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Abstract

Since the advent of computers, information sys-
tems have grown in terms of the quantity of
knowledge they deal with. Advances in data
management are on the critical path for usabil-
ity of these systems. This paper reports on a
novel approach to an important problem; that
of calculating the conceptual breadth of knowl-
edge or data in a knowledge base or database.
Breadth determination is useful in that ascrib-
ing meta-level knowledge of conceptual content
can help to predict, for example, the validity of
the closed-world assumption or the likelihood
of encountering new information of a particular
type. The point at which a system determines
it is likely to have breadth in a given knowl-
edge area may also serve as the trigger point
for calculations that assume relatively complete
knowledge in that area. The accurate determi-
nation of when a system has complete knowl-
edge in an area is crucial for the accurate ap-
plication of many Al algorithms.

Introduction

As information systems continue to grow in size and
complexity, it becomes more and more critical to develop
innovative methods of ascertaining the contents of these
information systems. Three features motivate such a
construction: (1) someone unfamiliar with the database
can pose general questions about the breadth of content
of the system (such as “do you know about X7"); (2) the
system can now distinguish potentially missing informa-
tion from information not likely to exist, ie., the dif-
ference between a “no” response and an “I don’t know”
response and (3) knowing when complete knowledge ex-
ists allows for processes that depend on this assumption
to operate. For example, the work of Pollack [Pollack,
1986) on plan failure analysis assumes the system has
complete knowledge of what the user knows. Knowing
when this is assumption is valid is critical in order to
correctly apply the methods. The last two motivations
address the important problem of knowing when to ap-
ply the closed world hypothesis [Reiter, 1978]; that ev-
erything not known is false.

This paper reports on a theory and implementation
of the cognitive notion of conceptual breadth, a concept
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not typically modelled from a computational perspec-
tive. While the concept of breadih of knowledge has a
clear intuitive meaning, this work aims to formalize the
notion and provide a computational mechanism for de-
termining breadth. By implementing this computation
on an arbitrary knowledge or data base, it is now possi-
ble to construct a meta-representation for the scope or
limits of what a system knows about. The representa-
tion is a “meta-representation” because it is knowledge
about the knowledge in the system.

This work is one portion of a larger project to provide
computational methods for automatically deriving what
a system knows, for example, what is salient [Rau, 1992)].
Breadth of knowledge is the notion of having a concep-
tual covering of a subject area. This covering may be
shallow or deep. Because virtually all databases neces-
sarily cover an arbitrary knowledge area, it is useful to
make a distinction between absolute breadth and relative
breadth. Relative breadth is breadth with respect to the
domain of operation of a system. Relative breadth is
achieved when a system contains knowledge along all of
its possible expected dimensions. For example, consider
a database that contains, among other things, informa-
tion about business occupation for each person in the
database. It might be limited to encountering only cer-
tain occupations due to the sample of the population in
the database, from a socio-economic, regional, age or sex
related or functional perspective. For relative breadth,
seeing almost all of this subset of occupations is suffi-
cient.

For absolute breadth, the set of occupations encoun-
tered should approximate the set of all occupations peo-
ple have with any regularity. That is, absolute breadth is
achieved when the system has seen all the possible values
a given field can take from the standpoint of an objec-
tive measure of human knowledge. Clearly, computing
absolute breadth is the more challenging problem.

This paper discusses algorithms for computing abso-
lute and relative breadth with respect to both open class
(infinite) categories, and closed class (finite) categories.
[t details the computational method used to ascertain
relative breadth for closed class categories, and provides
an experimental validation of the method on a test of
a 1,917 record database produced by an NLP system.
With these results, users may pose questions such as
“What countries of interest does this database cover?”



and obtain, in addition to a list of those countries, the
information as to whether these are all the countries or
just the countries the sysiem happens to have seen up
to that point. Of additional utility, expert reasoning sys-
tems can make likely inferences based on the closed world
assumption with this type of analysis.

Overview of Methodology

In this section, I describe the expected functionality
of a breadth calculation in general terms, followed by
the specific algorithms that implement this functionality.
The experimental results are also described.

Functionality

Intuitively, a system has broad knowledge in a given area
when it “knows about” (that is, has instances of) vir-
tually all of the possible manifestations of knowledge
in that area. Translated into database terms, given a
database field F that contains unique fillers (types, not
tokens) (f1, f2,- - -, fn), the system has breadth of knowl-
edge with respect to F when it has encountered virtually
all the f;, independent of how frequently each of the f;
appears. The assumption here is that a database field
filled with a value is equivalent to the database “know-
ing” that information®.

