MANCHESTER

1824
The University of Manchester

The University of Manchester Research

ESBMC-Python

Document Version
Submitted manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Farias, B., Menezes, R., Filho, E. B. D. L., Sun, Y., & Cordeiro, L. (in press). ESBMC-Python: A Bounded Model
Checker for Python Programs. In The ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA)

Published in:
The ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA)

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

OPEN ACCESS

Download date:06. Aug. 2024

https://research.manchester.ac.uk/en/publications/08f79973-9b61-4fd6-8590-b42095741f43

arXiv:2407.03472v1 [cs.SE] 3 Jul 2024

ESBMC-PYTHON: A BOUNDED MODEL CHECKER FOR PYTHON

PROGRAMS
Bruno Farias Rafael Menezes
University of Manchester University of Manchester
Manchester, UK Manchester, UK
bruno.farias@manchester.ac.uk rafael .menezes@postgrad.manchester.ac.uk
Eddie B. de Lima Filho Youcheng Sun
TPV Technology University of Manchester
Manaus, Brazil Manchester, UK
eddie.filho@tpv-tech.com youcheng.sun@manchester.ac.uk

Lucas C. Cordeiro
University of Manchester
Manchester, UK
lucas.cordeiro@manchester.ac.uk

ABSTRACT

This paper introduces a tool for verifying Python programs, which, using type annotation and front-end
processing, can harness the capabilities of a bounded model-checking (BMC) pipeline. It transforms
an input program into an abstract syntax tree to infer and add type information. Then, it translates
Python expressions and statements into an intermediate representation. Finally, it converts this
description into formulae evaluated with satisfiability modulo theories (SMT) solvers. The proposed
approach was realized with the efficient SMT-based bounded model checker (ESBMC), which resulted
in a tool called ESBMC-Python, the first BMC-based Python-code verifier. Experimental results, with
a test suite specifically developed for this purpose, showed its effectiveness, where successful and
failed tests were correctly evaluated. Moreover, it found a real problem in the Ethereum Consensus
Specification.

Keywords Formal Verification - Bounded Model Checking - Python

1 Introduction

Python is an interpreted and multi-paradigm programming language to develop software systems, including general
tasks, web applications, image processing, and artificial intelligence (AI) [1]. Regarding the latter, the presence of
Python code is particularly significant due to its extensive libraries, such as TensorFlow [2], PyTorch [3], and Keras[4].
Indeed, its simple syntax, typing facilities, and resources made it popular, leading to its use in systems with critical
security requirements. In contrast, its dynamic nature also hampers the development of static analyzers to ensure
correctness.

A technique that can be used to check Python programs, often employed for software verification, is bounded
model checking (BMC) [3]]. Based on it, different languages can be tackled with specific tools or even front-ends for
existing frameworks [6]. Moreover, the latter may harness the capacity of verification engines and then lead to more
comprehensive and accurate results [[7, 18].

ESBMC-Python: A Bounded Model Checker for Python Programs

However, the BMC'’s potential for verifying Python programs remains unexplored [9]. Again, it is mainly due
to its dynamic nature, which lacks explicit type information, unlike languages such as C [10]. Indeed, in Python,
concrete-type information is assigned during execution by its interpreter, which makes it harder for verifiers to evaluate
correctness, given that they rely on such knowledge. To tackle this, some studies have converted languages without
explicit type information into C code, making model checking possible [[11].

Although this seems to lead to a dead-end, an aspect should be mentioned: the Python syntax allows annotation
with type information on variables and functions. Consequently, this instrument, together with other resources, such as
abstract syntax trees (ASTs) and satisfiability modulo theories (SMT) or Boolean satisfiability (SAT) solvers, could be
used for reasoning about a program’s states.

In other words, type annotations in Python code could favor its analysis by a BMC tool, such as the efficient
SMT-based bounded model checker (ESBMC) [12]]. This formal verifier has already been applied to many systems,
including digital filters [13]], controllers [14} [15], and unmanned aerial vehicles [[16]. Such a track record assures
a distinct level to it, which, with new languages and features, can expand its applicability and provide a functional
approach.

