
Lawrence Berkeley National Laboratory
LBL Publications

Title
Construction of Mathematical Software Part I: General Discussion

Permalink
https://escholarship.org/uc/item/9dm6c9vn

Author
Fritsch, F N

Publication Date
1972-08-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dm6c9vn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

RECEIVED
~AWRENCE

BERKQ~Y LA BORA TORY

OCT 31977

LIBRARY AND
DOCUMENTS SECTION

UG /[)-3oaS0
c~j

?JJ7~-T I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Govemment or any agency thereof or the Regents of the
University of Califomia.

RECEIVED
lAWRENCE LIVERMORE LABORATORY

OCT 1 1972

TECHNICAL INFORMATION DEPARTMENT

UCID- 30050, Part 1
COMPUTER
DOCUMENTATION

LAWRENCE UVERMORE LABORATORY
University of California/Livermore. California

CONSTRUCTION Of MATHEMATICAL SOFTWARE
PART 1: GENERAL DISCUSSION

F. N. Fritsch

August 9, 1972

.>

FOREWORD

This is Part I of the five-part report Construction of Hathematical Sofb:are.

Parts I, III, and V are being issued contemporaneously; parts II and IV will appear

later.

The following outline of the complete report lists the topics covered in each of

the five parts:

Part I. General Discussion (F. N. Fritsch)

1. Background ~laterial

2. Design Criteria and Tradeoffs

3. Problems of ~lathematical Software Distribution at LLL

4. Evaluation of 1\-lathematical Software

5. Summary and Conclusions

Part II. Some Examples of Mathematical Software

1. Software for the Elementary Functions (R. E. von Holdt)

2. Software for Input/Output Conversion (R. E. von Holdt)

3. EISPACK: Software for the Algebraic Eigenvalue Problem

(R. P. Dickinson, Jr.)
.. 4. Calculating Pad~ Approximants (R. L. Pexton)

l~

Part III. The Control of Error in the Gear Package for Ordinary Differential

Equations (A. C. Hindmarsh)

Part IV. Nonlinear Least Squares Codes (Brad Johnston)

Part V. Some Application Codes

1. Organization of the HEMP Code (Tokihiko Suyehiro)

2. A Simplistic View of Light Diffusion and the MORSE Code

(Nan Davies)

3. An Examination of Some Table Searching Methods Found in Texts

and in the Field (Glenn L. Hage)

-iii-

.I

·I .,
i
l
' l
l

. i

~)

' I

CONTENTS OF PART I

Forward •

Abstract

Chapter 1. Background Material

1. Introduction

2. Course Description and Organization

3. Requirements for a Certificate of Completion

Chapter 2.- Design Criteria and Tradeoffs •••••.••

1. Definitions • •

2. Design Criteria for Mathematical Software

3. Tradeoffs: Software Engineering • • • • •

Chapter 3. Problems of Mathematical Software Distribution at LLL

1. Background

2. The Current Situation

3. Proposal for an LLL Mathematical Subroutine Library

Chapter 4. · Evaluation of Mathematical Software

1. Introduction

2. Aspects of Program Evaluation ••

3. Levels of Testing • • • • • •

4. Complete Program Evaluation

5.

6.

Evaluation Projects

Conclusion

Chapter 5. Summary and Conclusions

1. Course Summary

2. Conclusions

References

Appendix A. Material from the SHARE Evaluation Guidelines

Appendix B. Bibliography on Subroutine Certification

-v-

ii

1 ;,

1

1

1

4

5

. . . . 5

9

11

12
;/-~--

13

13
?~-.

14
_..;, .. ~

~

.:~:

IS
'

15

16

19

20

23

23

24

24

26

28

29

30

C709. Construction of ~lathemati cal Software.

This course will be a study of the basic

principles and tradeoffs involved in the

construct ion of mathematical software.

It will also include a detailed examination

of several examples of good mathematical

software.

Prerequisite: C-Department courses C201

("Programming Techniques") and C701

("Elements of Numerical Mathematics") or

their equivalents are required. Also, a

good working knowledge of the FORTRAN

programming language will be essential.

The textbook for the course was Hathematical Software, edited by John R. Rice,

Academic Press (New York, 1971). Wherever it appears in this report, "the text" refers

to this book.

The course was run seminar-style. It began with a few lectures by the instructor

in order to present basic defjnitions and set forth some of the criteria that must be
;

considered when constructing mathematical s~ftware. These lectures were followed by /

talks by members of the class, interspersed with guest lectures. The object of these

presentations \~as to investigate in some detail the structure of a number of examples of ;]­

mathematical software, to see how (or if) the cri tcria mentioned above are met, and to ,.:'
:. .. :·

determine how the routines might be improved.

approximately one and one-half hours.

There were 23 lectures, each lasting
.,:;:-

The following schedule for the lectures is in the order in which they were

actually presented. Following the title of each talk, a refP-rence to the written version

is given in square brackets []. Unless otherwise indicated, these refer to other parts

or chapters of this report.

Lecture Date

1 ~larch 29

2 ,_larch 31

*

Speaker and Topic

F. N. Fritsch

Organizational Meeting; Definition of t-lathematical

Software

* J. F. Traub, LLL Consultant

The Bell Laboratories Library Project. (Prof. Traub's talk

was essentially an expanded version of his paper c~

pp. 131-139 of the text.]

Professor Traub is head of the Computer Science Department at Carnegie-Mellon
University. He was head of the Bell Laboratories Library Project until 1970.

-2-

Lecture Date

3 Apri 1 J.O

4 A-pril 12

5 April 17

6 April 19

7 April 24

8 April 26

9 April 28

10 May 1

11 May 3 } 12 May 8

' 13 May 10 } 14 l\tay 12

15 ~1ay 15

16 ~1ay 17

·~ .

17 May 22

18 May 24

19 May 26

20 .May 31

21 -'June 2

Speaker and Topic

F. N. Fritsch

Problems of ~1athematical Software Di_stribution at l.U.

[Part I, Chapter 3.]

F. N. Fritsch

Design Criteria and Tradeoffs. [Part I, Chapter 2.]

R. E. von Holdt

Software for the Elementary Functions. [Part II, Chapter 1.]

R. E. von Holdt

Software for Input/Output Conversion. [Part II, Chapter 2.]

A. C. Hindmarsh

A Package for Ordinary Differential Equations Based on the

~1ethods of C. 1\'. Gear [Part I II and the references

given therein.]

J. H. Bolstad

Software for the Solution Systems of Linear Equations.

[Based on Forsythe and 1·1oler, Computer Solution of -~,

Linear Algebraic Systems, and pp. 347-356 of the tcxt,,f

B. H. Johnston

Nonlinear Least Squares Codes. [Part IV.]
" .~:.:

R. P. Dickinson

EISPACK: Software for the Algebraic Eigenvalue Problem.

[Part II, Chapter 3.)

F. N. Fritsch

?:

:-r
)

Evaluation of r-1athematical Software. [Part I, Chapter 4.)

R. L. Pexton

Computation of the Pade Table. [Part II, Chapter 4.]

T. Suyehiro

Organization of the HEl\1P Code. [Part V, Chapter 1.]

N. W. Davies

A Simplistic View of Light Diffusion and the MORSE Code.

[Part V, Chapter 2.)

G. L. Hage

An Examination of Some Table Searching Methods Found in

Texts and in the Field [Part V, Chapter 3.]

-3-

/

~,;..·

Lecture Date

22 June 5

23 June 7

Speaker and Topic

R. F. Hausman

Four Subroutines for One-Dimensional Function Minimization.

(Based on reports UCID-30002 (GOLDEN), 30016 (BOUND),

30038 (QNTRP), and 30039 (LCLMIN).)

F. N. Fritsch

Summary: What Have We Learned About the Construction of

Mathematical Software? [Part I, Chapter 5.]