This straightforward observation implies that when a
system has seen, in a particular field, as many distinct
fillers as total numer of fillers, the expectation is that
breadth has not been achieved, and that there is a po-
tentially sizable number of unseen fillers not yet encoun-
tered. That is, when every filler of a field is unique, it is
more likely that the next filler will also be unique. Con-
versely, when a system has experienced high redundancy
in the distinct fillers, and/or has not seen new distinct
fillers for a while, the intuition and expectation is that
the system has likely seen most if not all the fillers it is
likely to encounter, and breadth has been achieved. This
scenario is complicated when it is impossible ever to have
breadth of knowledge given an infinite number of possi-
ble distinct types of fillers. The next section describes
how this and the above functionality is achieved.

Implementation

As we have just seen, the key concept for the compu-
tation of breadth is the certainty that the system has
seen all possible instances of a given concept. To com-
pute this, the system must first make a judgement as
to whether the fillers consist of a closed or open class.
That is, the system must determine whether the types
of fillers are finite or infinite. A closed class is a class of
objects with a fixed set of members, and doesn’t change.
An open class, on the other hand, has no finite number
of possible members. For example, the syntactic cate-
gory of determineris a closed class consisting of a small

!Note that this only applies to knowing the contents of a
category, where category is defined by the fields in a database.
For example, in the database used here, country is a field.
More complex concepts, such as “big countries” or “things
like countries” can be handled in exactly the same manner
as long as a class membership function can be defined.
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set of words (such as a, the, this, etc.). The syntac-
tic category of noun is an open class, as just about any
word can be a noun, and new nouns are created all the
time. This qualitative distinction is useful for natural
language processing because a system must be able to
predict the part of speech for a new, unknown word. It
is important for Al systems in general because it gives
information as to when it might be correct to apply a
closed world assumption.

In summary, in order to compute breadth, the system
must be able to perform two functions: (1) differenti-
ate between cases where there are potentially infinitely
many unique instance types (open-class fills) and cases
where the instances come from a finite set (closed-class
fills) and (2) quantify “virtually all” so that the expecta-
tion of when breadth is achieved is satisfied. This is done
by providing a numerical threshold based on the prob-
ability of the given distribution’s containing only those
distinct types, under the assumption that the distribu-
tion of values already seen provides limits on the nature
of the distribution in the database.

Determining Class Boundedness

Although the distinction between an open class and a
closed class is not always clear [Collins et al., 1975}, from
the perspective of a database, fillers of a field can always
be so classified.

Some databases may have a data dictionary that gives
type information for each field of each record. This infor-
mation does not always map into a correct open/closed
class determination, as in the case of person age. Per-
son age in a data dictionary may simply be a number
(an open class) whereas in reality it is a closed class of
numbers from 0 to 120 or so. However it is quite easy to
specify manually, for each field, whether it is closed or
open class, so this is an option as well.

The easiest purely automated method for determin-
ing whether values of the field or slot are members of a
closed class or an open class is to look at the number of
distinct values. There are much larger (order of magni-
tude) numbers of distinct values in open class fields in
any data or knowledge base of reasonable size. A reason-
able sized database would contain at least thousands of
records. Although it is possible to have a closed-class fill
that contains thousands of elements (for example in the
case of cities of the world), these “borderline” cases are
best assumed to be open-class, as it is likely that the set
of possible fills is not exhaustive. It is a safe assumption
then that closed-class fills, by their nature, are bounded
and the number of choices is dwarfed by the number of
instances in large samples. Therefore, computing these
values for a sample of the data will neatly classify a field
as either closed-class or open-class.

Determining Breadth

The next four sections discuss the breadth computa-
tion for each of the four cases of relative or absolute
breadth with respect to open or closed classes. Recall
that relative breadth is breadth of knowledge with re-
spect to a system’s domain of operation, as opposed to
some objective, absolute measure of human knowledge,
termed absolute breadth.



