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FOREWORD 

This is Part I of the five-part report Construction of Hathematical Sofb:are. 

Parts I, III, and V are being issued contemporaneously; parts II and IV will appear 

later. 

The following outline of the complete report lists the topics covered in each of 

the five parts: 

Part I. General Discussion (F. N. Fritsch) 

1. Background ~laterial 

2. Design Criteria and Tradeoffs 

3. Problems of ~lathematical Software Distribution at LLL 

4. Evaluation of 1\-lathematical Software 

5. Summary and Conclusions 

Part II. Some Examples of Mathematical Software 

1. Software for the Elementary Functions (R. E. von Holdt) 

2. Software for Input/Output Conversion (R. E. von Holdt) 

3. EISPACK: Software for the Algebraic Eigenvalue Problem 

(R. P. Dickinson, Jr.) 
.. 4. Calculating Pad~ Approximants (R. L. Pexton) 

l~ 

Part III. The Control of Error in the Gear Package for Ordinary Differential 

Equations (A. C. Hindmarsh) 

Part IV. Nonlinear Least Squares Codes (Brad Johnston) 

Part V. Some Application Codes 

1. Organization of the HEMP Code (Tokihiko Suyehiro) 

2. A Simplistic View of Light Diffusion and the MORSE Code 

(Nan Davies) 

3. An Examination of Some Table Searching Methods Found in Texts 

and in the Field (Glenn L. Hage) 
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C709. Construction of ~lathemati cal Software. 

This course will be a study of the basic 

principles and tradeoffs involved in the 

construct ion of mathematical software. 

It will also include a detailed examination 

of several examples of good mathematical 

software. 

Prerequisite: C-Department courses C201 

("Programming Techniques") and C701 

("Elements of Numerical Mathematics") or 

their equivalents are required. Also, a 

good working knowledge of the FORTRAN 

programming language will be essential. 

The textbook for the course was Hathematical Software, edited by John R. Rice, 

Academic Press (New York, 1971). Wherever it appears in this report, "the text" refers 

to this book. 

The course was run seminar-style. It began with a few lectures by the instructor 

in order to present basic defjnitions and set forth some of the criteria that must be 
; 

considered when constructing mathematical s~ftware. These lectures were followed by / 

talks by members of the class, interspersed with guest lectures. The object of these 

presentations \~as to investigate in some detail the structure of a number of examples of ;]­

mathematical software, to see how (or if) the cri tcria mentioned above are met, and to ,.:' 
:. .. :· 

determine how the routines might be improved. 

approximately one and one-half hours. 

There were 23 lectures, each lasting 
.,:;:-

The following schedule for the lectures is in the order in which they were 

actually presented. Following the title of each talk, a refP-rence to the written version 

is given in square brackets [ ]. Unless otherwise indicated, these refer to other parts 

or chapters of this report. 

Lecture Date 

1 ~larch 29 

2 ,_larch 31 

* 

Speaker and Topic 

F. N. Fritsch 

Organizational Meeting; Definition of t-lathematical 

Software 

* J. F. Traub, LLL Consultant 

The Bell Laboratories Library Project. (Prof. Traub's talk 

was essentially an expanded version of his paper c~ 

pp. 131-139 of the text.] 

Professor Traub is head of the Computer Science Department at Carnegie-Mellon 
University. He was head of the Bell Laboratories Library Project until 1970. 

-2-



Lecture Date 

3 Apri 1 J.O 

4 A-pril 12 

5 April 17 

6 April 19 

7 April 24 

8 April 26 

9 April 28 

10 May 1 

11 May 3 } 12 May 8 

' 13 May 10 } 14 l\tay 12 

15 ~1ay 15 

16 ~1ay 17 

·~ . 

17 May 22 

18 May 24 

19 May 26 

20 .May 31 

21 -'June 2 

Speaker and Topic 

F. N. Fritsch 

Problems of ~1athematical Software Di_stribution at l.U. 

[Part I, Chapter 3.] 

F. N. Fritsch 

Design Criteria and Tradeoffs. [Part I, Chapter 2.] 

R. E. von Holdt 

Software for the Elementary Functions. [Part II, Chapter 1.] 

R. E. von Holdt 

Software for Input/Output Conversion. [Part II, Chapter 2.] 

A. C. Hindmarsh 

A Package for Ordinary Differential Equations Based on the 

~1ethods of C. 1\'. Gear [Part I II and the references 

given therein.] 

J. H. Bolstad 

Software for the Solution Systems of Linear Equations. 

[Based on Forsythe and 1·1oler, Computer Solution of -~, 

Linear Algebraic Systems, and pp. 347-356 of the tcxt,,f 

B. H. Johnston 

Nonlinear Least Squares Codes. [Part IV.] 
" .~:.: 

R. P. Dickinson 

EISPACK: Software for the Algebraic Eigenvalue Problem. 

[Part II, Chapter 3.) 

F. N. Fritsch 

?: 

:-r 
) 

Evaluation of r-1athematical Software. [Part I, Chapter 4.) 

R. L. Pexton 

Computation of the Pade Table. [Part II, Chapter 4.] 

T. Suyehiro 

Organization of the HEl\1P Code. [Part V, Chapter 1.] 

N. W. Davies 

A Simplistic View of Light Diffusion and the MORSE Code. 

[Part V, Chapter 2.) 

G. L. Hage 

An Examination of Some Table Searching Methods Found in 

Texts and in the Field [Part V, Chapter 3.] 
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Lecture Date 

22 June 5 

23 June 7 

Speaker and Topic 

R. F. Hausman 

Four Subroutines for One-Dimensional Function Minimization. 

(Based on reports UCID-30002 (GOLDEN), 30016 (BOUND), 

30038 (QNTRP), and 30039 (LCLMIN).) 

F. N. Fritsch 

Summary: What Have We Learned About the Construction of 

Mathematical Software? [Part I, Chapter 5.] 

3. Requirements for a Certificate of Completion 

The following rules regarding requirements for full participation were handed 

out at the beginning of the course: 

"Those participants in this seminar who wish to obtain a 'Certificate of 

Completion' for Computation Department Course C709 must fulfill the following minimum 

requirements: 

1. Maintain regular attendance at meetings of the Seminar; 

2. Present a talk (at least 45 minutes in length) on some aspect of the 

construction of mathematical software; 

3. Write a paper in support of your talk. 

"!>lost of the lectures will be discussions of particular examples of mathematic~) 

software. The initial source of information may be the textbook or a paper in the .-i.: ~ 
;~:· 

computing literature. Possible journals of interest include: BIT, Comm. AC!>I, Comput'. J., 

J. ACM, Math. Comp., Numer. Math., SIAM J. Numer. Anal. Follow up on the references in' 

your primary source, so that you completely understand the paper. The talk should 

consider the following questions: 

• How has the routine been optimized with regard to the various criteria of 

accuracy, efficiency, machine independence, etc.? 

• How is error control handled? 

• How extensively has the algorithm been analyzed? 

• How extensively has the routine been tested? 

• How good is the documentation? 

• How can the routine be improved? 

While enough of the mathematical background should be presented so that the audience can 

understand what the algorithm is doing, remember that we are concentrating on the 

organization of the routine, rather than its mathematical properties. 