3. Requirements for a Certificate of Completion

The following rules regarding requirements for full participation were handed

out at the beginning of the course:

"Those participants in this seminar who wish to obtain a 'Certificate of

Completion' for Computation Department Course C709 must fulfill the following minimum

requirements:

1. Maintain regular attendance at meetings of the Seminar;

2. Present a talk (at least 45 minutes in length) on some aspect of the

construction of mathematical software;

3. Write a paper in support of your talk.

"!>lost of the lectures will be discussions of particular examples of mathematic~)

software. The initial source of information may be the textbook or a paper in the .-i.: ~
;~:·

computing literature. Possible journals of interest include: BIT, Comm. AC!>I, Comput'. J.,

J. ACM, Math. Comp., Numer. Math., SIAM J. Numer. Anal. Follow up on the references in'

your primary source, so that you completely understand the paper. The talk should

consider the following questions:

• How has the routine been optimized with regard to the various criteria of

accuracy, efficiency, machine independence, etc.?

• How is error control handled?

• How extensively has the algorithm been analyzed?

• How extensively has the routine been tested?

• How good is the documentation?

• How can the routine be improved?

While enough of the mathematical background should be presented so that the audience can

understand what the algorithm is doing, remember that we are concentrating on the

organization of the routine, rather than its mathematical properties.

"Some topics acceptable for presentation will not fit into this general outline.

Feel free to suggest topics.

"The required paper will essentially be a formal written version of the talk. It

must be in term paper format. It should include a discussion of the primary source and

-4-

the references consulted, and include a summary of any additional testing you have

performed yourself. It must be typed, double spaced. Any graphs or diagrams included

must be neatly drawn, as for inclusion in a technical report."

CHAPTER 2. DESIGN CRITERIA AND TRADEOFFS

1. Definitions

Before beginning our discussion of the design of mathematical software, a few

definitions are in order.

1.1. Algorithm. -According to Henrici [9, p. 4] an algorithm is "a set of

directions to perform mathematical operations designed to lead to the solution of a

given problem." Similarly, Conte [4, p. ix] defines an algorithm to be "a complete

and unambiguous set of procedures leading to the solution of a mathematical problem."

An algorithm is similar to a recipe in a good cookbook, which directs the cook to

perform certain chemical operations. The restriction "unambiguous" requires that terms

like "dash" and "pinch" be avoided, unless they are carefully defined. (Compare Zadeh

[19], however, where the concept of "fuzzy algorithm" is introduced.) ;

Knuth [11, pp. 1-9] goes further to require an algorithm to possess five basic .i­
.l·

properties:

(1) Finiteness. An algorithm must terminate after a finite number of steps.

According to Knuth, a procedure that has all of the characteristics of an f~

~:~

algorithm (except that it possibly lacks finiteness) may be called a "computation-al
!

method."

(2) Definiteness. Each step of an algorithm must be precisely defined; the action

to be carried out must be rigorously and unambiguously specified for each case.

(3) Input. An algorithm has zero or more inputs, i.e., quantities that are given

to it initially before the algorithm begins.

(4) Output. An algorithm has one or more outputs, i.e., quantities which have a

specified relation to the inputs.

(5) Effectiveness. An algorithm is also generally expected to be effective.

This means that all of the operations to be performed in the algorithm must be

sufficiently basic that they can, in principle, be done exactly and in a finite

amount of time by a man using pencil and paper. (Example of a noneffective

step: "If k ~ n, where n is the largest prime number for which n + 2 is also

prime, go to step 7." It has not yet been demonstrated that such a number n

exists.)

-5-

_,

',.. ·--~

\ .J ...

1.2. Implementation of an Algorithm. While we shall frequen~ly jdentify the

concepts "algorithm" and "subprogram" for the purpose of this course, it is important to

distinguish between an algorithm and its impler.~entation on a compute':". l~e quote from

Cody [2] on this subje~t:

It is common to identify ... an algorithm with a computer

program as is done in the algorithms sectio~ of the

Communications of the AC~1. But we must draw a careful

distinction between the mathematical algorithm and the

corresponding software, for an algorithm can be embedded

in many different computer programs. As host to the

algorithm each program manages the flow of information to

and from the algorithm and performs certain ancillary

services such as detecting and processing error conditions.

Different programs may contain, for example, different

convergence criteria and may offer the user varying degrees

of control over the solution of his problem. A good

algorithm is therefore a necessary, but not a sufficient

condition for a good subroutine.

1. 3. ~fathematical Software. Acccrding to Cody [2], "Mathematical software is./

a relatively new term denoting computer programs implementing mathematical algorithms."

Cody goes on to state that "A second primary distinction between an algorithm and

mathematical software is in documentation . ••• Software documentation must include •..

information on such things as the proper interface with other computer programs and .t" ...
.>

the remedial action taken when improper data or other errors are encountered. An item

of mathematical software thus consists of a computer program and its documentation."

(Underlining added for emphasis.)

I prefer the above definition to that given by Rice in the preface to our text

[15, p. xv]: ·~athematical software is the set of algorithms in the area of mathematics.

Its exact scope is not well defined; for example, we might include any algorithms that

result from the creation of a mathematical·model of nature and an anal;·sis of that model.

The scope defined by this book is more narrow and includes only topics of a definite

mathematical nature or origin."

1.4. Basic Algorithm. An algorithm that uses a specific method to solve a

specific mathematical problem will be called a basic algorithm. This definition is

purposely ambiguous, since the notion of whether an algorithm is to be considered

"basic" is context-dependent. Algorithms to solve the following mathematical problems

would.probably be considered basic algorithms in most contexts:

(1) Compute the real zeros of a given function.

(2) Evaluate Jfb f(x) dx, where f is a given function, a and bare given real

numbers. a

-6-

.~~1:

~~ ,.
-~ (3) Find the largest eigenvalue of a given matrix.

'"'·' 1.5. Subalgorithm. A subalgorithm is an al!!orithm to solve an even more specific
""'~! " " ~ ~-

~i!l mathematical problem. It is generally a portion of a basic algorithm. The following are

examples of tasks performed by subalgorithms:

(1) Locate an interval in which a given function changes sign.

(2) Transform a matrix to tridiagonal form.

(3) Compute the inner product of two vectors.

1.6. Polyalgorithm. An algorithm that uses some decision logic to determine

which of several basic algorithms should be used to solve the problem at hand is called

a polyalgorithm. This term was apparently coined by Rice [14]. Polyalgorithms generally

occur in the context of automatic numerical analysis.

1.7. Automatic Numerical Analysis. Automatic numerical analysis refers to a

routine or system of routines designed to enable one to use a computer to solve

mathematical problems, under the assumptions that

(1) the problem will be stated in normal mathematical terms, and

.!·
(2) the user will know little or nothing about the numerical analysis

aspects of his problem. ,.,

Automatic numerical analysis clearly requires that more attention be paid to reliahility

and the design of the user interface than is done in other types of mathematical software .• <
J

(See Fig. 2.1.) Very little will be said about this subje.:t in this course. Those F
interested in more information should refer to Rice [14] and the other papers in the

volume containing this paper, and to the papers by de Boor [5] and Gear [8] in our,

text.

1.8. Driver. A driver is a routine, generally a main program, that sets up

a problem, calls one or more basic algorithms (or polyalgorithms) to solve it, and

reports the results to the user. There are basically two types of drivers:

(1) Test routines

(2) User interfaces

'

The latter are routines to handle the input/output required for easy use of a particular

algorithm. They are generally more specific and less, flexible than the basic algorithms

they call upC'In. {Note that we are now identifying algorithms with the subroutines that

implement them.)

