
Citation: Huang, S.-C.; Tsay, R.S. Time

Series Forecasting with Many

Predictors. Mathematics 2024, 12, 2336.

https://doi.org/10.3390/

math12152336

Academic Editors: Luiz Koodi Hotta

and Pedro Luiz Valls Pereira

Received: 12 June 2024

Revised: 17 July 2024

Accepted: 21 July 2024

Published: 26 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Time Series Forecasting with Many Predictors
Shuo-Chieh Huang and Ruey S. Tsay *

Booth School of Business, University of Chicago, 5807 S. Woodlawn Avenue, Chicago, IL 60637, USA;
shuochieh@chicagobooth.edu
* Correspondence: ruey.tsay@chicagobooth.edu

Abstract: We propose a novel approach for time series forecasting with many predictors, referred
to as the GO-sdPCA, in this paper. The approach employs a variable selection method known as
the group orthogonal greedy algorithm and the high-dimensional Akaike information criterion to
mitigate the impact of irrelevant predictors. Moreover, a novel technique, called peeling, is used to
boost the variable selection procedure so that many factor-relevant predictors can be included in
prediction. Finally, the supervised dynamic principal component analysis (sdPCA) method is adopted
to account for the dynamic information in factor recovery. In simulation studies, we found that the
proposed method adapts well to unknown degrees of sparsity and factor strength, which results in
good performance, even when the number of relevant predictors is large compared to the sample
size. Applying to economic and environmental studies, the proposed method consistently performs
well compared to some commonly used benchmarks in one-step-ahead out-sample forecasts.

Keywords: supervised principal component analysis; diffusion index; Lasso; dynamic dependence;
group orthogonal greedy algorithm
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1. Introduction

In the current data-rich environment, many predictors are often available in time
series forecasting. However, conventional methods have encountered serious difficulties in
exploiting the information contained in such high-dimensional data. In particular, the curse
of dimensionality often leads to unreliable forecasts when the conventional methods are
applied naively. To exploit the information in the high-dimensional predictors, the use of
latent factors has emerged among the first successful approaches. See, for instance, Peña
and Box [1], Stock and Watson [2,3], Lam et al. [4], and Chapter 6 of Tsay [5]. These factor-
based methods are also widely used in the econometric analysis of high-dimensional time
series (e.g., [6–9]).

Nevertheless, existing factor-based methods may still be inadequate, and several issues
have been constantly observed in practice. For example, weak factors are prevalent in real-
world data, and extracting factors using all predictors may not be optimal [10]. In addition,
some factor models may still contain many parameters when the factor dimension is not
small. On the other hand, Kim and Swanson [11] reported, from an extensive experiment,
that combining shrinkage methods with factor-based approaches can yield more accurate
forecasts among many targeted macroeconomic time series. This implies that there might
exist some irrelevant predictors in an empirical application. The recently proposed scaled
principal component analysis of Huang et al. [12] and the supervised dynamic PCA (sdPCA)
of Gao and Tsay [13] partially remedy this issue by constructing factors in a supervised
fashion, so that the effects of irrelevant predictors are reduced. Limited experience indicates
that when the number of predictors far exceed the sample size, or when the predictors are
highly correlated, the performance of such supervised approaches can still be compromised.
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To efficiently extract predictive factors from high-dimensional data, in this paper, we
propose a new method that blends variable selection in factor estimation. The proposed
method uses the group orthogonal greedy algorithm (GOGA, Chan et al. [14]) to screen
variables that are relevant to the prediction problem at hand, and applies the sdPCA
of Gao and Tsay [13] to extract factors from the selected variables. The orthogonal greedy
algorithm, as well as its variant GOGA for grouped predictors, have been employed for
variable selection for high-dimensional linear models, especially with dependent data and
highly correlated predictors [14–16]. Since both GOGA and sdPCA serve to minimize the
effects of noisy irrelevant variables, the combined procedure, which we call GO-sdPCA,
can effectively construct highly predictive factors.

It is worth pointing out that the novelty of our method lies in a key step that success-
fully combines variable selection with factor-based methods. Indeed, variable selection
techniques commonly employed, such as the Lasso of Tibshirani [17] or the OGA of Ing and
Lai [15], tend to select a sparse representation of the data. These methods will select only
a few variables when many variables are driven by common factors and thereby highly
correlated. For factor estimation, this can be undesirable, since factor recovery typically
benefits from the many variables that are loaded on the shared factors (see, e.g., [4,13]).
This issue can be even more pronounced when the factors are strong, in which case the
factors can be accurately recovered by employing many predictors. To circumvent this
predicament, we propose using a “peeling” technique, which repeatedly applies GOGA to
the data after previously selected variables are dropped from the set of candidate predictors.
In this way, our method can select more variables in the model and discriminate between
relevant and irrelevant predictors. In Section 4, we introduce the proposed method in more
detail. To better motivate the proposed method, we briefly review the orthogonal greedy
algorithm (OGA) and its variants in Section 2. We also review the high-dimensional infor-
mation criteria that are often used to balance the model complexity and the model fit along
OGA iterations. The sdPCA is reviewed in Section 3, where we particularly emphasize the
method’s design principles.

We use simulation studies and some empirical analyses to examine the performance
of the proposed GO-sdPCA approach. In addition to comparing with some factor-based
methods, such as the diffusion index approach of Stock and Watson [2,3], the sdPCA,
and the time series factor model of Lam et al. [4], we also compare GO-sdPCA against the
Lasso and the random forests of Breiman [18], both of which are widely-used and versatile
tools in machine learning. We found that GO-sdPCA improves upon most of factor-based
approaches and fares well with selected competing methods, even when the number of
relevant variables is comparable with the sample size. The simulation results are discussed
in Section 5.

In Section 6, we apply the proposed method to two real datasets. The first dataset is
the well-known FRED-MD macroeconomic data [9]. Time series forecasting has been a vital
topic both in econometric research and in policy-making pertaining to these data set. The
other dataset contains the hourly particulate matter (PM2.5) measurements in Taiwan. The
PM2.5 data play an important role in the environmental studies, as well as informing public
health policies. However, since its measurements are taken over time and space, the dataset
is naturally of high dimension and presents serious challenges to forecasting. Our findings
demonstrate that the proposed method consistently offers more accurate forecasts than the
competing methods, validating its practical utility.

2. Orthogonal Greedy Algorithm

In this section, we briefly review the (group) orthogonal greedy algorithm. The
OGA is an iterative algorithm that sequentially chooses predictors to form a regression
model. Theoretically grounded in approximation theory [19], the OGA is also easy to
implement computationally. In the statistical learning and high-dimensional linear regres-
sion literature, Barron et al. [20] and Ing and Lai [15] analyzed its convergence rate as
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well as variable screening capability. Its generalization to grouped predictors was studied
by Chan et al. [14] with application to threshold autoregressive time series models.

