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Abstract

The CHILDLIKE system is designed to learn about ob-
jects, object qualities, relationships among objects, and
words that refer to them. Once sufficient visual-linguistic
associations have been established, they can be used as
foundations for a) further learning involving language
alone and b) reasoning about the effect of different ac-
tions on perceived objects and relations, and internally
sensed need levels. Here, we address the issue of learn-
ing efficient rules for action selection. A trial-and-error
(or reinforcement) learning algorithm is used to acquire
and refine action-related rules. Learning takes place via
generation of hypotheses to guide movement through se-
quences of states, as well as modifications to two entities:
the weight associated with each action, which encodes the
uncertainty underlying the action, and the potential value
(or vector) of each state which encodes the desirability of
the state with respect to the current needs. CHILDLIKE
is described, and issues relating to the handling of uncer-
tainty, generalization of rules and the role of a short-term
memory are also briefly addressed.

Introduction

Perception is crucial to any activity by intelligent agents
in an environment. In dynamicenvironments, perception-
mediated reasoning and acting can avoid the problems of
planning that goes down blind alleys and expends massive
efforts to anticipate situations that never occur. Perceiv-
ing the state of the world periodically can also save the
embedded agent the trouble of keeping precise track of
its moves to infer its position relative to other objects in
the environment at each step.

On the performance side, it is instructive to note that
humans are able to perceive and recognize scenes con-
taining a few objects within a few hundred milliseconds.
Such rapid perception is crucial to adequately fast reac-
tion in an environment. (However, it is rarely necessary
for a scene to be fully recognized before an agent reacts.
Certain key features or salient objects in a scene may trig-
ger reactions that have been associated with the features
or objects by prior learning.)

Rules that facilitate choosing actions without extensive
deliberation are important, since planning is time con-
suming and its utility is limited in dynamic environments.
At the same time, it is also important to learn the effect
of different actions or operators from experience (e.g., see
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[Drescher, 1987), [Mason et al., 1989)], [Shen, 1989]). Re-
active planning (e.g., [Georgeff and Lansky, 1987], BF'irby,
1987)) or iterative planning [Kaelbling, 1987] can be cast
in a memory-based framework particularly when other
tasks such as perception and language are being inte-
grated into the system. (Integrating vision and language
is gaining considerable attention in the Al and cognitive
science community— e.g., see [Dyer, 1991], [Feldman et
al., 1990}, [Okada, 19917, [Siskind, 1991].) In this paper
we describe how rules can be learned that help the system
to react appropriately to its needs, and how generaliza-
tion of these rules is aided by prior learning of visual and
linguistic constructs.

In the next section, we briefly describe the integrated
system that we are developing to learn from simple expe-
riences. The subsequent sections focus on the acquisition
and refinement of hypotheses (structures of rules) that
aid the system in reacting to its internal needs. Prior
visual-linguistic associations act as powerful biases for
the acquisition and refinement of rules that relate actions
to the perceived environmental states and their need-
satisfaction potential. The representation as well as gen-
eralization of rules is addressed.

Background about the CHILDLIKE
System

The CHILDLIKE' system [Mani and Uhr, 199lab)
[Mani, 1992] (in preparation) is a computational
information-processing model (implemented in Common
Lisp) designed to learn about objects, their qualities, and
the words that name and describe them; and, further,
to use this knowledge to act towards satisfying its inter-
nal needs (e.g., hunger, thirst, sleep, curiosity). Thus
the CHILDLIKE system attempts to capture the entire
perceive-reason-act-learn loop.

The system is subjected to a series of simple “experi-
ences” from which it attempts to learn. An experience
consists of several different types of input— for example,
a visual pictorial scene, a short language utterance, an
abstracted action, an internal need level.

One component of the system acquires visual-linguistic
associations from experience. Initially, tentative associa-
tions are formed between words and visual features, and

1 which stands for Conceptual Hierarchies In Language Development
and Learning In a Kiddie Environment.
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Figure 1: The Network Structure of Hypotheses

groups of these, using learning rules for extraction, aggre-
gation and generation. These associations get strength-
ened with repeated co-occurrences. Such visual-linguistic
associations are refined using de-generation and general-
ization mechanisms. For descriptions, see [Mani and Uhr,
1991b] and [Mani, 1992] (in preparation). For an example
of the visual-linguistic associations learned by the system
in response to inputs such as pictures of chairs and tables,
along with words about them, see Figure 1 (only a cross
section of the memories is shown). The hatched nodes
correspond to structures learned from the linguistic chan-
nel; the others to visual features and their compounds.
Only some of the highly weighted links are shown. The
three numbers alongside a visual feature node represent,
respectively, the z and y coordinates of the feature (in
the object-centered coordinates of its parent node) and
its relative size.

