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Evidence for a Tagging Model of Human Lexical Category Disambiguation.

Steffan Corley and Matthew W. Crocker.
Centre for Cognitive Science,
University of Edinburgh,

Edinburgh EH8 9LW, UK.
Steffan.Corley@ed.ac.uk

Abstract.

We investigate the explanatory power of very simple
statistical mechanisms within a modular model of the Human
Sentence Processing Mechanism. In particular, we borrow the
idea of a 'part-of-speech tagger' from the field of Natural
Language Processing, and use this to explain a number of
existing experimental results in the area of lexical category
disambiguation. Not only can each be explained without the
need to posit extra mechanisms or constraints, but the exercise
also suggests a novel account for some established data.

Introduction.

Much recent research into human sentence processing has
concentrated on the use of experience-based statistical
knowledge in making initial decisions (Mitchell & Cuetos,
1991; MacDonald, Pearlmutter & Seidenberg, 1994,
Tanenhaus & Trueswell, 1994; Corley, Mitchell, Brysbaert,
Cuetos & Corley, 1995). We formalise this tendency by
introducing the “Statistical Hypothesis":

Statistical mechanisms play a central role in the
Human Sentence Processor.

It is worth establishing this as a very broad hypothesis,
which avoids making a number of claims that are the subject
of debate in the current literature while encompassing a
range of models that do. In particular, it does not claim that
all, or indeed any, initial decisions are made on the basis of
statistics, nor that statistics play a role at any particular level
of processing. Issues of granularity are also unspecified by
the hypothesis.

A number of statistical models have already been
proposed and therefore fall within the Statistical Hypothesis.
These include Mitchell and Cuetos’ (1991) “Tuning”, and
constraint-based models from MacDonald er al. (1994) and
Trueswell and Tanenhaus (1994). These models share a
common assumption - that all that statistics offer us is an
improved heuristic for making decisions in the face of
ambiguity and (in the case of the constraint-based models)
for discarding parallel analysis. That is, statistics supplement
a viable, non-statistical architecture.

We argue that statistical mechanisms are most suitable for
simple low-level processes that do not form part of
traditional models of the human sentence processing
mechanism (HSPM). We also suggest that a statistical model
should differ from traditional approaches in architecture, as
well as in decision procedures. Evidence for these views
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comes from the A.lL literature, where statistical mechanisms
have been used in traditional tasks such as parsing
(Magerman & Marcus, 1991), but have been most
successful in more constrained, low-level tasks such as
lexical category disambiguation and noun phrase boundary
detection (Church, 1988).

In this paper, we propose a distinct statistical process
performing lexical category disambiguation within a
modular HSPM. We briefly touch on the mathematics of
such a model, and then go on to test the predictions of our
model against some established experimental data. The
results not only demonstrate the power of such a simple
statistical technique, but also cast new light on the
experimental data. We conclude with a few wider
considerations and lessons learnt,

Lexical Category Disambiguation.

If we are to design a lexical category disambiguation
module, the first question must be what statistics should it
use?

It seems likely that the HSPM could gather statistics
relating individual words to their lexical category (e.g. how
often “post” appears as a noun or verb). Beyond that,
experimental evidence supports the use of limited
contextual information (Juliano & Tanenhaus, 1993). The
simplest, most coarse-grained, contextual statistics are
lexical category co-occurrence statistics (e.g. how often a
noun follows a preposition). Given no compelling evidence
for finer-grained information, we limit ourselves to these
two statistics.

It happens that a simple process using exactly these
statistics has been well explored in the A.IL literature. It is
called a part-of-speech “tagger”. Its job is to determine a
preferred set of part-of-speech “tags” for a given set of
words. Equation 1 is used to assign a probability to each
possible tag set (or “tag path™).