The last paragraphs outline the inspiration for the present work, which proposes a scheme to make BMC tools capable
of processing Python code. It converts the latter into an AST structure, which is then type-annotated and formatted to
provide a description suitable to a BMC pipeline. Aiming at evaluation, we have implemented this approach using
ESBMC due to its mature and well-proved engine.

The proposed approach includes a front-end to generate ASTs from Python programs. These elements serve as
interfaces between Python source code and the ESBMC’s internal model-checking structure, thus translating a program
into an intermediate representation (IR) that it can analyze. Subsequently, the ESBMC’s back-end generates first-order
logical formulae for a program’s constraints and safety properties, aiming at formal verification. Ultimately, such
formulae are submitted to an SMT solver to check for satisfiability.

The resulting tool was named ESBMC-Python and used to evaluate a benchmark suite. The latter is a collection of
Python programs created to assess our tool and allow comparison with similar ones, which is another contribution of
ours that can be used for evaluating Python verifiers. In this context, ESBMC-Python verified Python programs in a few
milliseconds (30 ms on average), automatically identifying violations related to user-defined assertions and arithmetic
and logical operations. We have also used ESBMC-Python to check the Ethereum consensus specification [17]. As a
result, it found an issue confirmed and fixed by the respective maintainers.

2 Tool Description

ESBMC receives source code as input and generates AST descriptions, which identify the different operations within
a program and include relevant information, such as statement location and variable type and size. Next, program
statements are translated into symbols and added to a structure representing a program’s symbol table (ST) using the
ESBMC’s IR format (IRep). Indeed, the key aspect of using the BMC pipeline implemented in ESBMC is its ST, which
must be the final result of a Python front-end.

Moreover, Python offers type annotation for variables, function parameters, and return values, which does not affect
its runtime behavior or generate errors. Indeed, it should be used in static analysis to complement the information in
a resulting AST description. Consequently, we have implemented ESBMC-Python using the libraries ast [18] and
ast2json [19] together with ESBMC.

2.1 The Python Verification Architecture

The Python verification scheme proposed here results directly in a front-end for ESBMC, reusing its infrastructure and
back-end components. This complete arrangement is called ESBMC-Python, whose architecture is shown in Fig. [T}
The front-end includes code parsing, semantics analysis, and statement translation into an ESBMC’s ST. The gray
elements represent new front-end components, while the others are preexisting ones reused by ESBMC-Python.

ESBMC-Python: A Bounded Model Checker for Python Programs

Python frontend

Python program Python Abstract Python Type Python
Parser Syntax Tree Annotation Converter
Symbol

Table

: : Symbolic
SMT Solver \(/:erlf(lj(??tlon Execution GOTO IR GOTO
onditions Engine Engine

verification
sucessfull

counterexample

Figure 1: ESBMC-Python architecture.

Python Parser. The processing begins with Python Parser, which analyzes the input code structure and generates
the corresponding AST, using the module ast. Then, the respective output is passed to ast2json for JSON conversion.
Specifically, an instance of the Python interpreter is invoked to run a script that employs these libraries, ensuring that a
program’s behavior is correctly represented. Additionally, Python parser can handle user options from ESBMC to print
AST content, i.e., —parse-tree-too, and isolate functions, i.e., —function. This last feature allows the verification of an
entire file or its functions, which is useful to avoid the analyses of unsupported parts or reduce verification times. The
output of this component is a file ast.json containing the input program’s structure.

Python Type Annotation. Next, Python Type Annotation adds type annotations to the output AST using type
inference [20], i.e., it inserts new nodes with typing information for a program’s variables. This task involves processing
an AST and adding nodes AnnAssigned containing the field id with specific type information [18]].

Python Converter. Ending the front-end processing, Python converter turns the definition of classes, methods,
and functions into an ST in IRep. Specifically, it iterates over expressions in functions, conditional blocks, and loops,
converting each operation with the available ESBMC'’s application programming interface (API).

Subsequently, the existing ESBMC'’s pipeline retrieves expressions from the resulting ST and converts them into
GOTO language, which is considered another IR and represents its control flow graph (CFG). It transforms the program
logic into a simplified representation based on assignments, conditional and unconditional branches, assumes, and
assertions. Then, a symbolic execution interprets a bounded execution of the GOTO program, resulting in its static
single assignment (SSA) trace [21]]. In SSA forms, all assignments over variables construct new symbols that can be
combined using ¢-functions, ultimately generating Boolean formulae. Such elements represent a verification condition
(VC) C' A =P submitted to a solver, where C' means constraints and P denotes a safety property.