This paper concentrates on acquiring knowledge relating
to actions and their effects. We also stress how the action-
related rules can be generalized and improved using the
visual-linguistic associations that have been acquired; in-
tegration of these different components is achieved by uti-
lizing a memory-based framework. Mutually grounded
representations — that consist of, for example, the visual
representation of a fruit, the word that describes it and
the action that can be performed on it (eat) to satisfy
a certain internal need (hunger) — help in the attempt
to span the wide variety of abilities that encompass ev-
eryday tasks and reasoning. The current version of the
system is a starting point for a realistic architecture and
implementation that integrates vision, language and ac-
tion.

Representation of Rules About Actions

Knowledge for reasoning about actions is usually built
into a system a priori, rather than learned. In contrast,
CHILDLIKE attempts to learn the effect of various ac-
tions (currently, primitive actions are built in, but not
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Figure 2: An Example Visual Scene

their effects). An action or an action sequence may im-
pact both the externally perceived entities and the inter-
nally sensed need levels. Thus, each state that the system
is in can be described in terms of (a subset of) the per-
ceived objects, qualities of objects, relations among them
and the internal need levels.

A suitable bias is required to translate the perceived state
into an internal state in the plan memories. In CHILD-
LIKE, the bias used is prior learning from percept—
language interactions.? Thus, the system translates a vi-
sual scene into object names and relations between the
objects that are known to the system.

CHILDLIKE can learn about objects such as table,
pitcher, and glass; spatial relations such as on, above,
and in; and other relations such as and. Such knowledge
is acquired by being trained on instances with language
strings such as brown table and pitcher on table
along with their corresponding visual scenes. Based on
such knowledge, visual scenes (see Figure 2) presented
as arrays representing medium- to high-level features are
processed by the system to obtain, for example:

on(pitcher,table)
on(glass,table)
in(air,glass)
in(juice,pitcher)
yellow juice

A hierarchical structure [Uhr, 1978;1987] is used to
rapidly imply objects and relations. Needs are introduced
by encoding the sensed internal need levels along with
the entities perceived from the external world into each
state in the long-term plan memories. These memories
are graph structures wherein each link (or state transi-
tion) connotes an action. Every action has a weight asso-
ciated with it, encoding the certainty of the action. Apart
from the visually perceived information and the internally
sensed need levels, each state also encodes its potential
to satisfy each need. Currently, four internal needs are
modeled: hunger, thirst, rest and curiosity. A state may
not necessarily represent all the perceivable information,
but simply the features the system is currently attending
to.

2Note that other candidates may be useful biases. For example, chil-
dren use perceptual knowledge alone before they acquire any language.



1a. Perceive external world and form a condensed description (VD)
(biased by previously learned visual-linguistic associations).
b. Sense internal needs (I) and match the current situation ( VD
plus I) to states in the long-term action memories.
If there is a match then
Use the resulting state S. from the long-term memories
else
Create a new state S, and initialize it.
2a. if curiosity-need does not dominate then
Follow action-arcs from (S.) and choose action A, such that it
maximizes the weighted potential w(A)I(S:): P(S;)=ne(A,)
over all the feasible action—destination pairs from S.. {w(A,)
is the certainty that action A; will lead to state S;, I(S.) is
the numeric need vector at state S;, P(S;) is the potential of
state S;, e(A,) is the energy expended in or cost of executing
action A, and 5 is a normalizing factor.}
Execute action A,.
else

Execute an action A, randomly from the action repertoire of S..

b. Perceive the new state (S.). {This is the same as Step 1 above.}
If there exists a link between S, and S, labeled with A, then
Update its frequency-based weight (also update the weights of
other links labeled with A, from S.).
else
Form a new link and initialize it.
c. Propagate the potentiality /need-fulfillment information at S
back to the previous state S.. Go to 2a.

Figure 3: Algorithm that Creates and Refines the Action
Memories

Action selection and refinement of the plan memories
takes place using a trial-and-error learning algorithm (the
current version used by CHILDLIKE is shown in Fig-
ure 3). The algorithm assumes abstracted actions such
as Pick up apple, Pour into glass, and Drink from
glass. (Future versions of the system will decompose
these actions further, into sub-actions and the visual
frames that bracket them.)

