
Zero Code and Infrastructure Research Data Portals
Joe Bottigliero

Rachana Anathakrishnan
Kyle Chard
Ryan Chard
Ian Foster

University of Chicago and Argonne National Laboratory
Chicago, Illinois, USA

ABSTRACT
Data portals are web applications that facilitate data discovery,
access, and sharing. They are essential to meet the FAIR data prin-
ciples and for advancing open science, fostering interdisciplinary
collaborations, and enhancing the reproducibility of research find-
ings. We present a novel zero code and infrastructure approach
to simplify and accelerate the creation and customization of data
portals. Our data portals do not require an application server and
can be served from static content hosting services, removing the
need to administer infrastructure. We present a new generator ap-
proach to portal development which allows users to create highly
customized and powerful data portals by modifying only a JSON
document.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools; Accessibility systems and tools; •
Software and its engineering→ Software system structures.

KEYWORDS
Data Portals, Cyberinfrastructure, Globus

ACM Reference Format:
Joe Bottigliero, Rachana Anathakrishnan, Kyle Chard, Ryan Chard, and Ian
Foster. 2024. Zero Code and Infrastructure Research Data Portals. In Practice
and Experience in Advanced Research Computing (PEARC ’24), July 21–25,
2024, Providence, RI, USA. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3626203.3670595

1 INTRODUCTION
Exponential growth in data volumes presents new challenges for
making research data Findable, Accessible, Interoperable, and Reusable
(FAIR). New tools are needed to allow humans and machines to
easily and efficiently organize and act on ever-larger datasets. Sci-
ence gateways, data commons, and data portals, herein referred
to as data portals, are web-based platforms that facilitate the stor-
age, sharing, discovery, and access to data sets, using only a web

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670595

browser. The primary goal of a data portal is to enhance trans-
parency, collaboration, and effective use of data by providing an
organized and user-friendly means of discovering and accessing
data resources. Data portals empower researchers to conveniently
curate and share their data directly, streamlining the dissemination
of scientific knowledge and fostering interdisciplinary collabora-
tions. However, creating, deploying, and maintaining data portals
can require substantial, and on-going, development time and com-
puting resources.

In prior work we introduced the Modern Research Data Por-
tal [2] (MRDP) design pattern. The MRDP pattern delivers secure,
efficient, and scalable access to research data following two key
principles: first, the separation of control mechanisms from data
storage, and second, the delegation of essential capabilities such as
data transfer to robust and high-performing cloud services. These
principles allow business logic and control mechanisms to be per-
formed within enterprise security boundaries, while enabling data
to move freely between resources using the Science DMZmodel [8].
Collectively, this pattern enhances performance while balancing
security requirements.

Our reference MRDP implementation, built with Flask, features
a simple web interface that allows researchers to share, find, and
access data. This implementation leverages Globus [3] for efficient
data transfer, user management, and access control irrespective of
geographical location, the type of data, or volume. We also devel-
oped a second implementation, using the extensible Django frame-
work [11], to create active data portals that support on-demand
computation and sophisticated research workflows.

While both our Flask and Django framework portals have been
used to implement many data portals [6, 11], we have observed
that the need to extend, deploy, and manage Flask and Django
applications is a significant barrier to adoption. Here we present
the logical next-generation implementation of the MRDP pattern
in which these challenges can be addressed via a zero code and
infrastructure approach: the Globus Zero Code and Infrastructure
Research Data Portal (ZRDP).

As a single-page application (SPA), implemented using the Jam-
stack architectural approach, a ZRDP can be served entirely in the
browser without requiring an application server. The ZRDP SPA
leverages external cloud services for more sophisticated functional-
ity (e.g., authentication, managing access to data). ZRDPs employ a
zero code and infrastructure design pattern via modification to a
simple JSON document. This document is interpreted by a generator
to produce a SPA that can be served via cloud hosting services. This
allows a portal, such as that shown in Figure 1, to be created using

https://doi.org/10.1145/3626203.3670595
https://doi.org/10.1145/3626203.3670595
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670595
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670595&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21–25, 2024, Providence, RI, USA Bottigliero, et al.

Figure 1: An example ZRDP for Argonne National Labora-
tory’s Rapid Prototyping Lab. The portal is generated from
the JSON configuration document in Listing 1, and is served
via Github Pages.

