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Abstract

NTD-Soar is a model of the perceptual, cognitive, and mo-
tor actions performed by the NASA Test Director as he uti-
lizes the materials in his surroundings and communicates with
others to prepare for a Space Shuttle Launch. The model,
built within the framework of a serial symbolic architecture, is
based on a number of independently designed general cogni-
tive capabilities as well as a cognitive analysis of a particular
task. This paper presents a detailed description of the model
and an assessment of its performance when compared to hu-
man data. NTD-Soar’s ability to display human-like real-time
performance demonstrates that symbolic models with a serial
bottleneck can account for complex behaviors which appear
to happen in parallel, simply by opportunistically interleaving
small elements of the different subtasks.

Introduction

Our goal in this research is to create an integrated cogni-
tive model by combining several independently developed
in-depth models of particular capabilities into a single agent.
Specifically, we are modeling the behavior of the NASA Test
Director (NTD). The NTD is responsible for coordinating
many facets of the testing and preparation of the Space Shuttle
before it is launched. He must complete a checklist of launch
procedures that, in its current form, consists of 3000 pages of
looseleaf manuals (the Operations and Maintenance Instruc-
tions, or OMI), as well as graphical timetables describing the
critical timing of particular launch events. To accomplish
this, the NTD talks extensively with other members of the
launch team over a two-way radio net called the Operational
Intercommunications System (OIS). In addition to maintain-
ing a good understanding of the status of the entire launch,
the NTD is responsible for coordinating troubleshooting at-
tempts by managing the communication between members of
the launch team who have the necessary expertise.

The complete model is made up of many capabilities which
interact with a simulated physical world, including a simulated
OMI and simulated OIS communications. Figure | shows an
example of an OMI page along with a graphical representation
of the model’s eye movements during visual scanning. Our
language model derives from NL-Soar’s systems for compre-
hension (Lewis, 1993; Lehman et al., 1991) and generation
(Rubinoff and Lehman, 1994). Decision making and problem
solving knowledge in NTD-Soar came from an earlier NTD
agent that provided a functional account of behavior in the
domain (John et al., 1991). The visual processing capabil-
ity was drawn from a number of sources, including the work
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of NOVA (Wiesmeyer, 1992). Each of these earlier models
was built within the common Soar framework, which made
it possible to import a great deal of this prior work directly.
The general Soar architecture, which is independent of these
models, is a classical, symbolic framework that allows limited
parallelism in perceptual and motor processing but imposes
a serial decision-making bottleneck in cognition (Laird et al.,
1987). While serial models have been successful in areas such
as planning and problem solving, there has been speculation
that their serial nature makes them inadequate for real-time
performance in other domains, including vision and language.
In particular, Fodor (1983) claims that such systems will not
be capable of handling real-time speech input or of simultane-
ously processing multiple senses. In counter-evidence to such
claims, we present an implemented serial symbolic model that
succeeds at these traditionally parallel tasks without violating
the constraints of real-time processing.

The Origins of the Model

The NTD model is shaped by many forces: data gathered
through psychological experiments, knowledge acquisition
sessions with NTDs, NASA's standard audio recordings of
launch communications, the physical artifacts in the NTD’s
environment, earlier models of individual capabilities, and the
Soar architecture itself.

Much of the planning, problem solving, and other cogni-
tive behavior was taken from a preliminary, purely functional
model of the NTD (Johnet al., 1991). The cognitive processes
in the preliminary NTD model were based on interviews, field
observation, and analysis of the task, the artifacts, and the dis-
course. As a functional model, it made no attempt to account
for timing data. In addition, this early model did not include
the details of natural language comprehension, generation, or
visual search.

The language comprehension capability of the current
model, NL-Soar, was developed as part of separate, ongoing
research on natural language in Soar (Lewis, 1993; Lehman
et al.,, 1991; Rubinoff and Lehman, 1994). The develop-
ment of the comprehension capability was guided in part by a
wide range of psycholinguistic phenomena such as embedded
constructions, non-problematic ambiguities, and garden-path
sentences, directly comparing empirical results on the time
course and success rate of comprehension for these different
types of utterances with the NL model’s predictions. A com-
patible model of language generation is being built within the
established NL-Soar framework, and is used in NTD-Soar as
well.