Relative Breadth, Closed Class: The problem of
determining relative breadth for a closed class category
is equivalent to the problem of making a determination
as to when the system has seen almost all, if not all,
of the members of that category. The threshold for this
determination can be manipulated according to how cer-
tain you would like the system to be in this judgement.
Relative breadth of a closed class category translates into
the point at which the ratio of the number of distinct
fillers seen to the total number of fillers seen (call this
d / n)is around 1 in T, where T is the threshold. In
the case where the number of distinct fillers is equal to
the number of fillers, this ratio is equal to 1. In this
case, the system has seen only unique instances and in-
tuitively would expect to see more; it has no reason to
believe that it has breadth. In cases where this ratio is
small and n is large, the system has seen many instances
of the finite set of fillers. Taking this distribution to be a
good approximation to the expected distribution across
the database, the system is unlikely to see any additional
distinct fillers. In this case, we can assume the system
has breadth. The point at which this cutoff is made de-
pends on how certain you would like the system to be in
its breadth determination.

In particular, at any given point in time, the system
computes either:

1. Breadth has been achieved. All the most frequently
occurring kinds of fillers have been seen, and the
only outliers are likely to be anomalous or both ex-
tremely infrequent and small in number compared
to the total number of distinct fillers.

2. Breadth has not been achieved. The frequency of
new fillers is such that it is likely that there are ad-
ditional fillers that the system has yet to encounter,
or there is insufficient data to judge.

We have experimented with more complicated formu-
lations involving information theory and statistics, but
this simple heuristic captures the intuition as well as the
data. The intuition is that breadth is achieved when you
are likely to have seen all the instances there are. The
results are described in the next section.

Absolute Breadth, Closed Class: Absolute
breadth with a closed class category takes advantage of a
generic conceptual hierarchy. This hierarchy was built to
support generic text processing, and contains concepts
representing the most frequent words of English and ap-
propriate super-categories. Because it has broad cover-
age of the more frequently used concepts that are used in
language, it is a good domain-independent starting point
for experiments comparing system knowledge to general
human knowledge. Absolute breadth is achieved when
over some percentage of the members of the closed-class
category, as dictated by the hierarchy, have been seen.
The exact percentage depends on what percentage of the
knowledge area one assumes needs to be covered before
breadth is achieved. Certainly more than 50%, probably
more than 75%, and less than 100%. Working with the
value of 98%, a simple example is breadth of knowledge
of the states in the U.S. Given that there are absolutely
and precisely 50 states, the system would have breadth
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of knowledge of what the states in the U.S. were if it
knew of any 49.

Absolute Breadth, Open Class: It is very difficult
to determine an absolute measure of breadth for an open
class category. For example, consider the problem of
ascertaining breadth of knowledge about the different
shapes that snowflakes can be; something that at least
folk science believes to be infinite. Since it is not possi-
ble even for an expert to know all the members of this
conceptual category, it is impossible to determine when
someone i8 likely to have breadth in this category, from
an absolute perspective.

However if the elements of the open-class can be cor-
rectly assigned to superclasses (conceptual parents), the
simple percentage of the total possible elements as de-
fined by a generic conceptual hierarchy can give an
approximation of when absolute breadth of an open-
class category has been achieved. Continuing with the
snowflake example, if snowflakes can be mapped into su-
perclasses (one such assignment may be by the shape
of the perimeter; hexagonal, round, five-pointed star,
etc.), then some breadth is achieved when all the possible
shapes have been seen.

There are two obstacles to overcome in order for this
approach to succeed. The first is correctly determining
the superclass categorization for each individual. In ad-
dition to choosing the correct parent from multiple pos-
sible parents of each individual, the hierarchy may not
contain a parent whose elements correspond to exactly
the set of possible individuals. For example, the set of
possible shapes of snowflakes in the world may not con-
tain shapes with less than four sides. Second, when the
superclass itself is infinite, as the category of “shape”
surely is, the superclass must be recursively partitioned
into its superclass. If no finite partition exists, it is not
possible to determine absolute breadth of this open class.
These are non-trivial problems requiring some theory of
superclasses, still under formulation.

Relative Breadth, Open Class: The solution to this
case is similar to the absolute breadth, open class case.
Where there are potentially infinitely many unique in-
stances (open-class), it is sufficient to have seen at least
one of every class of instance of the possible values in
that area in order to have achieved breadth. That is,
breadth with respect to open class values is calculated by
using the conceptual parent of each filler as opposed to
the filler itself in the same calculation as for closed class
values. The parent of each filler is computed by deter-
mining the conceptual category that the unique values
belong to. For another example, given a unique person
name, we transform that name to the category of human.
The same problems with correct classification still re-
main. For example, a given person may be subcatego-
rized as amilitary officer or government official,
each of these subcategories in turn are human. Thus de-



termining closed-class “clusters” of the open-class values
requires additional mechanics. The methods to perform
this clustering accurately are currently under experimen-
tation. After the clusters are determined, they will be
treated in the same manner as the truly closed-class val-
ues to provide a threshold for the breadth decision.