{
"_static": {

"generator": {"name": "@example/search -portal"}
},
"data": {

"version": "1.0.0",
"attributes": {

"content": {"headline": "RPL@APS"},
"globus": {

"search": {"index": "aefcecc6 -e554 -4f8c -a25b -147
f23091944"}}}}}

Listing 1: The configuration static.json file used to generate
the portal in Figure 1. The generator statement indicates
that the @example/search-portal generator is to be used to
process this document; that generator will then employ the
supplied attributes to determine the headline for the portal
and the search index from which portal contents should be
retrieved.

a configuration document, as shown in Listing 1. Our generators
use the Globus Javascript SDK to incorporate Globus Auth [13] and
integrate other Globus services—enabling ZRDPs to securely share
and transfer data, initiate data management flows [5], or dispatch
remote analysis tasks via Globus Compute [4].

ZRDPs offer new opportunities for both institutions, individual
researchers, and research software engineers by providing the tools
needed to easily create and deploy customized data portals. This
agility enables institutions to provide enhanced data management
capabilities, improve accessibility, and foster openness and collabo-
ration among researchers. Furthermore, the simplicity of ZRDPs
empowers individuals to create their own data portals, democra-
tizing access to advanced data management services to securely
manage, act on, and share their data.

The remainder of this paper is as follows: section 2 introduces
ZRDPs and describes how they are configured, generated, and de-
ployed. section 3 presents our open-source reference implementa-
tion available on GitHub. We present related work in section 4 and
summarize in section 5.

2 ZERO CODE AND INFRASTRUCTURE DATA
PORTALS

The zero code and infrastructure design pattern simplifies SPA
implementation by separating the configuration logic from the gen-
eration of the application. SPAs do not rely on an application server,

instead providing dynamic content through client-side process-
ing, with stateful capabilities, such as authentication, outsourced
to specialized services. This approach removes the need to man-
age server-side state and reduces implementation complexity, and
allows the resulting applications to be served via static content
hosting solutions such as GitHub Pages and Amazon S3. The pat-
tern encourages reuse and facilitates low-to-no code solutions by
minimizing the need for custom development and operational re-
sources.

Institution-managed Infrastructure

User (Desktop/Laptop) Globus Platform
Static Site Host (i.e.,
GitHub Pages, AWS S3)

Science DMZ

Browser Globus Auth
Static Data

Portal
Globus
Transfer

Globus Connect
Server

Other Globus
Endpoints

Identity
Provider

static.json Continuous
Integration

Generator (Continuous)
Deployment

HTTPS

GridFTP

Figure 2: An overview of the ZRDP architecture. A config-
uration file is processed by a generator to produce an SPA
that can be served via static content hosting solutions (green).
Users interact with the ZRDP using their browser (gray) and,
after authenticating using an identity provider, are able to
interact with Globus services (blue) to act on data regardless
of location (purple).

Our approach, depicted in Figure 2, revolves around a user-
defined configuration document that references a generator package
responsible for processing the configuration file and producing an
SPA. Depending on the target generator’s usage, the configuration
file will be used as a build manifest, configuration file, and content
management system. A toolchain is used to apply the generator to
the configuration and then deploy the resulting data portal. Here
we explain how configuration, generators, and the toolchain are
used to create, build, and deploy a ZRDP.

2.1 Configuration
Each ZRDP requires a single JSON configuration file, called static.json.
The configuration document acts as the blueprint that controls
behavior of the portal’s components, specifying the generator to
use, metadata fields, and how the portal should source, process,
and display data elements. An example configuration file is shown
in Listing 1. This specifies that the@example/search-portal gener-
ator be used to parse the file and defines a data element, which
includes a version for generator interoperability, headline title, and
Globus Search index that may be used to generate the portal.

2.2 Generators
A generator focuses on pre-generated markup and client-only ren-
dering. The markup and resulting logic used on the client are
sourced from a provided configuration file. A generator may be
implemented in any language that can parse JSON and produce
HTML or an SPA. Generators specify what parts of the configu-
ration file are used and how. The design approach requires some
attributes to ensure tooling compatibility and recommends others,
but it is ultimately up to the author to define how a configuration
file is parsed. In order to take advantage of a common toolchain,
a generator must be published in a supported package ecosystem
registry and have an accessible git repository.