The organization of perceptual, cognitive, and motor ac-
tions of the NTD-Soar model takes it inspiration from the
Model Human Processor (Card et al., 1983), that s, perception
and motor actions proceed in parallel with serial cognition.
Models describing parallel activities using this organization
have been highly successful at predicting human behavior in
a variety of Human Computer Interaction tasks (John, 1988;
Gray et al., 1993; Chuah et al., 1994). Timing estimates for
motor behaviors were based on human performance data on
individual movements, including page turns (Egan, D. E., per-
sonal communication, March 19, 1991) and saccades (West-
heimer, 1954; Fuchs, 1976; Card et al., 1983). The perceptual
and cognitive aspects of visual attention were taken in part
from the NOVA model (Wiesmeyer, 1992), which itself pre-
dicts the response times in a large set of classic psychological
experiments.

A final contributionto the model comes from the Soar archi-
tecture itself, through its incorporation of many theoretically
motivated assumptions about cognition. One assumption that
is of particular importance for modeling the time course of
behavior is the duration of a Soar cognitive operator, the
smallest unit of serial cognitive behavior in Soar. Soar op-
erators are considered within the Soar theory to correspond
to a fixed duration of roughly 50 milliseconds of real time
(John, 1988; Wiesmeyer, 1992; Lewis, 1993). This assump-
tion provides the basis for all of the predictions of cognitive
durations made by the system. Newell (1990) discusses the
origin of this number, and its potential for variation. We
believe that the best way to evaluate this assumption is for
numerous researchers to utilize the same value in widely dis-
parate domains, and have therefore chosen what we believe
to be the most commonly used figure.

The focus of this research has been the integration of cogni-
tive capabilities independently constructed in Soar. Relevant
work outside of the Soar framework includes searching for in-
formation in structured texts (Carpenter and Alterman, 1994;
Lohse, 1993), and real-time language processing for special-
ized domains (Torrance, in press; Horswill, in press; Traum
et al., in press).

The Integrated Model

In a Soar model, different types of knowledge are organized
into problem spaces. Each problem space contains a set of
operators that modify or change states. The operators are
the smallest units of deliberate action and must be performed
sequentially. States collect information that may come from
the physical world through perception or from cognition, and
may be thought of as the system’s working memory. At
any point, the knowledge required to unequivocally select
or perform an operator may be unavailable in the current
problem space; in this case, an impasse arises, and a subgoal
is created to search for the knowledge in other problem spaces.
When knowledge that is able to resolve the impasse has been
found, the subgoal is accomplished, and a generalization of
the problem solving in the subgoal is learned. This chunk
integrates knowledge from one or more problem spaces and
makes it directly available in the problem space which gave
rise to the subgoal; thus in similar future situations, the system
behaves recognitionally, i.e., without impasse.

NTD-Soar has many different problem spaces that reflect
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OPERATION INSTRUCTIONS

DESCRIPTION VERIF,

S OPS 1 TRANSITION COMPLETE,
OMRSD SO0FKO,030-1R

P2EP VERIFY DATA PRESENT ON ALL CHANNELS.
(P/P 1 UNITS 5,6; P/P 2 UNITS 5,6)

16-0316

S VERIFY SLPAO AND SLPAL ACTIVE

IN BACKUP CONSOLE

DH(S VERIFY DOWNLISTED GHTLO TEO
<YIOWBIB0C1> 1S +/- 2 SEC

OF PLANNED LIFTOFF TIME,

OMRSD S00E00,360-1

T-20 MIN GPC DUMP

16-0917 -18H00S

16-0818

16-0918 P
i

 HARD COPIES TO BE TAKEN
{, C12 DURING G-HEM DUMP.

o
)
NOTE

DUMP WILL REQUIRE
APPROX 7 MINUTES.