Throughout this paper, we denote by y = (y1, . . . , yn)⊤ the data of the response
variable we are interested in, where n is the sample size. We also have data for the p
predictors, {x(j) : j = 1, 2, . . . , p}, where x(j) = (x1,j, . . . , xn,j)

⊤. The OGA is defined
as follows. Starting with Ĵ0 = ∅ and u(0) = y = (y1, y2, . . . , yn)⊤, the OGA computes,
at iteration k = 1, 2, . . .,

ĵk = arg min
1≤j≤p

∥u(k−1) − x(j)(x
⊤
(j)x(j))

−1x⊤(j)u
(k−1)∥2, (1)

and updates

Ĵk = Ĵk−1 ∪ { ĵk},

u(k) = (I−H(k))y.

where H(k) is the orthogonal projection matrix associated with the linear space spanned by
{x(j) : j ∈ Ĵk}. Clearly, the OGA sequentially selects the variable to include in the model;
the set Ĵk denotes the index set corresponding to the predictors already selected at iteration
k. Intuitively, in each iteration, OGA selects the variable that best explains the current
residuals. There are numerical schemes to speed up the computation of the residuals such
as using sequential orthogonalization. We refer to Ing and Lai [15] and Chan et al. [14]
for details.

For the purpose of this paper, we will make use of a slight generalization of the OGA
that deals with grouped predictors. Chan et al. [14] studied the group OGA (GOGA)
and applied the method to estimate threshold time series models. Consider the j-th
predictor, {xt,j}n

t=1. Instead of being a scalar predictor, it contains dj component pre-
dictors, {(xt,j,1, . . . , xt,j,dj

) : t = 1, 2, . . . , n}, thereby forming a “group” predictor. Then,
by substituting

x(j) =


x1,j,1 x1,j,2 . . . x1,j,dj

x2,j,1 x2,j,2 . . . x2,j,dj
...

...
. . .

...
xn,j,1 xn,j,2 . . . xn,j,dj


in (1), the procedure becomes the GOGA.

After Kn iterations, the GOGA selects the (group) predictors corresponding to
ĴKn = { ĵ1, ĵ2, . . . , ĵKn}. Bias-variance trade-off manifests when selecting the number of
predictors to be included, as a large Kn may lead to over-fitting. To select a desirable model
complexity, Ing [16] suggests using the high-dimensional Akaike information criterion
(HDAIC). The HDAIC of the model at iteration k is defined as

HDAIC( Ĵk) =

(
1 + C

k log p
n

)
σ̂2
(k), (2)

where σ̂2
(k) = n−1∥u(k)∥2, and C is a constant to be tuned. Then, the model selected by

HDAIC is

Ĵk̂ = { ĵ1, . . . , ĵk̂}, where k̂ = arg min
1≤k≤Kn

HDAIC( Ĵk). (3)
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Theoretically, Ing [16] proved that the resulting model selected by OGA+HDAIC
adapts to the underlying sparsity structure. In particular, consider the high-dimensional
regression model,

yt =
p

∑
j=1

β jxt,j + ϵt.

Then, the conditional mean squared prediction error of OGA+HDAIC is of rate
(

log p
n

)1−1/2γ
, if ∑j∈J |β j| ≤ D1

(
∑j∈J β2

j

)(γ−1)/(2γ−1)
for all J

log n log p
n , if ∑j∈J |β j| ≤ D2 maxj∈J |β j| for all J

k0 log p
n , if minj:β j ̸=0 |β j| ≥ D3,

for some γ ≥ 1 and positive constants D1, D2, D3. See Theorem 3.1 of Ing [16] for details.
Note that these rates are minimax optimal, and are automatically achieved by OGA+HDAIC
without any knowledge about the sparsity pattern. In this paper, we leverage this property
to select good predictors in constructing forecasts. In this way, the variables used in our
method is carefully selected in a supervised fashion, which is more effective than employing
all observed predictors in the high-dimensional data.

3. Supervised Dynamic PCA

Next, we review the supervised dynamic PCA (sdPCA) proposed by Gao and Tsay [13]
for forecasting. The sdPCA is a factor-based forecasting approach, which took a major role
in the literature of time series forecasting. Tailored to incorporate dynamic information,
the sdPCA has been shown to outperform some existing factor-based approaches such as
the diffusion index model of Stock and Watson [2,3] and the scaled PCA of Huang et al. [12].

We first outline the sdPCA procedure. Given a forecast horizon h, the sdPCA first
constructs intermediate predictions using each individual predictor and its lagged values.
For instance, one can regress yt+h on xt,j, xt−1,j, . . . , xt−q2+1,j, where q2 ∈ N is a user-
specified lag value, and obtain the fitted values

µ̂j +
q2−1

∑
k=0

γ̂j,kxt−k,j =: µ̂j + x̂t,j, (4)

where µ̂j is the intercept estimate and γ̂0,1, . . . , γ̂q2−1,j are the slope estimates. For different
values of j, the number of lags q2 used in the regression can differ. For instance, q2 can be
selected by the BIC. Then, with the constructed intermediate predictions, x̂t,j, the sdPCA
apply PCA to estimate a lower dimensional factor ĝt ∈ Rr, where r < p. Therefore,
the data to which the PCA applies, x̂t,1, . . . , x̂t,p, are in the same unit (as yt), which scales
the variables according to their predictive power.

Finally, one may employ a linear model for the predictive equation,

yt+h ∼ α̂ + β̂⊤ĝt, (5)

where α̂ and β̂ are intercept and slope estimates, respectively, and ∼ signifies that we run
the linear regression while the underlying relationship of yt+h and ĝt may not be exactly
linear. Gao and Tsay [13] also suggests using Lasso to estimate (5) instead of the usual linear
regression if the number of common factors is large. Additionally, one can also include
some lags of ĝt from (5) and let Lasso perform variable selection.

The sdPCA has several advantages over the conventional PCA methods. First, the PCA
is not scale-invariant. On the contrary, the sdPCA constructs predictors that are in the same
unit, which naturally scales the predictors according to their predictive capabilities. Second,
instead of performing PCA directly on contemporaneous data xt, the sdPCA sources from
the lagged information in xt−l , l = 0, 1, . . . , q2 − 1, where xt = (xt,1, . . . , xt,p)⊤. For the
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conventional PCA to use the lagged information, one often needs to augment the data by
appending the lagged variables so that PCA is performed on (xt, . . . , xt−q2+1), which leads
to even higher dimensionality. Lastly, the usual PCA is performed in an unsupervised
fashion, whereas the sdPCA constructs the factors in a supervised fashion. While the
usual principal component directions are not necessarily predictive of the response, factors
extracted by sdPCA can potentially yield better forecasts. In fact, Gao and Tsay [13] have
shown that sdPCA has a lower mean square forecasting error than the approaches of Stock
and Watson [2,3] and Huang et al. [12].

