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Abstract

There is growing evidence showing the existence of selenium (Se) deficiency among

women and children in sub-Saharan Africa. Unfortunately, the key drivers of Se deficiency

are not clearly understood. This study assessed the determinants of Se deficiency among

children aged 6–59 months and Women of Reproductive Age (WRA), in Zimbabwe. This

cross-sectional biomarker study was conducted in selected districts in rural Zimbabwe (Mur-

ewa, Shamva, and Mutasa). Children aged 6–59 months (n = 683) and WRA (n = 683),

were selected using a systematic random sampling approach. Venous blood samples were

collected, processed, and stored according to World Health Organization (WHO) guidelines.

Plasma selenium concentration was measured using inductively coupled plasma-mass

spectrometry (ICP-MS). Anthropometric indices were assessed and classified based on

WHO standards. Demographic characteristics were adapted from the Zimbabwe Demo-

graphic Health Survey standard questionnaire. Multiple logistic regression analysis showed

that children whose mothers were Se deficient were 4 times more likely to be Se deficient

compared to those whose mothers were Se adequate (OR = 4.25; 95% CI; 1.55–11.67;

p = 0.005). Girl children were 3 times more likely to be Se deficient compared to boys (OR =

2.84; 95% CI; 1.08–7.51; p = 0.035). Women producing maize for consumption were 0.5

times more likely to be Se deficient than non-producers (OR = 0.47; 95% CI; 0.25–0.90;

p = 0.022). The risk of Se depletion in children was amplified by maternal deficiency. There-

fore, initiation of maternal multiple micronutrient supplementation from preconception

through lactation is beneficial to both children and women.

1. Introduction

Selenium deficiency is widespread among children and women in sub-Saharan Africa [1, 2]

and has been implicated as a potential causal factor of growth faltering in children [3, 4], and
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fertility impairments in women [5]. Worldwide, up to one in seven people are estimated to

have low dietary Se intake [6], and c. 0.5 to 1 billion people are Se deficient [7, 8]. Estimated

low dietary mineral supply of Se in Africa [9] may have considerable regional public health sig-

nificance [10]. The greater prevalence of Se deficiency highlighted in sub-Saharan African

countries [1], can be exacerbated by the human immunodeficiency virus [11] which is preva-

lent in many African settings [12], posing further potential public health concerns. Viral infec-

tion simultaneously increases the demand for micronutrients and causes their loss,

exacerbating deficiency [11].

Diet is the main source of Se [13] with meat and meat products rich in Se [14]. However,

across sub-Saharan Africa diets are predominantly crop-based and it is these sources that pro-

vide the majority of dietary Se [15]. Diets in sub-Saharan Africa consist primarily of carbohy-

drates [16]. In many parts of Africa, rural diets are frequently monotonous, consisting mainly

of starchy foods such as grains, tubers, and roots but with limited or negligible intake of ani-

mal-source foods [17]. The consumption of animal foods such as meat, poultry, and fish is lim-

ited, mainly because of economic, cultural, and religious constraints [15]. Plants can be

classified into three main groups based on the Se concentrations in their tissues; non-accumu-

lators, accumulators, and hyperaccumulators [18]. Non-accumulating plants such as grains

and grasses contain lower concentrations of Se [18, 19]. Maize grain in sub-Saharan African

countries has a sub-optimal Se concentration of < 50 μg/kg dry mass [2] and is not likely to

meet human requirements [20]. Typically, Se deficiency is a consequence of inadequate dietary

Se intake [14, 21, 22], however, there are multiple proximal risk factors: inflammation [23, 24],

body mass index (BMI) [25, 26], gender, age, protein malnutrition [27] and dietary diversity

[28]. Socioeconomic and environmental distal factors, such as wealth status and rural or urban

residence, influence Se status [22, 29]. In low and middle-income countries macroeconomic

volatility is common and severe negative economic shocks can substantially increase poverty,

food insecurity, and risks of inadequate dietary diversity [30]. Preliminary estimates for Zim-

babwe suggested that the number of extremely poor reached 7.9 million in 2020, 49% of the

population [31]. Government data for Zimbabwe [32] indicates that 4% of children between

6–23 months of age receive a minimum acceptable diet and 16% consume the minimum num-

ber of food groups recommended for their age. It also reports that the proportion of women of

reproductive age (WRA) consuming at least four food groups was 44% [32], and more than

50% of the population is affected by micronutrient deficiencies (MNDs) [33].

Human Se deficiency has been reported previously in Zimbabwe [34, 35]. However, the key

drivers of Se deficiency are not clearly understood. Data for this study was collected in rural

Zimbabwe as part of a baseline study for a micronutrient biomarker survey. The work was

guided by the UNICEF’s Conceptual Framework on the Determinants of Maternal and Child

Nutrition, 2020 [36] and explored the immediate, underlying, basic, and enabling causes of Se

deficiency among children aged 6–59 months and WRA in selected districts (Murewa,

Shamva, and Mutasa).

2. Materials and methods

2.1. Ethical statements

The study was conducted in line with the Declaration of Helsinki. Ethical approval was

obtained from the Institutional Review Boards of the University of Nottingham (Refer-

ence#446–1912) and the Medical Research Council of Zimbabwe (MRCZ/A/2575). Shipping

permissions, including a material transfer agreement were secured. Research approval was

awarded by local government officials and the Ministry of Health at the provincial, district,
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clinic, and village levels. Written informed consent and assent were obtained from all WRA

and all child participants before the commencement of data collection, respectively.