If a specific function F' is verified, using —function, Python Converter converts only F' and then adds its call, passing
non-deterministic values as parameters. This process evaluates F' with all possible values of a given type, helping
identify issues that often go unnoticed.

Note that ESBMC was not designed to handle object-oriented programming (OOP)[12]]. Therefore, we had to model
OOP features with structured programming. For instance, Python Converter resolves calls to overloaded or inherited
methods by searching for their definitions in base classes, respecting class ordering in inheritance lists. Moreover, when
class attributes are not defined for a given class, it looks for them in base classes from the respective ST.

ESBMC-Python supports built-in types, i.e., int, float, and boolean, and basic structures. The latter include logical
operations, comparisons, assignments, asserts, conditionals, loops, functions, module imports, classes, inheritance,
and polymorphism. Finally, regarding verification properties, it can detect division by zero, arithmetic overflows,
out-of-bounds array access, and user-defined assertions.

2.2 Illustrative Example

In this section, we explain tool usage for the program in Listing [T which includes a recursive function for the factorial
of an integer. Its input variable 7 is initialized with a non-deterministic value at line 7, whose range, with calls to
ESBMC_assume, is constrained to [1, 5], at line 8. Then, factorial is called, at line 9, and, finally, an assertion checks
that its return can not be 120, at line 10.

ESBMC-Python: A Bounded Model Checker for Python Programs

Listing[2] contains the AST in JSON format corresponding to the assignment to n that occurs at line 7 of Listing|[T]
Indeed, ESBMC-Python manipulates an AST by transforming simple assignments into annotated ones during its
program parsing process explained in Section [2.1] using AnnAssign nodes. In this case, the variable result is initialized
with the value returned by nondet_int.

ESBMC-Python verifies whether the negation of a property is satisfied, which becomes a satisfiability problem.
Using SSA, it creates C' with assignments, interval restrictions, and the factorial computation itself, leading to
C =[n=nondet()An > 0An < 6Aresult =¢p(n=1—-1,n=2—-2n=3—>6,n=4—24,n=>5— 120)],
while P uses line 10, resulting in P = [result # 120]. Then, the corresponding VC is submitted to a solver, which
tries to find a value combination that satisfies C' A —P.

This program can be verified by running the binary esbmc[ﬂwith our Python front-end already integrated, passing its
Python file name as a parameter. Assuming a file main.py, our tool can be executed using the command:

$ esbmc main.py --unwind 5

where —unwind limits the recursion depth during symbolic execution.
Fig. 2] contains the verification output for the same program in Listing[T} As one may notice, the solver within the
ESBMC'’s pipeline detects a value of 120 when n is equal to 5.

1 |{
2 "_type": "AnnAssign",
3 "annotation": {
4 "_type": "Name",
1 |def factorial(m:int) -> int: 5 "id": "int",
2 if n == 0 or n == 1: 6 },
3 return 1 7 "target": {
4 else: 8 "_type": "Name",
5 return n * factorial(m - 1) 9 "id": "n"
6 10 },
7 |n:int = nondet_int () 11 "value": {
8 | __ESBMC_assume(n > 0 and n < 6) 12 "_type": "Call",
9 |result:int = factorial(n) 13 "args": [],
10 | assert (result != 120) 14 "func": {

o K 15 "_type": "Name",
Listing 1: A Python program verifiable by ESBMC- 16 "id": "nondet_int",
Python. 17 3,

18 }
19 |}

Listing 2: AST in JSON for an annotated assignment.

3 Experimental Evaluation

Here, we present ESBMC-Python’s verification results, which intend to answer two experimental questions (EQ):

* EQ1 (soundness) - can our approach report known wrong programs and preserve the correct ones, presenting
soundness?

* EQ2 (performance) - what are the time and memory performances associated to our approach?

In this context, soundness refers to the capacity to ensure that no correct program is considered wrong.