"Some topics acceptable for presentation will not fit into this general outline. 

Feel free to suggest topics. 

"The required paper will essentially be a formal written version of the talk. It 

must be in term paper format. It should include a discussion of the primary source and 
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the references consulted, and include a summary of any additional testing you have 

performed yourself. It must be typed, double spaced. Any graphs or diagrams included 

must be neatly drawn, as for inclusion in a technical report." 

CHAPTER 2. DESIGN CRITERIA AND TRADEOFFS 

1. Definitions 

Before beginning our discussion of the design of mathematical software, a few 

definitions are in order. 

1.1. Algorithm. -According to Henrici [9, p. 4] an algorithm is "a set of 

directions to perform mathematical operations designed to lead to the solution of a 

given problem." Similarly, Conte [4, p. ix] defines an algorithm to be "a complete 

and unambiguous set of procedures leading to the solution of a mathematical problem." 

An algorithm is similar to a recipe in a good cookbook, which directs the cook to 

perform certain chemical operations. The restriction "unambiguous" requires that terms 

like "dash" and "pinch" be avoided, unless they are carefully defined. (Compare Zadeh 

[19], however, where the concept of "fuzzy algorithm" is introduced.) ; 

Knuth [11, pp. 1-9] goes further to require an algorithm to possess five basic .i­
.l· 

properties: 

(1) Finiteness. An algorithm must terminate after a finite number of steps. 

According to Knuth, a procedure that has all of the characteristics of an f~ 

~:~ 

algorithm (except that it possibly lacks finiteness) may be called a "computation-al 
! 

method." 

(2) Definiteness. Each step of an algorithm must be precisely defined; the action 

to be carried out must be rigorously and unambiguously specified for each case. 

(3) Input. An algorithm has zero or more inputs, i.e., quantities that are given 

to it initially before the algorithm begins. 

(4) Output. An algorithm has one or more outputs, i.e., quantities which have a 

specified relation to the inputs. 

(5) Effectiveness. An algorithm is also generally expected to be effective. 

This means that all of the operations to be performed in the algorithm must be 

sufficiently basic that they can, in principle, be done exactly and in a finite 

amount of time by a man using pencil and paper. (Example of a noneffective 

step: "If k ~ n, where n is the largest prime number for which n + 2 is also 

prime, go to step 7." It has not yet been demonstrated that such a number n 

exists.) 

-5-
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1.2. Implementation of an Algorithm. While we shall frequen~ly jdentify the 

concepts "algorithm" and "subprogram" for the purpose of this course, it is important to 

distinguish between an algorithm and its impler.~entation on a compute':". l~e quote from 

Cody [2] on this subje~t: 

It is common to identify ... an algorithm with a computer 

program as is done in the algorithms sectio~ of the 

Communications of the AC~1. But we must draw a careful 

distinction between the mathematical algorithm and the 

corresponding software, for an algorithm can be embedded 

in many different computer programs. As host to the 

algorithm each program manages the flow of information to 

and from the algorithm and performs certain ancillary 

services such as detecting and processing error conditions. 

Different programs may contain, for example, different 

convergence criteria and may offer the user varying degrees 

of control over the solution of his problem. A good 

algorithm is therefore a necessary, but not a sufficient 

condition for a good subroutine. 

1. 3. ~fathematical Software. Acccrding to Cody [2], "Mathematical software is./ 

a relatively new term denoting computer programs implementing mathematical algorithms." 

Cody goes on to state that "A second primary distinction between an algorithm and 

mathematical software is in documentation . ••• Software documentation must include •.. 

information on such things as the proper interface with other computer programs and .t" ... 
.> 

the remedial action taken when improper data or other errors are encountered. An item 

of mathematical software thus consists of a computer program and its documentation." 

(Underlining added for emphasis.) 

I prefer the above definition to that given by Rice in the preface to our text 

[15, p. xv]: ·~athematical software is the set of algorithms in the area of mathematics. 

Its exact scope is not well defined; for example, we might include any algorithms that 

result from the creation of a mathematical·model of nature and an anal;·sis of that model. 

The scope defined by this book is more narrow and includes only topics of a definite 

mathematical nature or origin." 

1.4. Basic Algorithm. An algorithm that uses a specific method to solve a 

specific mathematical problem will be called a basic algorithm. This definition is 

purposely ambiguous, since the notion of whether an algorithm is to be considered 

"basic" is context-dependent. Algorithms to solve the following mathematical problems 

would.probably be considered basic algorithms in most contexts: 

(1) Compute the real zeros of a given function. 

(2) Evaluate Jfb f(x) dx, where f is a given function, a and bare given real 

numbers. a 
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~~ ,. 
-~ (3) Find the largest eigenvalue of a given matrix. 

'"'·' 1.5. Subalgorithm. A subalgorithm is an al!!orithm to solve an even more specific 
""'~! " " ~ ~-

~i!l mathematical problem. It is generally a portion of a basic algorithm. The following are 

examples of tasks performed by subalgorithms: 

(1) Locate an interval in which a given function changes sign. 

(2) Transform a matrix to tridiagonal form. 

(3) Compute the inner product of two vectors. 

1.6. Polyalgorithm. An algorithm that uses some decision logic to determine 

which of several basic algorithms should be used to solve the problem at hand is called 

a polyalgorithm. This term was apparently coined by Rice [14]. Polyalgorithms generally 

occur in the context of automatic numerical analysis. 

1.7. Automatic Numerical Analysis. Automatic numerical analysis refers to a 

routine or system of routines designed to enable one to use a computer to solve 

mathematical problems, under the assumptions that 

(1) the problem will be stated in normal mathematical terms, and 

.!· 
(2) the user will know little or nothing about the numerical analysis 

aspects of his problem. ,., 

Automatic numerical analysis clearly requires that more attention be paid to reliahility 

and the design of the user interface than is done in other types of mathematical software .• < 
J 

(See Fig. 2.1.) Very little will be said about this subje.:t in this course. Those F 
interested in more information should refer to Rice [14] and the other papers in the 

volume containing this paper, and to the papers by de Boor [5] and Gear [8] in our, 

text. 

1.8. Driver. A driver is a routine, generally a main program, that sets up 

a problem, calls one or more basic algorithms (or polyalgorithms) to solve it, and 

reports the results to the user. There are basically two types of drivers: 

(1) Test routines 

(2) User interfaces 

' 

The latter are routines to handle the input/output required for easy use of a particular 

algorithm. They are generally more specific and less, flexible than the basic algorithms 

they call upC'In. {Note that we are now identifying algorithms with the subroutines that 

implement them.) 

1.9. Domain of Applicability. The domain of applica~ilit:• of a piece of 

mathematical software is the set of problems that it can successfully solve. For most 

problem areas, the boundary between the class of successfully solved problems and the 

class on which a program fails is not strictly defined; the performance will degrade 

-7-
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Basic algorithm 
A 

/ 

User 1s statement of 
his problem 

User interface 

Polyalgorithm 

Basic algorithm 
B 

/ 

Answer, in the 
user•s language 

Basic algorithm 
c 

\ 
Suba lgori thm Subalgorithm Subalgorithm Subalgorithm 

1 2 3 4 

Fig. 2.1. Automatic numerical analysis. 
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from execellent to unacceptable near this boundary. The domain of applicability is 

thus a "fuzzy set," in the sense of Zadeh [18). 