2.2. Sampling

A detailed description of the methods has been reported elsewhere [35, 37, 38]. In summary,

the current paper presents data from a cross-sectional study on the determinants of Se defi-

ciency in children aged 6–59 months (n = 683) and in WRA (n = 683) from three rural dis-

tricts; Murewa (17.6502˚S, 31.7787˚E), Shamva (17.04409˚S, 31.6739˚E), and Mutasa

(18.6155˚S, 32.6730˚E) in Zimbabwe. Data collection was between 25 October 2021 and 30

January 2022. The sampling design was nested at the level of the National Demographic Health

Survey (DHS) sampling approach [33]. Thirty Enumeration areas (EAs) proportional to the

most recently recorded population [39], were selected per district. Random systematic sam-

pling without replacement was used to select 10 eligible households from each EA; the Kish

Grid [40] was used for the within-household selection of multiple eligible individuals. Partici-

pants were directed to the nearest health facility for data and sample collection by trained

personnel.

2.3. Data and sample management

A temporary laboratory was established at each collection site to minimize contamination,

facilitate accurate record keeping, and for traceability of samples. Strict quality control mea-

sures were followed as guided by the CDC [41]. Each participant was assigned a unique

numeric identity that was used on data capture forms, sample collection materials, and subse-

quent analyses to maintain anonymity. Passcode-protected tablets with Kobo

Toolbox software (Android v2022.1.2) were used to capture demographic and specimen data.

2.4. Data collection and analysis

2.4.1. Demographic characteristics. A questionnaire adapted from ZDHS [33] was used

to collect household demographic data. The questionnaire also assessed socioeconomic char-

acteristics (education level, marital status, and income status), health status, agricultural, water

sanitation and hygiene (WASH), and infant and young child feeding practices as adapted from

the UNICEF conceptual framework (Fig 1).

2.4.2. Anthropometry. Weight, recumbent length, and height were measured according

to World Health Organization (WHO) standard protocols [42] and standardized as required

for nutrition assessments [43, 44]. The anthropometric indices, namely height-for-age Z-

score (HAZ), weight-for-height Z-score (WHZ), and weight-for-age Z-score (WAZ), for

children, were generated using the Emergency Nutrition Assessment software for SMART

2011 [45]. Wasting was defined as WHZ below -2 Standard Deviations (SD), stunting as

HAZ below-2SD, underweight as WAZ below -2SD, and overweight as WHZ above +2SD

[44]. Birth weight was obtained from the infant’s health cards, birth weight below 2.5 kg was

defined as low birth weight (LBW) [46]. Body mass index (BMI) was calculated and classified

for WRA according to WHO guidelines; BMI below 18.5 was considered as underweight;

18.5–24.9, normal weight; 25.0–29.9, overweight; 30.0–34.9, obesity class I; 35.0–39.9, obesity

class II; and above 40 defined as morbid obesity [47]. Maternal short stature was defined as

height below 145 cm [48]. While the reference reproductive age for optimal birth outcomes

was 18–34 years [49].

2.4.3. Blood. A venous blood sample (6 mL blood) was collected from children 6–59

months and WRA according to the WHO blood collection guidelines [50]. Blood was centri-

fuged to isolate plasma in the field at 3000 rpm for 10 minutes. Center for Disease Control &
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Prevention (CDC) guidelines were followed to reduce the risk of hemolysis [51]. A cold chain

was maintained during sample transportation and the plasma was stored at -80˚C. Biomarkers

of inflammation; C-reactive protein and alpha-1-acid glycoprotein were analyzed by a sand-

wich ELISA as adapted from Erhardt et al., (2004) [52]. Quantification of plasma Se concentra-

tion was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) as

described by Belay et al. (2020) [53] and Phiri et al. (2019) [22]. The limit of detection (LOD)

and the limit of quantification (LOQ) were 0.029 and 0.096 μg/L, respectively. All the sample

observations were above the LOD/LOQ limits. Average Se recovery was 99% and 102% for ref-

erence materials (Seronorm L-1 (Lot 1801802) and Seronorm L-2 (Lot 1801803); Nycomed

Pharma AS, Billingstad, Norway), respectively. No significant correlation was observed

between plasma Se concentration and any of the inflammation biomarkers measured (S1

Table), thus no correction was applied for inflammation [50, 54].

2.5. Data analysis

Selenium deficiency was determined against plasma Se concentration thresholds of 70 μg/L

[53] for children aged 6–59 months and women aged 15–49 years. Statistical analysis used

SPSS for Windows version 20 (IBM, New York, USA). Exploratory data analysis was done

using, quantile–quantile (QQ) plots to check for outliers and data normality [55]. Selenium

concentration data was collapsed into categorical data (Se adequate and Se deficient) and was

Fig 1. Theoretical framework adapted from UNICEF conceptual framework on the Determinants of Maternal and Child Nutrition

2020 [36].

https://doi.org/10.1371/journal.pgph.0003376.g001
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considered as the dependent variable singly for children and WRA. Association between the

dependent variable and socio-demographic factors (age, sex, education level, marital status,

agricultural and WASH factors) and anthropometry indicators were evaluated using the Pear-

son Chi-square test and two-sided p-values< 0.05 were considered statistically significant. Sig-

nificant variables (determinants) from the Pearson Chi-square test were further analyzed

using logistic regression, with the removal criterion (pR) value set at 0.10 and 0.05 as the entry

criterion (pE) value by the enter method to establish predictors of Se deficiency. All statistical

measures were at 95% confidence interval.