In this paper, we employ the sdPCA to capitalize on the aforementioned properties.
However, for noisy high-dimensional data, the performance of sdPCA may be severely
compromised. Hence, it is desirable to perform a careful dimension reduction before
applying sdPCA. In the next section, we describe the proposed procedure, which combines
GOGA and HDAIC with sdPCA to improve the accuracy of prediction.

4. The Proposed GO-sdPCA

In this section, we introduce the proposed method, GO-sdPCA, which screens variables
by the GOGA and HDAIC and then estimates factors by the sdPCA approach. In order
to facilitate factor recovery, we apply a “peeling” technique to select more factor-relevant
variables in the new procedure.

To tackle the difficulties encountered by the factor-based approaches when applied
to high-dimensional data, our method begins with dimension reduction by employing
the GOGA introduced in Section 2. Because of the serial dependence in the data, it is
beneficial to select variables based not only on cross-sectional correlation, but also on the
lagged information. To this end, for each predictor xj = (x1,j, . . . , xn,j)

⊤, we consider the
group predictor,

x(j) =


xq1,j xq1−1,j . . . x1,j

xq1+1,j xq1,j . . . x2,j
...

...
. . .

...
xn−h,j xn−h−1,j . . . xn−h−q1+1,j

, j = 1, 2, . . . , p, (6)

where q1 is a pre-specified integer for the number of lagged values to consider, and h ∈ N
is the forecast horizon. Let

yq1 = (yq1+h, yq1+h+1, . . . , yn)
⊤ (7)

be the response vector. Then, we employ the GOGA algorithm in Section 2, with x(j)
and y substituted by (6) and (7), respectively. For notational simplicity, we drop the
dependence on q1 and write yq1 as y in the following. Since each group predictor already
incorporates past information, the GOGA algorithm can select variables while accounting
for the dynamic information.

We also employ the HDAIC (defined in (2)) after GOGA to prevent the inclusion
of irrelevant variables. Since the above procedure depends on the number of GOGA
iterations Kn, the HDAIC constant C in (2), the number of lags q1 used in forming the group
predictors, and the pool of candidate predictors I = {1, 2, . . . , p}, we conveniently denote
it as a set-valued function,

Ĵ = A(Kn, C, q1, I), (8)

where Ĵ is the index set outputted by GOGA+HDAIC, as in (3). For completeness, we
summarize the GOGA+HDAIC method introduced in Section 2 in Algorithm 1.



Mathematics 2024, 12, 2336 6 of 20

Algorithm 1: GOGA+HDAIC (A)
Input: Number of maximum iterations Kn, HDAIC parameter C, number of lags

q1, candidate set I
Initialization: u(0) = y; selected index Ĵ = ∅

1 for k = 1, 2, . . . , Kn do
2 Select

ĵk = arg min
j∈I
∥u(k−1) − x(j)(x

⊤
(j)x(j))

−1x⊤(j)u
(k−1)∥2,

where x(j) is defined in (6).
3 Update Ĵ ← Ĵ ∪ { ĵk}
4 Update u(k) = (I−H(k))y, where H(k) is the projection matrix associated with

{x(j) : j ∈ Ĵ}
5 end
6 Choose, as in (3),

m̂ = arg min
1≤m≤K

HDAIC({ ĵ1, . . . , ĵm}),

where HDAIC is defined in (2) with C set to the inputted value.
Output: selected indices { ĵ1, . . . , ĵm̂}

Because the orthogonal residuals are used in the greedy search, GOGA tends to
differentiate highly correlated predictors and only selects those predictors that explain
distinct (close to orthogonal) directions of the response. However, in factor estimation,
the relevant variables loaded on the common factors tend to be highly correlated, and failing
to employ these correlated predictors may lose some statistical efficiency for the inference
of the underlying factors (the blessing of dimensionality, [4,13]). Therefore, to encourage
GOGA to screen the factor-relevant, correlated predictors, we propose a technique, referred
to as “peeling,” which allows careful inclusion of more variables. The idea is to repeatedly
apply GOGA+HDAIC, with variables selected from previous implementations discarded
from the candidate set. Hence, in each iteration, GOGA+HDAIC is forced to select a
new set of variables that best predict y. Formally, the peeling algorithm is described in
Algorithm 2. Let M be the number of peeling iterations. In the following, we denote the
peeling procedure, which depends on M, Kn, and C, by the set-valued function P . Namely,

Q̂ = P(M, Kn, C, q1).

Algorithm 2: Peeling (P)
Input: Number of peeling iterations M, number of GOGA iterations Kn, HDAIC

parameter C, number of lags q1 in group predictors
Initialization: Q̂ = ∅, I = {1, 2, . . . , p}

1 for m = 1, 2, . . . , M do
2 Run GOGA+HDAIC

Ĵ(m) = A(Kn, C, q1, I)

3 Update Q̂← Q̂ ∪ Ĵ(m)

4 Discard selected variables from the candidate set I ← I − Q̂
5 end

Output: selected indices Q̂
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It is worth noting that peeling is different from simply running GOGA for many
iterations. Although GOGA also selects distinct variables along its iteration because of
orthogonalization (that is, GOGA does not revisit any previously selected variable), peeling,
which discards previously selected variables from the candidate set, would produce very
different results. For high-dimensional data, running many iterations of GOGA will lead
to extremely small residuals, which may no longer carry sufficient variations to detect the
remaining relevant variables (with a finite sample). On the other hand, peeling re-starts
GOGA in every iteration, using y instead of the previous residuals in the GOGA algorithm.
Since GOGA is re-started with a smaller pool of candidate variables, the residuals in peeling
will not shrink to zero after many (potentially more than n) variables are already contained
in Q̂. We also remark that the idea of peeling is akin to the random forest, which uses
randomly selected variables in building each tree. Hence, peeling can be used to detect the
weak predictors in the case where a few of the predictors are highly predictive and many
others are only weakly predictive (see, e.g., Chapter 8 of [21]).

After variable selection by peeling, sdPCA is employed to estimate the factors f̂t from
the selected variables. Let q2 be the number of lags used in constructing the intermediate
predictions (4). Finally, the predictive model

yt+h =
q3

∑
k=1

αkyt−q+1 + β⊤ f̂t + ϵt+h, (9)

is estimated by OLS or Lasso, where q3 is the number of autoregressive variables. The
above procedure, which combines GOGA, peeling, and sdPCA, is called GO-sdPCA.