Zero Code and Infrastructure Research Data Portals PEARC ’24, July 21–25, 2024, Providence, RI, USA

// - out/. gitkeep

// - package.json

// {"name": "@example/search -portal", "version ": "1.0.0" ,

// "repository ": "github:example/search -portal",

// "scripts ": {"build": "node index.js"}}

// - index.js

const fs = require('fs');

const _STATIC = require('./ static.json');

const app = `<html ><head >
<script src="https :// unpkg.com/@globus/sdk/umd/globus.production.js">

</script >

</head ><body ><h1>${_STATIC.data.attributes.content.headline}

</h1><pre/></body >

<script type="text/javascript">

globus.search.query.get("${_STATIC.data.attributes.globus.search}",

{ query: {q: "*"} }). then((r) => r.json (). then((p) =>

document.querySelector('pre'). innerText = JSON.stringify(p, null , 2)));

</script ></html >`;
fs.writeFileSync('./out/index.html', app);

Listing 2: A basic example generator written in Node.js. This generator parses a configuration file to create a single HTML file
that uses the Globus JavaScript SDK to run a query against a configured search index.

Listing 2 shows a simple example generator that can act on
the configuration defined in Listing 1. This generator produces an
index.html file for the Rapid Prototyping Lab’s ZRDP at Argonne
National Laboratory and utilizes the Globus JavaScript SDK to
query the Globus Search index specified in the configuration file.

We have created two ZRDP generators using the pattern intro-
duced in this paper: @globus/static-data-portal and @globus/static-
search-portal [12]. These generators provide simple UIs for secure
authorization, data transfer, and discovery using the Globus plat-
form and Globus JavaScript SDK. The Globus SDK can be used
in isolation and provides convenient way to interact with Globus
services in web applications, making it easy to implement features
such as third-party file transfers between research institutions, data
sharing among collaborators, and invocation of remote analysis
tasks and data management flows.

2.3 Build and Deployment

User-Created GitHub Repository (from Template)

static Workflow

Generator
Repository

Create
Repository from

Template
org/repository-a Change to

st at i c. j son
static Workflow

Checkout
org/repository-a

Configure GitHub
Pages

Parse static.json from
org/repository-a

Install Ecosystem
Packages

Published
Static
Portal

Parse Generator
Version and Repository

from Package
Ecosystem

Clone Generator to
Workspace

Write Parsed
static.json to
Workspace

Run Ecosystem Build
Command

Deploy out Directory
to GitHub Pages

GitHub Pages

Figure 3: A detailed look at the creation of a ZRDP from a
GitHub Template Repository. The workflow is run automati-
cally by GitHub Actions when changes are made to a user’s
repository.

Zero infrastructure deployment removes the complexity and
cost associated with configuring servers, storage, and network-
ing, and thus enables users to focus on developing and deploying
applications. The ZRDP toolchain promotes zero infrastructure de-
ployment by automating the build process and deployment of the
resulting portal.

The build process, shown in Figure 3, is performed by a GitHub
Actions workflow. The workflow configures an environment before
cloning the generator into aworkspace. The user’s configuration file
is written to the workspace before the generator’s build command
is invoked. The resulting portal, produced in the workspace’s out
directory, is then deployed to GitHub Pages.

Publishing generators to a registry, e.g., NPM or PyPI, avoids
reinventing the wheel when it comes to many features, including
version semantics and pinning. Further, well-known registries allow
for the incorporation of existing tooling into the toolchain, thereby
solving problems such as security patches and change notifications
for downstream consumers.

3 REFERENCE IMPLEMENTATION
We provide template GitHub repositories to simplify distribution
of ZRDPs [12]. The template repository includes a simple configu-
ration file specifying a Globus-provided generator and the GitHub
Actions workflow used to build and deploy the portal. To use the
template one must:

(1) Use GitHub’s “Use this template” function to create a reposi-
tory from the template.

(2) Update the repository’s settings to allow publishing with
GitHub Actions.

(3) Edit the configuration file to fit their needs.
The toolchain will execute upon configuration changes and au-

tomatically deploy the portal to GitHub Pages. An example ZRDP
using the @globus/static-search-portal generator is shown in Fig-
ure 1. To accelerate customization of portals our GitHub repository
includes a set of example generator packages that showcase various
Globus integrations.

4 RELATEDWORK
Prior methods for web-based data sharing and publication range
from self-service platforms [7, 9] through to customizable por-
tals designed to be deployed and operated by the user [10]. These
platforms have been instrumental in facilitating the publication
of research artifacts, including datasets and software. However,

PEARC ’24, July 21–25, 2024, Providence, RI, USA Bottigliero, et al.

self-service platforms rely on the traditional data portal model,
where data and catalog are co-located and are limited by the local
resources available, while user-operated portals require significant
time and resources to deploy and maintain. The ZRDP is designed
to balance these tradeoffs by making customizable portals easy to
configure and maintain.