3. Results

3.1. Demographic and health characteristics of participants

A total of 683 mother-child pair Se concentration measurements (dependent variable) were

matched and analyzed. The sample size in the three districts was proportionate across the two

demographic groups as was the boy/girl ratio of the children. The median (Q1, Q3) age for the

children was 29 months [18, 44], and that for women was 30 years [24, 37]. The majority of

WRA who participated in the study were married (88.7%) and had acquired secondary-level

education qualifications (66.2%). A few households (8.5%) earned a monthly household

income adequate to meet the total consumption poverty line, set at 63.50 United States dollars

per person, as of August 2021 [56]. Land ownership was� 5 hectares for most of the house-

holds (60.8%). Maize (Zea mays) was the most predominant (64%) crop grown for household

consumption. Most households had access to water, sanitation, and hygiene (WASH) facilities,

with 78.4% having adequate water in the 30 days preceding the survey date, despite the water

source being located off-premises for most of the households (66.5%). Almost all households

(96.9%) had access to toilet facilities.

Close to a third (27.7%) of the children were classified as stunted, 2.8% were wasted and

13.5% were underweight. The rate of LBW was 9.0%. A high prevalence of breastfeeding was

observed in the sampled population, with 69.4% of children exclusively breastfed up to 6

months as recommended by WHO. Vitamin A supplementation was high at>70%, while

multiple micronutrient powder (MNP) supplementation coverage was low (9.4%) in children.

Disease prevalence 2 weeks preceding the survey date indicated diarrhea had the lowest preva-

lence (24.6%), followed by fever (34.2%), with respiratory infection having the highest preva-

lence (35.5%). The prevalence of anemia (Hb <11 g/dL) in children was high at 28.1%, and

96.2% of the children were Se deficient. In WRA, the prevalence of anemia (Hb <12 g/dL) was

19.8% and that of Se deficiency was 70.1%. Based on BMI, a few women (10.9%) were under-

weight, the majority (52.1%) had normal weight and the proportions of overweight, class I,

class II, and morbid obesity were 26.6%, 7.1%, 1.9%, and 1.3%, respectively.

3.2. Sociodemographic factors and Se deficiency

3.2.1. Children 6–59 months. Residency in Murewa district (p<0.001), being a girl

(p = 0.008), the use of unimproved dug wells as a source of drinking water (p = 0.014), and the

production of maize (p<0.001), cowpeas (Vigna unguiculata) (p<0.001), groundnuts (Ara-
chis hypogaea) (p<0.001), sweet potatoes (Ipomoea batatas) (p<0.001), sugar beans (Phaseo-
lus vulgaris) (p = 0.005) and onions (Allium cepa) (p = 0.002), for household consumption

(Table 1) were significantly associated with Se deficiency in children (Pearson’s χ2 test).

3.2.2. Women of reproductive age. Residency in Murewa district (p<0.001), reproduc-

tive age of 18–34 years (p = 0.036), monthly income of below 10 USD (p<0.001), consump-

tion of water from unimproved dug wells (p<0.001) and production of maize (p<0.001),

production of cowpeas (p<0.001), production of groundnuts (p<0.001), production of sweet
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Table 1. Sociodemographic characteristics of children 6–59 months in rural Zimbabwe by Se status.

Variable Total

n (%)

‡Se-adequate

n (%)

§Se deficient

n (%)

P-value†

District

Mutasa 203 (29.7) 17 (8.4) 186 (91.6) <0.001*
Shamva 257 (37.6) 5 (1.9) 252 (98.1)

Murewa 223 (32.7) 4 (1.8) 219 (98.2)

Sex

Boy 332 (49.7) 19 (5.7) 313 (94.3) 0.008*
Girl 336 (50.3) 6 (1.8) 330 (98.2)

Age group (months)

6–8 25 (3.8) 1 (4.0) 24 (96.0) 0.915

9–11 32 (4.8) 0 (0) 32 (100)

12–17 91 (13.7) 4 (4.4) 87 (95.6)

18–23 102 (15.4) 5 (4.9) 97 (95.1)

24–35 156 (23.5) 5 (3.2) 151 (96.8)

36–47 132 (19.9) 6 (4.5) 126 (95.5)

48–59 125 (18.9) 4 (3.2) 121 (96.8)

Number of children under 5 years in the household

1 489 (71.6) 23 (4.7) 466 (95.3) 0.073

>1 194 (28.4) 3 (1.5) 191 (98.5)

Household size

�4 265 (38.8) 7 (2.6) 258 (97.4) 0.226

>4 418 (61.2) 19 (4.5) 399 (95.5)

Household monthly income (USD)

<10 58 (8.5) 2 (3.4) 56 (96.6) 0.328

10–50 312 (45.7) 7 (2.2) 305 (97.8)