In closing this section, we briefly discuss the selection of the number of lags. In practice,
the number of lags q1 used in GOGA, q2 used in the sdPCA step, and q3 in the predictive
equation can all differ. After factor extraction, selecting q3 in (9) amounts to selecting the
AR lags in an autoregressive model with exogenous inputs (ARX model), for which one
can routinely apply the AIC or the BIC. For selecting q1, a larger q1 implies that GOGA can
detect the predictors whose distant lags have some predictive power. However, because a
group of predictors is included in the linear regression, much variations are consumed
in each GOGA iteration, resulting in a noisy selection path. Moreover, this also implies
less number of GOGA iterations Kn can be allowed in each peeling iteration. To boost the
variable selection capability of GOGA and peeling, we therefore suggest using a smaller
q1, and if the distant past of the selected predictors is important, employ a larger q2 in the
sdPCA step. Finally, for selecting q2, we may use the data-driven technique of Gao and
Tsay [13]: first, choose a maximum number of lags Q̄, and in constructing the intermediate
predictions in the sdPCA step, use the BIC to select the appropriate lag q2 ≤ Q̄. For
tuning these parameters, one can also reserve a validation data and pick the combination
that yields the lowest forecast errors on the validation set. In Appendix A, we conduct a
simulation study to examine the sensitivity of GO-sdPCA to these tuning parameters. The
results show while choosing a smaller q1 is indeed best for variable selection, the forecasting
performance is quite robust for most reasonable parameter choices.

5. Simulation Studies

In this section, we assess the finite-sample performance of the proposed GO-sdPCA
method via simulation studies. Some existing factor-based methods are employed as
benchmarks, such as the diffusion index approach of Stock and Watson [2,3], the time
series factor model of Lam et al. [4], and the supervised dynamic PCA of Gao and Tsay [13].
These benchmarks are referred to as SW, LYB, and sdPCA, respectively.

After factor estimation, the predictive model

yt+1 =
q

∑
k=1

αkyt−q+1 + β⊤ f̂t + ϵt+1, (10)
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is estimated by OLS, where q is an integer specified later, and f̂t is constructed using
different approaches. For the proposed GO-sdPCA (shorthanded as GsP∗ hereafter), we set
C = 2 in the HDAIC definition (2) and use 10 peeling iterations. In each peeling iteration,
GOGA is applied with q1 set to 2 for the group predictors. Then, in the sdPCA step, r
factors are extracted with q2 = q lags used in constructing the intermediate predictions in
(4). To demonstrate the usefulness of the peeling technique, we also consider implementing
GO-sdPCA by naively combining GOGA+HDAIC with sdPCA. That is, we only run one
peeling iteration and the variables selected are exactly the ones selected by GOGA+HDAIC.
This method is denoted as GsP in the following. Similarly, the forecasts of sdPCA are
constructed by estimating (10) with the factors estimated as in Section 3. The time series
factors of Lam et al. [4] are estimated using the eigenanalysis of a non-negative definite
matrix computed from the autocovariance matrices at nonzero lags. In our implementation,
q lags of past predictors are used by LYB in the eigenanalysis. Finally, SW follows that
of Stock and Watson [2,3] and uses PCA to extract the factors.

In addition, we employ some commonly used alternatives, including the Lasso of Tib-
shirani [17] and the random forests of Breiman [18] as competing methods. The Lasso is a
versatile tool for building sparse linear regression models, while the random forest (RF)
excels in capturing non-linear relationships. Recently, Chi et al. [22] investigated the asymp-
totic consistency of RF for high-dimensional data. See also Saha et al. [23] for application
of RF to dependent data. The tuning parameters for the Lasso are selected by the BIC, as
suggested by Medeiros and Mendes [24], whereas we adopt the hyper-parameters for RF as
recommended by the randomForest [25] package in R (ver. 4.2). Therefore, about one-third
of the candidate variables is randomly selected at each split. For both methods, q lags of
the dependent variable and the predictors are used for fair comparison.

Simulation Designs and Results

In the simulations, we consider three data generating processes (DGP) to generate
the synthetic data. Throughout the experiments, we use one-step-ahead forecasts (h = 1)
where each method makes a forecast for yn+1, which is not in the training sample. The root
mean squared forecast errors, averaged over 500 Monte Carlo simulations, are used for
comparing different approaches.

DGP 1. Let ft ∼i.i.d. N(0, IrDGP), where rDGP ∈ N is the number of underlying factors. The pre-
dictors xt ∈ Rp are generated by

xt = Bft + 2δt,

where {δt} are independent p-dimensional t-distributed random vectors with independent com-
ponents and five degrees of freedom, and B ∈ Rp×rDGP has independent Unif(−2, 2) entries,
with p − s rows randomly set to zero. That is, B only has s nonzero rows. Randomly gen-
erate β1 = (β1,1, . . . , βrDGP,1)

⊤ and β2 = (β1,2, . . . , βrDGP,2)
⊤ via β j,1 ∼ Unif(1.0, 2.5) and

β j,2 ∼ Unif(−2.0,−0.8). Finally,

yt = 0.6yt−1 + 0.2yt−2 + β⊤1 ft−1 + β⊤2 ft−2 + ϵt,

where {ϵt} are independent standard Gaussians.

In this DGP, the parameter s dictates both the number of relevant variables and the
strength in recovering the factors. The larger s is, the stronger the factors are. Factor strength
plays a critical role in factor recovery [2–4]. In practice, s is seldom known. Therefore, we
will consider the cases s ∈ {0.25n, 0.5n, 0.75n}, where n is the sample size, to see whether
the methods adapt well to various levels of factor strength.

Table 1 reports the root mean squared forecast error (RMSFE) averaged over 500 Monte
Carlo simulations. Across all sparsity levels s ∈ {0.25n, 0.5n, 0.75n}, the proposed GsP∗

delivered the most accurate forecasts and the sdPCA ranks the second. This suggests
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that the proposed peeling procedure and GOGA improves accuracy in forecasting. The
GsP, which naively combines GOGA+HDAIC with sdPCA, shows limited forecasting
capabilities with RMSFE being higher than those of the Lasso. This indicates, again,
the peeling strategy markedly improved the forecasting performance by selecting more
factor-relevant variables. The other forecasting methods, including SW, LYB and RF, seem
to suffer from the effect of employing many irrelevant variables in the high-dimensional
data. We remark that DGP 1 is essentially a sparse model because rDGP used is relatively
small. Therefore, it is not surprising to see that Lasso fares reasonably well.

Table 1. Root mean squared forecast error of various competing methods. The data are generated
from DGP 1, and the results are averaged over 500 Monte Carlo simulations. n and p stand for the
sample size and number of observed predictors. rDGP is defined in DGP 1, and r is the number of
factors extracted using various methods.

