants the routing to adapt to changes
in packet delay, then the necessary state information is the
delay over each network line; this is the approach adopted
in the ARPANET. This state information 1is gathered by a
measurement process which runs in each node. The state of a
particular 1line, however, can be directly measured only by
the node that transmits over that line; there is no way for
a node to directly measure the delay over a line to which it
is not connected. Nevertheless, if each node is to make an
independent routing decision, each node must know the delay
over each' network. 1line. This 1is what gives rise to the
distributed data base problem. In order for each node to
perform an independent shortest-path computation, each node
must have access to a data base which consists of the delay
over each network line. Since each node is able to measure
the delay on only a few lines, the data base is distributed
throughout the network.

- There are +two possible approaches +to solving the
problem of the distributed data base. One way is +to
distribute the shortest-path computation itself so that each
piece of the .computation has direct access to the part of
the data base that it needs. This is the approach taken by
the ARPANET's old routing scheme. The alternative approach
is to develop a quick and reliable updating protocol for
transmitting changes in the data base to all nodes in the
network. This makes the entire distributed data base
locally available to each node. This approach, adopted by
the ARPANET's new routing algorithm, is the one that shall
be discussed here.

3. REQUIREMENTS OF THE UPDATING PROTOCOL

Protocols -"for handling process-process communication
abound in computer networks, and one might +think that
devising an updating protocol for routing offers no special
problems not found generally in the . design of such
protocols. This 1is not the case. The role of routing in
the network places special requirements on the updating
protocol. If each node is to maintain its own copy of the
entire data base, and if each node's routing decisions are



-262-

to be made entirely on the basis of its own copy of the data
base, then it is essential to ensure that identical copies
of the data base are kept at all nodes. If this constraint
is not met, +then the nodes may make conflicting routing
decisions, causing a major network failure. For example,
suppose A and B are neighboring nodes, and D is a third node
elsewhere in the network. If A were ever to decide that
traffic destined for D should be routed via B, while B
decides that traffic for D should be routed via A, neither A
nor B would be capable of delivering traffic to D; traffic
would loop endlessly between A and B. For the shortest-path
computation used in the ARPANET's new routing scheme, this
situation can be shown to be impossible, if all the nodes
- have identical copies of the data base. If they do not have
identical copies of the data base, however, then there is no
assurance that the routing scheme will be able to deliver
packets to their destinations. It must be understood though
that the data base 1is constantly changing. Whenever the
average delay over a line changes, or when a line goes down
or comes up, there is a change in the value of one of the
entries in the distributed data base. This change must be
made known to all nodes quickly if the routing algorithm is
to continue to operate correctly. Our problem is to devise
a protocol which ensures, to the greatest degree possible,
that all nodes maintain an identical copy of the data base,
even though it is under continual change. The requirements
of such a protocol are the following::

1. Reliability. The protocol must ensure delivery of
all updates to all nodes. The ordinary data
transfer protocol of - the ARPANET is ° not
sufficiently reliable. Data packets in the ARPANET
can be lost due to node crashes, network
partitions, or severe congestion. - Loss of data
packets under these (admittedly low probability)
circumstances is unfortunate, but it does not have
any globally deleterious effect. Loss of a routing
update, on  the other hand, will result in
inconsistent copies of +the routing data base,
possibly crippling routing and bringing down the
network. A more reliable protocol must be found.

2. Quickness. Since updates cannot make their way
across the network instantaneously, there will
always be some interval of time after a new update
is generated when the copies of the data base
throughout the network are not identical. Our goal
is to keep this 1interval as small as possible.
Note +that when an ordinary data packet travels
slowly, the only bad effect is that some user sees
a long delay. When routing updates travel slowly,
however, all users can suffer.




-263-

3. Priority. Whenever routing updates contend with
other packets for the same resources (such as
buffer space, line bandwidth, or processor
bandwidth), the updates must be given priority. To
put this point another way, the flow of updates
must not be slowed down when the network is heavily
loaded.

4. Sequential delivery. If +two updates contain
information about the same line, then the updates
must be processed at all nodes in the order in
which they are generated. If different nodes
process these updates in different orders,
inconsistent copies of the data base are sure to
result. Note, however, that as long as the updates
contain complete information, so that later updates
obsolete earlier ones, it is not necessary to have
guaranteed sequential delivery. When later updates
arrive Dbefore earlier ones, the later ones can be
processed 1mmed1ate1y, and the earlier ones simply
discarded when they arrive. A policy of guaranteed
sequential delivery would delay the process1ng of
the later update until +the earlier one arrives,
thereby defeating the requirement of quickness.