16-0920 CRT (WASJE PG B)

Figure 1: A sample page of the OMI showing modeling of
eye fixations (boxes) and attention shifts (cross-hairs), during
the NTD’s search for his next participation. The focus of
attention is on the two columns which provide information
about the step participants.

the origins of its knowledge. Language comprehension and
generation problem spaces came from NL-Soar; task perfor-
mance and selection spaces came from the earlier NTD work;
and visual scanning spaces derive, in part, from NOVA. Apart
from these problem spaces, a modest amount of additional
control knowledge is needed to complete the model. This
additional knowledge is necessary to mediate among capabil-
ities contending for control of the central cognitive resource.
This contention among capabilities did not arise in any of the
prior models, because each one modeled only one capability.
In order to achieve this integration, the knowledge in some of
the prior systems, particularly in the earlier NTD work, had
to be re-organized in a manner capable of supporting this sort
of mediation and resource sharing.

Despite the relative separability of knowledge implied by
the problem-space organization, the NTD’s behavior consists
of perceptual, motor, linguistic, and other cognitive tasks that
are thoroughly intertwined. Often it is necessary that the tasks
be performed in parallel, or at the very least give this appear-
ance. Fodor (1983) argues that such behavior can be modeled
only by the action of interconnected cognitive modules work-
ing in parallel. Others have focused on achieving parallelism
by finding fixed ways to combine multiple parallel actions into
a single larger action (e.g. Covrigaru, 1992). Our approach,
however, is to explain the apparent parallelism as an ability
to switch fluidly and opportunistically among tasks. Thus,



NTD-Soar achieves the appearance of doing several things
in parallel by interleaving tasks, performing small elements
of one task berween elements of other tasks. Interleaving
successfully substitutes for parallelism because the system as
a whole is able to keep up with the various demands of the
external environment,

The real NTD is an expert at his task. For this reason, much
of the language and task behavior in the model should occur
in Soar’s Top problem space, which interacts with the outside
world and where rapid, expert behaviors occur via knowledge
that is available recognitionally. Recall that recognitional
knowledge consists of associations in long-term memory that
are immediately available because of the current contents of
working memory, rather than those that must be found and in-
tegrated through deliberate search in subgoals. Soar's learn-
ing mechanism automatically builds this recognitional knowl-
edge in its chunks, allowing novice models to develop into
expert models. Since we wish to model expert behavior, our
evaluations examine behavior after chunking has occurred.

In NTD-Soar, we have found it useful to categorize the
Top-space operators in much the same way Newell did in
his discussion of immediate behavior in Soar (Newell, 1990).
These categories reflect the types of basic cognitive activities
the NTD performs:

Attention operators direct the perceptual mechanism to pro-
vide additional information about particular elements in the
sensory input.

Comprehension operators interpret and elaborate the per-
ceptual inputs in conceptual terms, or perform further in-
ferences on the conceptual representation.

Task operators select the next task to be performed, thereby
biasing the selection of other operators.

Intend operators initiate physical responses from the system,
such as simulated speech or hand movements.

All tasks are performed by collections of these types of op-
erators, plus the perceptual and motor operators that interact
with the physical world. Naturally, language comprehension
is performed by perceptual and comprehension operators, and
language generation leads to intention and motor operators.
As Lewis discusses (1993), comprehension may take two to
five cognitive operators per word in handling syntactic pro-
cessing, semantic processing, and reference resolution. Gen-
eration involves a similar number of operators (roughly three)
with discourse-level processing replacing reference resolu-
tion.

Processing of the visual page is also performed through sim-
ilar operators — intention operators produce eye movements,
and perceptual, attention, and comprehension operators search
for information and perform the visual pattern matching that
allows NTD-Soar to determine whether it has found the in-
formation it is seeking. The model predicts a series of eye
movements, and within each eye fixation one or more shifts
of attention, giving patterns such as the one shown in Fig-
ure 1. The amount of work that may be done by one attention
operator is fairly well constrained by psychological data, as
described by Wiesmeyer (1992). Visual scanning differs from
reading because the “comprehension’ process often does not
need to consider either syntax or meaning; it is frequently

possible to find the desired information simply by matching
the pattern in visual attention to a target pattern.

The serial nature of the cognitive behavior and the time
associated with the operators makes it possible to perform
very direct comparisons between the model and human data.
Further, the short duration of the operators (50 ms each) allows
the predictions we make to have a very fine resolution, in many
cases finer than the data we are modeling. In the remainder of
this paper we explore the fit of the model to data we have, and
discuss further predictions for which we have not yet collected
the data needed to evaluate the model.