(rDGP, s) GsP* GsP sdPCA SW LYB Lasso RF

(n, p, r) = (200, 1000, 10)

(5, 50) 1.894 2.443 1.993 2.657 2.136 2.207 2.860
(10, 100) 2.406 3.299 2.488 3.288 2.909 2.831 4.353
(15, 150) 3.315 3.908 3.584 5.368 5.201 3.537 5.776

(n, p, r) = (400, 2000, 30)

(10, 100) 2.391 2.947 2.590 3.482 2.077 2.544 4.428
(20, 200) 3.020 4.355 3.242 4.626 3.657 3.679 6.604
(30, 300) 3.818 5.581 4.155 5.666 4.651 4.450 8.253

DGP 2. In this DGP, xt is generated via a vector MA(1) model:

xt = δt + 0.8Bδt−1,

where B is a randomly drawn p× p matrix of rank rDGP. The coefficients β1 = (β1,1, . . . , βp,1)
⊤ and

β2 = (β1,2, . . . , βp,2)
⊤ are randomly generated via βj,1 ∼ U(1.0, 3.0) and βj,2 ∼ U(−2.5,−0.5).

But, for a set of random indices J with cardinality equal to s (i.e., ♯(J) = s), we set βk,1 = βk,2 = 0 for
k /∈ J. In this way, β1 and β2 share the same nonzero coordinates. Finally,

yt = 0.6yt−1 + 0.2yt−2 + β⊤1 xt−1 + β⊤2 xt−2 + ϵt.

In this example, the relevant predictors have a direct impact on the response, instead
of through any common factors. Additionally, when s is large, it is very difficult to recover
the regression coefficients because of the lack of sparsity. Therefore, DGP 2 fits neither the
factor model nor the sparse linear model frameworks. Nevertheless, the covariance matrix
of xt has a special structure. Observe that

E(xtx⊤t ) = Ip + 0.64BB⊤,

which shows that the covariance matrix of xt has the form of a spiked matrix.
Table 2 reports the RMSFEs of the competing methods considered. The sdPCA fares

the best, as it yields the smallest RMSFE, especially when s is small. This reflects that
the sdPCA can better utilize the spiked covariance structure by selecting contributions
from relevant predictors. However, the performance of GsP∗ and sdPCA converge when
s = 0.75n, and both of them compare favorably against the other alternatives. As expected,
for non-sparse models, Lasso and random forest do not work well.
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Table 2. Root mean squared forecast error of the competing methods, divided by 1000. Data are
generated from DGP 2, and the results are averaged over 500 Monte Carlo simulations. n and p stand
for the sample size and number of observed predictors. rDGP is defined in DGP 2, r is the number of
factors extracted using various methods, and s is a sparsity parameter.

(rDGP, s) GsP* GsP sdPCA SW LYB Lasso RF

(n, p, r) = (200, 1000, 10)

(5, 50) 0.857 0.883 0.695 1.017 0.966 0.870 2.017
(10, 100) 2.833 3.137 2.834 3.436 3.436 3.802 6.971
(15, 150) 6.559 7.068 6.379 7.801 7.761 9.532 16.264

(n, p, r) = (400, 2000, 30)

(10, 100) 4.091 4.547 2.259 5.224 4.917 5.118 8.977
(20, 200) 15.891 17.357 8.411 20.012 19.411 20.961 35.132
(30, 300) 34.557 37.956 34.543 42.904 42.905 50.996 70.180

DGP 3. In this example, the predictors follow a VAR model:

xt = Bxt−1 + δt,

where {δt} are independent p-dimensional standard Gaussian processes. Let B̃ be a randomly
generated p× p matrix of rank rDGP. Then, the AR coefficient matrix is constructed as

B =
B̃

1.05∥B̃∥
,

where ∥ · ∥ denotes the operator norm. The target variable is generated via

yt = 0.5yt−1 + β⊤xt−1 + ϵt,

where {ϵt} are independent standard Gaussian variates and β = (β1, . . . , βp)⊤ with

β j =

{
(−1)juj, 1 ≤ j ≤ s

0, otherwise
,

in which uj ∼i.i.d. U(0.1, 3.0).

In this DGP, the predictors, following a high-dimensional VAR(1) model, exhibit
complex dynamics and correlations. Without simplifying structures such as latent factors,
spiked covariance matrices, and sparsity, forecasting becomes difficult. Table 3 reports the
RMSFEs of various competing methods. With small s, which corresponds to sparse models,
Lasso can suitably choose the predictors and yield relatively accurate forecasts. However,
as s increases, its RMSFE quickly increases and becomes similar to those of the factor-based
approaches. The factor-based approaches, as well as the RF, performed similarly under
this DGP. This example also demonstrates that the sdPCA method may encounter loss in
prediction accuracy if the number of selected common factors is under-specified; see the
case of rGDP = 15 and r = 10.

Overall, our simulation studies show that no forecasting method always dominates
the competing methods used in the study, but the proposed GsP∗ procedure can be effective
in some cases.
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Table 3. Root mean squared forecast error of various competing methods. Data are generated from
DGP 3 and the results are averaged over 500 Monte Carlo simulations. n and p stand for the sample
size and number of observed predictors. rDGP is defined in DGP 3, and r is the number of factors
extracted using various methods.

(rDGP, s) GsP* GsP sdPCA SW LYB Lasso RF

(n, p, r) = (200, 1000, 10)

(5, 50) 12.255 12.166 12.347 12.565 12.469 7.537 12.813
(10, 100) 17.818 18.857 17.608 17.371 17.701 16.670 18.427
(15, 150) 23.142 24.417 23.041 21.777 22.027 21.125 22.660

(n, p, r) = (400, 1000, 30)

(10, 100) 16.523 17.540 17.767 18.647 18.968 14.833 18.602
(20, 200) 27.266 29.110 26.063 25.291 25.717 25.953 26.503
(30, 300) 33.763 35.635 32.438 31.672 31.827 31.340 32.427

6. Empirical Examples

In this section, we apply the proposed method to two real data sets. The first data set
is the U.S. macroeconomic data, and the other consists of Taiwan particulate matter (PM2.5)
measurements. Forecasting plays an essential role in the applications pertaining to these
two data sets, despite both of them containing high-dimensional predictors. Moreover,
these two datasets have different characteristics, which enable us to examine the forecasting
performance of various forecasting methods available in the literature. In addition to the
proposed GO-sdPCA approach, the competing methods used in the simulation studies,
such as sdPCA, SW, LYB, Lasso, and RF, are also employed in this section as benchmarks.