Experimental Results

This section details some of the results of running
the computations just described on a database. The
database used contained almost 2,000 database records
of information automatically extracted from texts re-
porting on terrorist activities in Latin America. These
records were all created with a natural language text pro-
cessing program, described elsewhere [Jacobs and Rau,
1990; Jacobs and Rau, 1993; Krupka et al., 1991]. Using
news stories as a source suggests that this work has the
potential to operate on arbitrary and general knowledge,
as well as specific databases. Figure 1 shows a sample
message and template from this set.

DEV-MUC4-0351
BOGOTA, 18 AUG 89 (EFE) -- [TEXT] SENATOR LUIS CARLOS GALAN, LIBERAL
PARTY PRESIDENTIAL HOFEFUL, WAS SHOT THIS EVENING WHEN HE WAS

ABOUT TO GIVE A SPEECH AT MAIN SQUARE OF SOACHA, 15 KM SOUTH OF
BOGUTA, IT WAS CONFIRMED BY POLICE AND HEALTH AUTHORITIES.

ACCORDING TO THE FIRST REFORTS, AT LEAST ONE MAN FIRED ON THE
SENATOR FROM AMONG THOSE GATHERED. THE SENATOR IS CURRENTLY AT
THE EMERGENCY ROOM OF A HOSPITAL IN BOSA, CLOSE TO SOACHA. TWO
OTHER PERSONS WERE WOUNDED DURING THE ATTACK.

0. MESSAGE: ID DEV-MUC3-0351

1. MESSAGE: TEMPLATE 1

2. INCIDENT: DATE 18 AUG 89

3. INCIDENT: LOCATION COLOMBIA: SOACHA (CITY)
4. INCIDENT: TYFE ATTACK

5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED

7. INCIDENT: INSTRUMENT TYPE GUN: “-»
TERRORIST ACT
“AT LEAST ONE MAN" / "ONE MAN™"

8. PERP: INCIDENT CATEGORY

9. PERP: INDIVIDUAL D

10. PERFP: ORGANIZATION ID

11. PERP: ORGANIZATION CONFIDENCE
12. PHYS TGT: ID

13, PHYS TGT: TYPE

14, PHYS TGT: NUMBER

15. PHYS TGT: FOREIGN NATION

16. PHYS TGT: EFFECT OF INCIDENT

17. PHYS TGT: TOTAL NUMBER

18. HUM TGT: NAME “LUNS CARLOS GALAN"
19. HUM TGT: DESCRIFTION “LIBERAL PARTY PRESIDENTIAL
HOFEFUL' /
“SENATOR": “LUIS CARLOS GALAN"
“TWO OTHER PERSONS"
20. HUM TGT: TYFE GOVERNMENT OFFICIAL: “LUIS
CARLOS

GALAN"

CIVILIAN: “TWO OTHER PERSONS"
1: "LUIS CARLOS GALAN™

2: “TWO OTHER PERSONS"

21. HUM TGT: NUMBER

2. HUM TGT: FOREIGN NATION

23, HUM TGT: EFFECT OF INCIDENT INJURY: “LUIS CARLOS GALAN""

INJURY: “TWO OTHER PERSONS"
24. HUM TGT: TOTAL NUMBER

Figure 1: Example Text and Data Extracted

Closed/Open Class Determination

First, the fields in the records are divided into closed and
open classes, according to gross frequency of occurrence
of distinct values, as discussed previously. This results
in the closed class slots illustrated in Figure 2.

Randomization of Data

After this determination, records are randomly se-
lected from the database and the closed-class fillers are
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Slos Type Status Total Distinct Values
—.—Wﬁbmr'—ecaﬂs—(mr—

3

4. INCIDENT TYPE CLOSED (6 distinct values)
5. INCIDENCT STAGE CLOSED (2 distinct values
5 INSTRUMENT TYPE CLOSED (19 distinct values)
B. INCIDENT CATEGORY CLOSED (4 distinct values)
11 PERP ORG-CONF CLOSED (7 distinct values)
13, PHYS TGT TYPE CLOSED (17 distinet values)
15. PHYS TGT NATION CLOSED (15 distinct values)
18 PHYS TGT EFFECT CLOSED (B distinct values)
200 HUMAN TGT TYPE CLOSED (12 distinct values)
23 HUMAN TGT NATION CLOSED (29 distinct values)
23, HUMAN TGT EFFECT CLOSED (11 distinct values)

Figure 2: Closed Class Categories

tabulated. Random selection is critical to overcome
time-dependent patterns of values typical in any real
database.