5. Efficiency. The routing updates should not place
such a great demand on network resources that the
routing scheme does more harm than good.

4. THE UPDATING PROTOCOL DEVELOPED

Some of these requirements were easy to handle within
the structure of the ARPANET nodes. Others were more
difficult, and required the development of new protocols
unlike anythlng previously found in the ARPANET. One of the
easy ones was priority. The ARPANET already had a priority
queueing structure which could be easily adapted to allow
highest priority +to routing updates. To handle efficiency
considerations, we made the wupdate messages small and
infrequently generated. Each update message from a given
node contains information on all the 1lines emanating from
that node, rather +than on just one line. The update
packets themselves are quite small, about 176 Dbits on the
average. Furthermore, each node is constrained to generate
updates only infrequently. ‘Changes .in delay on a 1line
cannot cause generation of updates more often than once
every 10 seconds. Additional updates can be generated if a -
line goes down or comes up. However, when a line goes down
it cannot come back up for at least 60 seconds, so there is
no need to worry about excessive updating due to line
failures. An important consequence of these features of the
update generation process is that there is no need to exert



-264~

‘flow control on the routing updates. They'simply cannot be
generated frequently enough to give rise to the sort of
problems which flow control is needed to prevent.

For speed and reliability we decided to wuse a
transmission procedure known as flooding. Each update from
a given node carries a sequence number which identifies it
uniquely. When a node generates an update, it sends a copy
of +the wupdate +to each of its neighbors. Whenever a node
receives an update which it has not seen before, it sends a
copy to each neighbor, except The one from which it it was
received. When a node receives an update which it has seen
before (or which was generated prior to one it has seen
before), the update is discarded. - The two most salient
aspects of the transmission procedure are: -

1. The transmission of routing update messages is in
no way dependent on the performance of the routing
algorithm. Even if some problem arises with the
routing algorithm, transmission of routing updates
is not affected. This independence is an important
reliability measure. It is also important in
ensuring quick transmission. In effect, it
establishes a fixed routing policy for transmission
of routing updates, allowing the updates to ' bypass

-many of +the normal packet-forwarding procedures.
This means that the forwarding of updates can be
done at the highest priority level, with negligible
processing delay.

2. ZXach node receives a copy of each update from each
-of its neighbors. This ensures that updates cannot
be lost due to node failures or network partitions.

It must be understood, though, that transmission across the
network consists of a sequence of point-to-point
transmissions, or hops. Flooding assures speed and
reliability only insofar as the individual point-to-point
transmissions are quick and reliable. Packets transmitted
from one node to another need to be protected against the
following problems: : '

1. Line errors. Bursts of noise on the telephone line
connecting two nodes can result in a packet's
failing to be received correctly. :

2. Buffer shortage at the receiving end. Exhaustion
of the receiver’ s‘Buffer pool can cause it to miss
a packet.

3. Processor overload at the receiving end. On

occasion, the nodes have been observed to have such
a heavy processing 1load that they sometimes miss



-265-

packets because they cannot process = their
interrupts fast enough. ’

So we need some sort of reliable transmission protocol,
whereby updates get retransmitted until they are known to
have Dbeen correctly received at all nodes. One possibility
would be to have every node receiving an update send an
acknowledgement +to the source of the update. If the source
does not receive acknowledgements from all other nodes, it
retransmits the update, either flooding it again or sending
it directly to the node (or nodes) which ‘did not receive ‘it
the first +time. However, reliable transmission protocols
based on retransmissons from the source tend to be
cumbersome, slow, and inefficient. Such protocols may be
suitable for transmission of ordinary data, but not for
transmission of routing updates. The only alternative is to
have a protocol that requires each update to be acknowledged
over each line on which it is transmitted, and retransmitted
on a line-by-line ©basis whenever necessary. The network
does have such a reliable point-point transmission protocol,
known as the IMP-IMP protocol, which it uses 1in +the
transmission of ordinary data packets. This protocol
divides each line (in each direction) into eight 1logical
channels. Each logical channel can have only one packet in
flight at a time. Once a packet has been transmitted on a
logical channel, no further packets can be transmitted on
that channel until the first one has been acknowledged. A
packet which is not acknowledged within a certain period of
time is retransmitted, and the retransmissions will continue
periodically until an acknowledgement is finally received.
This protocol, whatever its merits for data packets, is
unsuitable for routing updates. It has reliability, but not
quickness. The problem is that +the IMP-IMP protocol can
block transmission on a 1line, even if the line is idle.
This will happen if all eight logical channels are filled
with packets awaiting acknowledgement. While the
acknowledgements are being awaited, the line may be idle,
yet no additional +transmissions are possible, since there
are no empty logical channels. (A similar point could be
made against other 1link +transmission protocols, such as
HDLC.) We do not, however, want to delay the transmission
of a routing update merely because all eight 1logical
channels are in use by data packets.