For both datasets, we consider the rolling-window h-step-ahead forecasting. Let {yt}
be the target variable of interest. For predicting yt+h, the factor-based methods use the
predictive equation

ŷt+h =
q

∑
k=1

αkyt−q+1 + β⊤ f̂t + ϵt+h,

where f̂t is the vector of estimated common factors by different methods. Note that in con-
structing the factors, the methods are applied to the exogenous predictors xt, . . . , xt−q+1. The
autoregressive variables yt−1, . . . , yt−q+1 only enter the predictive equation after factor ex-
traction. For Lasso and RF, yt, yt−1 . . . , yt−q+1, xt, . . . , xt−q+1 are used as potential predictors.

6.1. U.S. Macroeconomic Data

First, we consider the U.S. monthly macroeconomic data from January 1973 to June
2019. The data are from the FRED-MD database maintained by St. Louis Federal Reserve
at https://research.stlouisfed.org/econ/mccracken/fred-databases/ (accessed on 1 June
2024). We transform the time series to stationarity according to McCracken and Ng [9], and,
after discarding some variables containing missing values, there are 125 macroeconomic
time series. Among them, we focus on predicting (1) the industrial production index, (2) the
unemployment rate, (3) CPI-All, and (4) real manufacturing and trade industries sales
(M&T sales). Time plots of these four target series after transformations are depicted in
Figure 1.

For these data sets, we consider h = 1 and different combinations of q and r (the
number of factors extracted). Since q lags of the predictors are used, there are 125q total
predictors, which exceeds the sample size in each window. The last twenty years of
data (240 time periods) are reserved for testing. In addition to the root mean squared
forecasting errors, we also report the p-values of the Diebold–Mariano test [26,27] against
the alternative hypothesis that the proposed GsP∗ procedure is more accurate.

https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Figure 1. Time plots of the (transformed) macroeconomic time series of interest. (a) Industrial
production; (b) unemployment rate; (c) CPI; (d) M&T sales.

Tables 4–7 present the results. The proposed GO-sdPCA achieved the lowest RMSFE
for three of the targeted series: industrial production index, unemployment rate, and CPI.
It notably outperformed the factor-based alternatives sdPCA, SW, and LYB with high
confidence in forecasting these three series. In addition, no other methods demonstrated
such consistent effectiveness across the targeted series.

Table 4. Root mean squared forecast errors ×100 for predicting industrial production index. The low-
est RMSFE achieved by each method is in boldface. Among these boldfaced values, the lowest two
values are marked in red. q denotes the number of lags used in estimation, and r is the number of
factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the parentheses are the
p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

IP (RMSE ×100 ); h = 1

q 2 3 4

Lasso 0.626 0.625 0.628
(0.053)

RF 0.621 0.614 0.619
(0.046)

r 2 4 6 2 4 6 2 4 6

GsP∗ 0.603 0.590 0.585 0.580 0.578 0.570 0.574 0.570 0.571
sdPCA 0.663 0.792 0.727 0.603 0.676 0.683 0.601 0.832 0.868

(0.024)
SW 0.631 0.636 0.640 0.623 0.629 0.634 0.617 0.624 0.629

(0.017)
LYB 0.631 0.634 0.636 0.622 0.621 0.623 0.615 0.609 0.612

(0.037)
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Table 5. Root mean squared forecast errors for predicting unemployment rate. The lowest RMSFE
achieved by each method is in boldface. Among these boldfaced values, the lowest two values are
marked in red. q denotes the number of lags used in estimation, and r is the number of factors
extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the parentheses are the p-values of
the Diebold–Mariano test of whether GsP∗ is more accurate.

UNRATE (RMSE); h = 1

q 2 3 4

Lasso 0.138 0.138 0.139
(0.108)

RF 0.135 0.134 0.135
(0.280)

r 2 4 6 2 4 6 2 4 6

GsP∗ 0.134 0.135 0.133 0.133 0.134 0.132 0.133 0.134 0.132
sdPCA 0.182 0.156 0.136 0.183 0.135 0.144 0.229 0.181 0.146

(0.080)
SW 0.147 0.145 0.144 0.146 0.144 0.144 0.147 0.145 0.145

(0.002)
LYB 0.146 0.145 0.152 0.145 0.146 0.147 0.147 0.146 0.149

(0.008)

Table 6. Root mean squared forecast errors ×100 for predicting CPI. The lowest RMSFE achieved by
each method is in boldface. Among these boldfaced values, the lowest two values are marked in red. q
denotes the number of lags used in estimation, and r is the number of factors extracted. GsP∗ denotes
the proposed GO-sdPCA. The figures in the parentheses are the p-values of the Diebold–Mariano test
of whether GsP∗ is more accurate.

CPI (RMSE ×100); h = 1

q 2 3 4

Lasso 0.278 0.281 0.282
(0.162)

RF 0.302 0.303 0.304
(0.014)

r 2 4 6 2 4 6 2 4 6

GsP∗ 0.286 0.281 0.273 0.277 0.270 0.268 0.284 0.277 0.269
sdPCA 0.334 0.287 0.319 0.301 0.366 0.368 0.506 0.464 0.304

(0.039)
SW 0.300 0.301 0.294 0.291 0.292 0.282 0.294 0.293 0.283

(0.079)
LYB 0.300 0.300 0.304 0.293 0.294 0.296 0.293 0.294 0.299

(0.059)

Table 7. Root mean squared forecast errors ×100 for predicting MT sales. The lowest RMSFE
achieved by each method is in boldface. Among these boldfaced values, the lowest two values are
marked in red. q denotes the number of lags used in estimation, and r is the number of factors
extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the parentheses are the p-values of
the Diebold–Mariano test of whether GsP∗ is more accurate.

MT Sales (RMSE ×100); h = 1

q 2 3 4

Lasso 0.783 0.773 0.778
(0.203)

RF 0.746 0.748 0.758
(0.561)

r 2 4 6 2 4 6 2 4 6

GsP∗ 0.777 0.806 0.815 0.750 0.775 0.775 0.759 0.784 0.801
sdPCA 2.104 2.092 2.100 1.893 1.952 1.962 2.166 2.270 2.156

(0.113)
SW 0.761 0.745 0.774 0.750 0.737 0.764 0.758 0.745 0.772

(0.736)
LYB 0.796 0.792 0.799 0.768 0.784 0.786 0.772 0.773 0.797

(0.215)
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6.2. Particulate Matters in Taiwan

We next consider the data of hourly PM2.5 measurements in Taiwan during March of
2017. The data are sourced from the SLBDD package [28] in R. Each series in the data set
represents measurements (in micrograms per cubic meters, µg/m3) taken by a novel device
known as the AirBox. After an initial examination of these series, we remove series 29 and
70, because these series are near-identically zero, except at a few time points, offering no
useful variations. Among the 516 series in the data set, we choose series 101, 201, 301, 401,
as target series. Figure 2 depicts their time plots.
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Figure 2. Time plots of the four targeted hourly PM2.5 measurements on Taiwan in March 2017.
(a) Series 101; (b) series 201; (c) series 301; (d) series 401.

