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Goals and problem solving: Learning as search of three spaces
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Universitat Potsdam
14415 Postdam
Germany
{burns,vollmeye}@rz.uni-potsdam.de

A recent trend in computer-based learning has been to set up
systems that the learner explores, rather than setting very
specific goals to reach. Our previous research on complex
problem solving has supported this approach (Vollmeyer,
Burns, & Holyoak, 1996). When learning how to control a
system with a set of inputs linked to a set of outputs,
participants learned more about the system when they were
given a nonspecific goal rather than a specific goal. These
results could be explained using Simon and Lea's (1974)
dual-space framework (or that of Klahr & Dunbar, 1988,
who extend this framework to scientific discovery) in which
induction is seen as a search of instance space (i.e.,
examining states of the system), integrated with search of
rule space (i.e., formulating and testing rules that might
govern the system's behavior).

Protocol analysis by Vollmeyer and Burns (1995b)
provided evidence that a specific goal increases search of
instance space, while a nonspecific goal increases search of
rule space in that it increases the amount that problem
solvers test and modify hypotheses. The protocol studies
also suggest why some problem solvers do very poorly:
they test rules that are impossible. Thus a third type of
search can be proposed, search of model space. The problem
solver's model defines the rule space so if a learner has the
wrong model, search of rule space will be ineffectual and
they may learn more from search of instance space.

A test of a multispace model

To test if model space is separate from rule space, we
manipulated the model participants had as well as their
goals. Participants were given an input/output system
similar to, though simpler than, that used by Vollmeyer et
al. (1996). This task required problem solvers to control a
system that consisted of a set of outputs (water quality
measures in a tank) that could be manipulated by a set of
inputs (catalysts). The inputs had weighted links to the
outputs. Presented in Figure 1 are the links, which were not
shown to the participants. Similar to Vollmeyer et al.,
participants were given a specific goal (they were told at the
beginning the exact goal values they would later try to
reach) or a nonspecific goal (they were not told the goal
until they had to reach it). In addition, we manipulated the
model that participants had of the task by giving them a
good or poor model of the task. Protocol analysis by
Vollmeyer and Burns (1995b) found that one type of
incorrect hypothesis tested was that inputs interacted,
although none did. Accordingly, in this experiment
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participants given a poor model of the task were told that
inputs may interact. Participants given a good model of the
task were told that there was no possibility of interactions
between inputs because two catalysts were never put into the
tank at the same time. We predicted an interaction between
goal specificity and model type.
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Figure 1: System used in the experiment.

Method

Participants. One hundred and eighty-six students at the
University of California, Los Angeles participated in the
experiment for course credit.

Procedure. A 2x2 design was used with the factors goal
specificity (specific vs. nonspecific) and model (good vs.
poor). Participants were given instructions appropriate to
their condition; then they had two rounds of six trials each.
On each trial participants could manipulate the inputs and
observe the resulting outputs. At the end of each round
participants completed a diagram on which they indicated
what they knew about the structure of the system. From
these diagrams a structure score was derived in the same way
as described by Vollmeyer et al. (1996).

In the third round, participants tried to reach a goal, one
which specific-goal participants had known since the
beginning. Then all participants were given a new goal to
reach in a fourth round. This goal tested how well
participants could transfer what they knew to a new goal.
Transfer error was a measure of how close participants got to
this goal (see Vollmeyer et al., 1996).



Results and Discussion

As Vollmeyer et al. (1996) found, nonspecific-goal
participants (M = 2.36) learned more about how the system
worked than did specific goal participants (M = 1.93), as
measured by structure scores, F(1,182) = 8.83, p < .005.
However, there was no effect of model type on structure
scores. These finding replicates the results of Vollmeyer et
al. and suggests that nonspecific-goal participants searched
rule space more, regardless of model type.

There were no significant effects of goal or model on
transfer error, nor was there an interaction between these two
factors (though the pattern was as predicted). However, there
was a significant interaction between model type, goal
specificity and output type. Because the Chlorine
Concentration output is affected by two inputs, it is harder
to control. Vollmeyer and Burns (1995a) found evidence
that in a system like the one used in this experiment,
Chlorine concentration may show the strongest effects of
manipulations. Thus we examined the transfer error for
Chlorine concentration (see Figure 2, note that low scores
indicate greater accuracy). We found a significant interaction
between goal-specificity and model type, F(1,182) =4.09, p
< .05. If participants were given a good model, they
performed better if given a nonspecific-goal, just as in
Vollmeyer et al. (1996). However, if given a poor model,
participants performed better when given a specific goal.
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Figure 2: Transfer error for Chlorine concentration.

This experiment supports the theory proposed earlier, that
in order to explain problem-solving behavior it is necessary
to propose a three-space search. In this model search of
model space defines hypothesis space, search of hypothesis
space guides search of experiment space, and provides
evidence for search of model space. Search of experiment
space allows testing of hypotheses, and leads to the goal.

Implications

While we have proposed a three-space search theory, we
are not committed to proposing only three spaces. There
may be more than three conceptually different spaces,
especially for other tasks. What criteria should be used
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when proposing separate scarch spaces? Conceptually, new
spaces need to make sense, but ultimately empirical support
for the existence of multiple search spaces must be found. If
conceptually different types of search spaces exist then
experimental manipulation at the level of different spaces
should lead to different results. The experiment presented
here is an example of how empirical evidence can be used to
support the idea of separate scarch spaces, especially when it
is possible to predict interactions between factors.

One weakness of the above results is that this experiment
could not be used to established that movement is occurring
between different models. Thus we did not demonstrate that
actual search was occurring at the level of models. Further
evidence is required, such as protocol analysis as in
Vollmeyer and Burns (1995b), which showed that problem
solvers searched different rules, and different instances.

These results, and multispace models in general have
implications beyond problem solving and scientific
discovery. Most obviously, if they can be generalized they
have strong implications for learning. The results suggest
that whether a specific or nonspecific goal is beneficial for
learning will depend on how good is the learner's model of
the task. Furthermore, these types of models suggest ways
to understand results in other areas of cognition. For
example, implicit learning of artificial grammar may be
worse for someone looking for underlying rules, than for
someone who does not look for rules (Reber, 1976).
However, the result does not hold if the grammar is simple
enough. In terms of our three-space model, participants in
experiments with difficult grammars have a poor model of
the situation. Search of rule space will therefore be
ineffectual, so that a specific goal (i.e., focus on instances of
letter-strings) leads to better learning.

One challenge for this research is to establish what makes
model "poor". The key factor could be the relationship
between the true hypothesis space and problem solvers'
hypothesis space, but this proposal requires more research.
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