P(to, ...t Woy ... Wa) = [ TPV | )Pt 1) (1)
i=1

This equation can be applied incrementally. That is, after
each word we may calculate a contingent probability for
each tag path terminating at that word; an initial decision
may be made as soon as the word is seen. However, this

! w; is the word at position i in the sentence, 1, is a possible tag for
that word.
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decision may be altered by the tagger when later words are
encountered (see section 4 for further discussion).

Figure | depicts tagging the two words “some men".
Supposing we already know the probability of *‘some”
occurring as a determiner, noun or adjective. We can then
work out the probability of each tag path in which “men” is
a noun by multiplying the relevant probability for “some”
by the word-tag (P(w; | t;), where w; is “men”) and bigram
(P(t;| t;-1)) probabilities. Similar calculations can be
performed for tag paths in which the tag for “men” has some
other value - for instance adjective or verb. The most likely
tag for “men” is the one that occurs in the most probable tag
path.

Tag 1 Tag2
: z
2 a
. n
] Tl
2 3
- >

Figure 1: Tagging the words “some men”.?

As stated, this algorithm is expensive in a real world
situation, as it involves remembering all possible tag paths
through an arbitrarily long input sentence. However, a large
number of clear losers can rapidly be discarded. With this
simplification, the algorithm is linear (Viterbi, 1967).

Taggers, in general, are extremely accurate (often 95% —
see Charniak, 1993). However, they have distinctive
breakdown and repair patterns, which we will argue are
similar to those shown by humans.

We propose that a lexical category disambiguation
module, functionally equivalent to a tagger, occurs as a
distinct process with human lexical access — prior to a
modular® syntactic component. Its purpose is to make ‘quick
and dirty’ decisions based on limited statistical information.
These decisions may then be altered at “higher” levels of
processing. In sections 3 and 4 we present existing
experimental evidence which supports this claim.

Tagging and Initial Decisions.

Noun-Verb Ambiguities.

Following Frazier and Rayner (1987), MacDonald (1993)
investigated processing of sentences where a word is
ambiguous between noun and verb readings, following
another noun.

1. The union told reporters that the warehouse fires
many workers each spring...

? The numbers in this figure are invented for the sake of exposition
and are not intended to represent real probabilities.

} By ‘modular’, we mean that processes and knowledge are
somehow distinct, but we leave for later research the issue of the
nature and degree of their communication.

2. The union told reporters that the corporation fires
many workers each spring...

In 1, the two words form a plausible noun compound
(“warehouse fires”). As all her disambiguations favour a
verb reading for the ambiguous word?*, MacDonald calls this
an “unsupportive bias”. In contrast, the potential noun
compound in 2 (“corporation fires”) is implausible, and so
there is a supportive bias.

The experiment also included two unambiguous
conditions in which the noun compound was ruled out on
syntactic grounds. 3 and 4 are sample materials for the
unsupportive and supportive bias versions of this condition.

3. The union told reporters that the warehouses fire
many workers each spring...

4. The union told reporters that the corporations fire
many workers each spring...

MacDonald found that bias did appear to influence the
initial decision of the HSPM. There was a significant
increase in reading time for the disambiguating region in
unsupportive bias conditions (compared to the analogous
unambiguous condition), but almost no difference after a
supportive bias. That is, the evidence suggests that 1 is the
only case in which the HSPM makes an initial decision in
favour of the noun compound reading.

MacDonald goes on to correlate “supportive bias” with
some fine-grained statistical measures, including word-word
co-occurrence frequencies and the head-modifier preference
of the first noun (“corporation” or “warehouse’ above). The
tagger model does not include such fine-grained statistics,
and it is therefore clear that our predictions will be
substantially different. It so happens that the frequency with
which a noun follows another noun is very close to that with
which a verb follows a noun in all corpora we have
examined. That is, there is unlikely to be any strong
contextual bias. The behaviour of the tagger will therefore
depend largely on the category bias of the individual
ambiguous words used.

Figure 2 represents the noun-verb bias of each of the
ambiguous words in MacDonald’s experiment’. The data
was obtained from a corpus count and equation 2 was used
to calculate each word’s “bias” from the count.