One way to alleviate the problem is to add additional
logical channels to be used only for routing updates. For
instance, if there are NN nodes, one could add NN 1logical
channels. A routing update would be sent on the channel
which corresponds to its source node. Then routing wupdates
would compete for 1logical channel space only with other
routing updates which originate from the same node. This
does not totally alleviate the problem of Dblocking
transmission on an idle line, since it 1is ©possible - for



-266-

several updates from the same node to arrive in rapid
succession, in which «case their +transmission would be
unnecessarily slowed. However, the routing updates have
three special properties -which distinguish them from
ordinary data packets and enable +the 1logical channel
protocol to be significantly simplified: :

1. If a routing update from node A is transmitted from
' node B to node C, and then a later update from node
A is received at node B before the prior update is
. acknowledged, we no longer care whether the prior
update is correctly received at node C or not.’
Since the 1later update obsoletes the prior one,
there is no reason to continue retransmitting the
prior one, and all resources can be devoted to the

- transmission of the later one.

2. Each routing update carries a sequence number which

(together with the number of its source node) can
be used to identify it uniquely on each link over
which it 1is +transmitted. (The assignment of
sequence numbers to routing updates will be
discussed later.) Ordinarily, data packets do not
carry any 1identifier which the link transmission
protocol can use. Therefore, the link transmission
- protocol must maintain its own set of identifiers
to assign to packets. If the set of identifiers is
small, +then only a small number of packets can be
in flight at once. The IMP-IMP protocol maintains
only - eight identifiers (one for each 1logical
channel) for ordinary packets, which is why only
~eight packets can be in flight at once. If,
however, the link transmission protocol for routing
updates identifies the updates by their sequence
numbers, and if +the sequence numbers are 6 bits
long (as in the ARPANET), up to 64 updates from
each node could be in flight on a link at any time.

3. Ordinary data packets must be kept buffered while
awaiting acknowledgement. One reason why only a
few data packets can be in flight at once is that
each in-flight packet uses a Dbuffer, and the
ARPANET is short on buffer space. Routing updates,
however, need not be kept buffered while awaiting
acknowledgement. When a routing update is received
at a node, the information it contains is copied
into the node's copy of the data Dbase. If the
update has to be retransmitted, it can Dbe
re-created from the information in the node's data

- base tables. Hence there is no need to keep the
update packet buffered, and buffering shortage does
not constrain the number of updates in flight at
once.



-267-

The second property eliminates the problem .of blocking
transmission on an idle 1line. The 1link transmission
protocol for routing updates need never delay transmission
when the line is 1idle, since updates sent on the same
logical channel are not competing for sequence number space.
The first property implies that in some cases, it is not
even necessary to wait for an acknowledgement. The third
property implies that there is not a large buffering cost in
having many routing updates in flight at once on a single
line. Therefore, we have adopted the following protocol.
On (each direction) of each network line there is a separate
logical channel for each node which may be the source of a
routing update (i.e. for each node.) After an wupdate 1is
transmitted on a line, it is retransmitted periodically over
that line, until one of the following two events occurs:

'a) It is acknowledged by the node at the other end of
that line.

b) A later update from the same source node is
received over any line. :

This protocol meets the desiderata of quickness and
reliability. '

We have now shown how to meet all +the requirements
eéxcept one -- sequential delivery. One possible way to
ensure sequential delivery would be +to refrain. from
generating a new update until the previous update is known
to have been received by all nodes. - While procedures for
doing this do exist, they tend to be slow and unresponsive.
" Therefore, we have chosen to ensure sequential delivery by
the wuse of sequence numbers. Every time a node generates a
new update, it assigns it a sequence number one greater than
~ that assigned to its previous update. The other nodes in
the network wuse this sequence number to determine which of
two updates (from the same source node) is the more recently
generated.” However, the use of sequence numbers introduces
a new protocol problem, that of keeping sequence numbers
synchronized. o