"https://github.com/esbmc/esbmc/releases/tag/v7.6.1

https://github.com/esbmc/esbmc/releases/tag/v7.6.1

ESBMC-Python: A Bounded Model Checker for Python Programs

1 |ESBMC version 7.6.1 64-bit x86_64 linux

2 |Parsing main.py

3 |Converting

4 |Generating GOTO Program

5 |GOTO program creation time: 0.023s

6 |...

7 |Building error trace

8 | [Counterexample]

9 |State 1 file main.py line 7 column O thread 0
10 [mmmmmmm e -
11 |n = 5 (00000000 00000000 00000000 00000101)
12

13 |State 4 thread O

R e
15 |Violated property:

16 assertion

17 result != 120

18

19 | VERIFICATION FAILED

Figure 2: ESBMC-Python output.

To answer these questions, we created a benchmark suite of 85 programsE], each named for its target feature, split
across 15 categories. There are at least two tests: one with a failing assertion and the other with one or more passing
assertions. We also created extra elements for sensitive features such as imports and functions.

Moreover, we assess ESBMC-Python’s performance in handling different Python expressions by measuring memory
usage and verification times using the Linux time tool. The obtained results report total computer processing unit (CPU)
times, including user and system portions, thus gathering the real CPU occupation.

Our benchmark suite encompasses features usually found in real-world Python programs: arithmetic operations,
conditionals, loops, user assertions, bit-wise operations, classes, objects, class attributes, instance attributes, inheritance,
polymorphism, function definitions, function calls, recursive functions, module imports, non-determinism, and assume
directives. This way, it should not be considered only suitable for simple validation or a set of toy examples, which often
happens in initial studies [22]. Indeed, the absence of benchmarks for Python verification underscores its importance as
a possible baseline for future investigations.

We checked our benchmark suite on a 64-bit Intel 17-12700H processor with 16 GB of RAM, running Ubuntu 22.04.
Moreover, we used version 7.6.1 of ESBMC, following the compilation instructions in its project documentation ﬂ
Specifically regarding the ESBMC’s verification pipeline, we employed version 3.2.3 of the solver Boolector [23].

All verification processes were successful. This way, ESBMC-Python identified programs with property violations
and validated the ones with correct behavior, which answers EQ1.

EQ1: ESBMC-Python only detected property violations for wrong program elements, which included types,
conditionals, loops, functions, user assertions, and OOP aspects.

Table [T| summarizes average results for memory usage and execution time, per test category. The highest and lowest
average verification times were 49.1 ms and 24.5 ms, respectively, which, compared to what is obtained with BMC
tools for similar programs in other languages, can be regarded as satisfactory [24]. It also means that large project
repositories or extensive program sets could be verified in relatively short periods, automatically [25]. Regarding
memory consumption, the highest and lowest amounts were 26.4 MB and 14.5 MB, respectively, which is also usual
[24]. Moreover, the highest memory usage for an isolated test was 27 MB, which occurred in category Classes. It
seems to be due to the representation of instance attributes and the necessary search for base classes, when inheritance

“https://github.com/esbmc/esbmc/tree/master/regression/python
*https://github.com/esbmc/esbmc/blob/master/BUILDING . md

https://github.com/esbmc/esbmc/tree/master/regression/python
https://github.com/esbmc/esbmc/blob/master/BUILDING.md

ESBMC-Python: A Bounded Model Checker for Python Programs

is involved. Nevertheless, these figures are still considered low for modern personal computers. Finally, such results
provide a summarized view of the ESBMC-Python’s performance, thereby addressing EQ2.

Category Test Cases | Mem. Usage | Exec. Time
Arith operations 2 26.4 MB 33.5 ms
Assignments 5 18.5 MB 38 ms
Assume 4 16.5 MB 28.2 ms
Binary operations 2 20.5 MB 29.5 ms
Binary types 4 20.4 MB 28.5 ms
Built-in functions 7 19.9 MB 28.1 ms
Classes 9 19 MB 27.1 ms
Conditionals 4 17.8 MB 25.5 ms
Functions 11 21.8 MB 30 ms
Imports 8 15.3 MB 49.1 ms
Logical operations 6 20.4 MB 24.5 ms
Loops 10 20.7 MB 35.4 ms
Non-determinism 4 21.4 MB 29.2 ms
Numeric types 6 20.9 MB 29.1 ms
Type annotation 3 14.5 MB 27.3 ms

Table 1: Results for ESBMC-Python regarding our test suite.