(2)

: noun count
bias = log| ————
verb count

4 We refer to MacDonald's second experiment. The first is largely
concerned with refuting Frazier and Rayner’s (1987)
experimental materials, and is therefore of little relevance here.

5 The mean bias is 3.69 and the standard deviation is 1.97. This
data was obtained from the British National Corpus (BNC),
which contains over 100 million words of British English. The
data only includes the plural (“-s") form of the word (the
alternative spelling “programmes” was included in the count for
“programs”). However, even if we include both base and plural
forms, the results are similar (mean 2.66, standard deviation
1.79). Searching smaller corpora of American English
(SUSANNE and part of the TreeBank Corpus) also gives very
similar results.
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Figure 2: Bias of ambiguous words in MacDonald’s (1993)
experiment.

It should be clear that the vast majority of MacDonald's
experimental materials were strongly biased towards a
nominal reading. The initial decision of the tagger depends
on two probabilities - P(r;]#;-;), the contextual bias
(roughly equal for the noun and verb readings), and
P(w; | 1;), the word bias, represented in figure 2. The tagger
model therefore predicts an initial decision in favour of the
noun reading for all of MacDonald’s experimental items
(with the possible exception of those based on the word
“returns”™). This decision will be rapidly revised following
syntactic analysis in 3 and 4, and may be revised following
pragmatic analysis in 2. We would expect these revisions to
cause processing delays as the word is read.

This partially agrees with MacDonald's reported findings.
We predict a similar pattern of results in the disambiguating
region. However, we also predict processing delays on the
ambiguous word. Fortunately, MacDonald reported the
reading times for the ambiguous word (shown in figure 3).

ms B Ambiguous
O uUnambiguous

Supportive Bias Unsupportive Bias

Figure 3: Length-Adjusted Reading Times for the
Ambiguous Word from MacDonald (1993).

In conditions 2, 3 and 4, there is a significant processing
delay on the ambiguous word compared to condition 1.
MacDonald attributes this to the overhead of building the
more complex verb phrase structure and calls it a “reverse
ambiguity effect” (MacDonald, 1994). However, this
processing delay is directly predicted by our model, without
introducing complexity measures and using a simpler
statistical model.

“That” Ambiguity.
Juliano and Tanenhaus (1993, experiment 1) investigated the
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initial decisions of the HSPM when faced with the
ambiguous word “that” in two contexts — sentence initially
and following a verb. They forced disambiguation by
manipulating the number of the following noun.

5. The lawyer insisted that experienced diplomat
would be very helpful,

6. The lawyer insisted that experienced diplomats
would be very helpful.

7. That experienced diplomat would be very helpful to
the lawyer.

8. That experienced diplomats would be very helpful
made the lawyer confident.

In 5 and 7, “that” must be a determiner as the following
noun is singular. In contrast, the plural noun in 6 and 8
forces the complementiser reading.

Juliano and Tanenhaus found an initial preference for the
complementiser reading following a verb (5 and 6), but for
the determiner reading sentence initially (7 and 8). This was
demonstrated by greater reading times in the disambiguating
region in 5 (compared to 6) and in 8 (compared to 7).

It would appear that these results can easily be explained
in terms of the tagger architecture. They rely on a regular
pattern in the language — that complementisers are more
frequent following verbs than sentence initially — which is
captured by the lexical category co-occurrence statistics
employed by the tagger. Table 1 lists the relevant statistics.

Prob. of Comp. | Prob. of Det.

0.0003
0.0234

0.0652
0.0296

Sentence Initial

Following Verb

Table 1: Estimated probabilities of complementiser and
determiner in two contexts (from BNC).

In both cases the preference is in favour of the determiner
reading. However, the tagger also makes use of word-tag
statistics, and these are biased the other way (P(that | comp)
= 1.0, P(that | det) = 0.171). This bias is strong enough to
overcome the comparatively weak contextual bias following
a verb, but not the far stronger sentence initial bias. So the
predictions for the tagger model match Juliano and
Tanenhaus's data — an initial decision in favour of a
determiner at the beginning of a sentence, but a
complementiser reading is preferred immediately following
a verb.