Suppose node A receives an - update from node B with
sequence number 7. At some later time, node A receives an
update from node B with sequence number 6. Furthermore, no
update from B arrives at A in the interim. Ordinarily, this
would imply that node A has received the updates out of
order. Update number 6 has already been obsoleted by by
update number 7, and should just be discarded. However,
suppose that node B had’' crashed after sending update 7.
When it . comes back up, it may not remember that its last
update was numbered 7; it may start its numbering over
again. In that case, update 6 may actually be more recent
than update 7, and node A will do the wrong thing. A



-268-

similar problem can arise as a result of network partitions.
Suppose that a series of 1line failures partitions the
network, so that there is no path between node A and node B.
While the partition lasts, node B continues +to generate
updates, giving each one a higher sequence number than the
last. Node A, however, cannot receive these updates. Since
the sequence numbers must be represented in a finite number
of bits, they will eventually wrap around. Suppose that
node B's sequence numbers wrap around several times during
the partition, and that when the partition ends, the next
update sent by B is numbered 6. Again, node A will make the
wrong decision.

It 1is clear that when communication is re-established
between two nodes that have been temporarily unable to
communicate, some  explicit procedure must be invoked to
enable those two ncdes to get +their sequence numbers
re-synchronized, so that each knows what sequence number to
expect next from the other. Most protocols that depend on
sequence numbers use a handshake procedure to synchronize
their sequence numbers at the beginning of a communication.
However, this is not suitable for our purposes. Since every
node generates updates which must go to all other nodes,
there would have to be a handshake between each pair of
nodes. In a 100-node network, this is 10,000 hdndshakes.
Clearly, it would be desirable to find a synchronization
procedure which is more efficient.

It may be thought that the routing data base itself
contains enough information to enable all nodes to
re-synchronize their = update sequence numbers after a
partition, without any explicit handshake procedure. After
all, the routing computation enables each node to know
whether another node is reachable (i.e. whether a path to
the other node exists) or not. When a node Dbecomes
unreachable, all updates from it can be ignored. - When it
Pecomes reachable again, the next update received from it
can be accepted, no matter what its sequence number is.
This automatically resynchronizes the sequence numbers.

Although this scheme 1is superficially attractive, it
has serious difficulties, as would any scheme which requires
the nodes to selectively ignore some updates. Recall +that
if there 1is any long-term discrepancy in the data bases
maintained by the nodes, the routing calculation may result
in the formation of routing loops which can make the network
useless. The proposed scheme enables such discrepancies to
exist after a partition ends. Suppose (for concreteness)
that the network 1is partitioned ZEast-West. When the
partition ends, the FEastern nodes will initially appear
unreachable to the Western nodes, and vice versa. Then
updates will begin to flow across the East-West Dboundary.
Eventually, all nodes will have processed updates from all



-269~

other nodes, and they will all see each other as reachable
again. The problem arises .though Dbecause Western nodes
cannot begin to process updates from Eastern nodes as soon
as they become reachable. Rather, they must wait until the
Eastern nodes appear reachable, according to the routing
computation. Nodes in +the East do not appear to be
reachable to nodes in the West as soon as they actually
become reachable; the Eastern nodes appear to be reachable
when updates from the East get processed by the Western
. nodes. The - order in which nodes start to appear reachable
depends on the order in which updates are processed. But as
updates flow from East to West, different Western nodes will
process the updates in different orders, and at different
rates. An eastern node that appears reachable to one
Western node at time t may not appear reachable to another
Western node until some later time t', if various updates
from the east reach the Western nodes in. different orders.
This means that if E is an Eastern node, and Wi and W2 are
Western nodes, there may be some time interval during which
W1 can accept updates from E, while W2 must ignore them. If
W2 ignores an update, it does not forward it. Therefore W2
(and all nodes beyond it) have no chance to get an wupdate
from E until some later +time, when E generates another
update.

The result is that it may be a very 1long - time Dbefore
updates from E are able to reach all the Western nodes (even
though they .are able to reach some Western nodes in a very
short tlme) - During this time, tThe nodes' <copies of the
data base are inconsistent. :

v It must be underStood that the problem is not merely
that it will take a 1long +time to re-integrate the two
segments after a partition. Rather, when a partition ends,
incorrect routing patterns may form which  affect
communication even between nodes in the same segment. For
example, two Eastern nodes which are communicating with each
other may begin routing their traffic to each other via a
series of Western nodes. But if the Western nodes hold
inconsistent information about the Eastern nodes, the
traffic may never get through. As a result, some nodes
which were able to communicate during the partition may not
be able to communicate after it ends.

