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Abstract 

We briefly review the results of our paper [4]: we study certain pertur­
bative solutions of left-unilateral matrix equations. These are algebraic 
equations where the coefficients and the unknown are square matrices of 
the same order, or, more abstractly, elements of an associative, but possi­
bly noncommutative algebra, and all coefficients are on the left. Recently 
such equations have appeared in a discussion of generalized Born-Infeld 
theories. In particular, two equations, their perturbative solutions and 
the relation between them are studied, applying a unified approach based 
on the generalized Bezout theorem for matrix polynomials. 

1 Introduction 

Left-unilateral matrix equations are algebraic equations of the form 

where the COefficients ar and the unknown X are square matrices of the same 
order and all coefficients are on the left. 

The motivation for studying these kinds of equations is that recently they 
have appeared in the context of generalized Born-Infeld theories [1, 2]. The 
construction of a self-dual Lagrangian can be reduced to their solution. 

We have proposed in [4] a unified approach to these equations based on the 
generalized Bezout theorem for matrix polynomials. This enables us to combine 
the idea of constructing the trace of a perturbative solution in terms of contour 

*Talk given by the first author at the Euroconference "Brane new world and noncommu­
tative geometry", Villa Gua.lino, Torino, Italy, October 2-7, 2000 
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integrals in the complex plane of the trace of the resolvent of the corresponding 
matrix, due to A. Schwarz [5], with the idea of applying the basic property of 
the logarithm, as proposed in [3]. 

H we define the characteristic polynomial associated to P(x) as 

(1.2) 

then the statement of the generalized Bezout theorem [6] is that A-x is a divisor 
of P(A)- P(x) on the right, i.e. it is possible to find a polynomial Q(A, x), such 
that· 

P(A) - P(x) = Q(A, x)(A- x). (1.3) 

In fact, in this particular case it is easy to see that 

(1.4) 

Notice that all the results described in this paper remain valid in a more 
general setting, if one considers ar and x as elements of an associative, but 
possibly noncommutative, algebra, and an appropriate algebraic definition of 
the trace as cyclic average (see [2]) is used. 

2 Properties of the Trace of Perturbative Solu­
tions 

An example of a unilateral equation was studied by A. Schwarz [5] 

(2.1) 

For € = 0 we consider n solutions e 
2
';!k 1, k = 0, ... , n - 1. For small € we are 

interested in finding perturbative solutions around these. An explicit iterative 
expression for Tr x 8 for the solution x f-:4° 1 is [4] 

Tr s - Tr ~ €k ~ TrS(a~o ... a~:. it) krr-1 ( ~ l ) 
x - 1 + s ~ k ~ 1 1 s + ~ nz - rn 

n no .... nn-1· 
k=l no+ ... +nn-t=k r=l 1=1 

(2.2) 
Some remarks can be made with respect to this formula, before we proceed to its 
demonstration. Its main feature is that it is symmetrized in the ar. which enter 
only through the symmetrized product S( a~0 

••• a~). This was conjectured in 
[2] and subsequently proven in [3] and [5]. In (2.2) the normalization of the 
symmetrized product is chosen in such a way as to give the ordinary product if 
the factors commute [3]. 

The formula (2.2) holds for positive as well as for negative values of s. A 
similar expression could be derived for all the perturbative solutions of the 
equation. 
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For the equation of the second order n = 2 an explicit expression can be 
given 

(2.3) 

Let us now sketch a proof of (2.2). We start by applying the Bezout theorem. 
For (2.1) the characteristic polynomial is 

(2.4) 

and 
P(A) = Q(A,x)(A- x) for P(x) = 0 (2.5) 

with 

Q(A,x) = ~ ( ~ t:arxr-l-l_xn-l-1) Al. 
1=0 r=l+l 

(2.6) 

Here, we have chosen one particular solution x of (2.2), namely the one which 

satisfies x e4o 1, but the same technique could be applied to any other of the 
perturbative solutions. 

As a next step, we use the basic property of the trace of the logarithm: 

TrlogP(A) = Trlog(Q(A,x)) + Trlog(A- x). (2.7) 

Then, as anticipated in the introduction, we apply Schwarz's idea of making a 
contour integration in the complex plane and compute the result through the 
Cauchy theorem. 

(2.8) 

Here, r is a small circle around 1 and f(>.) is a function, which is regular for >. 
near 1. The integration contour is shown in the next figure. 

