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Abstract
Premise: Traditional methods of ploidal‐level estimation are tedious; using DNA
sequence data for cytotype estimation is an ideal alternative. Multiple statistical
approaches to leverage sequence data for ploidy inference based on site‐based
heterozygosity have been developed. However, these approaches may require high‐
coverage sequence data, use inappropriate probability distributions, or have
additional statistical shortcomings that limit inference abilities. We introduce
nQuack, an open‐source R package that addresses the main shortcomings of
current methods.
Methods and Results: nQuack performs model selection for improved ploidy
predictions. Here, we implement expectation maximization algorithms with normal,
beta, and beta‐binomial distributions. Using extensive computer simulations that
account for variability in sequencing depth, as well as real data sets, we demonstrate
the utility and limitations of nQuack.
Conclusions: Inferring ploidy based on site‐based heterozygosity alone is difficult.
Even though nQuack is more accurate than similar methods, we suggest caution when
relying on any site‐based heterozygosity method to infer ploidy.
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Whole‐genome duplication (WGD), or polyploidy, is ubiqui-
tous across the green plant tree of life, with all extant
angiosperms exhibiting evidence of at least one ancient WGD
event (Jiao et al., 2011; Soltis et al., 2015; Landis et al., 2018;
One Thousand Plant Transcriptomes Initiative, 2019). Identi-
fying ploidal diversity is a crucial first step to understanding
the impact of WGD on patterns of biodiversity. Direct
estimation is achieved through chromosome counting at
either mitosis or meiosis. However, indirect estimation (e.g.,
flow cytometry, stomatal guard cell measurements, pollen
size, leaf spectra) can be used for broad surveys of select taxa
when complemented with known chromosome numbers and/
or ploidal levels (Masterson, 1994; Beaulieu et al., 2008;

Blonder et al., 2020; Sanders, 2021; Sliwinska et al., 2021). The
application of flow cytometry to determine ploidal level in
naturally occurring populations (Galbraith et al., 1983; Keeler
et al., 1987) has been fundamental to understanding evolution
and ecology of mixed‐ploidy populations. Despite the utility
of laboratory‐based approaches and the extension of flow
cytometry to dried samples (Galbraith et al., 1983; Keeler
et al., 1987; Suda and Trávníček, 2006; Sliwinska et al., 2021),
the process remains specialized and may involve the use of
laboratory equipment that is difficult to access. Therefore,
using DNA sequence data for ploidal‐level prediction affords
a great opportunity to streamline estimation while revolu-
tionizing our understanding of chromosome evolution.
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To date, multiple statistical approaches to use DNA
sequence data for the prediction of ploidy have been
developed based on (1) k‐mer and (2) site‐based heterozy-
gosity. Both of these general methods for ploidal‐level
prediction require statistical tests to assign ploidal level to a
sample; the statistical approach varies among available
software.

k‐mer‐based ploidal‐level prediction relies on a k‐mer
profile, which classifies the frequency of each distinct k‐mer
found across the data set. k‐mers are strings of length k,
often 21 bases (Vurture et al., 2017), that are composed of
a specific sequence of nucleotides. Popular methods for
k‐mer‐based ploidal‐level prediction are tetmer (Becher
et al., 2022) and smudgeplot, which plots minor allele
frequency by total coverage to predict copy number variants
(Ranallo‐Benavidez et al., 2020). These methods have been
recently expanded to single‐cell ATAC‐seq data (Takeuchi
and Kato, 2024). However, a limitation of these methods is
that at least 15–25× sequence coverage per homolog is
required (Ranallo‐Benavidez et al., 2020).

Site‐based heterozygosity methods rely on biallelic
single‐nucleotide polymorphisms (SNPs) within an individ-
ual and the expected number of copies of each base at that
SNP. For example, in a diploid individual, at a biallelic site
with alleles A and B, about 50% of all nucleotides sequenced
are expected to represent allele A. Comparatively, in a
triploid, at a site with alleles A and B, 33% of the nucleotides
are expected to be allele A and 67% allele B, or vice versa

(Figure 1). Alleles are called based on sequence data that
have been aligned to a single genomic reference and are
therefore calculated based on the copies of nucleotides at
sites with only two nucleotides. The types of heterozygotes
discussed here are not equivalent to heterozygous geno-
types, which are known to differ between autopolyploids
and allopolyploids (i.e., up to four alleles at a locus vs. up to
two alleles at two homeologous loci, respectively). There-
fore, the types of heterozygotes considered by these methods
do not differ based on the mode of origin; however, the
proportion of each type across the genome is expected to
differ among individuals of autopolyploid or allopolyploid
origin (see Methods, below).