Rules are acquired implicitly, by updating the memories
encoding knowledge about actions after each experience.
Initially, all actions (in the set of possible actions asso-
ciated with each state) are equivalent from the system’s
point of view, as it starts out with no knowledge about the
effect of actions. States also usually have initial potential
values of zero— exceptions are need-fulfilling states which
have appropriately high potential values (these can be
thought of as goal states or states where a reinforcement
vector i8 sensed, changing the need levels). As the val-
ues corresponding to the potential of each state to satisfy
particular needs get propagated through the learned net-
work, and as the effects of actions are perceived and tab-
ulated using a weight associated with each action (note
that an action is represented as a link from one percep-
tual state to another), the performance of the system im-
proves. The potential P(S;) of a subsequent state S; is
usually a vector, since there are multiple needs; a dot
product with the need vector I(S.) of the current state
S, is used to reduce it to a single value (see Figure 3).
Figure 4 shows a snapshot of the action memories after a
few tens of trials of one experiment. Note that the system
starts out with all the weight-like certainty values asso-
ciated with actions set to 0 and the values of variables
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Figure 4: An Example of the Action Memories Acquired
by CHILDLIKE

(5 el and Se2 denote extraneous states which may not be
explicitly represented in the system's memories.]

such as Hunger _sat _potential (which stands for hunger
satisfaction potential) for states like S1 set to 0 (or a
low initial value). When hunger satisfaction takes place
at a state such as state S5, the information propagates
back (Step 2c in Figure 3); after a number of iterations,
states such as S1 reflect their true potential. Currently,
a simple average of the node’s current potential and the
potential of its successor (which is known after an action
is performed) is used as the new value of the potential.
One advantage of this is that a predecessor node’s poten-
tial value moves towards that of the successor in a smooth
trajectory, if there is a preferred action at the predecessor
node (which is usually the case after a few trials).

Note that a learned weight such as 0.8 associated with
an action such as Pick up apple reflects the fact that
from S3 (where apple on table is perceived), when the
action Pick up apple is executed, 4 times out of 5 the
apple ended up in the hand. This simple approach to
handling uncertainty appears to work well on these simple
examples.

Notice that the internal need state is combined with the
processed visual state in forming a rule for acting (see
Figure 3). Approximate rather than perfect matches are
usually employed while utilizing these learned rules.
CHILDLIKE’s action-selection abilities clearly improve
with learning. Table 1 summarizes the results of 20 exper-
iments that involved action sequences of the sort shown
in Figure 4. The shortest action sequence was of length
1 and the largest of length 6. Each state had between 1
and 8 possible actions, with an average of about 4. Actual
need satisfaction occurred, typically, in two states. One
determinant of performance is the number of states the
system may have to look at in the course of need satis-



~ Before After

Learning  Learning
Number of states examined 120 <12
Probability of success 0.0-0.15 0.75-0.90
Half-life (time units) 22 > 300

Table 1: Performance of the Action Selection Algorithm

faction. (This figure reflects a worst-case scenario. When
a small (5) percent of the cases, where the system kept
thrashing around without any need-fulfillment, was ex-
cluded, an order of magnitude improvement on this mea-
sure was noticed in almost all the experiments.) It is im-
portant to realize that by choosing wrong actions (such as
Throw apple or Topple pitcher), the system may end
up destroying resources which could have helped in need
satisfaction. Thus, the probability of success in need-
fulfillment is another measure of the system’s abilities (for
these probability values, the system was allowed only as
many action steps as perfect knowledge would require).
Another useful metric is half-life: the time units taken to
expend half its initial allocation of energy®. Learning in
these experiments usually involved between 30 and 100
trials (before performance leveled off).

Distinct memories are used to encode the action-related
rules and their components; however, they are linked to
memories containing encodings of related visual struc-
tures and words. Thus a pre-condition representing
on(pitcher,table) in the action memories as part of
a rule is connected to the corresponding visual structures
and through them to words.

Discussion

The algorithm shown in Figure 3 is similar to the rein-
forcement learning algorithms that have been proposed
recently (e.g., [Sutton, 1990], [Whitehead and Ballard,
1990]). However, the approach outlined here also has a
number of significant differences. First, we attempt to
handle uncertainty in the world by keeping track of the
reliability of each action as a weight associated with each
link that represents an action in the action memories.
Second, since the knowledge encoded in the state is based
on and linked to other acquired knowledge, it is easier
to merge different states in an effort to keep the size of
the memories reasonable. Such generalization in the plan
memories (based on prior visual-linguistic associations)
is one of the crucial mechanisms that stem the combi-
natorial explosion in the number of states. We are also
planning to add a short-term memory component to the
action memories to handle situations where action selec-
tion may also depend on information perceived at earlier
times. We elaborate on some of these issues below.