We factorize 

' ' .:<, 
, I 

Figure 1: Contour of the integration 

n-1 
P(A) = (1- >.n)T(>.) with T(A) = 1- t:(An- 1)-1 L a,>.1 (2.9) 

1=0 
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and perform an integration by parts. In this way {2.8) becomes 

Tr f(x) = Tr /(1)- -
2
1

. J d>. Trlog(T(>.))/'(>.). (2.10} 
1rz Tr 

We expand the logarithm and make the following change of variable 

(2.11} 

A small closed curve r winding once around 1 still remains a closed curve 
winding once around 1 after the variable transformation (2.11}, so that this is 
justified. We restrict ourselves to the case/(>.) = ).8 and get 

oo k . ( n-1 1.) k 
Trxs = Tr 1 + ~ L: _€ ___ J dyTr Ll=O azyn y!.-1. 

n 21rzk fr y - 1 k=1 
(2.12) 

In this form we can already see that the result is symmetrized in the coefficients 
{ ai}, because they enter only through expressions of the type 

1 n-1 

(

n 1 ) k n L: lnz 
L,=-o azY!.. = L ' k! ,S(a~o .. . a~:.11)y 1=1 ' 

no+---+nn-1=kn°. · · · nn-1· 
(2.13) 

which are automatically symmetrized. 
Finally, (2.2) is obtained by applying the Cauchy theorem in its more general 

form 
. -1 J f(y) 1 . dk-1 

(27rz) Jc dy (y- Yo)k = k -1! dyk-1 f(y)iy=yo' (2.14} 

where C a closed curve winding once around y0 , and f(y) is a function which 
is regular inside C. 

Let us conclude this section by giving some alternative expressions for (2.2). 
We introduce the notation 

for k = 1, 2, .. , 
(2.15) 

fork= 0. 

Then 

8 oo TrS(ano ... ann-1) ( ~(s-n+E~==-11 lnz) ·) 
Trxs = Tr1+- L €k(k-1)! L 10 n~1 . 

. n k=1 no+---+nn-1=k no.··· nn-1· k- 1 
(2.16) 

In this form the result can be more easily compared to [3]. 
Another expression can be given through generalizations of factorials: 

00 k 
Trx=Tr1+ L~k L: (-1)l+[*(E~,;o1(1+l)nn-1-r-n-1)) (2.17) 

k=1 no+---+nn-1=k 
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where [x] = Integer Part of x and 

forx<O 
{2.18) 

for x ~ 0. 

This formula can be more easily compared with the exact expression (2.3) for 
n = 2, as the symbols N(n) (x) are generalizations of the double factorials, which 
appear in the expansion of the square root. 

3 Discussion of another equation 

Another unilateral matrix equation is studied in [3]: 

q; = Ao + A1 q; + ... An q;n . 

Its characteristic polynomial is 

(3.1) 

{3.2) 

We follow a similar procedure as before: we apply the Bezout theorem and 
perform a contour integration. Then 

Trf(!})) =- 2~i fc d.X Triog{1- A~.X))r(.x), (3.3) 

where now Cis a closed curve winding once around 0. We restrict to the case 
f(.X) = A8

, s positive integer, expand the logarith~ and apply the Cauchy 
theorem: 

Tr q;s = sTr f ~ (Ao + ... An)k 1Ei=o(l-1)n1=-s· {3.4) 
k=l 

In this way we recover the result of [3]. 
To study more closely the relation between equation {2.1) and (3.1) we make 

the Ansatz 
x = 1 + a!) with an-.1 = -n . {3.5) 

Then it is easily seen that 

1
-al-nE~ ( ~ ) ar for l = 0,1 

At= a'-• ( t)- a•-·,~ ( n a,. fm 2,;; l,;; n- (3.6) 

Some remarks can be made with respect to (3.4) and (3.6). 
ForE= 0 the solution of (3.1) is q; = 0. Therefore it has no sense to invert 

q; and s has to be a positive integer. However, negative powers of x can still be 
computed by expanding {3.5) into a series of positive powers of!}). 
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The equation (3.1) depends on n + 1 coefficients Ar, but there are only n 
coefficients ar in (2.1). Therefore in (3.6), An = 1 is fixed. 

Since most of the solutions of the Schwarz's equations are not real, even for 
real an, there. is no reason to choose a to be real in (3.5). 

The transformation (3.6) is linear and invertible. As a consequence, the 
result that the series is symmetrized needs to be proven only for one the two 
equations, and then it follows immediately for the other. However, from (3.6) it 
is clear that even if t: is small, only the first two coefficients Ao and At need to 
be small. We do not study the convergence properties of the sums appearing in 
this note, and we consider them always as formal series, but it is to be expected 
that the expansions do not hold for the same range of the coefficients. 
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