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Introduction

Historically, theorists that have highlighted the impor-
tance of modular properties of cognitive processing have
tended to suggest that the functions, representations,
and procedures of cognitive modules are innately speci-
fied (e.g., Fodor, 1983). By doing so, these researchers
de-emphasize the importance of cognitive development
and experience-dependent adaptation. The converse sit-
uation also appears to hold; theorists that have stressed
the ubiquity of experience-dependent adaptation have
tended to ignore or minimize the importance of modular
aspects of cognition (e.g., Piaget, 1955). Thus, modu-
larity and experience-dependent plasticity are often seen
as incompatible.

Recently, the view that modularity and plasticity are
incompatible has been questioned [e.g., Karmiloff-Smith
(1992)]. In particular, several researchers have recently
proposed computational systems that are modular learn-
ing devices. To understand the benefits of incorporating
modularity into a learner, it is useful to distinguish be-
tween divergent computation and convergent computa-
tion (Jordan and Jacobs, 1992). Divergent computation
involves taking data from a single source and perform-
ing different computations on it. This is useful when-
ever an animal has multiple goals and must utilize the
data differently depending on the goal. For a learner, it
is often advantageous to use different modules to learn
different computations because adaptations that occur
when learning to satisfy some goal are decoupled from
adaptations that are needed to reach other (presumably
different) goals. Convergent computation involves taking
data in different channels or formats (such as different
sensory modalities) and integrating them into a common
channel or format. A learner attempting to discover the
structure of its environment may benefit from correlating
the outputs of distinct sensory modules that each process
data from a different modality. In this way, structure can
be found that is not present (or not easily detected) in
the data from a single modality.

This abstract briefly reviews two recently proposed
modular learning devices, one based on divergent com-
putation and the other on convergent computation.

Mixtures-of-Experts Architecture

The first device is referred to as a “mixtures-of-experts”
(ME) architecture and it was originally proposed by Ja-
cobs, Jordan, Nowlan, and Hinton (1991). The archi-

43

Qn
Gating
Network g
Expen Y, g
% Network 1 \
p .-'\-._‘* ,
L] . »

Experl /
vﬂ

Network n

Figure 1: Mixtures-of-Experts Architecture

tecture is intended as an instantiation of the idea that
competition can lead to functional specialization. Anal-
ogous to Darwinian evolutionary processes, modules of
the architecture compete for the right to learn to per-
form a set of tasks. Due to the competition, modules
specialize; that is, modules that are initially functional-
ly undifferentiated learn over time to perform different
tasks. More specifically, an ME architecture is a modular
system that learns task decompositions in the sense that
it uses different connectionist networks to learn input-
output training patterns from different regions of the
input space (i.e. the space of all possible inputs). As a
result of the competition, different networks learn dif-
ferent training patterns and, thus, learn to compute dif-
ferent functions. The architecture consists of two types
of networks: ezpert networks and a gating network (see
Figure 1). The expert networks compete to learn the
training patterns. For each training pattern, feedback
information is distributed to the experts on the basis
of their relative performance; a network whose response
most closely matches the desired response (i.e. the win-
ner of the competition) receives lots of feedback informa-
tion whereas other networks receive no or little feedback.
The gating network weights the outputs of the experts
so that, for each input pattern, the expert that is most
likely to produce the correct response is weighted more
heavily than the other experts.

An interesting feature of the mixtures-of-experts
framework is the roles it assigns to nature and nurture
in the acquisition of functional specializations. The ME
architecture tends to allocate to each task an expert
network whose structure is well-matched to that task.



Structural properties of a network, such as its topolo-
gy, receptive field characteristics, or pattern of connec-
tivity, bias a network so as to make it a particularly
good learner for some tasks but a poor learner for other
tasks. When expert networks with different structural
properties compete to learn the training patterns, each
network tends to win the competition for those patterns
belonging to the task for which its structure makes it a
good learner. Consequently, the architecture is capable
of discovering structure-function relationships. The per-
formance of the architecture is consistent with the theo-
ry that genetic instructions do not necessarily stipulate
directly the function to be performed by each brain re-
gion. Instead, genetic instructions may assign different
structural properties to different regions. These struc-
turally different regions may then, due to their perfor-
mance characteristics, take on particular functions for
which they are well-suited (cf. Bever (1980) and Kosslyn
(1987) for related processing accounts of cerebral later-
alization). Simulation results using the ME architecture,
as well as descriptions of other related architectures, can
be found in Jacobs and Jordan (1993), Jordan and Ja-
cobs (1994), Jacobs and Kosslyn (1994), and Peng, Ja-
cobs, and Tanner (1996).

IMAX Learning Architecture

The IMAX learning architecture is a system that uses
convergent computation and it was proposed by Becker
and Hinton (1992). The modules of this architecture re-
ceive data from different modalities (such as vision and
touch) or from the same modality at different times (such
as consecutive views of a rotating object) or even spatial-
ly adjacent parts of the same visual image. It is assumed
that different portions of the perceptual input have com-
mon causes in the external world. Modules that look at
separate but related portions can discover these com-
mon causes by striving to produce outputs that agree
with each other. In particular, modules adjust their pa-
rameters so as to maximize the mutual information a-
mong their outputs. This occurs when the output of
each module can be used to predict the outputs of the
other modules (see Figure 2). An interesting feature of
this architecture is that its learning procedure is entirely
unsupervised; there is no external teacher that provides
the architecture with training information. Instead, each
module acts as a teacher for each of the other modules in
the sense that each module compares its output with the
outputs of the other modules. Becker and Hinton (1992)
showed that when two modules view adjacent patches of
two-dimensional visual images, an architecture that has
no prior knowledge of the third dimension can discover
depth in random dot stereograms of curved surfaces.
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