Generalization, and the Effect of Action
Words

Rules which encode actions pertaining to specific objects
are initially acquired; as the number of objects expe-
rienced by the system grows, mechanisms are needed
to compact the memory structures. The generalization

YEnergy is just a simple function of the inverse of the need levels.
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mechanisms embodied in CHILDLIKE are designed pre-
cisely to do this. The generalization processes implement
specific rules from the symbolic inductive learning realm
such as the turning constanis into variable rule, the clos-
ing inlerval rule or the climbing generalization tree rule
[Michalski, 1983]. The generalization tree itself is often
learned via language inputs such as apple is fruit and
banana is fruit after visual associations for apple and
banana are learned. When generalizing rules pertaining
to actions, the visual and linguistic memories can be ex-
ploited. For example, generalization may involve merging
states and actions that refer to apple, pear and banana.
From these, using the information in the linguistic mem-
ories, the system can create states and actions that re-
fer to fruit. The weights on the links as well as the
need-fulfillment potentials associated with each state are
suitably averaged; and further experiences attempt to im-
prove these values, if necessary. An important capability
that facilitates such generalization is that actions can be
split into their components: a pure action part, objects
referred to by the action, and so on. Note that actions de-
scribed so far are represented using English words for clar-
ity; but the object component of the action (e.g., apple
in an action represented by Pick up apple) is actually
an abstract internal symbol that is grounded in terms of
both the visual representation and the language equiva-
lent, thus permitting the kind of generalization described
above. Using such generalization mechanisms, the sys-
tem can form rules that refer to classes of objects and
their need-satisfying potentialities. An important point
to note is that these generalizations are not trivial, since a
language input such as apple is fruit is not readily in-
terpretable with respect to the plan memories (which typ-
ically encode visual features or pointers to them in each
state). However, the previously acquired visual-linguistic
associations enable going from linguistic descriptions to
visual features (and vice versa); this mutual grounding
seems to aid each component of the system. States are
also merged based on other factors such as visual simi-
larity (e.g., the states involved may refer to stool and
chair, which share some physical attributes), common
need-fulfillment (e.g., the states fulfill the rest need) and
implication of the same action (e.g, the states share the
action Sit on ...). Generalization keeps the sizes of the
acquired memories down to realistic levels. A slight re-
duction in performance abilities may sometimes be man-
ifested due to generalization. For example, a critical ac-
tion such as Peel banana does not have a counterpart for
apple and pear, as experienced by CHILDLIKE. So after
generalization, it was found that the Peel ... step was
skipped over implicitly for all fruits, including a banana.
Figure 5 shows the qualitative effect of generalization on
CHILDLIKE’s action memories; results of experiments
with a few hundred examples (or experiences) are de-
scribed in [Mani, 1992] (in preparation).

Another mechanism that encourages parsimonious rep-
resentations is the use of eztraneous staies— complete
representations of these states are not stored, and they
usually encode the results of actions with low weights (or
certainty) attached to them. In Figure 4, two examples of



i befrs pmralination —
Y her pucmralination

Bize of

Figure 5: Effect of Generalization on Action Memories

extraneous states (denoted Sel and Se?) are shown. Ex-
traneous states can be merged without much care; how-
ever, keeping a f"ew extraneous states (as opposed to the
extremes of storing just one, or all) has the effect of pro-
viding weak contexts for reasoning. Preliminary exper-
iments using extraneous states indicate that perceptual
aliasing® may actually turn out to be beneficial in certain
cases (for a discussion of the problems usually caused by
perceptual aliasing, see [Whitehead and Ballard, 1990]).
Another important issue that is under examination i_s the
learning of links between actions and simple linguistic de-
scriptions of them. Teaching the system words about the
various actions is important for two reasons. First, the
memories acquired by CHILDLIKE will ground actions
in terms of words. It is hoped that this will obviate the
building in of actions. As noted earlier, in the current
version, actions (but not their effects) are encoded in the
system a priori. Second, the ability to use words about
actions provides an effective way of communicating ac-
tions to be executed. Even when CHILDLIKE does not
have the necessary motor capability, an action can be ef-
fectively achieved by dictating it to another agent that
possesses the requisite motor skills. Such dictation can
take place using the medium of a language that was ac-
quired by the two agents in similar environments.