Performance of the Model

Communication in the launch room is done in a stylized, re-
stricted form of English, somewhat akin to Seaspeak, the in-
ternational language used aboard ships and aircraft, familiar in
such terms as “Roger,” “Copy,” and “Niner” (Crystal, 1987).
The performance data we have available from NASA contain
only these communications, including the words spoken by
the NTD himself. We have also collected eye movement data
from well-practiced non-NTD participants scanning the OMI
for launch information.

Segments of the NASA dialogs have been transcribed with
detailed timing information, allowing us to evaluate how well
we model the response times of an NTD to questions and
other linguistic input. As a side effect, we can also look at
the quality of our model with respect to other durations, such
as the time it takes the NTD to find and perform his next step
on the OMI checklist, by looking at the lengths of pauses
between dialogs.

Table 1: Sample NTD Dialogs

Time (ms) Speaker Utterance
147357 CVFS NTD, CVFS.
149686 NTD Go ahead, CVFS.
150814 CVFS Ready for BFS uplink.
152102 NTD  Icopy.
152620 NTD Houston Flight, NTD.
153969 NTD Perform BFS preflight

uplink loading.

156063 FLT In work.

One of the dialogs we have explored is acommunication be-
tween the NTD and the CVFS (another launch team member),
which proceeds as shown in Table 1. The times associated
with each line are measured in milliseconds from the start of
the transcript two minutes earlier. The first utterance, “NTD,
CVFS,” is a request to initiate a dialog with a specific party
(named first), made by the speaker (named second). The
NTD replies with, “Go ahead, CVFS,"” to acknowledge that
he is listening. The CVFS then provides the content of his
communication: that the computer is ready to receive a radio
transmission (uplink) of backup flight software (BFS). The
NTD acknowledges this with, “I copy.” The table continues
with the next dialog, in which the NTD summons Houston
Flight (FLT) to direct him to perform the uplink.

In order to model the timecourse of behavior, we simulated
the passage of time, using the serial nature of the operators and



their estimated duration to provide a measure of accumulated
time. We use this “clock™ initially to determine the times at
which the model hears the other speakers, and thereafter to
measure when the system responds. We measured the duration
of specific utterances from the audio tapes and used these as
auditory input to the model. The same measured durations
served as estimates of the duration of speech outputs from the
model.

The audio data from the dialog in Table 1 and NTD-Soar’s
behavior are depicted graphically in Figure 2. The dotted
boxes in the figure indicate the times of the observed speech
in the human data, with the dotted lines connecting them to
the model’s perceptual input (black boxes) and its motor out-
put (white boxes) for the corresponding events. Cognitive
activities are shown in grey, and the discontinuities where one
aspect of cognition (comprehension, generation, or page scan-
ning) pauses briefly while another proceeds give a graphical
depiction of the interleaving that is occurring. Each grey rect-
angle within the longer boxes represents a distinct cognitive
operator, falling into one of the four categories of attention,
comprehension, intention, or tasking. Preliminary analysis
of eye movement data we have collected suggests that the
model predicts the number and spatial distribution of eye fix-
ations well, but it is impossible to display a one-to-one match
between the model and real NTD behavior.

While no two cognitive events overlap, and motor activi-
ties using the same physical system (e.g. eyes, mouth) must
be serial, there is, nevertheless, some parallelism exploited
among cognition, perception, and motor activity. It is possi-
ble for the model to speak and move its eyes simultaneously,
but these actions must be initiated sequentially by cognition
in this model. A great deal of this interleaving goes on during
the first dialog, while the NTD is trying to locate the next step
in which he participates. Once he initiates the second dialog,
the visual search task is no longer necessary, so he spends his
cognitive time exclusively on communication.