The source of the problem with the proposed scheme is
that some nodes are forced to ignore certain updates while
others are not. It 1is dangerous to ignore updates
selectively. Unless all nodes ignore the same updates at
the same +time, +their copies of the data base may not be.
identical. One way to avoid this problem is to develop a
- scheme which allows all nodes to process all updates they
receive, as soon as a partition ends:



-270-

Let zero serve as a canonical lowest sequence number.
No update packet ever carres a sequence number of zero.
However, when a node A is determined by a node B to be
unreachable, B acts as if the sequence number of A's
most recent update were zero. Then when B next
receives an update from A, +the -new update is
automatically accepted as a recent update, and
processed normally.

The intent of this scheme is that when a partition ends and
updates begin to flow again between the segments, they can
be accepted and processed as soon as they are received.

There is no need to wait until a node appears reachable
before its updates can be accepted. However, +this schene
has a different sort of problem which is just as serious.

Suppose again that the network 1is partitioned
East-West. Let M be an Eastern node which is on the ©border
of ' the partition.. Let A, B, and C be three other Eastern
nodes which are connected in a triangle, and 1let W be a
Western node. Let m be an update from M which reports the
partition. That is, the other 'Eastern nodes detect the
partition as a result of processing m. (Presumably m
reports that the line between M and its Western neighbor M'
has gone down.) ZLet w be an update from W which reached the
Fastern segment of the network just before partition, and
let s(w) be its sequence number. Now it is certainly
possible that m gets to A before w does, and that w actually .
follows m around the triangle. As update m travels around
the triangle, IMPs A, B, and C will determine that W is
unreachable; henceforth they will act as if W's last update
had had sequence number Zero. Almost immediately
thereafter, update w will be received. Since zero 1is the
canonical lowest sequence number, s(w) > O, so even though w
was generated before the partition, it looks like a recent
update. It is accepted and forwarded. However, the next
time A, B, or C does a routing computation, they will again
‘determine that W is unreachable, and again begin to act as
-if - its most recent sequence number were zero. Once they do
this, they no longer ‘'remember" that +they have seen w
before. '~ When w comes around the loop again, it again looks
like a recent update (s(w) > 0), and is again accepted and
forwarded. There is nothing to stop this process, which may
continue indefinitely. In fact, w may still be traveling
around when the partition ends. Once the partition is over,
W will-eventually send out another ‘update, w'. This may
result in w and w' being in the network at the same time.
If the partition lasted long enough for the sequence numbers
to wrap around, then it is meaningless to compare s(w') with
s(w). As a result the nodes may incorrectly believe w to
be more . recent -than w', and routing will be based on very
0ld and out-of-date information. Depending on the exact
values of s(w) and s(w'), this problem may persist for a



-271-

very long time, causing extremely bad performance throughout
the whole network (for instance, if w' reports that one of
W's 1lines has gone down, lots of traffic may be routed to a
non-existent line).

We see from this that it is not enough +to allow all
updates to be processed as soon after a partition as they
~are received. In addition, we must be able to ensure that
if +the partition has lasted long enough for sequence number
wrap-around to have occurred, then no pre-partition updates
are still extant. One way of ensuring that updates do not
stay around the system too long is simply to time them out.
When the last received update from a given node becomes "too
0ld", the next update from that node should be automatically
accepted as the more recent, no matter what sequence number
it has. This eliminates +the problem of an o0ld wupdate
circulating in the network for an unlimited amount of time.
In the example above, by the time the partition ended, w
would be "too 0ld", so w' would be automatically accepted as
more recent when it is received.

The most accurate way to determine the age of an update
would be to maintain a globally synchronized clock. Each
update packet would carry the time of its creation at its
source, as well as a sequence number. Then each node would
know exactly how long ago an update was generated, subject
to +the resolution of the clock and possible inaccuracies of
synchronization. Use of a globally synchronized c¢lock has
several problems, however. One problem is simply the
difficulty of maintaining synchronization. . But +the most
serious problem is that of re-synchronizing after a
partition. When a partition forms, +there 1is no way of
ensuring that the clocks 1in +the two segments stay
synchronized. If, when the partition ends, updates flow
between the two segments ‘before re-synchronization is
established, the results are wunpredictable. S0 not only
must there be a method of re-establishing sync, there nmust
also be some way for the nodes to determine whether or not
sync has been re-established, so they know whether or not it
is safe to pass on updates. While such methods can no doubt
be developed, +they would add a significant amount of
complexity to the scheme. It is worthwhile therefore to
develop a means of determining the age of an update which
does not require globally synchronized clocks.