The most commonly used site‐based heterozygosity soft-
ware is nQuire (Weiß et al., 2018), but additional software
exists for de novo sequences (Sun et al., 2023). As for k‐mer‐
based estimation, sequence coverage per site of at least 20–25×
is recommended for the use of nQuire (Weiß et al., 2018). In
addition, the performance and limitations of nQuire are poorly
understood in terms of accuracy. Combining nQuire's model
inference with additional data, such as genome size estimates,
and with goodness‐of‐fit tests has been suggested (Viruel
et al., 2019). Notably, nQuire's accuracy and limitations were
assessed using only genome resequencing data for only five
samples representing two taxonomic groups (Weiß et al., 2018).
Numerous studies have since identified inconsistencies between
nQuire's estimates and indirect or direct ploidal estimates
(Jantzen et al., 2022; Landis and Doyle, 2023; Folk et al., 2024).

F IGURE 1 Expected site‐based allele frequencies at biallelic sites for diploid, triploid, tetraploid, pentaploid, and hexaploid individuals.
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Moreover, in regard to concerns of accuracy, guidelines
for data preparation are limited, as it is unknown how
nQuire predictions are influenced by the number of sites,
sequencing coverage, and amount of variance or noise in a
data set. In real data sets, this noise can be introduced
through sequencing error or general mapping error, as well
as through the inclusion of non‐single‐copy loci.

Here we introduce nQuack, an R package that (1)
provides expanded tools and implementations to improve
site‐based heterozygosity inferences of ploidal level, and (2)
rigorously evaluates the accuracy of ploidy inference from
site‐based heterozygosity data with comparison to nQuire.
Specifically, nQuack implements expectation maximization
algorithms with normal, beta, and beta‐binomial distribu-
tions to identify the ploidal level (ranging from diploid to
hexaploid) of samples based on DNA sequence data,
building upon the framework proposed by nQuire. We
designed three new implementations of the expectation
maximization algorithm that allow additional distributions
to be tested. Although we implement the normal distribu-
tion, similar to nQuire, this distribution may be ill‐suited
for site‐based allele frequencies that range from 0 to 1, as the
normal distribution ranges from negative infinity to infinity.
Our second implementation uses a beta distribution to
match the constrained range of allele frequencies. Because
sequence data provide allele counts, frequencies represent
transformed data, which may lack original data attributes
and misrepresent sampling variances and one or more
sources of heterogeneity. Therefore, our final implementa-
tion includes the beta‐binomial distribution, which allows
raw allele counts to be leveraged.

Our goal was to identify the best approach to infer ploidy
from DNA sequence data from a variety of species exhibiting
a range of life histories and origins of polyploidy. We
therefore rigorously tested our new implementations to
identify limitations to these new methods and provide
guidance for users. We examine the same five samples as
used in the development of nQuire (Weiß et al., 2018), plus
477 samples representing three additional taxonomic groups
and three additional sequence data types (genotype‐by‐
sequencing, target enrichment, and RADcap). To provide
recommendations regarding coverage and the number of sites
needed for each implementation and model type, we also test
our model on 355 simulated samples, representing two
simulation approaches that vary in the amount of variance
introduced.

METHODS AND RESULTS

Likelihood calculations and model selection

The basis of our models is the expected site‐based allele
frequency at variable biallelic sites within an individual for
each ploidal level, including diploid (0.5), triploid (0.33, 0.67),
tetraploid (0.25, 0.5, 0.75), pentaploid (0.2, 0.4, 0.6, 0.8), and
hexaploid (0.17, 0.33, 0.5, 0.67, 0.83), as introduced above

(Figure 1, Appendix S1; see Supporting Information with this
article). To use the expected allele frequencies to determine the
most likely ploidal level given a set of allele frequencies or allele
counts representing biallelic sites from a single individual, we
developed three implementations of expectation maximization
algorithms with the normal, beta, and beta‐binomial distribu-
tions, each with and without a uniform distribution to capture
uniform noise components. The normal distribution imple-
mented here differs from that of nQuire in our augmented‐
likelihood calculation (Appendix S1: Equation 5); however, all
model comparisons were investigated with both the nQuire‐
style implementation and our implementation of the normal
distribution (Appendix S1). We found our implementation to
have lower confidence in incorrect models compared to
nQuire's implementation, and therefore we focus only on our
implementation of the normal distribution here.