Threshold Determination

After experimentation, a threshold value 7 of 50 was
chosen. This was the minimal value that captured al-
most every distinct type, with any types remaining be-
ing anomalous. This number could be larger and still in-
clude these same distinct values. Any arbitrary number,
even if experimentally determined, is open to suspicions
of “picking a number out of a hat”. However if breadth
is viewed as a binary predicate, then such an arbitrary
threshold is required.

An alternative view of breadth is as a continuum,
whereby you have more or less breadth, and it mono-
tonically increases the more distinct types encountered.
Under this view, the threshold can be a range, and it
maps onto the breadth scale linearly. However for ease
of exposition, I assume here the binary predicate model.
This means that breadth is achieved when d/n < 1/50.
The number of distinct types seen so far (d), the total
number of fillers seen to this point (n), and the thresh-
old (50) are the numbers that estimate the breadth. It
is possible to graph d vs. n and see the point at which
breadth is achieved, as well as the theoretical projection
of where breadth would be achieved if no additional dis-
tinct values were seen past the point at which the data
ends.

A graphical form of presentation does not capture
the frequency with which each distinct value occurs in
the sample. In all cases where a cutoff (breadth deter-
mination) was made when not all distinct values had
been seen, the remaining distinct values were anoma-
lous. Anomalous data is data that occurs only once or
twice and is almost always a result of mistyping or other
errors. This is to be predicted, in that any values not
seen after 7 x d, where d is the number of distinct val-
ues, is likely not to occur with frequency greater than
1 in that amount. For example, suppose as is true in
the data presented here, that a breadth determination
for the field of Physical-Target-Type was made after
seeing 1134 instances. In this case, n = 1134, d = 17
and no additional distinct fill exists in the remainder of
this set of data. As such, breadth is still achieved if only
truly anomalous data has not been seen. If a significant
portion of the data is anomalous, the system would not
conclude breadth in the area, as the prediction is that
more unseen values would be likely to occur.



546 410 133 8839321511 7532222111111 1 1(no breadth)

550 194 192 14579 78 50 38 14 121110864 3 2 (2 1)

3 LOCATION OF INCIDENT

1 INCIDENT TYPE 734 349 145 51 20 7 (0)
5. INCIDENCT STAGE 1204 60 48 (0)

7. INSTRUMENT TYPE

8 INCIDENT CATEGORY 967 219 130 1 (0)

11. PERPETRATOR ORG-CONFIDENCE

13. PHYSICAL TGT TYPE

15. PHYSICAL TGT FOREIGN NATION
16. PHYSICAL TGT EFFECT

20. HUMAN TGT TYPE

22. HUMAN TGT FOREIGN NATION
23. HUMAN TGT EFFECT

617 353 148 103 102 80 (2)

580 160 133 121 118 114 77 58 46 42 41 31 23 1717 1 1 (0)
109216225116553211111(1)

765 346 162 156 45 12 7 (2)

1019 382 165 143 99 61 39 37 17 14 13 (1)
117949321010986554444322222221111111 (no breadth)
856 457 280 122 6531 1010751 (0)

Figure 3: Frequency Distribution of Values

Breadth Determination

Figure 3 illustrates the frequency with which each dis-
tinct value occurs. For example, there were 734 in-
stances of the first distinct value in the Type field, 349
instances of the next distinct value, etc. Numbers in
parenthesis indicate those anomalous values that are
missed by an early cutoff; no breadth indicates that
a likely breadth determination cannot be made. Note,
for example, how the preponderance of singular values
in the human-target-foreign-nation slot precludes a
breadth determination, as the expectation here is to-
wards more such values. When low frequency values
contribute significantly towards the total number of dis-
tinct values, breadth of knowledge must include even
these low frequency values as well. As can be seen from
these data, it is possible to answer the question “Do
you have breadth?” applied to the fields in a database.
Moreover this question can be answered so that in only
some of the fields, only a small fraction of the total num-
ber of distinct values is unseen; these values are likely
to be anomalous at the threshold value of 50. Breadth
determinations even more likely to cover 100% of all
values can be made at larger thresholds. With these
results, a user may get different answers to questions
posed to a database where the field referenced had com-
plete breadth of knowledge from one which did not have
breadth. For example, all data in which every member
of a field participates in some relationship must be quali-
fied as to whether the relationship hold for all-currently-
known, as opposed to all-possible.