‘Suppose node A transmits update a which is received at
node B. At any given time, the age of update a (from the
point of view of B) can be divided into two components -
transit time and holding time. Transit time is the time it
took the update to travel from A to B. Holding time is the
time since it arrived at B. If we may assume that, within a
certain amount of time after an update is initially created,
its holding time at any given node will be very much larger



-272~

than its transit time to that node, then we may neglect the
transit time, and equate  the update's age to its holding
time. But the holding time can be computed from a purely
local clock. No global synchronization is necessary at all.

In the ARPANET, cross-network transit +times are
generally on the order of 100 milliseconds. Within a
minute, say, after any update is created, its holding time
at any node would always dominate its transit time to that
node by so much that the transit time could be neglected.
There is only one exceptional case. If an update has to Dbe
retransmitted many +times, it may age significantly in
transit. If A has held an wupdate for 59 seconds,
retransmitting many times before B finally acknowledges it,
we do not want B to have to wait yet another minute before
regarding +the update as too old. The time the update was
held at A must be figured in. »

This problem is resolved by having the wupdate packets
carry around some indication of their age. When an update
is first generated, its age is zero, and a zero is stored in
its age field. When an update is received, its age field is
stored, and periodically incremented. When a packet is
re-transmitted, the current stored value of the age field is
placed "in the packet. 8ince we know how often any node can
generate updates, and we know how many Dbits the sequence
number 1is +to be stored in, we can compute the minimum time
needed for the sequence numbers to wrap around. Once an
update has been held for so long that the sequence numbers
from its source node may have wrapped around, it is regarded
as "too o0ld", and the next update received from that source
is considered to be the more recently generated, no matter
what its sequence number is. This will only work if +the
minimum time to wrap around is much greater than the transit
time, but that is easy to ensure.

Similarly, if a node fails, it must be held off the
network for enough time to allow its last update +to Dbecome
"too - 01ld". Once that happens, its first new update will be
accepted as the most recent, independent of sequence
numbers.

5. THE UPDATING PROTOCOL SUMMARIZED

In this section, we summarize the updating protocol
developed in the previous section. Each update packet has a
header in which are stored its age, its sequence number, and
the identification number of its source node. The sequence
number is assigned by the source node at the time the update
packet 1is created, and is one greater than the sequence
number of the update packet previously generated by +that
source node (modulo n, of course, where n is the maximum
sequence number). In the case of the first update packet



-273-

generated by a node, any sequence number may be assigned.
An update packet is given an age of zero at the time of its
creation. The source node then transmits the update packet
to each of its neighbors. The update packet is
retransmitted periodically to a given neighbor until that
neighbor acknowledges it, or until a new wupdate packet is
created which obsoletes the first one.

When a node receives an update packet from one of its
neighbors (which may or may not be the original source of
the update), the node sends an acknowledgement to the
neighbor. The source node identifier and the update
sequence number are used to identify the acknowledged packet
uniquely. Then the receiving node must check to see whether
any update packet from +the same source node has been
previously received. If not, the age and sequence number of
the update are stored. (The stored value of the age will be
incremented periodically, until it reaches some maximum
value after which the update will be considered to be "too
old".s The update is sent to each neighbor except the one
from which it was received. It 1is retransmitted
periodically to a given neighbor until it is either
acknowledged by that neighbor, or it becomes "too o0ld", or a
more recent update packet from the same source node is
received. When an update needs to be retransmitted, it is
re-created from tabled information; it 1is not kept in a
packet buffer. Note in particular that when the update is
re~created, its age field 1is copied from the tabled age
field. Since the tabled age field is incremented
periodically, the age field carried by a retransmitted
update packet is not generally the same as the age field
carried by the original copy of that update packet.

If a received wupdate packet is not the first from a
particular source node, a determination must be made as +to
whether it was generated more recently than the update
previously received from that source node. (Of course, the
neighbor which +transmitted +the packet must be sent an
acknowledgement, - whatever the outcome of this
determination.) If the stored value of the age field (which
corresponds to the previous update) is at its maximum value,
the previous update is too o0ld, and the current one is
considered to be the more recently generated one. If +the
stored value of the age field is not at its maximum value,
the current update's sequence number is compared with the
sequence number of the previous update (i.e. with the tabled
sequence number) to see which update is the more recently
generated. If the current update was not more recently
generated +than the one previously received (or if it is a
duplicate of it), it is simply discarded. Otherwise it is
forwarded +to all the neighbors except the one from which it
was received, as described in the previous paragraph. Its
sequence number and age are stored, replacing those of the
previous update.