The Tagger’s Role in Reanalysis.

The results reported so far demonstrate that the initial
decisions made by a tagging model match some established
experimental results. However, in the tagging literature
there are also good and efficient mechanisms for reassigning
tags downstream, that is, reanalysis within the tagger. This
section explores whether the tagger's limited reanalysis
capabilities may be sufficient to explain some experimental
data.



How Tagger Reanalysis Works.

We have already discussed how the tagger assigns a
probability to a tag path. Returning to figure 1, suppose that
P(N | A) — the probability of a noun following an adjective —
was more than twice P(N|D) — the probability of a noun
following a determiner. The tag path in which “men” is a
noun and “some” is an adjective would then have a higher
contingent probability than that in which “some” is a
determiner. So the tagger would have altered its previous
decision about the most likely tag for “some”.

Such reanalysis must involve a change in the previous tag
(in a bigram model). However, it is possible (though
extremely unlikely) that the previous two or more tags will
be revised. Figure 4 depicts tagging the two contrasting
sentences “without her he was lost” and “without her
contributions were lost”. We plot the probabilities assigned
by the tagger to the two most likely tag paths after each
word.

-=- Possessive
— Personal Pronoun

without her he was
prob.
1.0 1 M *
I”--
v ‘\
0 e

without her contributions were

Figure 4: Tagging Two Contrasting Sentences.5

The tagger’s initial decision when it encounters the word
“her” is to favour the possessive reading. However, “he” is
unambiguously a personal pronoun and the sequence
possessive followed by personal pronoun is extremely
unlikely. The tagger’s analysis rapidly changes.

In contrast, reanalysis does not occur in the
“contributions” case (possessive remains the preferred
reading), so we predict a garden path effect on
disambiguation. According to Pritchett (1992), this sentence
produces a conscious garden path. However, we know of no
published experimental evidence to confirm this prediction.

Post-Ambiguity Constraints.

MacDonald (1994) investigated a number of contextual

® These probabilities, and those in figure 5, have been scaled to
addupto 1.
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manipulations which can make main verb/reduced relative
ambiguities easier to parse. Among these were “post-
ambiguity constraints”.

9. The sleek greyhound raced at the track won four
trophies.
The sleek greyhound admired at the track won four
trophies.
The sleek greyhound shown at the track won four
trophies.
The sleek greyhound admired all day long won four
trophies.

10.
11.

12.

MacDonald discovered that sentences such as 9 result in
greater reading time for the disambiguating region (“won
four trophies™) than either 10 or 11 (the unambiguous
control). However, the ambiguous region of 10 (“admired at
the track”) is slower to read than the same region in 9.

MacDonald argues that the difference occurs as
“admired” is strongly biased towards a transitive reading.
When a transitive verb is not immediately followed by a
noun phrase, a strong constraint is violated and an
alternative analysis may be sought. In this case, the reduced
relative reading becomes the preferred analysis, as the
intransitive reading is unlikely. This “post-ambiguity
constraint” does not aid in processing 9 as “raced” is more
frequently intransitive, and this reading is consistent with a
following prepositional phrase.

The constraint MacDonald proposes here is one of lexical
category co-occurrence. She also demonstrates that a “poor
constraint” — where the constituent following the verb is
initially ambiguous between noun phrase and other reading
(as in 12) — is less helpful to the reader. These observations
appear to match the reanalysis behaviour of a tagger.

Past Participle
prob; o |EEsEEE Transitive
1.0 - — - — Intransitive
0.5 4 ek
: ‘--..,:—"..-\—n-—-u—-—u
0= ———_—\M.—..-ﬁ—-‘-
man  held at the police
prob.
1.0 4
/u —_—— = — -
"
0549 .~
..... X
0 e i it
man fought at the police

Figure 5: Behaviour of Tagger with Transitive and
Intransitive Biased Verbs.