The details of our implementations are provided in
Appendix S1, but are summarized here. Given the expected
frequencies, the likelihood for each ploidal level based on a
set of observed allele frequencies (or allele counts) is defined
as the sum of the product of the mixture proportion (alpha)
and the relative likelihood of the observations, or probability
density function, based on the expected frequency (mean)
and variance of that mixture and the given distribution
(Figure 2). To maximize the likelihood for a set of mixtures,
values of alpha, variance, and mean can be modified through
the expectation maximization algorithm and optimized with
the Nelder–Mead simplex optimization algorithm (Nelder
and Mead, 1965). Furthermore, to allow model selection via
information criteria, where divergence among models can be
estimated by calculating the log‐likelihood ratio, we allow
“free” and “fixed”models, where all “fixed”models are nested
in a “free” model. In our free model, all parameter values
(alpha, variance, and mean) are estimated for a mixture of all
potential ploidal levels. Although we have an expected value
for the mean of each mixture, the expected values of alpha, as
well as the variance, are not well defined. Because the
proportions of each type of heterozygote may differ for an

FIGURE 2 The basic components of a mixture model include mean
(μ), variance (σ), and proportion (or alpha, α). The expected distributions
for an autotetraploid, as defined by Lloyd and Bomblies (2016), are
shown here.
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allopolyploid compared to an autopolyploid (reviewed in
Lloyd and Bomblies, 2016), we were interested in exploring
models where alpha is free (see caveats in the Conclusions,
below). Therefore, we tested three “fixed” models: (1) where
only alpha is free, (2) where only variance is free, and (3)
where both alpha and variance are free. Therefore, for each
implementation, we provide 32 model types, including three
fixed models, at each of the five ploidal levels examined here
and one “free” model, all of which can be examined with and
without a uniform distribution.

To evaluate each model, we examined the log‐likelihood
ratio and the Bayesian information criterion, or BIC score.
The BIC score is the log‐likelihood of a model penalized by
both sample size and the number of parameters included,
which leads to less error in model selection (Taper
et al., 2021). We examined both the log‐likelihood ratio
and BIC score for all models and determined that BIC
identified the correct ploidal level of more samples than the
log‐likelihood ratio; thus, we focused on BIC scores in all
model comparisons. The BIC difference between the best
and second‐best model can be leveraged as an information
criterion to assess confidence in model selection (Jerde
et al., 2019; Taper et al., 2021).

Model evaluation

To evaluate our models and determine guidelines for
implementing these models, we examined 513,792 models
based on both simulated and real samples. Simulated data
representing all five ploidal levels varied in sequence
coverage and number of sites, as well as the amount of
random noise. Real samples include 482 samples of known
ploidy (Table 1), inferred via indirect and direct estimates,
and represent five taxonomic groups and four types of
sequence data.

Simulated data

We simulated samples based on two approaches that
represent two sampling scenarios: a “simplistic” one and a
“realistic” scenario where the sampling is done at various

levels of DNA sequence coverage (3–120×). Simplistic
simulated samples are simple, with little to no variance
introduced during the simulation process. The simplistic
approach simulates heterozygous biallelic sites based on a
binomial distribution where coverage among sites is equal
and all expected frequencies have an equal probability of
being sampled. For each ploidal level, we simulated 11
samples that differed in coverage per site (5×, 10×, 20×, 30×,
40×, 50×, 60×, 70×, 80×, 90×, or 100×). For the 55 simulated
samples, models were evaluated at six different numbers of
sites, or the total number of SNPs (1250, 2500, 5000, 10,000,
20,000, 30,000).