2. Design Criteria for ~lathematical Software 

In this section we discuss ten desirable characteristics of mathematical soft­

ware. These are derived from similar lists in Fritsch and Hausman [7), Kuki et al. 

(13), Rice (14, 16), and elsewhere. 

2.1. Good Documentation. The importance of documentation has already been 

mentioned in section 1.3. Kuki and Cody [12) state, "A program is virtually useless 

to users other than its author unless it is accompanied by reliable documentation." 

In another section of this report we read, "The computing public is faced with an ever­

growing arsenal of programs prepared and distributed in divers ways~ ... (It) is not 

feasible for individual users to distinguish the.good from the bad among them. It is 

often simpler to build a new program than to search for one in the existing arsenal. 

For a collection of programs to be useful, users must have reliable information on the 

programs' efficiency, areas of applicability, areas of comparative strength, etc. Good 

documentation by the author is supposed to contain this information." The SHARE 

I 
Evaluation Guidelines [13) further declare that "a program for which no decent docu­

mentation is available can be branded useless without further testing." .1' 

Kuki and Cody [12] identify four major classes of information that should be 

present in the documentation of a program. The~e are: 
j-s.,.:. 

(1) Statement of Purpose. This is to quickly tell the potential user whether t~_e' . , 
program can help him solve his problem. A complete statement of the problem t·hat 

the program solves, together with any important restrictions, should appear here. 

(2) Instructions on How to Use It. This section should include information on 

the status of input variables upon return and any side effects. Optional features 

and any special environmental requirements should also be clearly described here. 

(3) Description of the Algorithm Used. 

(4) Performance Information. The documentation should identify the domain of 

applicability of the program as well as possible. It should contain accurate 

information on all of the following performance characteristics and clearly 

indicate the e~tent to which the program has been tested by the author. 

See Fritsch and Hausman (7] for additional thoughts on documentation. 

2.2. Reliability. The term "reliab.:lity" generally refers to the numerical 

accuracy of the results produced by a program. We also wish to include here what 

Cody (2] calls robustness, namely the "ability to recover from abnormal situations 

without unnecessary termination of the computer run." Furthermore, a reliable piece of 

-9-



* * mathematical software will either return the correct answer or else return a wro'1g 

answer with an indication that it is erroneous. It wilJ never "bl011 up," nor will it 

quietly return bad results as though nothing has gone w:o.-ong. 

2.3. Error Control. By error control we refer to eit!ler or both of th~ foll0wing: 

(1) monitoring and control of accuracy during the course of a computation, or 

(2) a posteriori accuracy checks. 

This may invol'Ve the use of special devices, such as interval or significance a:l'ithmetic. 

Whenever prictfcal, an estimate of the error in the results should be returned to the 

user. Error control is clearly closely related to program reliability. 

2.4. Efficiency. Program efficiency refers both to its execution speed and to 

the optimum allocation of computer resources (program size). 

2.5. Flexibility. A flexible piece of mathematical software can handle a wide 

class of problems. 

2.6. Modifiability. Closely related to flexibility is the concept of modifi­

ability: Is the program written in such a way that it is easy to extend (or reduce) the 

domain of applicability or modify the information that it produces about the problem?~· 
.{ 

This term is often considered synonymous with modularity, the segmenting of a program' 

into a number of relatively small, logically independent blocks, since modularity 

generally enhances modifiability. Modifiability also requires that the routine be .?· 

carefully commented and that programming "tricks" be avoided or carefully explained. /''· 

(See Fritsch and Hausman [7, pp. 10-14] for suggested programming standards.) ·' 

2.7. Ease of Use. Here we are considering the design of the interface between 

the user and the program. Cody [2] refers to this as-accessibility. The user generally 

(but not always) wishes to be required to supply only those parameters that are natural 

to the statement of the problem. Long calling sequences generally discourage use of a 

subroutine. Even the order of the arguments can affect ease of use, so this must be 

considered when designing the calling sequence. 

2.8. Reasonable Diagnostics. Another part of the user interface is the design 

of the diagnostic messages produced in case of abnormal conditions. For example, good 

mathematical software will not produce the diagnostic "negative argument in square root 

function" when the real problem is that a matrix that was supposedly positive definite 

has a negative eigenvalue. 

2.9. Transportability. A program is transportable (or simply portable) if it 
--------

can-be moved from ·one computer· system to another with a minimum of change. A hand-coded 

* The concepts of correct and wrong are necessarily "fuzzy" in this context. 
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subroutine is clearly not transportable. A routine written in ANSI Standard Fortran is , 
quite likely to be transportable, especially if calculations that depend on machine 

characteristics (word size, maximum floating-point exponent, etc.) are avoided or carefully 

isolated and identified. The designer of mathematical software should avoid the use of 

exotic features of a particular compiler whenever practical. 

2.10. Common Sense. Rice [14] defines common sense to be "the application of one 

(or more) of a large number of simple rules to an appropriate bit or two from a large 

body of information." Common sense is required, for example, in the stopping criteria 

for an iterative process. It is extremely difficult to implement. (See (14] for further 

discussion of this concept.) 

3. Tradeoffs: Software Engineering 

It is obvious that many of the design criteria discussed in the previous section 

are incompatible, i.e.,: 

(1) It is usually impossible to simultaneously minimize the speed and size of 

a subprogram. , 

(2) Short calling sequences (ease of use) may not provide the user with adequat~. 

control over the solution of his problem (flexibility). l 
(3) A hand-coded subroutine generally runs faster (efficiency) than a Fortran 

version (portability). 

(4) Flexibility demands that library routines contain no input/output comml'nds( 

which inhibits the provision of adequate diagnostics. (One possible solution 

to this problem is to provide an output error flag which, at the user's 

option, can be passed on to a separate subroutine that prints the error 

messages.) 

Because of this conflict of goals, certain tradeoffs must be made. It is here that the 

construction of mathematical software becomes an art (or perhaps an engineering discipline) 

rather than a science. 

The individual designing a piece of mathematical software should be aware of the 

tradeoffs (engineering decisions) he has made in the process. These decisions should be 

compatible with the intended use of the routine, and they should be based on such 

considerations as the following: 

(1) Is the software to be part of an automatic numerical analysis system, a 

general-purpose subroutine library, or a production code? 

(2) How often will it be used? (one-shot job vs production code) 

(3) liho will use it? (That is, how much work should be devoted to the user 

interface?) 

-11-
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With the list of design criteria from section 2 in mind, the mathematical 

software designer frequently finds ways to improve some features of his program without 

seriously degrading the others: 

(1) It is usually possible to increase transportability without seriously 

affecting the efficiency of a program. For example, a fast, hand-coded dot 

product routine (DOT) is used in a Fortran matrix manipulation routine. If 

one simply inserts comment cards containing a mathematically equivalent 

Fdttran DO-loop immediately after the call to DOT, the Fortran routine has 

been rendered transportable without sacrificing efficiency. 