51–110 170 (24.9) 10 (5.9) 160 (94.1)

120–210 85 (12.4) 4 (4.7) 81 (95.3)

>220 58 (8.5) 3 (5.2) 55 (94.8)

Agricultural land ownership

No 268 (39.2) 9 (3.4) 259 (96.6) 0.687

Yes 415 (60.8) 17 (4.1) 398 (95.9)

Livestock ownership

Chicken /poultry

1 139 (20.4.) 7 (5.0) 132 (95.0) 0.454

>1 544 (79.6) 19 (3.5) 525 (96.5)

Common crops grown for consumption

Maize
No 233 (36.0) 17 (7.3) 216 (92.7) <0.001*
Yes 414 (64.0) 6 (1.4) 408 (98.6)

Cowpeas
No 337 (53.8) 21 (6.2) 316 (93.8) <0.001*
Yes 289 (46.2) 2 (0.7) 287 (99.3)

Groundnuts
No 321 (51.3) 20 (6.2) 301 (93.8) <0.001*
Yes 305 (48.7) 3 (1.0) 302 (99.0)

Sugar beans
No 425 (67.9) 22 (5.2) 403 (94.8) 0.005*

(Continued)
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potatoes (p<0.001), production of sugar beans (p<0.001) and production of onions (p

<0.001) for household consumption, (Table 2) were significantly associated with Se deficiency

in WRA (Pearson’s χ2 test).

3.3. Factors associated with Se deficiency

3.3.1. Children 6–59 months. Child Se status was significantly associated with maternal

Se status (p<0.001). The proportion of Se-deficient children was higher (98.7%) in Se-

Table 1. (Continued)

Variable Total

n (%)

‡Se-adequate

n (%)

§Se deficient

n (%)

P-value†

Yes 201 (32.1) 1 (0.5) 200 (99.5)

Sweet potatoes
No 345 (55.1) 21 (6.1) 324 (93.6) <0.001*
Yes 281 (44.9) 2 (0.7) 279 (99.3)

Onions
No 417 (66.6) 22 (5.3) 395 (94.7) 0.002*
Yes 209 (33.4) 1 (0.5) 208 (99.5)

Unimproved dug wells as a source of drinking water

No 485 (71.0) 24 (4.9) 461 (95.1) 0.014*
Yes 198 (29.0) 2 (1.0) 196 (99.0)

Location of water source

Off-premise (elsewhere) 454 (66.5) 16 (3.5) 438 (96.5) 0.443

In-house (own dwelling) 24 (3.5) 0 (0) 24 (100)

On-premise (own yard/plot) 205 (30.0) 10 (4.9) 195 (95.1)

Insufficient water in the past month

No 536 (78.4) 19 (3.6) 517 (96.4) 0.641

Yes 147 (21.6) 7 (4.8) 140 (95.2)

Treatment of drinking water

No 604 (88.4) 25 (4.1) 579 (95.9) 0.243

Yes 79 (11.6) 1 (1.3) 78 (11.9)

Toilet facility

No 21 (3.1) 1 (4.8) 20 (95.2) >0.999

Yes 662 (96.9) 25 (3.8) 637 (96.2)

Toilet facility shared with other households

No 489 (71.6) 19 (3.9) 470 (96.1) >0.999

Yes 194 (28.4) 7 (3.6) 187 (96.4)

Toilet facility on-premise

No 662 (96.9) 25 (3.8) 637 (96.2) >0.999

Yes 21 (3.1) 1 (4.8) 20 (95.2)

Overall, Se deficiency prevalence: 683 (100) 26 (3.8) 657 (96.2)

Notes:
§ Plasma Se concentration <70 μg/L;
‡ Plasma Se concentration�70 μg/L;

*Significant at P <0�05;
†P value from Pearson’s χ2 test.

Age categories and average household size used are based on previous demographic health surveys (33)

https://doi.org/10.1371/journal.pgph.0003376.t001
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Table 2. Sociodemographic characteristics of WRA in rural Zimbabwe by Se status.

Variable Total

n (% of category)

‡Se adequate

n (%)

§Se deficient

n (%)

P-value†

District

Mutasa 203 (29.7) 108 (53.2) 95 (46.8) <0.001*
Shamva 257 (37.6) 62 (24.1) 195 (75.9)

Murewa 223 (32.7) 34 (15.2) 189 (84.8)

Reproductive age (years)

<18 15 (2.2) 9 (60.0) 6 (40.0)

18–34 426 (62.4) 123 (28.9)) 303 (71.1) 0.036*
�35 242 (35.4) 72 (29.8) 170 (70.2)

Marital status

Married monogamy 567 (83.0) 170 (30.0) 397 (70.0) 0.888

Married polygamy 39 (5.7) 13 (33.3) 26 (66.7)

Separated/divorced 46 (6.7) 14 (30.4) 32 (69.6)

Single /never married 7 (1.0) 2 (28.6) 5 (1.0)

Widowed 24 (3.5) 5 (20.8) 19 (79.2)

Education status

Tertiary 7 (1.0) 4 (57.1) 3 (42.9) 0.274

Advanced level 6 (0.9) 3 (50.0) 3 (50.0)

Ordinary level 452 (66.2) 136 (30.1) 316 (69.9)

Primary 205 (30.0) 59 (28.8) 146 (71.2)