Probabilistic Analysis

A probabilistic analysis shows that after 50 trials, if only
1 distinct value has surfaced, the chances of seeing a new
value next (i.e., on the 51th trial) are:

50\°' /1
(.ﬁ) (g-l-)_.om'

under the assumption that the a posteriori probability
equals the a priori probability; a good assumption with
large n. This only decreases for other values of 4, so that
if 2 distinct values have occurred in 50 x 2 = 100 trials,
the likelihood of seeing a pattern consisting of these 2
values in an arbitrary internal distribution, followed by
a new value, is .003.

The best case scenario is that all distinct values have
been seen. And although taking the pattern of historical
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values to predict the probability during the next trial
assumes a 1/50 chance the next value will be distinct (in
the worst case of having seen only one distinct value),
there is only a .007 chance that with this weighting we
would have seen the pattern just seen, thus lending con-
fidence that any distinct values yet unseen occur with
smaller probabilities. This analysis indicates that after
this many values, almost all, if not all, distinct values
have been seen with good certainty, and any values not
seen are likely to be anomalous or extremely infrequent.

The results presented in this section indicate that
fairly simple calculations can accurately predict when a
database or knowledge base has breadth in closed-class
subject areas.

Related Work

A great deal of research has addressed the problem
of what a system might know or believe [Halpern, 1986;
Vardi, 1988]. This work primarily concerns itself with
calculating what a system might be expected to be-
lieve, given some set of assertions. The work described
here contributes to that body of research by adding a
new metric that is calculated from what is known, the
breadth of knowledge. This work is related to recent
work in the area of knowledge discovery in databases
[Piatetsky-Shapiro and Frawley, 1991] that attempts to
learn new knowledge from the structure and content of
databases. However, the particular problem of comput-
ing breadth of knowledge has not been directly addressed
in this new research area.

Future Directions

The primary area for future work is in the develop-
ment and testing of the theory of superclasses to de-
termine breadth in the open-class cases. Another crit-
ical step currently on-going is the choice of application
area to illustrate the utility of knowing when breadth
has been achieved in a real Al/database system. Also
of importance is automating the process of threshold de-
termination. This value appears to vary as a function of
the raw number of distinct fills as well as the inherent
frequency distribution of a given field. Even more accu-
rate determinations may be made if the threshold can
be dynamically computed for each slot. Another activ-
ity currently on-going is embedding the breadth calcula-
tion in a suite of tools under development to construct a
meta-profile of the contents of an arbitrary knowledge or



database. With this profile, users of an application will
be able to get a feeling for the contents of a database
that can aid in their judgements of the appropriateness
of the database for their information needs, as well as
in constructing appropriate and answerable queries. In
addition, the system will be able to distinguish negative
searches from the result of information requests outside
an area of expertise from responses due to closed world
assumptions.

Conclusions

This paper began with an analysis of the notion of
conceptual breadth, with respect to absolute and rela-
tive measures, and with respect to closed class and open
class categories. A specific computation was detailed for
automatically determining the conceptual breadth of a
knowledge or database in the case of computing relative
breadth of closed class fields. The point at which breadth
is achieved is computed by taking a random sample from
the database, and keeping track of the percentage of dis-
tinct types to the total number of fillers seen. When
this percent falls below a threshold, it is expected that
most if not all the distinct types have been seen. This
method accurately identifies a point at which breadth
is very likely to have been achieved, and a probabilistic
analysis supports this expectation.

This work is important not only for the methods and
computations described here, but for investigating new
questions we would like large knowledge based system
to be able to answer - questions such as “what do you
know?" and “how complete is your knowledge?”. It is
critical in determining when to apply the closed-world
hypothesis, and when there is not enough information
for this assumption to apply. Looking at areas tradi-
tionally reserved for the purely cognitive realm, such as
meta-questions of knowledge scope and extent, offers a
new perspective from which to develop computational
answers.
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