(2) Co'ii'sider whether the computer time saved is worth the extra people time when 

resolving the conflict between ease of use and efficiency. 

(3) It is usually easy to find ways to improve the efficiency of a well-commented 

logically organized (i.e., easily modifiable) program. 

(4) It is generally easier to consider the user interface in the initial design 

stages than to attempt to modify it after the completed routine has been 

debugged. 

Fritsch and Hausman [7, p. 10] state that the programmer generally attempts to 

attain some optimum combination of the following goals: i 
(I) Maximize accuracy. 

(2) Minimize execution time. 

(3) Minimize size of object code. 

(4) Maximize range of parameters to be allowed (i.e., domain of applicability),; 

(5) ~laximize comprehensibility of source program (modifiability). 

(6) 1-faximi ze convenience of usage. 

The programmer should be aware of the combination he has chosen to optimize, why he has 

made this decision, and how it has been implemented. 

One final note: Good documentation does not conflict with any of the other nine 

design criteria. Any piece of good mathematical software must be well documented, and 

this documentation should contain information on the author's choice of optimum design 

criteria. 

CHAPTER 3. PROBLEMS OF MATHEMATICAL SOFTWARE 

DISTRIBUTION AT LLL 
We discuss here the current mathematical subroutine library situation at LLL and 

propose a remedy. But first, let us consider how the current_~ituatiQ.n ca!lle __ about.--------

.. ·~. 
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1. Background 

The following factors have all contributed to the current library status. 

1.1. Variety of Hardware. LLL has traditionally supported a wide variety of 

computing equipment from different manufacturers. Five years ago we had the following 

large computers: IB~t 7094, IB~1 7030 (STRETCH), Remington-Rand LARC, CDC 3600, CDC 6600. 

Such an environment is clearly not conducive to the development of a central, standardized 

subroutine library. 

1.2. Variety of Systems. To make matters even more complex, LLL computer users 

avail themselves of a wide variety of software systems (usually with incompatible 

compiler/library structures). For example, on the CDC 6600's we currently have three 

Fortran compilers (MONITOR-LRLTRAN, CHIP, ORDER-CHAT), each with its own loader and its 

own supporting library. 

1.3. Other Languages. While LLL is basically a Fortran laboratory, there is a 

growing number of users who program in assembly language (using one of several 

incompatible assemblers), COBOL, or APL. Incompatible languages generally require 

separate subroutine libraries. 

1.4. Incompatible Requirements. Finally, the LLL computer facility has to 

service two distinct groups: users with short jobs and those with production codes that 

grind away for hours at a time. It is difficult, if not impossible, to meet the needs 

of such a wide variety of computer users with a single program library. 

2. The Current Situation 

At present there are two types of program lit-raries available to LLL computer 

users. 

2.1. System Libraries. These are the libraries that exist to provide 1/0 support 

and other services to the users of specific systems. 

a. Examples: 

{1) CLIB (for CHIP) 

{2) LRLLIB (for MONITOR) 

{3) ORDERLIB {for CHAT/ORDER) 

b. Properties: 

{1) Reside permanently on disk {public file) for each worker computer. 
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{2) Easy access -the user need only call the routine(s) he wishes to use. 

(3) ~rust be constantly used to justify the disk space. 

(4) Contain very few mathematical subroutines. (Generally, only the 

elementary functions, a uniform random-number generator, and MLR. CLIB 

also contains routines to compute one- and two-dimensional integrals 

and an ODE solver.) 

(5) Documentation generally very scanty. 

2.2. The "Use at Your 0\\'ll Risk" Library. This is what is left of the CIC 

(Computer lnfot"lhation Center) Library. Properties: 

(1) Card decks and write-ups available at the TID !>lain Library. 

(2) No quality control -anybody who wishes can donate a routine. 

{3) Nobody is responsible for the integrity of the library. 

{4) Contains most of the mathematical software that is generally available 

to LLL computer users. 

We feel that the current library situation is intolerable for a scientific 

computing facility of the magnitude of LLL's. In the following section we propose one 

possible solution: a NAG-sponsored mathematical subroutine library. 

l 
3. Proposal for an LLL ~lathematica1 Subroutine Library 

* 

3.1. Criteria for Design of the Library. 

{1) Reliable. 

(2) Easy to use - machine accessible. (Because of the premium on permaryent 

disk space, this will probably require use of the Photostore.) 

{3) As system-independent as possible. 

{4) Easy to update.{(3) and (4) together imply a Fortran source library.) 

{5) Consultants available. 

3.2. ~linimal Requirements for Inclusion of a Routine in the Library. 

{1) Has been documented in the computing literature or as a CIC or UCID 

Computer Documentation Report. (The submitter must provide us with a 

copy of the documentation.) 

(2) Has undergone extensive testing at LLL or has been certified elsewhere 

and has successfully run a few test problems locally. {The submitter must 

provide evidence that the certification has been done. The EISPACK 

routines are in the second category.) 
* (3) Has a NAG sponsor. (That is, somebody in NAG has agreed to be the Group's 

-consultant on the rouHne. If a routine was-lieveloped hy-someone-ers-e---at _________ _ 

LLL, the sponsor will generally be in close communication with the author.) 

It seems more realistic, in view of limited manpower in NAG, to establish a LaboratorY~ 
wide board of sponsors for the mathematical subroutine library. 
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1. 

3.3. Problems. 

3.4. 

(1) \\That sort of a user's manual should be provided? How extensiv~ should 

the write-up be? How distributed? 

(2) How can we obtain statistics on library usage? 

(3) Hm~ can we obtain a "hostile referee" for a locally devE'!loped routine? 

(Quite frequently, the ~ubroutine developer is the only per~0r at the 

Laboratory witr. the expertise needed for an evaluation of the ~rogram.) 

Other Considerations./ 

(1) How much manpower will be required? Who will pay for it? 

(2) lfuat is the optimal level of testing for the routines in such a library? 

(3) What about the use of a commercially available library? 

CHAPTER 4. EVALUATION OF MATHEMATICAL SOFTWARE 

Introduction 

In Chapter 2 we discussed the following ten attribute~ of good mathe~atical soft- r 

ware: 

(1) Good documentation 

(2) Rei iability 

(3) Error control 

./ 

~~.:....__ 
r"~ 

"" ; (4) Efficiency 
" 

(5) Flexibility 

(6) 1\-lodifiability 

(7) Ease of use 

(8) Reasonable diagnostics 

(9) Transportability 

(10) Common sense 

Now we wish to discuss evaluation: How does a given piece of mathematical software rate on 

these ten design criteria? 

The major sources on the general philosophy of software evaluation are Kuki, 

et al. [13], Kuki and Cody [12], and Cody [2]. Rice [16, pp. 33-37) also discusses 

various aspects of the subject. Other references may be found in the "Bibliography on 

Subroutine Certification" in Appendix B. 