Using a Short-term Memory Component

The role of short-term memory in these tasks is obvious—
e.g., if the system has to execute a number of “eating
steps” each of which reduces hunger gradually, it should
continue and finish eating before attending to other press-
ing needs such as sleep. Also, if the system notices the
potential of a certain state to quench its thirst, while
attending to the most pressing hunger need, it might be
useful to remember the state so that it can come back to it
after attending to the hunger need. For example, in Fig-
ure 4, this translates to going from state S5 to state SJ
when an action such as Move to refrigerator (from
table) is not highly implied. Note that this is not an

‘the phenomenon manifested by a many-to-one mapping from world
states to the learner’s internal states.
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unrealistic scenario even after the apple is eaten, since
CHILDLIKE does an approximate match between world
states and learned internal plan states. A simple im-
plementation of short-term memory may consist of some
selected state information (e.g., that state S has a high
thirst-satisfying potential) or that a particular action is
reliable (i.e., has a very high weight associated with it).
Storing and interpreting such information in the short-
term memory can be achieved by modifying the action
selection algorithm (Step 2a in Figure 3). Several other
approaches to using short-term memory to improve over-
all action selection are being tested. One is to perform
deeper search into the plan memories (e.g., to see whether
the target state S above can be reached easily from 55)—
the rationale behind this is that the current situation
may be opportunistic and hence, not fully reflected in
the backed-up values of the need-satisfying potentials.

Other Issues

One point that needs to be stressed is that CHILDLIKE’s
curiosity need is slightly different from its other needs
(such as thirst). The curiosity need dominates only
when other needs do not, and aids in exploring percep-
tual states (and actions) that CHILDLIKE may otherwise
ignore.

Simple trial-and-error learning appears to be a good
mechanism for initial acquisition of knowledge (remem-
ber that CHILDLIKE starts out with no a priors rules).
Once some initial planning knowledge has been acquired,
a more deliberative algorithm could be introduced to per-
form action selection, since the system stores the effect
of actions (or at least the effect of reliable actions).’ Un-
der such a scenario, the system may monitor the state
of the world every n steps, where n is a parameter that
encodes caution and is dynamically set as a function of
the uncertainty expected in the environment and the re-
action speeds required; learning an optimal value for this
parameter is a good area for future explorations.

Using extraction and aggregation mechanisms, similar to
those used in building visual and linguistic structures, to
build macro-operators or hierarchies of actions is another
issue that merits further exploration.

Conclusions

A survey of conventional planning techniques (for exam-
ple, see [Allen et al., 1990]) reveals two important related
issues. The first is that planning is a hard problem, if only
because of the potentially large search space involved.
The second is that the environment the agent faces of-
ten changes in unpredictable ways, and this uncertainty
greatly lowers the utility of planning.

An attractive approach is to learn rules for both per-
ception and planning that can be quickly accessed and
applied, choosing actions with very little (or no) delib-
eration, and constantly checking their effects via per-
ception. This is exactly the design philosophy behind

5A purely reactive planning system learns the mapping from a set
of states S to a set of actions A (the § — A mapping); CHILDLIKE,
however, learns a partial § x A — § mapping in addition tothe § — A
mapping.



CHILDLIKE, which does not plan in the conventional
sense. CHILDLIKE attends to the most pressing need
at any point, keeping in short-term memory other press-
ing needs and possible satisfiers or actions. Moreover, it
perceives the world after each step or action.

The current version of the system uses a high-level vi-
sual input, but interesting features can be propagated to
this layer using a massively parallel, hierarchical struc-
ture of processes which starts with real images. Such a
recognition-cone based architecture has been successfully
employed for rapid recognition of large, digitized TV-
frame-like images [Li and Uhr, 1987). The serial depth of
such a system is logarithmic in the size of the sensed input
array, and such an architecture appears to roughly mirror
the constraints established from neuroanatomical stud-
ies of the brain (for a fuller discussion, see [Uhr, 1987]).
The CHILDLIKE system is an attempt to build on this
parallel-hierarchical framework to handle language inputs
and further (as described in this paper) to build and use
memory structures that encode learned rules about ac-
tions and needs, exploiting the bias provided by similarly
learned visual-linguistic associations.
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