1.9. Domain of Applicability. The domain of applica~ilit:• of a piece of

mathematical software is the set of problems that it can successfully solve. For most

problem areas, the boundary between the class of successfully solved problems and the

class on which a program fails is not strictly defined; the performance will degrade

-7-

;;~

•"

"
'"

Basic algorithm
A

/

User 1s statement of
his problem

User interface

Polyalgorithm

Basic algorithm
B

/

Answer, in the
user•s language

Basic algorithm
c

\
Suba lgori thm Subalgorithm Subalgorithm Subalgorithm

1 2 3 4

Fig. 2.1. Automatic numerical analysis.

-8-

l
.•.

1·
' '

from execellent to unacceptable near this boundary. The domain of applicability is

thus a "fuzzy set," in the sense of Zadeh [18).

2. Design Criteria for ~lathematical Software

In this section we discuss ten desirable characteristics of mathematical soft­

ware. These are derived from similar lists in Fritsch and Hausman [7), Kuki et al.

(13), Rice (14, 16), and elsewhere.

2.1. Good Documentation. The importance of documentation has already been

mentioned in section 1.3. Kuki and Cody [12) state, "A program is virtually useless

to users other than its author unless it is accompanied by reliable documentation."

In another section of this report we read, "The computing public is faced with an ever­

growing arsenal of programs prepared and distributed in divers ways~ ... (It) is not

feasible for individual users to distinguish the.good from the bad among them. It is

often simpler to build a new program than to search for one in the existing arsenal.

For a collection of programs to be useful, users must have reliable information on the

programs' efficiency, areas of applicability, areas of comparative strength, etc. Good

documentation by the author is supposed to contain this information." The SHARE

I
Evaluation Guidelines [13) further declare that "a program for which no decent docu­

mentation is available can be branded useless without further testing." .1'

Kuki and Cody [12] identify four major classes of information that should be

present in the documentation of a program. The~e are:
j-s.,.:.

(1) Statement of Purpose. This is to quickly tell the potential user whether t~_e' . ,
program can help him solve his problem. A complete statement of the problem t·hat

the program solves, together with any important restrictions, should appear here.

(2) Instructions on How to Use It. This section should include information on

the status of input variables upon return and any side effects. Optional features

and any special environmental requirements should also be clearly described here.

(3) Description of the Algorithm Used.

(4) Performance Information. The documentation should identify the domain of

applicability of the program as well as possible. It should contain accurate

information on all of the following performance characteristics and clearly

indicate the e~tent to which the program has been tested by the author.

See Fritsch and Hausman (7] for additional thoughts on documentation.

2.2. Reliability. The term "reliab.:lity" generally refers to the numerical

accuracy of the results produced by a program. We also wish to include here what

Cody (2] calls robustness, namely the "ability to recover from abnormal situations

without unnecessary termination of the computer run." Furthermore, a reliable piece of

-9-

* * mathematical software will either return the correct answer or else return a wro'1g

answer with an indication that it is erroneous. It wilJ never "bl011 up," nor will it

quietly return bad results as though nothing has gone w:o.-ong.

2.3. Error Control. By error control we refer to eit!ler or both of th~ foll0wing:

(1) monitoring and control of accuracy during the course of a computation, or

(2) a posteriori accuracy checks.

This may invol'Ve the use of special devices, such as interval or significance a:l'ithmetic.

Whenever prictfcal, an estimate of the error in the results should be returned to the

user. Error control is clearly closely related to program reliability.

2.4. Efficiency. Program efficiency refers both to its execution speed and to

the optimum allocation of computer resources (program size).

2.5. Flexibility. A flexible piece of mathematical software can handle a wide

class of problems.

2.6. Modifiability. Closely related to flexibility is the concept of modifi­

ability: Is the program written in such a way that it is easy to extend (or reduce) the

domain of applicability or modify the information that it produces about the problem?~·
.{

This term is often considered synonymous with modularity, the segmenting of a program'

into a number of relatively small, logically independent blocks, since modularity

generally enhances modifiability. Modifiability also requires that the routine be .?·

carefully commented and that programming "tricks" be avoided or carefully explained. /''·

(See Fritsch and Hausman [7, pp. 10-14] for suggested programming standards.) ·'

2.7. Ease of Use. Here we are considering the design of the interface between

the user and the program. Cody [2] refers to this as-accessibility. The user generally

(but not always) wishes to be required to supply only those parameters that are natural

to the statement of the problem. Long calling sequences generally discourage use of a

subroutine. Even the order of the arguments can affect ease of use, so this must be

considered when designing the calling sequence.

2.8. Reasonable Diagnostics. Another part of the user interface is the design

of the diagnostic messages produced in case of abnormal conditions. For example, good

mathematical software will not produce the diagnostic "negative argument in square root

function" when the real problem is that a matrix that was supposedly positive definite

has a negative eigenvalue.

2.9. Transportability. A program is transportable (or simply portable) if it

can-be moved from ·one computer· system to another with a minimum of change. A hand-coded

* The concepts of correct and wrong are necessarily "fuzzy" in this context.

-10-

subroutine is clearly not transportable. A routine written in ANSI Standard Fortran is ,
quite likely to be transportable, especially if calculations that depend on machine

characteristics (word size, maximum floating-point exponent, etc.) are avoided or carefully

isolated and identified. The designer of mathematical software should avoid the use of

exotic features of a particular compiler whenever practical.

2.10. Common Sense. Rice [14] defines common sense to be "the application of one

(or more) of a large number of simple rules to an appropriate bit or two from a large

body of information." Common sense is required, for example, in the stopping criteria

for an iterative process. It is extremely difficult to implement. (See (14] for further

discussion of this concept.)

3. Tradeoffs: Software Engineering

It is obvious that many of the design criteria discussed in the previous section

are incompatible, i.e.,:

(1) It is usually impossible to simultaneously minimize the speed and size of

a subprogram. ,

(2) Short calling sequences (ease of use) may not provide the user with adequat~.

control over the solution of his problem (flexibility). l
(3) A hand-coded subroutine generally runs faster (efficiency) than a Fortran

version (portability).

(4) Flexibility demands that library routines contain no input/output comml'nds(

which inhibits the provision of adequate diagnostics. (One possible solution

to this problem is to provide an output error flag which, at the user's

option, can be passed on to a separate subroutine that prints the error

messages.)

Because of this conflict of goals, certain tradeoffs must be made. It is here that the

construction of mathematical software becomes an art (or perhaps an engineering discipline)

rather than a science.

The individual designing a piece of mathematical software should be aware of the

tradeoffs (engineering decisions) he has made in the process. These decisions should be

compatible with the intended use of the routine, and they should be based on such

considerations as the following:

(1) Is the software to be part of an automatic numerical analysis system, a

general-purpose subroutine library, or a production code?

(2) How often will it be used? (one-shot job vs production code)

(3) liho will use it? (That is, how much work should be devoted to the user

interface?)

-11-

'.: ¥. ~.~

:.~~ ·~

"'
: • ·1 ~i\

' < '•t\

~~'

With the list of design criteria from section 2 in mind, the mathematical

software designer frequently finds ways to improve some features of his program without

seriously degrading the others:

(1) It is usually possible to increase transportability without seriously

affecting the efficiency of a program. For example, a fast, hand-coded dot

product routine (DOT) is used in a Fortran matrix manipulation routine. If

one simply inserts comment cards containing a mathematically equivalent

Fdttran DO-loop immediately after the call to DOT, the Fortran routine has

been rendered transportable without sacrificing efficiency.

(2) Co'ii'sider whether the computer time saved is worth the extra people time when

resolving the conflict between ease of use and efficiency.

(3) It is usually easy to find ways to improve the efficiency of a well-commented

logically organized (i.e., easily modifiable) program.

(4) It is generally easier to consider the user interface in the initial design

stages than to attempt to modify it after the completed routine has been

debugged.