1.1. ~lotivation. lfuy is the evaluation of mathematical software important? \\'e 

quote from Kuki and Cody [12] on this subject: 

The computing public is faced with an ever-growing 

arsenal of programs prepared and distributed in divers 
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ways. Without adequate controls on the quality of those 

programs, it is not feasible for individual users to 

distinguish the good from the bad among them. It is often 

simpler to build a new program than to search for one in 

the existing arsenal. For a collection of programs to be 

useful, users must have reliable information on the 

programs' efficiency, areas of applicability, areas of 

comparative strength, etc. Good documentation by ~he 
·-, 
author is supposed to contain this information. \\'hen it 

-does, verification of the documentation is all that is 

needed. 11/hen, as is too often the case, such information 

is inadequate or missing from the documentation, certifica­

tion can only be effective if it provides the missing 

information through a general evaluation of the program. 

Furthermore, the results of evaluation projects must be accessible to the users of mathe­

matical software if this need is to be met. 

1.2. Definitions. The preceding passage introduces several terms which should 

be defined more precisely. 

Testing will be left as- an undefined term. Several types of testing will be_/ 

distinguished later. 

Verification refers to the validation of claims made by the author of a program_/ 

in his documentation, by analytical means or by actual machine testing. /' 

Evaluation goes beyond verification to express a value judgement as to how well 
/ 

the above design criteria have been met and, possibly, how the program compared with 

other programs to solve the same problem. 

Certification is frequently used as a synonym for evaluation. lvith Cody [2], 

however, we prefer to reserve the term "certified software" for the case where some 

guarantee of the quality of the program is implied, as in the case of the subroutines 

certified by the NATS project [1]. We shall be concerned here with evaluation, not 

certification. 

2. Aspects of Program Evaluation 

Kuki and Cody [12] set forth four aspects of mathematical subroutine evaluation: 

(1) Quality of the program 

(2) Quality of the documentation 

(3) Design of tests 

(4) Documentation of the evaluation 

2.1. quality of the Program. ~~en evaluating the quality of the program, one 

should distinguish among limitations inherent in the problem to be solved (such as ill­

conditioned polynomial root-finding or matrix inversion problems), limitations of an 

-16-
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algorithm, and limitations in its implementation (a good linear system solver can be 

ruined by failure to accumulate a crucial inner product in double precision). While 

inherent limitations are generally not considered to be the responsibility of a mathematical 

subroutine, they must still be taken into account by the evaluator. Kuki and Cody [12] 

recommend that a program's accuracy be interpreted relative to the inherent indeterminacy 

of the problem. They cite as an example of poor software design a polynomial root-finder 

that "liberally employs extra precision arithmetic to insure machine accuracy of multiple 

root solutions based on the assumption of exactness of the given coefficients," an 

. assumption that is usually false. 

The SHARE program evaluation guidelines [13] suggest that reviewers consider the 

following "performance attributes" when evaluating the quality of a program: 

{1) 

(2) 

{3) 

(4) 

(5) 

Reliability 

Accuracy 

Timing 

Size (of the program) 

Features: "Consider the range of admissible input values, extra entry points, 

features such as error enalysis, by-products, and so on." 

(6) Design: ease of use, quality of output 

We shall have more to say about this later. 

-,/ 2.2. Quality of the Documentation. Documentation has been discussed at length in 
,# 

a previous lecture. {See Section 2.1 of Chapter 2 .. ) As we have already mentioned, much /'­
~: 

of the evaluation process is aimed at verification of the documentation. The documentati9~ 
i 

must also be evaluated with regard to clarity, conciseness, and completeness (the "three-

C's" of program documentation). Good documentation should contain accurate information 

on all of the above performance attributes, including an indication of any limitations. 

"The documentation should state clearly the extent and the condition of tests conducted 

by the author." [12) Furthermore, it should be written in such a way that the potential 

user can easily determine whether the program is applicable to the solution of his problem. 

2. 3. Design of Tests. We concur with the following material quoted from Kuki 

and Cody [12]: 

.•'":"' 

.. ,._:1: 

\~e believe certification of any significance should 

involve a fair amount of actual machine tests unless it 

is obvious from the author's own documentation that the 

program is not worthy of such attention. Even when the 

documentation contains the results of careful and 

thorough tests made by the author, a reasonable amount 

of machine tests should be done to verify them or sup­

plement them. Although the amount of testing is left to 

the judgement of the reviewer, a~ effort should be made 
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to cover the entire range of applicability of the 

program. 

The primary characteristics of good tests are rigor 

and significance. Tests must be conducted in the most 

rigorous manner consistent with the requirements of the 

certification. Tests which are significant for one 

program-may not be significant for another very similar 

program. For example, an examination of the Wronskian 
. f': 

vai·(i~s- for a Bessel function routine can be significant 

only if the l~ronskian is not used to generate the function 

values in the first place. 

Choice of proper criteria for the measurement of 

accuracy is a delicate problem. Here a great deal of care 

must be taken to choose error criteria which must reveal 

the performance characteristics of the program ..•. Ultimately, 

it is the user's application which determines the preference 

on error criteria. Users will want to have error figures 

presented in the form that can be most effectively incorporated 

into an error estimate of the total computation • 

... (For many subroutines) the heart of the test plan should 

be what we call critical range tests; that is, tests designed 

to probe particularly sensitive areas of the program such as 

regions where underflow or overflow of intermediate results 

may occur, or argument ranges bracketing the boundaries 

between methods of computation. The choice of a significant 

set of critical range tests is indeed a task challenging the 

ingenuity of the reviewer. 

Timing tests also provide useful information, especially when comparing rival 

programs. The results may be reported in terms of actual machine running times, operation 

counts, or number of function evaluations (for a routine requiring a function as one of 

its inputs). 

The theory and practice for testing of function subroutines is "in a most satis­

factory state of affairs. The most widely exploited technique for accuracy evaluation 

is a Monte Carlo approach based on forward error an lays is." [2] See Cody [3] for a 

-~ 

general description of this process. Several specific evaluations of this type are cited 

in Appendix B. The design of tests in other areas is still pretty much up to the ingenuity 

of the evaluator. Such tests frequently involve the running of a large collection of ---------- --"standard" -test 'problems~ 

2.4. Documentation of the Evaluation. The final phase of any evaluation project 

is the preparation of a report. Please refer to Appendix A for the SHARE guidelines as 
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to the purpose and df:~ired contents of such a report. We find it difficult to improve on 

thi~ material. The evaluator must completely and reliably document his work. The rep~rt 

must contain substantiating evidence for any criticism levied against the origjnal program. 

3. Levels of Testing 

We djgre~s for a moment to db;tinguish several levels of mathematical subrcutine 

testing. 

3.1. Plausibi~ity Testing. The most superficial level of testing consists of 

running two or three sample problems and comparing the results 1vi t'h those obtained else­

where. This type of testing mar be appropriate in two cases: 

(1) A program is imported from another installation -The purpose of the test 

is to detect any installation-dependent differences that prevent proper 

functioning of the program in its new environment. 

(2) A library subroutine -The purpose of the test is to determine whether the 

library has been clobbered. (The subroutine had previously undergone much 

more extensive testing before it was put on the library.) 