Other science gateways and data portals [1] serve as an compre-
hensive interface for integrating data processing and computational
resources while streamlining the interface for users working with
extensive datasets. These platforms aim to democratize access to
computational resources, reducing the need for researchers to fo-
cus on the technical and infrastructure challenges. ZRDPs can also
be used to create rich data management interfaces that facilitate
analysis.

5 SUMMARY
Data portals are crucial for promoting data discovery, access, and
management, supporting the FAIR data principles, and promoting
open science. Here we introduced an innovative zero code and
infrastructure strategy to simplify and accelerate the creation and
deployment of custom research data portals. Our approach allows
users to quickly create and tailor data portals to their scientific
data without the need for implementing, deploying, or managing
application servers. We introduce a novel generator-based design
pattern for portal development that uses the Globus JavaScript
SDK to securely incorporate Globus data management services.
ZRDPs enable users to craft specialized and effective data portals
by altering only a JSON document. In future work we will develop
a catalog of generators to support different use cases.

ACKNOWLEDGMENTS
This work was supported in part by Argonne National Labora-
tory under U.S. Department of Energy under Contract DE-AC02-
06CH11357 and used resources of the Argonne Leadership Comput-
ing Facility. We also acknowledge the Globus team for their efforts
to support this work.

REFERENCES
[1] Michelle Barker, Silvia DelgadoOlabarriaga, NancyWilkins-Diehr, Sandra Gesing,

Daniel S Katz, Shayan Shahand, Scott Henwood, Tristan Glatard, Keith Jeffery,
Brian Corrie, et al. 2019. The global impact of science gateways, virtual research
environments and virtual laboratories. Future Generation Computer Systems 95
(2019), 240–248.

[2] Kyle Chard, Eli Dart, Ian Foster, David Shifflett, Steven Tuecke, and JasonWilliams.
2018. The Modern Research Data Portal: A design pattern for networked, data-
intensive science. PeerJ Computer Science 4 (2018), e144.

[3] Kyle Chard, Steven Tuecke, and Ian Foster. 2014. Efficient and secure transfer,
synchronization, and sharing of big data. IEEE Cloud Computing 1, 3 (2014),
46–55.

[4] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A federated function serving
fabric for science. In 29th International Symposium on High-Performance Parallel
and Distributed Computing. 65–76. https://doi.org/10.1145/3369583.3392683

[5] Ryan Chard, Jim Pruyne, Kurt McKee, Josh Bryan, Brigitte Raumann, Rachana
Ananthakrishnan, Kyle Chard, and Ian T Foster. 2023. Globus automation services:
Research process automation across the space–time continuum. Future Generation
Computer Systems 142 (2023), 393–409.

[6] LSST Dark Energy Science Collaboration. 2023. LSSTDESC Data Portal. Retrieved
March 2, 2023 from https://data.lsstdesc.org/

[7] Mercè Crosas. 2011. The Dataverse network: An open-source application for
sharing, discovering and preserving data. D-lib Magazine 17, 1/2 (2011).

[8] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2013.
The Science DMZ: A network design pattern for data-intensive science. In SC’13.
1–10.

[9] European Organization For Nuclear Research and OpenAIRE. 2013. Zenodo.
https://doi.org/10.25495/7GXK-RD71

[10] Michael McLennan and Rick Kennell. 2010. HUBzero: A platform for dissemina-
tion and collaboration in computational science and engineering. Computing in
Science & Engineering 12, 2 (2010), 48–53.

[11] Nickolaus Saint, Ryan Chard, Rafael Vescovi, Jim Pruyne, Ben Blaiszik, Rachana
Ananthakrishnan, Mike Papka, Rick Wagner, Kyle Chard, and Ian Foster. 2023.
Active research data management with the Django Globus Portal Framework. In
Practice and Experience in Advanced Research Computing. 43–51.

[12] The Globus Team. 2024. Zero Code and Infrascture Research Data Portals. Retrieved
April 26, 2024 from https://github.com/from-static-labs

[13] Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman, Brendan
McCollam, Stephen Rosen, and Ian Foster. 2016. Globus Auth: A research identity
and access management platform. In 12th International Conference on e-Science.
IEEE, 203–212.

https://doi.org/10.1145/3369583.3392683
https://data.lsstdesc.org/
https://doi.org/10.25495/7GXK-RD71
https://github.com/from-static-labs

	Abstract
	1 Introduction
	2 Zero Code and Infrastructure Data Portals
	2.1 Configuration
	2.2 Generators
	2.3 Build and Deployment

	3 Reference Implementation
	4 Related Work
	5 Summary
	Acknowledgments
	References