No formal education 13 (1.9) 2 (15.4) 11 (84.6)

Number of children under 5 years in the household

1 489 (71.6) 155 (31.7) 334 (68.3) 0.115

>1 194 (28.4) 49 (25.3) 145 (74.7)

Household size

�4 265 (38.8) 76 (28.7) 189 (71.3) 0.608

>4 418 (61.2) 128 (30.6) 290 (69.4)

Household monthly income (USD)

<10 58 (8.5) 9 (15.5) 49 (84.5) <0.001*
10–50 312 (45.7) 75 (24.0) 237 (76.0))

51–110 170 (24.9) 67 (39.4) 103 (60.6)

120–210 85 (12.4) 34 (40.0) 51 (60.0)

>220 58 (8.5) 19 (32.8) 39 (67.2)

Agricultural land ownership

No 268 (39.2) 78 (29.1) 190 (70.9) 0.726

Yes 415 (60.8) 126 (30.4) 289 (69.6)

Common crops grown for consumption

Maize
No 233 (36.0) 17 (7.3) 216 (92.7) <0.001*
Yes 414 (64.0) 6 (1.4) 408 (98.6)

Cowpeas
No 337 (53.8) 21 (6.2) 316 (93.8) <0.001*
Yes 289 (46.2) 2 (0.7) 287 (99.3)

Groundnuts
No 321 (51.3) 20 (6.2) 301 (93.8) <0.001*
Yes 305 (48.7) 3 (1.0) 302 (99.0)

Sugar beans

(Continued)
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Table 2. (Continued)

Variable Total

n (% of category)

‡Se adequate

n (%)

§Se deficient

n (%)

P-value†

No 425 (67.9) 22 (5.2) 403 (94.8) <0.001*
Yes 201 (32.1) 1 (0.5) 200 (99.5)

Sweet potatoes
No 345 (55.1) 21 (6.1) 324 (93.6) <0.001*
Yes 281 (44.9) 2 (0.7) 279 (99.3)

Onions
No 417 (66.6) 22 (5.3) 395 (94.7) <0.001*
Yes 209 (33.4) 1 (0.5) 208 (99.5)

Livestock commonly reared

Chicken /poultry

1 139 (20.4) 47 (33.8) 92 (66.2) 0.299

>1 544 (79.6) 157 (28.9) 387 (71.1)

Unimproved dug wells as a source of drinking water

No 485 (71.0) 168 (34.6) 317 (65.4) <0.001*
Yes 198 (29.0) 36 (18.2) 162 (81.8)

Location of water source

Off-premise 454 (66.5) 137 (30.2) 317 (69.8) 0.658

In-house 24 (3.5) 9 (37.5) 15 (62.5)

On-premise 205 (30.0) 58 (28.3) 147 (71.7)

Insufficient water in the past month

No 536 (78.4) 154 (28.6) 382 (71.4) 0.103

Yes 147 (21.6) 50 (34.0) 97 (66.0)

Treatment of drinking water

No 604 (88.4) 184 (30.5) 420 (69.5) 0.264

Yes 79 (11.6) 20 (25.3) 59 (74.7)

Toilet facility

No 21 (3.1) 3 (14.3) 18 (85.7) 0.147

Yes 662 (96.9) 201 (30.4) 461 (69.6)

Toilet facility shared with other households

No 489 (71.6) 140 (28.6) 349 (71.4) 0.267

Yes 194 (28.4) 64 (33.0) 130 (67.0)

Toilet facility on-premise

No 662 (96.9) 195 (29.5) 467 (70.5) 0.225

Yes 21 (3.1) 9 (42.9) 12 (57.1)

Prevalence of Se deficiency (WRA): 683 (100) 204 (29.9) 479 (70.1)

Notes:
§ Plasma Se concentration <70 μg/L;
‡ Plasma Se concentration�70 μg/L;

*Significance level P <0�05;
†P value from Pearson’s Chi square test.

Age categories and average household size used are based on previous demographic health surveys [33]. Reproductive age represents the stage of conception where 18–

34 years is the reference for optimal reproductive function established from the NHANES (2011–2012)sourced from [57].

https://doi.org/10.1371/journal.pgph.0003376.t002
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deficient mothers compared to Se-adequate mothers (90.2%) (Table 3), with older children

being significantly more Se-deficient compared to the younger children. Among the Se-defi-

cient mothers, children aged 6–8 months were the least Se-deficient (94.4%, p>0.999) while

those in the age range 24–35 months were the most Se-deficient (100%, p = 0.004) S2 Table.

3.3.2. Women of reproductive age. There were no significant correlations between Se

deficiency and height, body mass index, and anaemia in WRA (Table 4).

3.4. Predictors of Se deficiency in children 6–59 months and WRA

Being a girl (p = 0.035) and having a Se-deficient mother (p = 0.005) were predictors of Se defi-

ciency in children (Table 5). Children whose mothers were Se deficient were 4 times more

likely to be Se deficient compared to those whose mothers were not Se deficient (OR = 4.25;

95% CI; 1.55–11.67; p = 0.005) and female children were 3 times more likely to be Se deficient

compared to male children (OR = 2.84; 95% CI; 1.08–7.51; p = 0.035). Women producing

mainly maize for consumption were 0.5 times more likely to be Se deficient than those not

growing maize mainly for consumption (OR = 0.47; 95% CI; 0.25–0.90; p = 0.022).