EQ2: ESBMC-Python presented execution time and memory consumption figures that are similar to what is
noticed for BMC tools targeting other languages.

As far as we know, only one tool is similar to ESBMC-Python: modeling, simulation, and verification (MSV) [22].
However, there is no test set, reproducible results, or repository for retrieving its source code (see Section E[) which
impedes a direct comparison.

3.1 Experimental Results for the Ethereum Consensus Specification

We also used ESBMC-Python to check the Ethereum blockchain consensus protocol, which comprises elements that
control the Ethereum network’s node inclusion, validation, and validator penalty processes. It is described with a set of
markdown files, in a GitHub repository ﬂ containing functions that compose a reference API used to generate a Python
library called eth2spec.

All functions in this specification include parameters and return values with annotated typing. This way, one
could submit eth2spec for evaluation by ESBMC-Python. However, it also contains elements not initially handled by
ESBMC-Python, which led to extensions for custom types such as uint64, uint128, and uint256.

We used ESBMC-Python to verify Python files generated for eth2spec, which involved testing each function
individually (see Section [2.I). Specifically, we employed the parameter —function followed by the name of the function
to be verified, thus checking specific elements with non-determinism in their invocations.

As aresult, our evaluation revealed a division-by-zero in function integer_squareroot. This error occurred because
an unsigned integer overflowed to zero, after being incremented, and was later used as the denominator of a division
operation. Indeed, division-by-zero events in blockchains can lead to service interruptions, compromising their
availability and facilitating attacks.

4 Related Work

Shu et al. [22] proposed using the MSV language (MSVL) to describe and check Python programs with the MSV tool,
utilizing rules to express Python’s semantics in MSVL.

*https://github.com/ethereum/consensus-specs

https://github.com/ethereum/consensus-specs

ESBMC-Python: A Bounded Model Checker for Python Programs

Although this work proposes a technique for automatic verification, its examples and functionalities are still basic.
Hence, we can state that the MSV tool can not verify complex Python programs as found in industrial applications.
Moreover, it is not available for download, preventing its evaluation, comparison, and further development. We have
indeed attempted to contact its authors by email, but we did not receive a response while writing this paper.

5 Tool Availability

A video demonstration is available at https://t.1ly/QTSdp, and tool artifacts and documentation can be found at
https://t.1ly/7PSFv.

6 Conclusions and Future Work

This paper introduces ESBMC-Python, a novel tool to detect errors in Python programs. It builds a front-end for
the ESBMC framework that translates Python expressions into symbols, which are converted into a GOTO program,
symbolically executed, and checked for satisfiability. To the best of our knowledge, there is only one tool [22] to
formally verify Python code with model checking, which highlights the importance of our work. However, a direct
comparison was not possible due to code and result unavailability.

To evaluate ESBMC-Python’s effectiveness, we conducted experiments using a test suite. On average, simple
programs could be verified in 31.56ms. Moreover, such a suite can also serve as a reference for evaluating other Python
verification tools. Additionally, ESBMC-Python was able to identify a real bug in the specification of the Ethereum
blockchain consensus protocol.

In future work, we intend to extend ESBMC-Python’s capabilities to include more features. Additionally, we aim
to enhance our type inference algorithm to deal with more complex program flows. The potential of large language
models will also be explored to address type inference for complex expressions and execution paths. Finally, we plan to
develop operational models for verifying Al libraries.

Acknowledgments

This project was supported by the Ethereum Foundation under Grant FY22-0751.

References

[1] Guido Van Rossum and Fred L Drake Jr. Python tutorial, 1995.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine learning.
In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pages 265-283, 2016.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[4] Nikhil Ketkar and Eder Santana. Deep learning with Python, volume 1. Springer, 2017.

[5] Armin Biere. Bounded model checking. In Handbook of satisfiability, pages 739-764. 10S press, 2021.

[6] Felipe R Monteiro, Mikhail R Gadelha, and Lucas C Cordeiro. Model checking c++ programs. Software Testing,
Verification and Reliability, 32(1):e1793, 2022.