-274-

The parameters of this algorithm must be chosen so that
it is impossible for the sequence numbers to wrap around in
less time than it takes for an update to reach its maximum
age. This ensures that the most recently generated wupdate
will always be correctly chosen, even in the case of network
partition. _

When a node fails, it must not be allowed to restart
until enough time has elapsed so that any extant wupdates
that originated from +that node will have reached maximum
age. This ensures that the first update generated by that
node after restart will always be considered more recent
than any previous updates, regardless of sequence numbers.

6. CONCLUSION

The problem of designing a protocol for transmission of
routing updates is an example of a problem in the management
of a distributed data base. This sort of problem is
different from the problems for which communications
protocols have traditionally been designed, and it leads to
~a protocol which is significantly different from any of the
ARPANET's internal protocols. How the issues and solutions
discussed here may be arpplied to the management of
distributed data bases in other applications is a question
-8%ill to be addressed.

7. ACKNOWLEDGEMENTE -

Significant contributions to the work described here
were made by John McQuillan, Ira Richer, and Paul Santos.
REFERENCES

1. J. M. McQuillan, I. Richer, E. C. Rosen, "The New
/Routing Algorithm for the ARPANET", in preparation.



~275-

The NIC Name Server--A Daﬁagram Bésed Information Utility
J. R. Pickens, E. J. Feinler, and J. E. Mathis
SRI International |
Abstract

In this paper a new method for distributing and updating host
name/address information in large computer networks is described. The
technique uses datagrams to provide a simple transaction-based
query/response service. A provisional service is being provided by
the Arpanet Network Information Center (NIC) and is used by mobile
packet radio terminals, as well as by several Arpanet DEC-10 hosts.
Extensions to the service are suggested that would expand the query
functionality to allow more flexible query formats as well as queries
for service addresses. Several architectural approaches with
potential for expansion into a distributed internet environment are
proposed. This technique may be utilized in support of other
distributed applications such as user identification and group
distribution for computer based mail.

INTRODUCTION

In large computer networks, such as the Arpanet [1], network-wide
standard host-addressing information must be maintained and
distributed. To fulfill that need, the Arpanet Network Information
Center (NIC) at SRI International has maintained, administered, and
distributed the host addressing data base to Arpanet hosts since 1972

The most common method for maintaining an up-to-date copy on each
host is to bulk-transfer the entire data base to each host
individually. This technique satisfies most host addressing needs on
the Arpanet today. However, some hosts maintain neither a complete
nor a current copy of the data base because of limited memory capacity
and infrequent processing of updates. In addition, with the expansion
of the Arpanet into the internet environment [3, 4], a strong need has
arisen for new techniques to augment the distribution of name/address
information. : : '

One method currently being investigated is the dynamic distribution
of host-address information via a transaction-based, inquiry-response
process called the Name Server [5, 6]. To support this investigation,
the NIC has developed a provisional Name Server that is compatible
with a level of service specified in the Defense Advanced Research
Projects Agency (DARPA) Internet experiment [5]. The basic Name
Server is described in this paper and a set of additional functions
that‘such a service might be expected to support is proposed. |

The discussion is structured as follows: Section 1 describes the



-276-

NIC Name Server and how it is derived from the NIC data base service.
Section 2 describes extensions of the name server which allow a richer
syntax and queries for service addresses. Section 3 discusses
architectural issues, and presents some preliminary thoughts on how to
evolve from the current centralized, hierarchic service to a
distributed Name Server service. '

THE NIC NAME SERVER

A Name Server service has been instalied on SRI-KA, an Arpanet
DEC-10. Inquiry-response access is via the Internet Name Server
protocol [5], which in turn employs the DARPA Internet Protocol, IPY

To demonstrate the service a simple interactive facility is
provided to format user input into name server requests--e.g. a query
of the form |ARPANET!FQO-TENEX returns an address such as "10 20 9"
(NET=10, HOST=2, LOGICALHOST=0, IMP=9; for details of host address
formats see [8]).

User access to the name server has been implemented on several
Arpanet DEC-10 TENEX and Packet Radio Network LSI-11 Terminal
Interface Unit (TIU) hosts [9, 10]. While the TENEX program serves
primarily as a demonstration vehicle, the LSI-11 program provides a
valuable augmentation of the TIU's host table. A typical scenario is
that when the packet radio TIU is initiated or initialized, it
contains only a minimal host table, with the addresses of a few
candidate name servers. The user queries the name server with a
simple manual query process, and then uses the address obtained to
open a TELNET connection to the desired host. »

The information to support the name server originates from the
NIC's Arpanet host address data base. An optimized version of this
data base is presented to the name server upon program initiation as
an input file.