Fritsch and Hausman [7, p. 10] state that the programmer generally attempts to

attain some optimum combination of the following goals: i
(I) Maximize accuracy.

(2) Minimize execution time.

(3) Minimize size of object code.

(4) Maximize range of parameters to be allowed (i.e., domain of applicability),;

(5) ~laximize comprehensibility of source program (modifiability).

(6) 1-faximi ze convenience of usage.

The programmer should be aware of the combination he has chosen to optimize, why he has

made this decision, and how it has been implemented.

One final note: Good documentation does not conflict with any of the other nine

design criteria. Any piece of good mathematical software must be well documented, and

this documentation should contain information on the author's choice of optimum design

criteria.

CHAPTER 3. PROBLEMS OF MATHEMATICAL SOFTWARE

DISTRIBUTION AT LLL
We discuss here the current mathematical subroutine library situation at LLL and

propose a remedy. But first, let us consider how the current_~ituatiQ.n ca!lle __ about.--------

.. ·~.

-12-

....... t
.1'

1. Background

The following factors have all contributed to the current library status.

1.1. Variety of Hardware. LLL has traditionally supported a wide variety of

computing equipment from different manufacturers. Five years ago we had the following

large computers: IB~t 7094, IB~1 7030 (STRETCH), Remington-Rand LARC, CDC 3600, CDC 6600.

Such an environment is clearly not conducive to the development of a central, standardized

subroutine library.

1.2. Variety of Systems. To make matters even more complex, LLL computer users

avail themselves of a wide variety of software systems (usually with incompatible

compiler/library structures). For example, on the CDC 6600's we currently have three

Fortran compilers (MONITOR-LRLTRAN, CHIP, ORDER-CHAT), each with its own loader and its

own supporting library.

1.3. Other Languages. While LLL is basically a Fortran laboratory, there is a

growing number of users who program in assembly language (using one of several

incompatible assemblers), COBOL, or APL. Incompatible languages generally require

separate subroutine libraries.

1.4. Incompatible Requirements. Finally, the LLL computer facility has to

service two distinct groups: users with short jobs and those with production codes that

grind away for hours at a time. It is difficult, if not impossible, to meet the needs

of such a wide variety of computer users with a single program library.

2. The Current Situation

At present there are two types of program lit-raries available to LLL computer

users.

2.1. System Libraries. These are the libraries that exist to provide 1/0 support

and other services to the users of specific systems.

a. Examples:

{1) CLIB (for CHIP)

{2) LRLLIB (for MONITOR)

{3) ORDERLIB {for CHAT/ORDER)

b. Properties:

{1) Reside permanently on disk {public file) for each worker computer.

-13-

{2) Easy access -the user need only call the routine(s) he wishes to use.

(3) ~rust be constantly used to justify the disk space.

(4) Contain very few mathematical subroutines. (Generally, only the

elementary functions, a uniform random-number generator, and MLR. CLIB

also contains routines to compute one- and two-dimensional integrals

and an ODE solver.)

(5) Documentation generally very scanty.

2.2. The "Use at Your 0\\'ll Risk" Library. This is what is left of the CIC

(Computer lnfot"lhation Center) Library. Properties:

(1) Card decks and write-ups available at the TID !>lain Library.

(2) No quality control -anybody who wishes can donate a routine.

{3) Nobody is responsible for the integrity of the library.

{4) Contains most of the mathematical software that is generally available

to LLL computer users.

We feel that the current library situation is intolerable for a scientific

computing facility of the magnitude of LLL's. In the following section we propose one

possible solution: a NAG-sponsored mathematical subroutine library.

l
3. Proposal for an LLL ~lathematica1 Subroutine Library

*

3.1. Criteria for Design of the Library.

{1) Reliable.

(2) Easy to use - machine accessible. (Because of the premium on permaryent

disk space, this will probably require use of the Photostore.)

{3) As system-independent as possible.

{4) Easy to update.{(3) and (4) together imply a Fortran source library.)

{5) Consultants available.

3.2. ~linimal Requirements for Inclusion of a Routine in the Library.

{1) Has been documented in the computing literature or as a CIC or UCID

Computer Documentation Report. (The submitter must provide us with a

copy of the documentation.)

(2) Has undergone extensive testing at LLL or has been certified elsewhere

and has successfully run a few test problems locally. {The submitter must

provide evidence that the certification has been done. The EISPACK

routines are in the second category.)
* (3) Has a NAG sponsor. (That is, somebody in NAG has agreed to be the Group's

-consultant on the rouHne. If a routine was-lieveloped hy-someone-ers-e---at _________ _

LLL, the sponsor will generally be in close communication with the author.)

It seems more realistic, in view of limited manpower in NAG, to establish a LaboratorY~
wide board of sponsors for the mathematical subroutine library.

-14-

-.

:,· ... ,

1.

3.3. Problems.

3.4.

(1) \\That sort of a user's manual should be provided? How extensiv~ should

the write-up be? How distributed?

(2) How can we obtain statistics on library usage?

(3) Hm~ can we obtain a "hostile referee" for a locally devE'!loped routine?

(Quite frequently, the ~ubroutine developer is the only per~0r at the

Laboratory witr. the expertise needed for an evaluation of the ~rogram.)

Other Considerations./

(1) How much manpower will be required? Who will pay for it?

(2) lfuat is the optimal level of testing for the routines in such a library?

(3) What about the use of a commercially available library?

CHAPTER 4. EVALUATION OF MATHEMATICAL SOFTWARE

Introduction

In Chapter 2 we discussed the following ten attribute~ of good mathe~atical soft- r

ware:

(1) Good documentation

(2) Rei iability

(3) Error control

./

~~.:....__
r"~

"" ; (4) Efficiency
"

(5) Flexibility

(6) 1\-lodifiability

(7) Ease of use

(8) Reasonable diagnostics

(9) Transportability

(10) Common sense

Now we wish to discuss evaluation: How does a given piece of mathematical software rate on

these ten design criteria?

The major sources on the general philosophy of software evaluation are Kuki,

et al. [13], Kuki and Cody [12], and Cody [2]. Rice [16, pp. 33-37) also discusses

various aspects of the subject. Other references may be found in the "Bibliography on

Subroutine Certification" in Appendix B.

1.1. ~lotivation. lfuy is the evaluation of mathematical software important? \\'e

quote from Kuki and Cody [12] on this subject:

The computing public is faced with an ever-growing

arsenal of programs prepared and distributed in divers

-15-

.,

ways. Without adequate controls on the quality of those

programs, it is not feasible for individual users to

distinguish the good from the bad among them. It is often

simpler to build a new program than to search for one in

the existing arsenal. For a collection of programs to be

useful, users must have reliable information on the

programs' efficiency, areas of applicability, areas of

comparative strength, etc. Good documentation by ~he
·-,
author is supposed to contain this information. \\'hen it

-does, verification of the documentation is all that is

needed. 11/hen, as is too often the case, such information

is inadequate or missing from the documentation, certifica­

tion can only be effective if it provides the missing

information through a general evaluation of the program.

Furthermore, the results of evaluation projects must be accessible to the users of mathe­

matical software if this need is to be met.

1.2. Definitions. The preceding passage introduces several terms which should

be defined more precisely.

Testing will be left as- an undefined term. Several types of testing will be_/

distinguished later.

Verification refers to the validation of claims made by the author of a program_/

in his documentation, by analytical means or by actual machine testing. /'

Evaluation goes beyond verification to express a value judgement as to how well
/

the above design criteria have been met and, possibly, how the program compared with

other programs to solve the same problem.

Certification is frequently used as a synonym for evaluation. lvith Cody [2],

however, we prefer to reserve the term "certified software" for the case where some

guarantee of the quality of the program is implied, as in the case of the subroutines

certified by the NATS project [1]. We shall be concerned here with evaluation, not

certification.