4. Discussion

4.1. Overview of the current study findings

The study sought to determine the predictors of Se deficiency in children aged 6–59 months

and in WRA. It was evident that Se status was inversely associated with immediate determi-

nants such as maternal Se deficiency while underlying determinants included food production

practices and WASH, exacerbated by enabling determinants such as residency, income status,

and gender. Determinants of inadequate Se status in both women and children included resi-

dency in the Murewa district, the use of unimproved dug wells as sources of drinking water,

and the production of maize, sugar beans, groundnuts, cowpeas, sweet potatoes, and onions

for household consumption. Maternal Se deficiency and being a girl were positively associated

with Se deficiency in children. Reproductive age (18–34 years) and low monthly household

income were positively associated with Se deficiency in WRA. Predictors of plasma Se status in

children were maternal Se status and being a girl, whereas, in women, it was the production of

maize as the main crop for consumption (Fig 2).

4.2. Sex differences in Se deficiency

Our results show that girls were more likely to be Se deficient than boys, consistent with previ-

ous studies in Vietnam [58] and Zimbabwe [34]. In contrast, studies in Ethiopia found no sex-

related differences in Se status [3]. The micronutrient survey conducted in Zimbabwe also

indicated a slightly higher prevalence of MNDs in girls than boys [59]. Exploration of sex-

based factors that influence Se intake is outside the scope of this study however, the disparity

in the prevalence of Se deficiency in girls and boys could be explained by physiological differ-

ences in the expression of deficiencies [60]; sexual dimorphic regulation of Se metabolism and

selenoprotein expression, namely the trans-selenation pathway by sex hormones strongly

implies that selenomethionine metabolism and its consequent selenocysteine formation and

availability for selenoprotein synthesis are not the same in both sexes [61]. Selenium is concen-

trated in male gonads which could explain why male children had lower deficiency than female

children [62]; or gender-based vulnerabilities [63, 64] influencing food intake [64]. In India,

girls were more likely to be neglected than boys to receive nutritious diets [65], female children

were breastfed for a shorter duration and had lower consumption of dairy food compared to

male children [66]. These differences can be attributed to gender incongruence in the intra-
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Table 3. Nutritional status and morbidities in children aged 6–59 months in rural Zimbabwe by Se status.

Variable Total

n (% of category)

‡ Se adequate

n (%)

§Se deficient

n (%)

P-value†

Stunted (HAZ)

Below -2SD 177 (27.7) 3 (1.7) 174 (98.3) 0.106

-2SD and above 462 (72.3) 21 (4.5) 441 (95.5)

Wasting (WHZ)

Below -2SD 18 (2.8) 0 (0) 18 (100) 0.641

-2SD and above 623 (97.2) 24 (3.9) 599 (96.1)

Underweight (WAZ)

Below -2SD 89 (13.5) 4 (4.5) 85 (95.5) >0.999

-2SD and above 572 (86.5) 22 (3.8) 550 (96.2)

Low Birth Weight (kg)

<2.5 58 (9.0) 1 (1.7) 57 (98.3) 0.498

�2.5 590 (91.0) 24 (4.1) 566 (95.9)

Exclusive Breastfeeding

No 204 (30.6) 4 (2.0) 200 (98.0) 0.124

Yes 462 (69.4) 21 (4.5) 441 (95.5)

Child still breastfeeding

No 507 (76.0) 19 (3.7) 488 (96.3) >0.999

Yes 160 (24.0) 6 (3.8) 154 (96.2)

Vitamin A supplementation

No 162 (24.7) 4 (2.5) 158 (97.5) 0.368

Yes 493 (75.3) 21 (4.3) 472 (95.7)

MNP supplementation

No 598 (90.6) 20 (3.3) 578 (96.7) 0.124

Yes 62 (9.4) 5 (8.1) 57 (91.9)

Deworming

No 490 (76.0) 17 (3.5) 473 (96.5) 0.858

Yes 155 (24.0) 7 (4.5) 148 (95.5)

Diarrhea

No 503 (75.4) 17 (3.4) 486 (96.6) 0.496

Yes 164 (24.6) 8 (4.9) 156 (95.1)

Fever

No 439 (65.8) 17 (3.9) 422 (96.1) 0.842

Yes 228 (34.2) 8 (3.5) 220 (96.5)

Respiratory tract infection

No 430 (64.5) 20 (4.7) 410 (95.3) 0.167

Yes 237(35.5) 5 (2.1) 232 (97.9)

Anaemia Hb level <11 g / dL

No 307 (71.9) 16 (5.2) 291 (94.8) 0.461

Yes 120 (28.1) 4 (3.3) 116 (96.7)

Maternal Se status

Deficient 479 (70.1) 6 (1.3) 473 (98.7) <0.001*
Adequate 204 (29.9) 20 (9.8) 184 (90.2)

Notes: HAZ, height-for-age Z-score; WHZ, weight-for-height Z-score; WAZ, weight-for-age Z-score; SD, Standard deviation;
§ Plasma Se concentration level < 70 μg/L;
‡Plasma Se concentration�70 μg/L;

*Significance level P <0�05;
†P value from Pearson’s Chi square test.

https://doi.org/10.1371/journal.pgph.0003376.t003
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household food allocation for children, which is affected by cultural norms in society and

women’s empowerment in households [67]. In Zimbabwe, sex vulnerability to MNDs is not

considered in micronutrient supplementation programming for children aged 6–59 months.