3.2. Program Checkout/Debugging. This is the minimal amount of testing that must. 
j be performed before a program can be considered debugged. As stated by Fritsch and ,.., 

Hausman [7, p. 15], at the very least "enough test cases should be performed to insure j 

that all possible paths of the program are checked." lfuere possible, such results should ~-;z< 

be carefully checked ~Vith hand computations or with built-in tables of correct answers. ~/"-

-• 
3.3. Performance Evaluation. Performance evaluation is a complete, but objecti1e, 

testing process designed to assess program quality as discussed earlier in section 2. 

The result of a perforrrance evaluation is "a set of statistics and parameters describi_ng 

the performance of a given program on a standard set of problems." [2] This '"ill be 

•, discussed in more detail in section 4. 

3.4. Complete Program Evaluation. A complete program evaluation goes beyond 

performance evaluation to consider the quality of such subjective attributes as program­

ming standards, ease of use, flexibility, and program documentation. 

3.5. Comparison Testing. Up to this point we have been considering the evaluation 

of a single piece of mathematical software. Comparison testing involves performing a 

complete program evaluation on t~Vo or more routines that purport to solve the same prob­

lem, in order to compare their domains of applicability and their ratings on the various 

design criteria. The purpose of comparison testing may be to find one optimum algorithm 

for a given problem area (as in the Bell Laboratories Library One project [17]) or to 

merely indicate the areas of comparative strength and weakness among a collection of rival 

programs. 
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T. E. Hull (10] has attempted to establish a rigorous definition for the term 

"best method" in this context. While he applied this to the numerical integration of 

ordinary differential equations, the same ideas carry over to other problem areas. 1\'e 

assume that two rigorously defined sets are given: 

P = a class of problems. (Usually, a set of inputs to a subroutine, including 

error tolerances. Perhaps it is useful to think of P as a sample space.) 

~I = a class of methods. (Usually, a collection of subroutines.) 

On P and f.-1 we define a function G such that, for m€M, G (m, P) is a measure of the goodness 

of the method m, relative.to,the set of problems P. We now quote Hull's definition [10]: 
• I~-· '. 

If G is,·real-valued, and if it is desirable to have 

small values of G, we can now give a precise meaning to 

the statement that one method is better than another. 

Method m is better than method m', relative to the class 

of problems P, according to the criterion G, provided 

G(m,P) < G(m' ,P). And the definition of "best" now takes 

the following precise form. Method m is a best method, 

.· 
from the class of methods M, relative to the class of 

problems P, according to the criterion G, if G(m,P) ~ G(m' ,P) 

for any m 1€ ~1. 
./;. 

For further discussion, with examples, see [10]. 
While this definition is unlikely to be of much use in practice, it does serve to "" 

point out that one cannot claim that a program is "optimum" unless he clearly specifies 

the class of problems being considered, the criterion of goodness, and the class of 

methods over which the optimization is being performed. 

4. Complete Program Evaluation 

.> 

Cody (2] describes an ideal evaluation effort for an item of mathematical software 

as providing answers to five questions: 

(1) What are the numerical properties (accuracy, etc.) and speed of the program? 

(2) Precisely what problems does the program solve, i.e., what is the domain of 

t:he program? 

{3) Is the coding correct? 

(4) Is the program easy to use? 

{5) Is the documentation appropriate? 

The first two of these Cody identifies with the term "performance evaluation" (cf., 

Section 3.3, above), while the entire process is called "complete program evaluation" 
-· ·-- --

--(cf., Section- 3.4, above). 

We have already discussed documentation and ease of use, here and in chapter 2. 

We shall consider the other three questions in reverse order. 
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4.1. Correct Coding. An affirmative answer to question 3, above, implies that 

the routine is free of both programming errors, or "bugs," and design errors. The latter 

is extremely difficult to check for. Cody [2] states, "The only common· denominator appears 

to be the association of design errors with error detection or the lack of it. A square 

root routine which does not do something special when it encounters a negative argument 

clearly has a design· error. Similarly, a routine for the solution of ordinary differen­

tial equations has a design error if it objects (or malfunctions) when the independent 

variable is stepped in a negative direction. The difference between these errors is 

essentially the degree of foresight required of the evaluator to check for them·" 

One should also consider good programming practices when evaluating the coding of 

a particular routine. A well-commented, logically organized Fortran program is clearly 

easier to modify, easier to evaluate, and simply more aesthetic than one that is not. 

See the CACM Algorithms Policy (6] for one group's thinking in this area. 

4.2. Domain of Applicability. At the present state of the art it is only possible 

to obtain a very fuzzy picture of the domain of applicability of a given subroutine. This 

is not so difficult in the case of a function of one or two independent variables, but it 

becomes increasingly more difficult as the dimensionality of the input data increases. In 

cases where a function is one of the inputs, about the best we. can.do is to test the 

program on increasingly ill-conditioned input and report where, and in lvhat manner, it 

fails. At present we generally are unable to determine precisely what properties of a 

problem are the most important for determining the difficulty of its numerical solution. 

4.3. Numerical Properties. We have already touched upon the subject of 

question 1 in section 2.1. Here we shall be concerned with sources of error and with 

assessment of error. 

' .. ; 

There are three primary sources of error in any numerical result. Transmitted 

error is the result of error in the. original data (inherited error). While a mathematical 

- '.·~o; •• 
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Inexact data---..; 
(inherited error) 

Exact data---~ 
(no error) 

Exact mathematical 
solution to 

the given problem 

Inexact solution to the 
given problem 

using exact arithmetic 

Inexact solutions to the 

I---- Inexact solution 
( transmitted error) 

t-----lnexact solution 
(analytic truncation 
error) 

Exact dato-----!given problem using finite-1-----lnexact solution 
(no error) precision arithmetic (generated error) 

Fig. 4.1. Three primary sources of error. 

~ = f' (x) dx 
y f(x) 

= f' (x) dx 
x f(x) x 
* (assuming x -~ 0, f(x) ~ 0). If z is an approximation to the nonzero quantity z, and the 

absolute error is /u = z - z *, then the relative error in z * is i· 
tu d z 

cSz = z;;:;: -z· 
.-. 

~"-

Thus the above formula can be used to approximate the transmitted error due to an inhe,tited 

error L\t: 

L\y ;;:;: dy = f' (x) dx ~ f' (x) L\x 
or 

~ f' (x) dx . f' (x) 
cSy ~ Y = x 1('i') x ~ x f(x) cSx 

i 
> 

(1) 

(2) 

In Eq. (1) the absolute error is multiplied by the factor f'(x); in Eq. (2) the relative 

error is multiplied by the factor xf'(x)/f(x). If the multiplicative factor is greater 

than one in absolute error, the transmitted error is greater than the inherited error, and 

no improvement of the mathematical method can reduce the total error below this level. 

Example: f(x) = tan x, x near n/2. 

The most obvious approach to accuracy evaluation is based on forward error analysis. 

That is, the program is checked on problems with known solutions, and the computational 

results are compared with the exact answers. If one is careful to avoid unintentional 

inclusion of inherited error, this can provide a direct measure of the generated error. 

__ ________ In certain areas-,--notably matrix compu-tations-and--polynomial zero-finding-;-a---- --

backward error analysis is more appro-priate. This means that the computed result is 

interpreted as the exact solution to a perturbation of the original problem, and we meas-

ure the difference between the problem posed and the problem solved. One can also use 
.•. ,, 
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is. 