2. Aspects of Program Evaluation

Kuki and Cody [12] set forth four aspects of mathematical subroutine evaluation:

(1) Quality of the program

(2) Quality of the documentation

(3) Design of tests

(4) Documentation of the evaluation

2.1. quality of the Program. ~~en evaluating the quality of the program, one

should distinguish among limitations inherent in the problem to be solved (such as ill­

conditioned polynomial root-finding or matrix inversion problems), limitations of an

-16-

.: ~.

algorithm, and limitations in its implementation (a good linear system solver can be

ruined by failure to accumulate a crucial inner product in double precision). While

inherent limitations are generally not considered to be the responsibility of a mathematical

subroutine, they must still be taken into account by the evaluator. Kuki and Cody [12]

recommend that a program's accuracy be interpreted relative to the inherent indeterminacy

of the problem. They cite as an example of poor software design a polynomial root-finder

that "liberally employs extra precision arithmetic to insure machine accuracy of multiple

root solutions based on the assumption of exactness of the given coefficients," an

. assumption that is usually false.

The SHARE program evaluation guidelines [13] suggest that reviewers consider the

following "performance attributes" when evaluating the quality of a program:

{1)

(2)

{3)

(4)

(5)

Reliability

Accuracy

Timing

Size (of the program)

Features: "Consider the range of admissible input values, extra entry points,

features such as error enalysis, by-products, and so on."

(6) Design: ease of use, quality of output

We shall have more to say about this later.

-,/ 2.2. Quality of the Documentation. Documentation has been discussed at length in
,#

a previous lecture. {See Section 2.1 of Chapter 2 ..) As we have already mentioned, much /'­
~:

of the evaluation process is aimed at verification of the documentation. The documentati9~
i

must also be evaluated with regard to clarity, conciseness, and completeness (the "three-

C's" of program documentation). Good documentation should contain accurate information

on all of the above performance attributes, including an indication of any limitations.

"The documentation should state clearly the extent and the condition of tests conducted

by the author." [12) Furthermore, it should be written in such a way that the potential

user can easily determine whether the program is applicable to the solution of his problem.

2. 3. Design of Tests. We concur with the following material quoted from Kuki

and Cody [12]:

.•'":"'

.. ,._:1:

\~e believe certification of any significance should

involve a fair amount of actual machine tests unless it

is obvious from the author's own documentation that the

program is not worthy of such attention. Even when the

documentation contains the results of careful and

thorough tests made by the author, a reasonable amount

of machine tests should be done to verify them or sup­

plement them. Although the amount of testing is left to

the judgement of the reviewer, a~ effort should be made

-17-

to cover the entire range of applicability of the

program.

The primary characteristics of good tests are rigor

and significance. Tests must be conducted in the most

rigorous manner consistent with the requirements of the

certification. Tests which are significant for one

program-may not be significant for another very similar

program. For example, an examination of the Wronskian
. f':

vai·(i~s- for a Bessel function routine can be significant

only if the l~ronskian is not used to generate the function

values in the first place.

Choice of proper criteria for the measurement of

accuracy is a delicate problem. Here a great deal of care

must be taken to choose error criteria which must reveal

the performance characteristics of the program ..•. Ultimately,

it is the user's application which determines the preference

on error criteria. Users will want to have error figures

presented in the form that can be most effectively incorporated

into an error estimate of the total computation •

... (For many subroutines) the heart of the test plan should

be what we call critical range tests; that is, tests designed

to probe particularly sensitive areas of the program such as

regions where underflow or overflow of intermediate results

may occur, or argument ranges bracketing the boundaries

between methods of computation. The choice of a significant

set of critical range tests is indeed a task challenging the

ingenuity of the reviewer.

Timing tests also provide useful information, especially when comparing rival

programs. The results may be reported in terms of actual machine running times, operation

counts, or number of function evaluations (for a routine requiring a function as one of

its inputs).

The theory and practice for testing of function subroutines is "in a most satis­

factory state of affairs. The most widely exploited technique for accuracy evaluation

is a Monte Carlo approach based on forward error an lays is." [2] See Cody [3] for a

-~

general description of this process. Several specific evaluations of this type are cited

in Appendix B. The design of tests in other areas is still pretty much up to the ingenuity

of the evaluator. Such tests frequently involve the running of a large collection of ---------- --"standard" -test 'problems~

2.4. Documentation of the Evaluation. The final phase of any evaluation project

is the preparation of a report. Please refer to Appendix A for the SHARE guidelines as

-18-

to the purpose and df:~ired contents of such a report. We find it difficult to improve on

thi~ material. The evaluator must completely and reliably document his work. The rep~rt

must contain substantiating evidence for any criticism levied against the origjnal program.

3. Levels of Testing

We djgre~s for a moment to db;tinguish several levels of mathematical subrcutine

testing.

3.1. Plausibi~ity Testing. The most superficial level of testing consists of

running two or three sample problems and comparing the results 1vi t'h those obtained else­

where. This type of testing mar be appropriate in two cases:

(1) A program is imported from another installation -The purpose of the test

is to detect any installation-dependent differences that prevent proper

functioning of the program in its new environment.

(2) A library subroutine -The purpose of the test is to determine whether the

library has been clobbered. (The subroutine had previously undergone much

more extensive testing before it was put on the library.)

3.2. Program Checkout/Debugging. This is the minimal amount of testing that must.
j be performed before a program can be considered debugged. As stated by Fritsch and ,..,

Hausman [7, p. 15], at the very least "enough test cases should be performed to insure j

that all possible paths of the program are checked." lfuere possible, such results should ~-;z<

be carefully checked ~Vith hand computations or with built-in tables of correct answers. ~/"-

-•
3.3. Performance Evaluation. Performance evaluation is a complete, but objecti1e,

testing process designed to assess program quality as discussed earlier in section 2.

The result of a perforrrance evaluation is "a set of statistics and parameters describi_ng

the performance of a given program on a standard set of problems." [2] This '"ill be

•, discussed in more detail in section 4.

3.4. Complete Program Evaluation. A complete program evaluation goes beyond

performance evaluation to consider the quality of such subjective attributes as program­

ming standards, ease of use, flexibility, and program documentation.

3.5. Comparison Testing. Up to this point we have been considering the evaluation

of a single piece of mathematical software. Comparison testing involves performing a

complete program evaluation on t~Vo or more routines that purport to solve the same prob­

lem, in order to compare their domains of applicability and their ratings on the various

design criteria. The purpose of comparison testing may be to find one optimum algorithm

for a given problem area (as in the Bell Laboratories Library One project [17]) or to

merely indicate the areas of comparative strength and weakness among a collection of rival

programs.

.:19-

T. E. Hull (10] has attempted to establish a rigorous definition for the term

"best method" in this context. While he applied this to the numerical integration of

ordinary differential equations, the same ideas carry over to other problem areas. 1\'e

assume that two rigorously defined sets are given:

P = a class of problems. (Usually, a set of inputs to a subroutine, including

error tolerances. Perhaps it is useful to think of P as a sample space.)

~I = a class of methods. (Usually, a collection of subroutines.)

On P and f.-1 we define a function G such that, for m€M, G (m, P) is a measure of the goodness

of the method m, relative.to,the set of problems P. We now quote Hull's definition [10]:
• I~-· '.

If G is,·real-valued, and if it is desirable to have

small values of G, we can now give a precise meaning to

the statement that one method is better than another.

Method m is better than method m', relative to the class

of problems P, according to the criterion G, provided

G(m,P) < G(m' ,P). And the definition of "best" now takes

the following precise form. Method m is a best method,

.·
from the class of methods M, relative to the class of

problems P, according to the criterion G, if G(m,P) ~ G(m' ,P)

for any m 1€ ~1.
./;.