In order to simulate this behaviour, we must train a tagger to



assign transitivity information as part of the lexical category.
We achieved this by automatically marking all verbs in the
SUSANNE corpus for transitivity. Unfortunately, this
marking can only be done for this particular corpus, which
is rather small. While we obtained reliable tag co-
occurrence statistics, we did not have sufficient lexical
statistics to tag the same sentences as MacDonald used. We
therefore tagged the two sentences “the man held at the
police station fainted” and “the man fought at the police
station fainted” — which happened, in our corpus, to be
biased towards transitive and intransitive respectively. The
results are shown in figure 5.

In the “held” case, the tagger initially prefers the
transitive reading but rejects this in favour of the reduced
relative reading on encountering the following preposition.
In this case, we predict increased reading time in the
ambiguous region. In contrast, the intransitive reading is
preferred and there is no reanalysis in the case of “fought”,
so we predict increased reading time in the disambiguating
region. This agrees with MacDonald’s (1994) results, and so
the tagger offers a simpler explanation of her “post-
ambiguity constraint”.

Conclusions.

The primary conclusion of this work is that a tagger model
can account for some psychological data. The inclusion of a
tagger within a modular model of the HSPM provides, at
very low cost, a significant aid in ambiguity resolution. This
initial study suggests such a model may be psychologically
plausible.

Why not a Constraint-Based Model?

We have argued that our “tagger” account may be a
plausible model of part of the HSPM. However, the
experimental results we explain are taken from research into
constraint-based models (MacDonald, Pearlmutter &
Seidenberg, 1994; Trueswell & Tanenhaus, 1994). Clearly,
these can account for the same data. Why should our model
be preferred?

Our argument is that a modular model such as the one we
are proposing is “simpler”. Advocates of constraint-based
approaches have argued that their models are structurally
simpler (MacDonald, Pearlmutter & Seidenberg, 1994).
However, within a probabilistic framework, structural
simplicity does not seem to be the correct metric.

* In a constraint-based model, a large number of
parameters may effect an initial decision during
sentence processing. In our model, initial decisions
are mitigated by two simple statistical counts, yet we
can still account for the same data.

The range of information types that effect initial
decisions in constraint-based models mean that a
huge amount of statistical information must be
gathered during language learning. Our model is far
more “compact”.

Due to the sparsity of some statistical data, it can be
difficult to reliably estimate the parameters required
by constraint-based models. The interaction of these
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parameters also tends to be underspecified, making it
difficult to produce concrete predictions. The simpler
statistics used by our model mean that it is predictive.

Constraint-based models allow statistical information
to cross levels of representation — for instance, the
previous phoneme may be used as a predictor for the
next word. We argue that the best predictors tend to
occur on the same level of representation. This is
built in to our model — again, reducing the number of
parameters. Such behaviour may, at best, be emergent
from constraint-based models, while it is predicted by
ours.

In summary, our model uses simpler statistics, and therefore
less parameters, than constraint-based models, and makes
no appeal to additional mechanisms, yet still predicts the
same data.

Further Conclusions and Lessons Learnt.

We have argued that our model is simpler than a constraint-
based model, but can account for the same data. However,
the implications are far wider than this.

We are not just using statistics to supplement the decision
making process of an existing model. Instead, the use of
statistics has informed the architecture of the model. The
inclusion of low-level statistical mechanisms could
significantly reduce the workload of the structure building
component of the HSPM. Within a statistical approach, the
syntactic module need not be unitary.

We have also learnt two lessons from undertaking this
work. The first is that it can be very difficult to intuit the
behaviour of a particular statistical system. In order to
further the argument, we must build explicit mathematical
models as well as argue general principles. The second
lesson is that the complexity of behaviour possible with
very simple, coarse-grained statistical models can be
surprising.
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