Currently, there is a provision of multiple micronutrient powders (MNPs) for point-of-use

fortification, a blanket program targeted for children 6–23 months in select districts. Sex vari-

abilities could be implemented in MNP supplementation, as seen in growth monitoring,

where growth charts target individual sexes [44]. Multiple micronutrient powders targeted for

girls would contain higher Se concentrations >17 μg/g [68] relative to boys, within the upper

tolerable limit for Se of 400 μg/day [69]. The recommendation, therefore, would be to conduct

further studies at scale to validate the sex disparity and potentially increase the Se concentra-

tion of MNPs targeted for girls.

4.3. Maternal Se status and risk of deficiency in children

In this study, maternal Se deficiency was positively associated with childhood Se deficiency.

The prevalence of Se deficiency in children from Se deficient WRA was four times higher com-

pared to their counterparts. Intergenerational transmission of micronutrient status was

observed in Malawi, Mozambique, Namibia [70] and Zimbabwe [37]. Selenium plays a signifi-

cant role in female reproductive processes [71] and its deficiency during pregnancy and lacta-

tion influences nutrition outcomes in children [72–74]. Our results indicated a lower

prevalence of Se deficiency in younger children and a higher prevalence in older children

among Se-deficient mothers this can be attributed to the protective effect of breastfeeding. The

current study shows a high prevalence of breastfeeding, with an exclusive breastfeeding rate

Table 4. Nutritional status of WRA in rural Zimbabwe by Se status.

Variable Total

n (% of category)

‡Se–adequate

n (%)

§Se deficient

n (%)

P-value†

Anaemia Status (haemoglobin g/dL)

<12 88 (19.8) 30 (34.1) 58 (65.9) 0.463

�12 357 (80.2) 138 (38.7) 219 (61.3)

Height (cm)

<145 8 (1.2) 4 (50.0) 4 (50.0) 0.248

�145 675 (98.8) 200 (29.6) 475 (70.4)

Body Mass Index (kg/m2)

<18.5 74 (10.8) 16 (21.6) 58 (78.4) 0.108

�18.5 609 (89.2) 188 (30.9) 421 (69.1)

Nutritional Status

Underweight 74 (10.9) 16 (8.0) 58 (78.4)

Normal weight 353 (52.1) 100 (28.3) 253 (71.7)

Overweight 180 (26.6) 59 (32.8) 121(67.2) 0.087

Class I obese 48 (7.1) 21 (43.8) 27 (56.2)

Class II obese 13 (1.9) 2 (15.4) 11 (84.6)

Morbid obese 9 (1.3) 2 (22.2) 7 (77.8)

Prevalence of Se deficiency 683 (100) 204 (29.9) 479 (70.1)

Notes:
§ Plasma Se concentration <70 μg / L;
‡ Plasma Se concentration�70 μg / L;
†P value significant at p < 0.05 from Pearson’s Chi-square test.

https://doi.org/10.1371/journal.pgph.0003376.t004
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higher than the WHO target (50%) and the global average (44%) [75]. Most Zimbabwean

mothers breastfeed their babies for up to 2 years and sometimes beyond [32]. Breastmilk is an

important source of Se providing median Se concentrations of up to 15–26 μg/L [76]. The Se

concentration and glutathione peroxidase activity in human milk is influenced directly by the

Table 5. Predictors of Se deficiency among children aged 6–59 months and WRA from rural Zimbabwe.

Variable B S.E. P value† OR 95% C.I.

Lower Upper

Children (6–59 months)

Murewa district

No = 0; Yes = 1

0.29 0.32 0.37 1.33 0.71 2.50

Se deficient mother

Adequate = 0; Deficient = 1

1.45 0.52 0.005* 4.25 1.55 11.67

Being a girl

(Male = 0; Female = 1)

1.05 0.50 0.035* 2.84 1.08 7.51

Unimproved dug well as a water source

(Improved dug well = 0; unimproved = 1)

-0.07 0.91 0.939 0.93 0.16 5.59

Maize production for consumption

(No = 0; Yes = 1)

-0.84 0.84 0.319 0.43 0.08 2.25

Cowpea production for consumption

(No = 0; Yes = 1)

-0.79 1.18 0.515 0.46 0.05 4.59

Groundnut production for consumption

(No = 0; Yes = 1)

0.184 1.037 0.859 1.20 0.16 9.18

Sugar bean production for consumption

(No = 0; Yes = 1)

-0.46 1.09 0.675 0.63 0.08 5.36

Sweet potato production for consumption

(No = 0; Yes = 1)

-0.72 1.24 0.560 0.49 0.04 5.50

Onion production for consumption

(No = 0; Yes = 1)

-0.98 1.23 0.422 0.37 0.03 4.13

Women of Reproductive Age

Murewa District

No = 0; Yes = 1

-0.15 0.13 0.233 0.86 0.68 1.10

Unimproved dug well as a water source

(improved = 0; unimproved = 1)