As shown in Figure 2, the timecourse of behavior simu-
lated by the model’s speech output follows the performance
data available from NASA quite nicely. This figure further
illustrates how NTD-Soar manages its resources to keep up
with external events over which it has no control. It receives
auditory input from the external world at times and with du-
rations specified by the observed data. To accomplish all the
necessary tasks in the available time before more input begins,
NTD-Soar interleaves scanning the page to find the next rel-
evant step, comprehending the auditory input, and generating
an appropriate response. The total time taken by the model
from the when the CVFS hails the NTD until NTD-Soar in-
forms Houston that they can perform the BFS uplink loading
is 8392 msec, only 11% longer than the observed 7574 msec.

Although this prediction is quite good for a model of this
type, accurately predicting the timecourse of behavior of this
particular NTD during this particular launch is not the point
of our modeling effort, The point here is to demonstrate
a human-like model that keeps pace with the real-time con-
straints of acomplex task despite being built within a symbolic
architecture with a serial bottleneck in cognition. By “human-
like behavior” we mean that both the content and timecourse
of behavior displayed by the model are within the expected
range for NTDs. In the stylized communications of the launch
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procedure, the content of the NTD’s speech is often a iden-
tical to the words in the OMI, so the content of NTD-Soar’s
utterances 1s reasonable when it utters words from the OMI
as we have implemented it to do. As for the timecourse, the
pauses observed with the real NTD (after being hailed by the
CVFS and after hearing “Ready for BFS uplink™) are about
200 msec in length. In contrast, NTD-Soar pauses for 450
msec at the same places. However, empirical data show a
range of mean pauses from about 400 msec for telephone
conversations (Norwine and Murphy, 1938) to 700 msec for
face-to-face conversations (Jaffe and Feldstein, 1970). Thus
the pauses that NTD-Soar displays are well within the range
of acceptability for human conversation.

It is important to note that this particular implementation of
NTD-Soar is conservative in several ways, that is, it produces
slower behavior than other reasonable implementations would
produce. For instance, this implementation has a preference
for listening to the entire summons (“NTD, CVFS”) before
generating any of the structure required for articulating the ac-
knowledgement (“Go ahead CVFS"). A reasonable alternative
strategy would be for NTD-Soar to generate the structure for
“Go ahead” immediately after hearing “NTD,” and generate
the structure for “CVFS” after hearing those call letters (i.e.,
interleavingthe comprehension and generation tasks) and then
sequentially articulating the generated surface forms to out-
put the entire sentence. This strategy would produce a shorter
pause between summons and acknowledgement, closer to the
behavior of this particular real NTD. Another strategy choice
in this implementation that produces longer response times is
that this NTD-Soar waits until an entire word (or acronym) is
input before starting to comprehend that word. Thus, it waits
until all four syllables of “CVFS" have been heard before
beginning to comprehend who is speaking. This leads to a
conservative estimate in that the speaker is uniquely identified
by the first two or three call letters and may even be identifiable
from voice alone with the first call letter. Furthermore, we
are currently using a preliminary model of speech generation
that we believe will require fewer operators per word as it is
refined. For all these reasons, we find the current demonstra-
tion of human-like real-time behavior extremely encouraging,
since the response rate will only get better with refinement of
this model.

Currently, we can evaluate our model only by matching it
to the data available from NASA, the audio tape of a launch,
or by comparing it to our eye movement data. However, this
model makes other testable predictions for which we hope
to collect data in the future. Other observable actions not
discussed here are also incorporated in the full model, e.g.,
turning pages and checking off steps. Collecting these data
and comparing them to the predictions of the model remains
for future work.

Conclusions

We have described a serial, symbolic model of the NASA Test
Director that displays human-like, real-time performance by
interleaving tasks in reaction to a simulated physical world.
It makes testable predictions about the timecourse of behav-
ior and fits reasonably well to the available verbal behavior
observed in areal Space Shuttle launch. We believe that NTD-
Soar demonstrates the plausibility of a symbolic architecture
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Figure 2: Graphical comparison of audio data and NTD-Soar’s behavior.
Dotted lines indicate match with data, with slant reflecting discrepancies. Black boxes are perception

of speech input: grey are cognitive operators; white are motor operators that affect the physical world.



with a serial bottleneck in cognition for modeling human be-
havior in a rapidly changing world. At the very least, such
architectures cannot be dismissed by the claim that they can-
not keep up with external events without some parallelism in
cognition.
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