For further discussion, with examples, see [10].
While this definition is unlikely to be of much use in practice, it does serve to ""

point out that one cannot claim that a program is "optimum" unless he clearly specifies

the class of problems being considered, the criterion of goodness, and the class of

methods over which the optimization is being performed.

4. Complete Program Evaluation

.>

Cody (2] describes an ideal evaluation effort for an item of mathematical software

as providing answers to five questions:

(1) What are the numerical properties (accuracy, etc.) and speed of the program?

(2) Precisely what problems does the program solve, i.e., what is the domain of

t:he program?

{3) Is the coding correct?

(4) Is the program easy to use?

{5) Is the documentation appropriate?

The first two of these Cody identifies with the term "performance evaluation" (cf.,

Section 3.3, above), while the entire process is called "complete program evaluation"
-· ·-- --

--(cf., Section- 3.4, above).

We have already discussed documentation and ease of use, here and in chapter 2.

We shall consider the other three questions in reverse order.

-20-

4.1. Correct Coding. An affirmative answer to question 3, above, implies that

the routine is free of both programming errors, or "bugs," and design errors. The latter

is extremely difficult to check for. Cody [2] states, "The only common· denominator appears

to be the association of design errors with error detection or the lack of it. A square

root routine which does not do something special when it encounters a negative argument

clearly has a design· error. Similarly, a routine for the solution of ordinary differen­

tial equations has a design error if it objects (or malfunctions) when the independent

variable is stepped in a negative direction. The difference between these errors is

essentially the degree of foresight required of the evaluator to check for them·"

One should also consider good programming practices when evaluating the coding of

a particular routine. A well-commented, logically organized Fortran program is clearly

easier to modify, easier to evaluate, and simply more aesthetic than one that is not.

See the CACM Algorithms Policy (6] for one group's thinking in this area.

4.2. Domain of Applicability. At the present state of the art it is only possible

to obtain a very fuzzy picture of the domain of applicability of a given subroutine. This

is not so difficult in the case of a function of one or two independent variables, but it

becomes increasingly more difficult as the dimensionality of the input data increases. In

cases where a function is one of the inputs, about the best we. can.do is to test the

program on increasingly ill-conditioned input and report where, and in lvhat manner, it

fails. At present we generally are unable to determine precisely what properties of a

problem are the most important for determining the difficulty of its numerical solution.

4.3. Numerical Properties. We have already touched upon the subject of

question 1 in section 2.1. Here we shall be concerned with sources of error and with

assessment of error.

' .. ;

There are three primary sources of error in any numerical result. Transmitted

error is the result of error in the. original data (inherited error). While a mathematical

- '.·~o; ••

-21-

Inexact data---..;
(inherited error)

Exact data---~
(no error)

Exact mathematical
solution to

the given problem

Inexact solution to the
given problem

using exact arithmetic

Inexact solutions to the

I---- Inexact solution
(transmitted error)

t-----lnexact solution
(analytic truncation
error)

Exact dato-----!given problem using finite-1-----lnexact solution
(no error) precision arithmetic (generated error)

Fig. 4.1. Three primary sources of error.

~ = f' (x) dx
y f(x)

= f' (x) dx
x f(x) x
* (assuming x -~ 0, f(x) ~ 0). If z is an approximation to the nonzero quantity z, and the

absolute error is /u = z - z *, then the relative error in z * is i·
tu d z

cSz = z;;:;: -z·
.-.

~"-

Thus the above formula can be used to approximate the transmitted error due to an inhe,tited

error L\t:

L\y ;;:;: dy = f' (x) dx ~ f' (x) L\x
or

~ f' (x) dx . f' (x)
cSy ~ Y = x 1('i') x ~ x f(x) cSx

i
>

(1)

(2)

In Eq. (1) the absolute error is multiplied by the factor f'(x); in Eq. (2) the relative

error is multiplied by the factor xf'(x)/f(x). If the multiplicative factor is greater

than one in absolute error, the transmitted error is greater than the inherited error, and

no improvement of the mathematical method can reduce the total error below this level.

Example: f(x) = tan x, x near n/2.

The most obvious approach to accuracy evaluation is based on forward error analysis.

That is, the program is checked on problems with known solutions, and the computational

results are compared with the exact answers. If one is careful to avoid unintentional

inclusion of inherited error, this can provide a direct measure of the generated error.

__ ________ In certain areas-,--notably matrix compu-tations-and--polynomial zero-finding-;-a---- --

backward error analysis is more appro-priate. This means that the computed result is

interpreted as the exact solution to a perturbation of the original problem, and we meas-

ure the difference between the problem posed and the problem solved. One can also use
.•. ,,

-22-

d

is.

"consistency checks" involvinR theor£'tjcal identities. See Cody f2] and the papers

referenced there for further discussion of this subject.

5. Evaluation Projects

We provide here a brief summary of known mathematical software evaluation projects.

Refer to the section entitled "Present Technology" in Cody [2] for a more complete survey.

(1) The SHARE Numerical Analysis Project has been engaged in an evaluation of

the mathematical subroutines in the SHARE (IBH computer users' group) Library

for many years.

the project.

See [13] and various SSD's for reports on the activities of

•
(2) While currently inactive, the SIGNUM Subroutine Certification Group attempted

to act as a centralized clearing-house for information on evaluation efforts.

Reports on their activities can be found in various issues of the SIGNID-f

Newsletter.

(3) We have already mentioned the Bell Laboratories project [17].

(4) Funded by NSF and supported by Argonne National Laboratory, Stanford University,

and University of Texas, the NATS -(National Activity to Test Software) project

"is a prototype effort to test and disseminate certain collections of routin.J~
as certified software." [1] A package of over thirty subroutines, known as

EISPACK, to solve the algebraic eigenvalue problem has been tested and is now ;"

available to computer users.

currently being tested.

A collection of special function routines is

(5) Various universities and laboratories (including Argonne National Laboratory,

Jet Pr~pulsion Laboratory, and the University of Minnesota) have done

performance evaluations on manufacturer-supplied libraries of function sub­

programs. These are cited in the "Bibliography on Subroutine Certification"

(see Appendix B). In this same bibliography appear the results 0f various

comparison tests that have been undertaken as individual efforts.

6. Conclusion

· To summarize what has been said here, one must carefully determine his goals

before undertaking an evaluation project, \H th these goals in mind, a plan for testing

is designed and carried out - the details of the plan depending on the. problem area.

Finally, a report describing the testing procedure and the evaluator's interpretation of

the results must be prepared.

-23-

.. '~.

. . . ~'

CHAPTER 5. SUMMARY AND CONCLUSIONS

1 • .Course Summary

In the final lecture of the course we attempted to summarize what '"e have learned

:about the construction of mathematical software. First, we recalled certain basic

definitions (see Chapter 2, Section 1):

(1) Algorithm

(2) Implementation

(3) ~1athematical sofb•are - An i tern of mathematical software consists of a

computer program that implements a mathematical algorithm, together with its

documentation.

(4) Basic algorithm

(5) Subalgorithm

(6) Polyalgorithm

(7) Automatic numerical analysis

(8) Driver

(9) Domain of applicability

Next, we reviewed the ten design criteria (see Chapter 2, Section 2):

(1) Good documentation

(2) Reliability (accuracy; robustness)

(3) Error control

(4) Efficiency (speed; size)

(5) Flexibility

(6) l\lodifiahility (modularity)

(7) Ease of use (accessibility)

(8) Reasonable diagnostics

(9) Transportability

(10) Common sense

} user interface

.-
./

-~~: .

r?..:
-~

We noted that the construction of good mathematical software requires skills from three

traditionally separate disciplines: mathematics, programming, and engineering. (See

Fig. 5.1.) 'At present, mathematical software construction is an art, rather than a

science.