For our realistic simulations, we simulated samples
where coverage across sites was variable and allele
frequencies had higher variance than the simplistic simula-
tions. The variance introduced in these simulations is meant
to resemble noise introduced by sequencing errors and data
processing errors (e.g., mapping errors). We simulated 60
different coverage amounts for each ploidal level; these
simulations varied in the minimum and maximum cover-
age, as well as the expected number of samples within an
interval, or lambda. Based on the minimum and maximum
coverage, as well as the expected number of events
(lambda), the total coverage for each site is sampled from
a truncated Poisson distribution, as coverage across a
genome resembles a Poisson distribution with multiple
peaks (Pfenninger et al., 2022). For each of our 60
simulations, we set the minimum coverage as i, maximum
coverage as (i + 1) × 3, and lambda as half of the sum of the
minimum and maximum coverage (Appendix S2:
Figure S1). The resulting mean coverage simulated by this
method ranged from 3 to 120×. Given a randomly selected
proportion (i.e., mean and associated variance), the copies
of allele A were then defined with a binomial sample with
the probability defined by the beta distribution (i.e., a beta‐
binomial) and the copies of allele B are equal to the
remainder. We then followed the data processing steps
applied to real data. First, the simulated data were filtered to
remove any sites where only one allele was sampled by
chance. Next, we filtered the sites based on the total
coverage and sequencing coverage of each allele. This
function can also filter sites based on truncated allele
frequencies. Finally, we randomly sampled an allele with

TABLE 1 An overview of all included sample sets including the species, total number of samples, ploidal levels included, and sequencing approach.

Sample set Species Total Ploidal levels Sequencing approach

Yeast Saccharomyces cerevisiae 3 2x, 3x, 4x Whole‐genome resequencing

Oomycete Phytophthora infestans 2 2x, 3x Whole‐genome resequencing

Glycine spp. G. albicans (2x), G. arenaria (2x), G. falcata (2x), G. hirticaulis (2x),
G. tomentella (2x, 4x), G. stenophita (2x), G. syndetika (2x), G. tabacina (4x)

17 2x, 4x Genotype‐by‐sequencing

Galax Galax urceolata 190 2x, 3x, 4x Target enrichment

Larrea Larrea tridentata 270 2x, 3x, 4x,
5x, 6x

RADcap (Hoffberg et al., 2016;
Bayona‐Vásquez et al., 2019)

Note: Additional information, including available accessions, can be found in Appendices S3 and S4.

4 of 12 | nQUACK R PACKAGE FOR PLOIDAL LEVEL PREDICTION

 21680450, 0, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11606 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [16/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



equal probability at each site. The resulting data set includes
the total coverage per site and the coverage associated with a
randomly sampled allele. For the 300 simulated samples,
models were evaluated at six different numbers of sites, or
the total number of SNPs (1250, 2500, 5000, 10,000, 20,000,
25,000).

Organismal data

We applied our model to available data sets with DNA
sequence data and known ploidy for samples of Saccharo-
myces cerevisiae Meyen ex E. C. Hansen, Phytophthora
infestans (Mont.) de Bary, Glycine Willd. spp., Larrea
tridentata (DC.) Coville, and Galax urceolata (Poir.)
Brummitt; for simplicity, we refer to these as yeast,
oomycete, Glycine spp., Larrea, and Galax, respectively
(Table 1). Both the yeast and oomycete sample sets were
used to develop and test nQuire (Weiß et al., 2018); thus, we
chose to investigate these samples with nQuack. Of the
remaining data sets, Galax urceolata and Larrea tridentata
represent likely autopolyploids (Hunziker et al., 1977;
Lewis, 1980; Nesom, 1983; Servick et al., 2015), while
Glycine spp. are allopolyploids with likely disomic inheri-
tance (Sherman‐Broyles et al., 2014; Zhuang et al., 2022;
Landis and Doyle, 2023). The type of DNA sequence data
varied across these samples, including whole‐genome rese-
quencing, genotype‐by‐sequencing (Elshire et al., 2011), target
enrichment, and RADcap data (Hoffberg et al., 2016; Bayona‐
Vásquez et al., 2019) (Table 1). RADcap (Hoffberg et al.,
2016; Bayona‐Vásquez et al., 2019) combines reduced‐
representation 3RAD library preparation (Hoffberg et al., 2016;
Bayona‐Vásquez et al., 2019) with probe‐based target capture.
These sample sets also vary in the number of samples,
diversity in ploidal level, taxonomic diversity, and quality of
the reference genome (Table 1, Appendices S3 and S4).