-0.05 0.26 0.850 0.95 0.57 1.59

Reproductive age 18–34 years

(<18�35 years = 0; 18–34 years = 1)

0.02 0.19 0.927 1.02 0.71 1.47

Monthly income below 10 USD

(�10 USD = 0; <10USD = 1)

-0.55 0.44 0.213 0.58 0.25 1.37

Maize production for consumption

(No = 0; Yes = 1)

-0.75 0.329 0.022* 0.47 0.247 0.897

Cowpea production for consumption

(No = 0; Yes = 1)

-0.14 0.35 0.697 0.87 0.44 1.73

Groundnut production for consumption

(No = 0; Yes = 1)

-0.11 0.35 0.755 0.90 0.45 1.78

Sugar bean production for consumption

(No = 0; Yes = 1)

-0.26 0.31 0.396 0.77 0.43 1.40

Sweet potato production for consumption

(No = 0; Yes = 1)

-0.32 0.34 0.335 0.72 0.38 1.40

Onion production for consumption

(No = 0; Yes = 1)

0.00 0.3 0.999 1.00 0.56 1.80

Notes: Selenium deficient mother; Plasma Se concentration<70 μg / L; Selenium adequate mother; Plasma Se concentration�70 μg / L,
†P value from multiple logistic regression analysis;
*Significant at P<0�05, by the Enter regression model.

https://doi.org/10.1371/journal.pgph.0003376.t005
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Se intake of the mother [76–79]. Furthermore, the current study also showed that WRA 18–34

years were the most Se deficient, attributable to the depletion of micronutrient stores due to

successive pregnancies and breastfeeding episodes common at this optimal reproductive phase

[73]. Selenium concentrations were reported to be low in women of reproductive age in the

United Kingdom, decreasing further during pregnancy, thus resulting in low plasma and pla-

cental antioxidant enzyme activities [80]. Multiple micronutrient supplementation during

pregnancy indicated an upward trend in Se concentration across semesters [81]. The recom-

mendation for Zimbabwe is to scale up the MNP supplementation for children 6–59 months

and to initiate maternal multiple micronutrient supplementation for WRA in addition to iron

and folate supplementation currently being given during pregnancy, from preconception

through lactation, proven to reduce MNDs in both children and women [82]. Further research

into placental transfer of Se in utero, diet quality, and birth order which can affect Se suffi-

ciency/insufficiency postpartum is recommended to validate the findings of the current study.

4.4. Maize production for consumption increases the risk of Se deficiency

Primarily, the production of maize for consumption predicted low Se status in women. Maize

is the staple crop in Zimbabwe with an estimated maize production of over two million metric

tonnes [83]. The average maize consumption for adults in Zimbabwe is over 250 g/person/day,

with an energy supply accounting for ~3500 kJ/capita/day [84, 85]. The high consumption of

maize makes it a major contributor to dietary Se [29, 86], consumption of 100 grams/person/

day of maize contributes to MNDs, Se included [85]. Similar findings were reported in Malawi

where Se deficiency is widespread [22], potentially as a result of a Se-deficient maize crop [86],

and might consequently be mirrored with human Se status [87]. In Ethiopia, the risk of

Fig 2. Maternal and child plasma Se deficiency causal framework predictors (red) and determinants (black) for Murewa, Shamva, and

Mutasa districts, rural Zimbabwe.

https://doi.org/10.1371/journal.pgph.0003376.g002
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human Se deficiency was also associated with the staple diet [88]. Based on our findings, Se

agronomic biofortification of the staple crop with fertiliser or point-of-use fortification may be

necessary. Minute quantities of Se are required to result in meaningful contributions to grain

Se concentration and dietary intake. Studies in Malawi and Ethiopia have shown that agro-

nomic biofortification of staple crops with 20 g/hectare Se has the potential to increase grain

Se concentration [89, 90]. Cognisant of that, soil Se concentrations are the primary driver of

population Se status, future research should involve the examination of soil, crop, and dietary

Se concentrations (for example whole foods using total diet data) to define whether there is a

generalized deficiency in these regions. This may be particularly relevant given homestead

farming may not regulate the use of fertilizers and/or biofortified crops. Further to this, maize

grain in Zimbabwe has been implicated with mycotoxin contamination mainly fusarium [91].

Fusarium produces T-2 toxin as a secondary metabolite whose synergistic effects with Se defi-

ciency pose potential detrimental health hazards to the Se-deficient population [92]. Investiga-

tion of this correlation might be warranted.

5. Limitations of study

The current study is exploratory, tests of statistical significance should be interpreted with cau-

tion as false positives may occur due to multiple comparisons. Further studies are warranted to

confirm the results. Additionally, the study did not include dietary assessments that could

have provided evidence on the foods contributing to Se intake, to assess implications for

human Se status. Regardless, the present study contributes to our knowledge of the association

between maternal and child Se deficiency.

6. Conclusions

The current study showed that being a girl and maternal Se deficiency were positively associ-

ated with Se deficiency in children aged 6–59 months while maize crop production was posi-

tively associated with Se deficiency in WRA. Interventions that focus on improving conceptual

and maternal nutritional status, micronutrient supplementation, and biofortification may be

important strategies to reduce Se deficiency in vulnerable populations from low and lower-

middle-income countries in Africa.
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