"consistency checks" involvinR theor£'tjcal identities. See Cody f2] and the papers 

referenced there for further discussion of this subject. 

5. Evaluation Projects 

We provide here a brief summary of known mathematical software evaluation projects. 

Refer to the section entitled "Present Technology" in Cody [2] for a more complete survey. 

(1) The SHARE Numerical Analysis Project has been engaged in an evaluation of 

the mathematical subroutines in the SHARE (IBH computer users' group) Library 

for many years. 

the project. 

See [13] and various SSD's for reports on the activities of 

• 
(2) While currently inactive, the SIGNUM Subroutine Certification Group attempted 

to act as a centralized clearing-house for information on evaluation efforts. 

Reports on their activities can be found in various issues of the SIGNID-f 

Newsletter. 

(3) We have already mentioned the Bell Laboratories project [17]. 

(4) Funded by NSF and supported by Argonne National Laboratory, Stanford University, 

and University of Texas, the NATS -(National Activity to Test Software) project 

"is a prototype effort to test and disseminate certain collections of routin.J~ 
as certified software." [1] A package of over thirty subroutines, known as 

EISPACK, to solve the algebraic eigenvalue problem has been tested and is now ;" 

available to computer users. 

currently being tested. 

A collection of special function routines is 

(5) Various universities and laboratories (including Argonne National Laboratory, 

Jet Pr~pulsion Laboratory, and the University of Minnesota) have done 

performance evaluations on manufacturer-supplied libraries of function sub­

programs. These are cited in the "Bibliography on Subroutine Certification" 

(see Appendix B). In this same bibliography appear the results 0f various 

comparison tests that have been undertaken as individual efforts. 

6. Conclusion 

· To summarize what has been said here, one must carefully determine his goals 

before undertaking an evaluation project, \H th these goals in mind, a plan for testing 

is designed and carried out - the details of the plan depending on the. problem area. 

Finally, a report describing the testing procedure and the evaluator's interpretation of 

the results must be prepared. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

1 • .Course Summary 

In the final lecture of the course we attempted to summarize what '"e have learned 

:about the construction of mathematical software. First, we recalled certain basic 

definitions (see Chapter 2, Section 1): 

(1) Algorithm 

(2) Implementation 

(3) ~1athematical sofb•are - An i tern of mathematical software consists of a 

computer program that implements a mathematical algorithm, together with its 

documentation. 

(4) Basic algorithm 

(5) Subalgorithm 

(6) Polyalgorithm 

(7) Automatic numerical analysis 

(8) Driver 

(9) Domain of applicability 

Next, we reviewed the ten design criteria (see Chapter 2, Section 2): 

(1) Good documentation 

(2) Reliability (accuracy; robustness) 

(3) Error control 

(4) Efficiency (speed; size) 

(5) Flexibility 

(6) l\lodifiahility (modularity) 

(7) Ease of use (accessibility) 

(8) Reasonable diagnostics 

(9) Transportability 

(10) Common sense 

} user interface 

.-
./ 

-~~: . 

r?..: 
-~ 

We noted that the construction of good mathematical software requires skills from three 

traditionally separate disciplines: mathematics, programming, and engineering. (See 

Fig. 5.1.) 'At present, mathematical software construction is an art, rather than a 

science. 

Finally, we reviewed the eleven examples of mathematical software considered 

during the course, which are listed in Table 5.1, and attempted to evaluate them in terms 

of the ten design criteria. The results of these impromptu evaluations, hased upon 

-------~~terial presented in class, are given in Table S.~.:_~~x_!mple 10 _was_ omitted _he~a~s~_!_!__ 

____ _. doesn't really fit into this evaluation scheme. It can be seen that there is a good deal 

of variability in the quality of published mathematical software. (Note that thorough 
. !-

_.. __ .. ,;.: '":;.· 

:') __ ,~-... 
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• Convergence theorems 

•Tradeoffs =engineering decisions :. 

•Design of the user interface (human engineering) 

•Reduction of 
roundoff error 

Fig. 5.1. Mathematical software construction involves mathematical, programming, and 
engineering skills. 

~ ... ·' 
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evaluations of these routines, according to the philo~ophy o~ Cha?ter 4, would require 

much more extensive study and testing.) The number of questioP marks after "Common Sense" 

probably indicates either that this design criterion was not adequately understood by the 

participants or that it is relevant only to polyalgorithms. 

2. Conclusions 

\Ve feel that the course was succes~ful in exposing the participants to several 

examples of mathematical software and introducing them to the basic concepts of construc­

tion and evaluation of such software. In retrospect, however, we believe that the students 

would have gotten more concrete value from the course if more time were spent on the 

presentation of general concepts, such as structured programming and documentation 

principles. The term project could then be the actual construction of a piece of good 

mathematical software, or the detailed evaluation of an existing program, by the entire 

class. That is, we recommend that the subject be treated as a participation course, 

rather than a reading course. 

Example No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Table 5.1. Examples of mathematical software. 

Presented by 

von Holdt 

von Holdt 

Hindmarsh 

Bold tad 

Johnston 

Dickinson 

Pexton 

Suyehiro 

Davies 

Hage 

Hausman 

Description 

Software for the Elementary Functions. 

Input/Output Conversion. 
.,;: 
i 

STIFF: An Ordinary Differential Equations Package 

(Gear). 

Solution of Linear Systems (Forsythe-Moler). 

Nonlinear Least Squares Curve Fitting (Bevington). 

EISPACK: Eigenvalues and Eigenvectors of Matrices. 

Pade Table Computation (Longman). 

HE~IP: A Large Applications Code, Using Finite 

Difference ~let hods. 

~10RSE: A ~1oderate-Sized r-tonte Carlo Applications 

Code. 

Table Loop-Up Methods and the RANK Code. 

Four Subroutines for One-Dimensional Function 

-1\Jinimization-;---- ---·---- ---·----~-----
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Table 5.2. Tentative evaluations for some examples of mathenatical SJftware. 

The example numbers are keyed.to Table 5.1. 

The following symbols are USE'd in this table: 

E = Excellent 

G = Good 

A = Adequate 
p = Poor 

B = Bad 

= Not applicable 

? = Not enough information available 

Example No. 

·Criterion 1 2 3 4 5 6 7 8 9 11 

Documentation p B E A G E G G G E 

Reliability E E E E ? E ? G ? E 

Error control E r, E E ? E ? A. ? ·Jf·· E 

Efficiency E E Ga G A G pb A A 

j 
c .• 

? ' 

Flexibility B B .E E A E A A E G it.~ 
"F·· 

~.f::. 
Modifiability p B G G A E A ? ? ? ;:· 

'I"; 
.i 

Ease of use E A A A G G ? ? G G ; 

Diagnostics ? G G ? G ? A ? G 

Transportability 
" ·~ . .. .. .. ~ 

B B E E E E G p G E 

Common sense ? A ? ? ? ? ? ? ? 

aApplies to implementation of Gear's methods in the package. The implementation of 

Adam's methods in the package, as available at the time of the course, would have to be 

rated as P. 

bApplies to the original code, not to Pexton's modifications. 

c Depends on which subroutine is used and what function is to be minimized . 