We consider both one-step-ahead (h = 1) and two-step-ahead (h = 2) forecasts,
and employ q ∈ {2, 3} lags and r ∈ {2, 4, 6} factors in forecasting. The last ten days of
data (240 time periods) are reserved for out-of-sample testing. Tables 8–11 present the
results for h = 1. The proposed GO-sdPCA ranks as the most predictive method in terms
of RMSFE for two of the four targeted series: series 101 and 201. It outperforms the Lasso
in forecasting all four targeted series. The performance of LYB is also noteworthy. It ranks
among the best two methods for all four targeted series. The DM test, on the other hand,
indicates the difference in forecasting accuracy is not statistically significant. Contrary
to the case in the macroeconomic data, the proposed GsP∗ only outperformed the factor-
based methods, including the sdPCA, with some weak confidence. For the two-step-ahead
forecasts, for which the results are reported in Tables 12–15, the performance of various
methods is more entangled, with the RF consistently ranked among the top two methods for
three of the four targeted series. With some weaker confidence, GsP∗ is the best performing
factor-based method for two of the four targeted series. Again, the DM test fails to separate
significantly various forecasting methods. We believe this result might be caused by the
substantial uncertainty in the PM2.5 measurements.

In sum, for h = 1, GsP∗ is effective in forecasting PM2.5 data, as well as the U.S. macroe-
conomic data. This implies the proposed procedure is able to capture highly predictive
factors across various applications. On the other hand, for h = 2, the dynamic nature of
the data may be much more involved. The performance of the proposed method becomes
similar to those of the other forecasting methods.
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Table 8. Root mean squared forecast errors for predicting series 101 in Taiwan PM2.5 data. The forecast
horizon h is 1. The lowest RMSFE achieved by each method is in boldface. Among these boldfaced
values, the lowest two values are marked in red. q denotes the number of lags used in estimation,
and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the
parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 101 (RMSE); h = 1

q 2 3

Lasso 6.363 6.327
(0.015)

RF 6.871 6.910
(0.004)

r 2 4 6 2 4 6

GsP∗ 6.047 6.193 6.173 6.021 6.162 6.091
sdPCA 6.079 6.151 6.221 6.079 6.154 6.167

(0.298)
SW 6.098 6.160 6.104 6.103 6.170 6.110

(0.269)
LYB 6.055 6.125 6.117 6.060 6.133 6.146

(0.392)

Table 9. Root mean squared forecast errors for predicting series 201 in Taiwan PM2.5 data. The forecast
horizon h is 1. The lowest RMSFE achieved by each method is in boldface. Among these boldfaced
values, the lowest two values are marked in red. q denotes the number of lags used in estimation,
and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the
parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 201 (RMSE); h = 1

q 2 3

Lasso 5.990 5.973
(0.346)

RF 5.938 6.109
(0.399)

r 2 4 6 2 4 6

GsP∗ 5.897 6.079 6.128 5.931 6.197 6.146
sdPCA 6.012 5.982 6.065 6.057 6.019 6.093

(0.201)
SW 6.113 5.956 5.952 6.135 5.989 5.984

(0.298)
LYB 6.129 5.967 5.934 6.154 5.994 5.972

(0.358)

Table 10. Root mean squared forecast errors for predicting series 301 in Taiwan PM2.5 data. The fore-
cast horizon h is 1. The lowest RMSFE achieved by each method is in boldface. Among these
boldfaced values, the lowest two values are marked in red. q denotes the number of lags used in esti-
mation, and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures
in the parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 301 (RMSE); h = 1

q 2 3

Lasso 6.824 6.854
(0.367)

RF 6.653 6.698
(0.601)

r 2 4 6 2 4 6

GsP∗ 6.756 6.765 6.724 6.800 6.813 6.781
sdPCA 6.733 6.977 6.865 6.757 7.021 6.879

(0.483)
SW 6.794 7.029 7.040 6.743 7.013 7.009

(0.476)
LYB 6.749 6.966 7.018 6.710 6.958 7.047

(0.516)
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Table 11. Root mean squared forecast errors for predicting series 401 in Taiwan PM2.5 data. The fore-
cast horizon h is 1. The lowest RMSFE achieved by each method is in boldface. Among these
boldfaced values, the lowest two values are marked in red. q denotes the number of lags used in esti-
mation, and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures
in the parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 401 (RMSE); h = 1

q 2 3

Lasso 6.392 6.349
(0.125)

RF 7.122 7.196
(0.008)

r 2 4 6 2 4 6

GsP∗ 6.170 6.235 6.251 6.238 6.236 6.243
sdPCA 6.200 6.026 6.111 6.272 6.016 6.112

(0.870)
SW 6.171 5.908 5.964 6.227 5.953 5.999

(0.996)
LYB 6.139 5.928 5.994 6.193 5.967 6.023

(0.992)

Table 12. Root mean squared forecast errors for predicting series 101 in Taiwan PM2.5 data. The fore-
cast horizon h is 2. The lowest RMSFE achieved by each method is in boldface. Among these boldfaced
values, the lowest two values are marked in red. q denotes the number of lags used in estimation, and r
is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures in the parentheses
are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 101 (RMSE); h = 2

q 2 3

Lasso 9.584 9.618
(0.818)

RF 9.544 9.415
(0.803)

r 2 4 6 2 4 6

GsP∗ 9.788 9.969 9.915 9.758 9.941 9.893

sdPCA 9.982 9.970 9.804 9.980 9.930 9.715
(0.597)

SW 10.073 9.946 9.868 10.069 9.951 9.875
(0.326)

LYB 10.000 9.888 9.883 9.994 9.888 9.907
(0.282)

Table 13. Root mean squared forecast errors for predicting series 201 in Taiwan PM2.5 data. The fore-
cast horizon h is 2. The lowest RMSFE achieved by each method is in boldface. Among these
boldfaced values, the lowest two values are marked in red. q denotes the number of lags used
in estimation, and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA.
The figures in the parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more
accurate.