Finally, we reviewed the eleven examples of mathematical software considered

during the course, which are listed in Table 5.1, and attempted to evaluate them in terms

of the ten design criteria. The results of these impromptu evaluations, hased upon

-------~~terial presented in class, are given in Table S.~.:_~~x_!mple 10 _was_ omitted _he~a~s~_!_!__

____ _. doesn't really fit into this evaluation scheme. It can be seen that there is a good deal

of variability in the quality of published mathematical software. (Note that thorough
. !-

_.. __ .. ,;.: '":;.·

:') __ ,~-...

-24-

·.,,'
.. 'i-i
·.:

,,
:

.·-:.

.:·

• Convergence theorems

•Tradeoffs =engineering decisions :.

•Design of the user interface (human engineering)

•Reduction of
roundoff error

Fig. 5.1. Mathematical software construction involves mathematical, programming, and
engineering skills.

~ ... ·'

.... .:.25-

evaluations of these routines, according to the philo~ophy o~ Cha?ter 4, would require

much more extensive study and testing.) The number of questioP marks after "Common Sense"

probably indicates either that this design criterion was not adequately understood by the

participants or that it is relevant only to polyalgorithms.

2. Conclusions

\Ve feel that the course was succes~ful in exposing the participants to several

examples of mathematical software and introducing them to the basic concepts of construc­

tion and evaluation of such software. In retrospect, however, we believe that the students

would have gotten more concrete value from the course if more time were spent on the

presentation of general concepts, such as structured programming and documentation

principles. The term project could then be the actual construction of a piece of good

mathematical software, or the detailed evaluation of an existing program, by the entire

class. That is, we recommend that the subject be treated as a participation course,

rather than a reading course.

Example No.

1

2

3

4

5

6

7

8

9

10

11

Table 5.1. Examples of mathematical software.

Presented by

von Holdt

von Holdt

Hindmarsh

Bold tad

Johnston

Dickinson

Pexton

Suyehiro

Davies

Hage

Hausman

Description

Software for the Elementary Functions.

Input/Output Conversion.
.,;:
i

STIFF: An Ordinary Differential Equations Package

(Gear).

Solution of Linear Systems (Forsythe-Moler).

Nonlinear Least Squares Curve Fitting (Bevington).

EISPACK: Eigenvalues and Eigenvectors of Matrices.

Pade Table Computation (Longman).

HE~IP: A Large Applications Code, Using Finite

Difference ~let hods.

~10RSE: A ~1oderate-Sized r-tonte Carlo Applications

Code.

Table Loop-Up Methods and the RANK Code.

Four Subroutines for One-Dimensional Function

-1\Jinimization-;---- ---·---- ---·----~-----

-26-

.---.-.. ---

-.· ...

.. ~

Table 5.2. Tentative evaluations for some examples of mathenatical SJftware.

The example numbers are keyed.to Table 5.1.

The following symbols are USE'd in this table:

E = Excellent

G = Good

A = Adequate
p = Poor

B = Bad

= Not applicable

? = Not enough information available

Example No.

·Criterion 1 2 3 4 5 6 7 8 9 11

Documentation p B E A G E G G G E

Reliability E E E E ? E ? G ? E

Error control E r, E E ? E ? A. ? ·Jf·· E

Efficiency E E Ga G A G pb A A

j
c .•

? '

Flexibility B B .E E A E A A E G it.~
"F··

~.f::.
Modifiability p B G G A E A ? ? ? ;:·

'I";
.i

Ease of use E A A A G G ? ? G G ;

Diagnostics ? G G ? G ? A ? G

Transportability
" ·~ ~

B B E E E E G p G E

Common sense ? A ? ? ? ? ? ? ?

aApplies to implementation of Gear's methods in the package. The implementation of

Adam's methods in the package, as available at the time of the course, would have to be

rated as P.

bApplies to the original code, not to Pexton's modifications.

c Depends on which subroutine is used and what function is to be minimized .

't<~'- ··l..

. .

-27-

.·

·',:j .t".'.:!

i
.. , ··-.:. ;~,!~

f

-='
1~" ~·

< -"

' ~;' ~i

REFERENCES

1. J. M. Boyle, W. J. Cody, W. R. Cowell, B. s. Garbow, Y. Ikebe, C. B. Moler, and

B. T. Smith, NATS, A Collaborative Effort to Certify and Disseminate

Mathematical Software (Preprint). (Presented at the ACM National Conference,

August 1972.)

2. W. J. Cody, The Evaluation of Mathematical Software (Preprint). (Presented at the

ACM SIGPLAN Symposium on Computer Program Test Methods, June 1972.)

3. W. J. Cody, "Performance Testing of Function Subroutines," AFIPS Conf. Proc. 34 ,.._
(1969 SJCC), 759-763.

4. S. D. Conte, Elementary Numerical Analysis: An Algorithmic Approach (McGraw-Hill,

New York, 1965).

5. C. de Boor, "On Writing an Automatic Integration Algorithm," in the text [151,

pp. 201-209.

6. L. D. Fosdick, "Algorithms Policy, Revised October 1971," Comm. ACM 14, 10 (Oct.

1971), 676.

7. F. N. Fritsch and R. F. Hausman, Jr., On the Documentation of Computer Programs,

Lawrence Livermore Laboratory, Rept. UCID-30043, (March 1972).

8. C. W. Gear, "Experience and Problems with the Software for the Automatic Solution/'

of Ordinary Differential Equations," in the text [15], pp. 211-227.

P. Henrici, Elements of Numerical Analysis (Wiley, New York, 1964). 9.

10. T. E. Hull, "A Search for Optimum Methods for the Numerical Integration of Ordinary,'~'~
~.l.,_

11.

12.

Differential Equations," SIAM Review 2_, 4 (Oct. 1967), 64 7-654.

D. E. Knuth, "Fundamental Algorithms," Vol. 1 of The Art of Computer Programming,

(Addison-Wesley, Reading, Mass., 1968).

H. Kuki and W. J. Cody, General Aspects of Program Certification for Numerical

Subroutines, unpublished manuscript (ca. 1968).

13. H. Kuki, E. Hansen, J. M. Ortega, J. C. Butcher, and D. G. Anderson, Evaluation

Guidelines, SHARE Numerical Analysis Project, SSD 150, Part II (1966),

Item C4304.

i

·'

14. J. R. Rice, _"On the Construction of Polyalgorithms for Automatic Numerical Analysis,"

in Interactive Systems for Experimental Applied Mathematics, M. Klerer and

J. Reinfe1ds, Eds. (Academic Press, New York, 1968), pp. 301-313.

15. J. R. Rice, Ed., Mathematical Software (Academic Press, New York, 1971).

16. J. R. Rice, "The Challenge for Mathematical Software," in the text [15], pp. 27-41.

17. J. F. Traub, "High Quality Portable Numerical Mathematics Software," in the text

[15], pp. 131-139.

18.- L. A.--Zadeh,-"Fuzzy--Sets,"--lnformation and-Control-.! (June 1965), 338-353.

19. L. A. Zadeh, "Fuzzy Algorithms," Information and Control g, (Feb. 1968), 94-102.

-28-

.•.
i.·
rc

APPENDIX A.

MATERIAL FROM THE SHARE EVALUATION GUIDELINES

The following material is quoted directly from Ref. [13]:

The three functions of the review write-up are (1) verification of claims made

for the program, (2) clarification and supplementation of ambiguous or missing

information, and (3) evaluation of the merits of the program.

A4.1

A4.2

Balanced appraisal

Since a program which fails in one respect may still be very valuable

in other respects, it is desired that the reviewer will look for merits

as well as demerits. ~lerits are often relative to the requirements of

a user's application.