't<~'- ··l.. 

. . 
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APPENDIX A. 

MATERIAL FROM THE SHARE EVALUATION GUIDELINES 

The following material is quoted directly from Ref. [13]: 

The three functions of the review write-up are (1) verification of claims made 

for the program, (2) clarification and supplementation of ambiguous or missing 

information, and (3) evaluation of the merits of the program. 

A4.1 

A4.2 

Balanced appraisal 

Since a program which fails in one respect may still be very valuable 

in other respects, it is desired that the reviewer will look for merits 

as well as demerits. ~lerits are often relative to the requirements of 

a user's application. 

Constructive criticism 

We believe in sharp criticism where due. On the other hand, if the 

. fault found by the reviewer is correctable, it is desired that he will 

indicate the remedy in his revie\IT write-up. Similarly, if the program 

documentation is ambiguous or illogical, it is desired that the 

reviewer communicate with the author of the program and, if possih!e, 

clarify the confusion in his review write-up. This is better than / 

simply stating that the documentation lacks clarity; and it is particui~rly 

A4.3 

helpful 1vhen a program's performance is good. 
fr 

Comparison with other programs ~.;:_ 
~~-

\Ve wish to find out how the performance of a prog·ram compares h'i th oth~t' 

SHARE (or non-SHARE) programs. More often than not, two similar progr~ms 
do not show 100% overlap in purpose. A less general program is expected 

to be more efficient in carrying out its limited task. Also comparison 

of two programs often results in trade-offs such as size versus speed, 

speed versus accuracy etc. lfuen distributing programs to reviewers for 

evaluation, the ~lanager of the Evaluation Project will attempt to assign 

as a set those SHARE programs which ought. to be compared with each other. 

We also encourage comparisons with non-SHARE programs, and if such 

comparisons should favor a non-S~~RE program, effort should he made to 

induce the author of the program to submit the same to SHARF.. At any 

rate, mention should be made of the existence of such a program and how 

it can be obtained. Indeed, it has happened that for the sole purpose of 

conducting a thorough review of a S~~RE Bessel function program, a 

reviewer wrote his own single precision and double precision Bessel 

, function programs which turned out to be definitely preferable to the 

SHARE program being reviewed. Often the program to he reviewed happens 

to be the only one of the kind available. Though as such it is a useful 

addition to the SHARE library, even in this case, the reviewer will allow 
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for future additions to the library, and h~ should design his te~t plan 

in a manner that would act as a challenge for better program!', should 

the existing program fall short of the current state of the art. 

A4.4 Coverage and style of review write-up 

The review write-up should be self-contained, written in a clear, concise, 

and easily digestible styJe. It is suggested t~at it consists of five 

parts: (1) a brief qualitative description of the overall lay-out of the 

comprehensive test plan, (2) a detailed description of the actual testing 

procedure, (3) a summary of the program's tested performance, (4) explana­

tion, clarifications, complimentary remarks, or any criticism on items 

listed on the section AI and A2, a description of difficulties in getting 

the program to run, etc., (5) a summarizing opinion by the reviewer 

including comparison with other programs of similar purpose. 

APPENDIX B. 

BIBLIOGRAPHY ON SUBROUTINE CERTIFICATION 
.-

} 
The SIGNUM Subroutine Certification Committee is collecting a certification ' 

bibliography. Their list as of the middle of 1970 has been published in the SIGNUM 

Newsletter (see i tern 1, below). J' 
The following, arranged in the same manner as the SIGNUM bibliography, provide4J_ 

--~ 

additional references in this area. No claim of completeness is made for this list./ In 

fact, it specifically excludes relevent papers in our text. 

GENERAL PHILOSOPHY 

1. SIGNUM Subroutine Certification Committee, "Certification Bibliography," SIGNUM 

Newsletter.,!. 3 (Oct. 1969), 16-18; continued in SIGNUM Newsletter .i• 2 (Aug. 1970), 

14-15. 

2. R. L. Ashenhurst, "Evaluation and Certification Project at Argonne," SIGNUM Newsletter 

j., 3 (Oct. 1969), 14. 

3. J. M. Boyle, et al., NATS, A Collaborative Effort to Certify and Disseminate Mathe­
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presented at the Symposium on Computer Program Test ~lethods, June 1972. 

6. F. N. Fritsch and R. F. Hausman, Jr., On the Documen~ation of Computer Programs, 

Report UCID-30043 ~larch 1972), Lawrence Livermore Laboratory. 

7. 1'1. M. Gentleman, "More on Publishing Programs," SICNUM Newsletter ..J., 3 (Oct. 1968). 
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1971); Chapter 15 (pp. '25-328) discusse~ the "Design of a Library." 

9. 0. G. Johnson, "H1SL's Ideas on Subrot:tine Library Problems," SIGNUM Newsletter 

~ 3 (Nov. 1971), 10-12. 
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SIGN~! Newsletter ,i, 3 (Oct. 1969), 19-20. 

15·. B. F. W. Witte, "Publication of Comprehensive Fortran Programs," SICNUM Newsletter 

~ 1 (April 1968). 

ARITHMETIC, ELEMENTARY FUNCTIONS, AND NUMBER THEORY 

16. 
; 

M. W. Cox, "UNIVAC Claims Super Accurate Fortran Math Library," SIGNUM Newsletter/' 

.§_, 3 (Nov. 1971) , 9. 

17. K. E. Hillstrom, Performance Statistics for the F·ortran IV (H) and PL/I (Version 5) ~..;­

Libraries in IB~f OS/360 Release 18, Report ANL-7666 (August 1970), Argonne NationaL"'' 

18. 

Laboratory. 

A. C. R. Newbery and A. P. Leigh, "Consistency Tests for Elementary Functions," 

Proc. Fall Joint Computer Conf. (1971), 419-422. 

POLYNOMIALS AND SPECIAL FUNCTIONS 

19. J. D. Lawrence, Comparison of Polynomial Root Finding Methods, CIC Note C2.2-A 

(Jan·. 1966), Lawrence Livermore Laboratory. 

20. E. W. Ng, "Certification of Algorithm 385, Exponential Integral Ei(x)," Comm. ACM 

~. 7 (July 1970), 449. 

QUADRATURE, DIFFERENTIAL AND INTEGRAL EQUATIONS 

21. P. C. Crane and P. A. Fox, "A Comparative Study of Computer Programs for Integrating 

Differential Equations," Numerical Mathematics Computer Programs, Library One, 

vol. 2, issue 2 (Feb. 6, 1969), Bell Telephone Laboratories. 

22. T. E. Hull, "A Search _for Optimum Methods for the Numerical Integration of Ordinary 

Differential Equations," SIAM Rev • .2,. 4 (Oct. 1967), 647-654. 
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MATRICES, VECTORS, AND SIMULTANEOUS LINEAR EQUATIONS 

23. K. E. Fitzgerald, "Error Estimates for the Solution of Linear Algebraic Systems," 

J. Res. Nat. bur. Stds., Ser. B. Math. Sci. w. 4 (Oct.-Dec 1970), 251-310. 
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