[7] Rafael Menezes, Daniel Moura, Helena Cavalcante, Rosiane de Freitas, and Lucas C Cordeiro. Esbmc-jimple:
verifying kotlin programs via jimple intermediate representation. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 777-780, 2022.

[8] Kunjian Song, Nedas Matulevicius, Eddie B de Lima Filho, and Lucas C Cordeiro. Esbmc-solidity: An smt-based

model checker for solidity smart contracts. In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, pages 65-69, 2022.

https://t.ly/QTSdp
https://t.ly/7PSFv

ESBMC-Python: A Bounded Model Checker for Python Programs

[9] Quoc-Sang Phan, Pasquale Malacaria, and Corina S Pdsareanu. Concurrent bounded model checking. ACM
SIGSOFT Software Engineering Notes, 40(1):1-5, 2015.

[10] Magnus Madsen. Static analysis of dynamic languages. 2015.

[11] Felipe R Monteiro, Francisco AP Januario, Lucas C Cordeiro, and Eddie B de Lima Filho. Bmclua: A translator
for model checking lua programs. ACM SIGSOFT Software Engineering Notes, 42(3):1-10, 2017.

[12] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Smt-based bounded model checking for embedded
ansi-c software. IEEE Transactions on Software Engineering, 38(4):957-974, 2011.

[13] Renato B. Abreu, Mikhail R. Gadelha, Lucas C. Cordeiro, Eddie Batista de Lima Filho, and Waldir Sabino
da Silva Jr. Bounded model checking for fixed-point digital filters. Journal of the Brazilian Computer Society,
22(1):1:1-1:20, 2016.

[14] Iury Valente de Bessa, Hussama Ibrahim Ismail, Lucas Carvalho Cordeiro, and Joao Edgar Chaves Filho.
Verification of delta form realization in fixed-point digital controllers using bounded model checking. In Brazilian
Symposium on Computing Systems Engineering, pages 49-54, 2014.

[15] Lennon C. Chaves, Hussama Ibrahim Ismail, Tury Valente de Bessa, Lucas C. Cordeiro, and Eddie Batista
de Lima Filho. Verifying fragility in digital systems with uncertainties using dsverifier v2.0. J. Syst. Softw.,
153:22-43, 2019.

[16] Lennon C. Chaves, Iury Bessa, Hussama Ismail, Adriano Bruno dos Santos Frutuoso, Lucas C. Cordeiro, and
Eddie Batista de Lima Filho. DSVerifier-aided verification applied to attitude control software in unmanned aerial
vehicles. IEEE Transactions on Reliability, 67(4):1420-1441, 2018.

[17] Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the ethereum 2.0 beacon chain. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 167—182.
Springer, 2022.

[18] Python Software Foundation. ast - abstract syntax trees, 2024. Accessed: 2024-06-03.
[19] Laurent Peuch. ast2json, 2024. Accessed: 2024-06-03.

[20] Dominic Duggan and Frederick Bent. Explaining type inference. Science of Computer Programming, 27(1):37-83,
1996.

[21] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(4):451-490, 1991.

[22] Xinfeng Shu, Fengyun Gao, Weiran Gao, Lili Zhang, Xiaobing Wang, and Liang Zhao. Model checking python
programs with msvl. In International Workshop on Structured Object-Oriented Formal Language and Method,
pages 205-224. Springer, 2019.

[23] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-vectors and arrays. In Tools and
Algorithms for the Construction and Analysis of Systems: 15th International Conference, TACAS 2009, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings 15, pages 174—177. Springer, 2009.

[24] Daniel Kroening and Michael Tautschnig. Cbmc—c bounded model checker: (competition contribution). In Tools
and Algorithms for the Construction and Analysis of Systems: 20th International Conference, TACAS 2014, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings 20, pages 389-391. Springer, 2014.

[25] Janislley Oliveira de Sousa, Bruno Carvalho de Farias, Thales Araujo da Silva, Lucas C Cordeiro, et al. Finding
software vulnerabilities in open-source ¢ projects via bounded model checking. arXiv preprint arXiv:2311.05281,
2023.

	Introduction
	Tool Description
	The Python Verification Architecture
	Illustrative Example

	Experimental Evaluation
	Experimental Results for the Ethereum Consensus Specification

	Related Work
	Tool Availability
	Conclusions and Future Work