Constructive criticism

We believe in sharp criticism where due. On the other hand, if the

. fault found by the reviewer is correctable, it is desired that he will

indicate the remedy in his revie\IT write-up. Similarly, if the program

documentation is ambiguous or illogical, it is desired that the

reviewer communicate with the author of the program and, if possih!e,

clarify the confusion in his review write-up. This is better than /

simply stating that the documentation lacks clarity; and it is particui~rly

A4.3

helpful 1vhen a program's performance is good.
fr

Comparison with other programs ~.;:_
~~-

\Ve wish to find out how the performance of a prog·ram compares h'i th oth~t'

SHARE (or non-SHARE) programs. More often than not, two similar progr~ms
do not show 100% overlap in purpose. A less general program is expected

to be more efficient in carrying out its limited task. Also comparison

of two programs often results in trade-offs such as size versus speed,

speed versus accuracy etc. lfuen distributing programs to reviewers for

evaluation, the ~lanager of the Evaluation Project will attempt to assign

as a set those SHARE programs which ought. to be compared with each other.

We also encourage comparisons with non-SHARE programs, and if such

comparisons should favor a non-S~~RE program, effort should he made to

induce the author of the program to submit the same to SHARF.. At any

rate, mention should be made of the existence of such a program and how

it can be obtained. Indeed, it has happened that for the sole purpose of

conducting a thorough review of a S~~RE Bessel function program, a

reviewer wrote his own single precision and double precision Bessel

, function programs which turned out to be definitely preferable to the

SHARE program being reviewed. Often the program to he reviewed happens

to be the only one of the kind available. Though as such it is a useful

addition to the SHARE library, even in this case, the reviewer will allow

·..:29-

·. 1' '. · ..

·.· -·.

f,;

-~ . .._

·..:,·.· ..

for future additions to the library, and h~ should design his te~t plan

in a manner that would act as a challenge for better program!', should

the existing program fall short of the current state of the art.

A4.4 Coverage and style of review write-up

The review write-up should be self-contained, written in a clear, concise,

and easily digestible styJe. It is suggested t~at it consists of five

parts: (1) a brief qualitative description of the overall lay-out of the

comprehensive test plan, (2) a detailed description of the actual testing

procedure, (3) a summary of the program's tested performance, (4) explana­

tion, clarifications, complimentary remarks, or any criticism on items

listed on the section AI and A2, a description of difficulties in getting

the program to run, etc., (5) a summarizing opinion by the reviewer

including comparison with other programs of similar purpose.

APPENDIX B.

BIBLIOGRAPHY ON SUBROUTINE CERTIFICATION
.-

}
The SIGNUM Subroutine Certification Committee is collecting a certification '

bibliography. Their list as of the middle of 1970 has been published in the SIGNUM

Newsletter (see i tern 1, below). J'
The following, arranged in the same manner as the SIGNUM bibliography, provide4J_

--~

additional references in this area. No claim of completeness is made for this list./ In

fact, it specifically excludes relevent papers in our text.

GENERAL PHILOSOPHY

1. SIGNUM Subroutine Certification Committee, "Certification Bibliography," SIGNUM

Newsletter.,!. 3 (Oct. 1969), 16-18; continued in SIGNUM Newsletter .i• 2 (Aug. 1970),

14-15.

2. R. L. Ashenhurst, "Evaluation and Certification Project at Argonne," SIGNUM Newsletter

j., 3 (Oct. 1969), 14.

3. J. M. Boyle, et al., NATS, A Collaborative Effort to Certify and Disseminate Mathe­

matic~! Software (preprint); presented at the 1972 ACM National Conference.

4. W. J. Cody, "Performance Testing of Function Subroutines," Proc. Spring Joint

Computer Conf. (1969), 759-763.

5. I~. J. Cody, The Evaluation of ~lathematical Software (preprint) (April 1972);

presented at the Symposium on Computer Program Test ~lethods, June 1972.

6. F. N. Fritsch and R. F. Hausman, Jr., On the Documen~ation of Computer Programs,

Report UCID-30043 ~larch 1972), Lawrence Livermore Laboratory.

7. 1'1. M. Gentleman, "More on Publishing Programs," SICNUM Newsletter ..J., 3 (Oct. 1968).

-30- -' t

.;

: .

•

8. R. \\'. Hamming, Introduction to Applied Numerical Analysis (McGraw-Hill, New York,

1971); Chapter 15 (pp. '25-328) discusse~ the "Design of a Library."

9. 0. G. Johnson, "H1SL's Ideas on Subrot:tine Library Problems," SIGNUM Newsletter

~ 3 (Nov. 1971), 10-12.

10. F. T. Krogh, "A Plea for Tolerance in the Evaluation of Numerical Methods and

Hathematical Software," SIGNUM Newsletter§.; 3 (Nov. 1971), 7-8.

11. E. W. Ng, ~lathematical Software Testing Activities at the Jet Propulsion Laboratory

(preprint) (~mrch 1972); presented at the Symposium on Computer Program Test

Methods, June 1972.

12. K. A. Redish and W. Ward, "Environment Enquiries for Numerical Analysis," SIGNUM

Newsletter~. 1 (Jan 1971), 10-15.

13. G. M. Truszynski, Computer Program Documentation Guideline, Report NHB 2411-.1

(July 1971), National Aeronautics and Space Administration.

14. K. H. Usow and L. D. Fosdick, "Guidelines for Evaluating an Algorithm for Publication,"

SIGN~! Newsletter ,i, 3 (Oct. 1969), 19-20.

15·. B. F. W. Witte, "Publication of Comprehensive Fortran Programs," SICNUM Newsletter

~ 1 (April 1968).

ARITHMETIC, ELEMENTARY FUNCTIONS, AND NUMBER THEORY

16.
;

M. W. Cox, "UNIVAC Claims Super Accurate Fortran Math Library," SIGNUM Newsletter/'

.§_, 3 (Nov. 1971) , 9.

17. K. E. Hillstrom, Performance Statistics for the F·ortran IV (H) and PL/I (Version 5) ~..;­

Libraries in IB~f OS/360 Release 18, Report ANL-7666 (August 1970), Argonne NationaL"''

18.

Laboratory.

A. C. R. Newbery and A. P. Leigh, "Consistency Tests for Elementary Functions,"

Proc. Fall Joint Computer Conf. (1971), 419-422.

POLYNOMIALS AND SPECIAL FUNCTIONS

19. J. D. Lawrence, Comparison of Polynomial Root Finding Methods, CIC Note C2.2-A

(Jan·. 1966), Lawrence Livermore Laboratory.

20. E. W. Ng, "Certification of Algorithm 385, Exponential Integral Ei(x)," Comm. ACM

~. 7 (July 1970), 449.

QUADRATURE, DIFFERENTIAL AND INTEGRAL EQUATIONS

21. P. C. Crane and P. A. Fox, "A Comparative Study of Computer Programs for Integrating

Differential Equations," Numerical Mathematics Computer Programs, Library One,

vol. 2, issue 2 (Feb. 6, 1969), Bell Telephone Laboratories.

22. T. E. Hull, "A Search _for Optimum Methods for the Numerical Integration of Ordinary

Differential Equations," SIAM Rev • .2,. 4 (Oct. 1967), 647-654.

-31-

MATRICES, VECTORS, AND SIMULTANEOUS LINEAR EQUATIONS

23. K. E. Fitzgerald, "Error Estimates for the Solution of Linear Algebraic Systems,"

J. Res. Nat. bur. Stds., Ser. B. Math. Sci. w. 4 (Oct.-Dec 1970), 251-310.

24. F. W. Luttman, Matrix Inv~rsion Tests, CIC Report Fl.2-004 (Sept. 1965), Lawrence

Livermore Laboratory.

t
"1.

-32-

-.:•.

l
.l

i
/

~-~~~\
~> _/
,.;'~,··

t

'l
~~-f';~·