Series 201 (RMSE); h = 2

q 2 3

Lasso 9.868 10.005
(0.731)

RF 9.594 9.614
(0.987)

r 2 4 6 2 4 6

GsP∗ 9.998 10.276 10.209 10.052 10.292 10.219
sdPCA 10.164 10.070 10.112 10.228 10.154 10.150

(0.339)
SW 10.233 10.151 10.151 10.270 10.196 10.207

(0.244)
LYB 10.230 10.186 10.176 10.267 10.222 10.269

(0.212)
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Table 14. Root mean squared forecast errors for predicting series 301 in Taiwan PM2.5 data. The fore-
cast horizon h is 2. The lowest RMSFE achieved by each method is in boldface. Among these
boldfaced values, the lowest two values are marked in red. q denotes the number of lags used in esti-
mation, and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures
in the parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 301 (RMSE); h = 2

q 2 3

Lasso 11.189 10.968
(0.314)

RF 10.727 10.734
(0.542)

r 2 4 6 2 4 6

GsP∗ 10.895 10.899 10.890 10.828 10.838 10.767
sdPCA 10.930 11.308 11.220 10.794 11.164 11.140

(0.460)
SW 11.265 11.675 11.598 11.038 11.528 11.456

(0.280)
LYB 11.130 11.448 11.442 10.930 11.325 11.325

(0.362)

Table 15. Root mean squared forecast errors for predicting series 401 in Taiwan PM2.5 data. The fore-
cast horizon h is 2. The lowest RMSFE achieved by each method is in boldface. Among these
boldfaced values, the lowest two values are marked in red. q denotes the number of lags used in esti-
mation, and r is the number of factors extracted. GsP∗ denotes the proposed GO-sdPCA. The figures
in the parentheses are the p-values of the Diebold–Mariano test of whether GsP∗ is more accurate.

Series 401 (RMSE); h = 2

q 2 3

Lasso 9.862 9.965
(0.100)

RF 9.694 9.676
(0.323)

r 2 4 6 2 4 6

GsP∗ 9.768 9.572 9.668 9.745 9.491 9.626
sdPCA 10.391 9.317 9.427 10.388 9.213 9.371

(0.891)
SW 10.405 9.570 9.200 10.401 9.508 9.172

(0.798)
LYB 10.293 9.600 9.285 10.278 9.534 9.279

(0.747)

7. Discussion and Concluding Remarks

In this paper, we proposed a novel method for time series forecasting when many
predictors are available. The rationale behind our method is to mine the possibly many
(compared to the sample size) factor-relevant predictors while reducing the effect of the
irrelevant variables in the high-dimensional data. The results in the simulation studies
and the empirical applications suggest that the proposed method is useful for improving
upon both the factor-based methods and methods for sparse linear models, such as the
Lasso. Finally, we remark that the theoretical investigation of the peeling technique, a key
ingredient in our method, would be an interesting topic for further research.
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Appendix A. Sensitivity to Tuning Parameters

In this section, we conduct additional simulations to examine the sensitivity of GO-
sdPCA to the tuning parameters q1, q2, and q3. First, we examine how the choice of q1 affects
the variable selection results of GOGA combined with the peeling technique. Then, various
combinations of q1, q2, and q3 are employed to study how they impact the forecasting
performance of GO-sdPCA. Throughout this section, we focus on DGP 1 introduced in
Section 5 with n = 200, p = 500, rDGP = 10, and s = 100.

To understand the effect of q1 on the variable selection results, we apply GOGA with
q1 ∈ {2, 5, 10, 20} and study its variable selection quality along the peeling iterations. In
the i-th peeling iteration, we denote the number of true positives by TPi. That is, TPi is
the number of variables selected by GOGA that are in the relevant set J in the i-th peeling
iteration. Analogously, the false positives FPi are the number of variables selected by
GOGA which are not in J. The following two metrics are of interest.

Rm =
∑m

i=1 TPi

∑m
i=1(TPi + FPi)

, cumTPm =
m

∑
i=1

TPi. (A1)

Clearly, Rm is the ratio of the cumulative true positives (TP) to the number of selected
variables, which reflects the percentage of “good” predictors in the selected variables,
and cumTPm is the number of true positives selected up until the m-th peeling iteration.

Figure A1 plots Rm and cumTPm with various q1. Observe first that, when q1 = 2, Rm
remains above 0.5 for most m, implying that few irrelevant variables are allowed to enter
the model. On the other hand, for q1 ∈ {5, 10}, Rm values vary over the range [0.2, 0.27],
which is the ratio of the number of relevant variables to the number of candidate variables
(s/p). This means the variable selection quality is only slightly better than random selection.
(For q1 = 20, the GOGA iteration Kn is set to 7 to avoid collinearity, and this seems to
help suppress the effect of irrelevant predictors and Rm is higher than 0.3. However, Rm
is also decreasing in this case.) In addition, for q1 = 2, cumulative true positives plateau
near 80 quickly after 10 peeling iterations, which implies about 80% of relevant predictors
are captured by GOGA. Therefore, tuning a smaller q1 appears preferable for variable
selection performance.
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Figure A1. Variable selection performance of GOGA along peeling iterations, with q1 ∈ {2, 5, 10, 20}.
Figures on the left plot the ratio of the cumulative true positives (TPs) to the number of selected
variables (TP + FP, where FP stands for false positive), which is exactly Rm defined in (A1). Fig-
ures on the right shows the cumulative true positives. The values are average across 100 Monte
Carlo simulations.

Next, we examine the forecasting performance with several combinations of (q1, q2, q3).
In particular, we run GO-sdPCA with q1, q2, and q3 varying across {2, 3, 5, 10}. The number
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of peeling iterations is set to 10, as in Section 5. The RMSFEs are reported in Table A1.
The results show that the forecasting capability of GO-sdPCA is quite stable over most
combinations of (q1, q2, q3). In particular, the RMSFEs are not very sensitive to q1 and q3.
This highlights that the sdPCA step is very effective for mitigating the effect of irrelevant
variables in the selected predictors. However, a very large q2 may hurt the forecasting
performance of GO-sdPCA. In this case, the RMSFE becomes significantly larger for q2 = 10,
regardless of q1 and q3. We conclude that GO-sdPCA is, in general, not sensitive to
reasonable choices of the tuning parameters, but q2 should be tuned with extra care.

Table A1. Root mean square forecasting errors (RMSFE) of GO-sdPCA applied to DGP 1 with
n = 200, p = 500, rDGP = 10, and s = 100, with q1, q2, and q3 varying across {2, 3, 5, 10} used in the
implementation. The results are averaged over 300 Monte Carlo simulations.

q3 = 2 q3 = 3
q1 q2 q2

2 3 5 10 2 3 5 10
2 2.30 2.33 2.76 3.11 2.43 2.43 2.63 2.90
3 2.51 2.43 2.77 3.61 2.24 2.72 2.56 3.65
5 2.39 2.77 2.65 3.70 2.41 2.61 2.59 3.66
10 2.57 2.60 2.64 3.54 2.39 2.32 2.70 3.27

q3 = 5 q3 = 10
q1 q2 q2

2 3 5 10 2 3 5 10
2 2.31 2.44 2.53 2.88 2.29 2.40 2.58 3.11
3 2.18 2.57 2.58 3.49 2.33 2.50 2.53 3.26
5 2.29 2.28 2.65 3.49 2.39 2.48 2.60 3.32
10 2.15 2.21 2.52 3.39 2.39 2.53 2.55 3.11
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