NAME SERVER ISSUES

The basic name server provides a simple address-binding service
[5]. In response to a datagram query [7, 11], the name server returns
either an address, a list of similar names if a unique match is not
found, or an error indication. Several useful additional functions
can be envisioned for the name server such as service queries and
broader access to host-related information.

Similar Names

An important issue to be resolved is that of the interpretation
given to the "similar names" response. A standard definition should
be given and not be left to implementors' whims.

If the "similar names" response is used primarily to provide
helpful information to a human-interface process, then it may be
useful to model the behavior of the name server on the behavior of
other known processes that present host name information on demand.
An example of this is a common implementation of virtual terminal



-277-

access on the Arpanet, User TELNET [12], in which three different
functions occur:

1. Upon termination of host name input (e.g. <CR>), the user
is warned only with an audible alarm if the name used is not
unique. If the name is unique, the name is completed, and
the requested operation is initiated. »

2. In responsevto <ESC>, either the name will be éompleted ir
unique or the user will be warned with an audible alarm if
the name is not unique. :

3. Only in response to "?" will a list of similar names be
printed. "Similar names", in this case, means all names
that begin with the same character string. The list is
alphabetized.

In support of this style of user interface, it may be appropriate
to return the "similar names" response only when requested. Two ways
to achieve this might be either to set an option bit or to use "?" to
force the simllar names response- .

Query Syntax
‘A second issue in the provision of name server service is that of
query syntax. The basic level of service previously described allows

only a few query functions. With more intelligent name servers,
complex queries can be supported :

The current Internet name seyver requires two fields in the query
string--a network name field and a host name field. If the network
field is non-existent, a local network query is assumed.

Since network independent queries are desirable, an expanded query

- functionality must be specified. One way this might be done is to add
to the notion of "missing field", which means "local", the notion of a
special character like "#n, which means nall®, '

The semantic range of queries afforded by adopting this convention
is listed below (Note: ~ is used to mean "null". If both network and
host fields are null the representation is "~ ~"., "N" means "network"
and "H" means "host"):



-278-

- - local net, local host'(validity check?)

-8 local net, all hosts
- H -iiocal»net, named host
- all nets,»iocal host (inverse search)

LA all nets, all hosts (probably prohibited)

& H all nets, named host

N ~ named net, local host (inverse search)
N *  named net, all hosts

N H named net, named-hpst

By combining the on-demand similar-names function, "all"™ and
"local", and by allowing "#" to be prefixed or appended to the query
string as a wild card character, one can query as follows:

~ SRI#? All hosts named SRI* on local net
® SRI®*? All hosts named SRI% on all nets

®  BUNIX%*? All hosts named *UNIX* on all nets
Service Queries

It has been suggested that the name server be generalized into a

~ binding function [13, 14]. In this context, allowing service queries
is a very useful extension. One application of this service, that
exists within the Packet Radio Project at SRI, is the need to find the
addresses of Hosts that support the LoaderServer service~-~a service
that allows packet radio TIUs to receive executable programs via
downline loading.

Service querying, unlike host names querying, requires a multiple
response capability. -The querying process would, upon receiving
multiple service descriptors, attempt to establish access to each
service, one at a time, until successful

Service descriptors consist of an offlcial name, a list of alias
names, and a network-dependent address. In the case of Arpanet
Internet services, this address field would consist of the host
address(32 bits), port(32 bits), and protocol number(8 bits). For
Arpanet NCP services, the address would consist of a host address(24
bits) and a socket(32 bits).

Syntactically, service queries can be derived from host querles by
the addition of a service name field, as below:
: NET HOST SERVICE



-279-

A network-independent serv1ce query, for example, can be -
represented as: :
% * SERVICE

Name Server Options

The concept of options has been introduced in the discussion of the
"similar names" function. Another group of options may be used to
specify the format of the reply. At one extreme is the compact,
binary, style such as exists in the basic level of service. At the
other extreme is an expanded, textual, style such as is represented by

a NIC host table record with official and alias names 1ncluded
Options can be envisioned that specify:

Binary versus text format

- Iﬁclusion of each field in'the reply

- Inclﬁsion of official name, per field, in the reply
- Inclusion of alias names, per field, in the reply

- Inclusion of other miscellaneous information, such as
operating system, machine type, access restrlct1ons and so
on.
Other options can be envisi