We aligned reads from each sample to the associated
reference genome for that species (Appendix S3) with
BWA‐MEM2 version 2.2.1 (Vasimuddin et al., 2019),
converted the SAM file to a BAM file, and sorted the
results with SAMtools version 1.15 (Danecek et al., 2021).
We identified and masked repeat regions with RepeatMo-
deler version 2.0 (Flynn et al., 2020) and RepeatMasker
version 4.1.1 (Smit et al., 2015). Repetitive regions should be
removed from alignments before the estimation of ploidal
level, as these regions will have high coverage and will likely
not represent the copy number variation found in coding or
single‐copy regions. Based on the masked genomes, we then
created databases of repeat regions that were removed from
each sample alignment. We also removed poorly mapped
reads and any sites that had a 10% chance or more of being
mapped to the wrong location (‐q 10).

To allow for investigation of multiple filtering ap-
proaches, we first prepared a text file of the alignment. After
preparing text files with our function prepare_data(), we
manually inspected each data set and specified the
minimum filtering settings accordingly. Filtering strategies

differed in minimum coverage and maximum coverage
quantile, as well as the lower bound (CL) and upper bound
(CU) for allele frequency truncation. For all filtering
strategies, sequencing depth per allele was filtered based
on a sequencing error rate of 0.01, where the coverage of
each allele must be more than the total coverage multiplied
by the error rate, but less than the total coverage multiplied
by one minus the error rate. To avoid enhancement of
signal from data duplication, we randomly sampled an allele
with equal probability at each site. After filtering, the
resulting data set includes the total coverage per site and the
coverage associated with a randomly sampled allele.

We examined four filtering strategies across sample sets,
with at least two examined per set. For all sample sets, we
examined the minimum filtering approach (D1) and the
maximum filtering approach (D4). Because hexaploid
samples are expected to have mixtures with means equal
to 0.17 and 0.83, we investigated filtering approaches that
differed in CL and CU, to ensure we did not remove these
peaks in our filtering process. The minimum filtering
approach (D1) settings differed per sample set, with three
groups of settings: yeast and oomycete, Galax and Glycine
spp., and Larrea. Respectively, the settings for the minimum
filtering approach were minimum coverage equal to 10, 2,
and 3; maximum coverage quantile equal to 0.90, 0.90, and
1; CL equal to 0.11, 0.1, and 0.11; and CU equal to 0.89, 0.9,
and 0.89. The maximum filtering approach (D4) represents
nQuire's default settings, where minimum coverage is 10, CL

is 0.15, CU is 0.85, and there is no maximum coverage
cutoff. The maximum filtering approach (D4) was applied
with nQuire's create function on all samples except for the
Larrea sample set, which was prepared with a maximum
depth quantile of 0.9 and error correction of 0.01. For Galax
and Larrea, we examined two additional filtering ap-
proaches to examine the intermediate between the mini-
mum and maximum filtering approaches. First, we
increased the minimum coverage to 10, but retained the
CL and CU in the minimum filtering approach (D2). Second,
we increased our allele truncation with CL as 0.15 and CU

as 0.85, with the minimum coverage retained from the
minimum filtering approach (D3). After filtering, the
resulting data set included the total coverage per site and
the coverage associated with a randomly sampled allele.

Model performance on simulated data

Overall, we found that no single model correctly assigned
ploidal levels to all simulated samples (Figure 3). The
amount of random noise in simulated data influenced
which model correctly predicted the most simulated
samples, with the best model differing for the simplistic
and realistic simulated data (Appendix S2: Figures S2–S55).
When considering all five potential ploidal levels, the most
accurate model for the simplistic simulated samples was the
beta distribution with variance free and a uniform mixture.
For this model, the first three ploidal levels can be
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F IGURE 3 Variance in simulated data led to a higher rate of incorrect ploidal‐level assignment. A larger percentage of samples was properly assigned
ploidal level when the number of mixtures examined was reduced. Some models are unsuitable for assigning specific ploidal levels, for example, diploids are
not identified under the normal distribution when alpha is free.
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differentiated at about 20× coverage; however, pentaploid
and hexaploid samples could not be differentiated until
about 70× coverage. For the realistic simulated samples,
when considering all five potential ploidal levels, the most
accurate model was the beta‐binomial with alpha free. For
this model, diploids, triploids, tetraploids, and pentaploids
can be differentiated at about 30× coverage, but hexaploids
cannot be accurately identified until about 70× coverage.

Decreasing the number of ploidal levels considered may
allow the proper assignment of ploidal levels to both
simplistic and realistic samples (Figure 3). For example,
when considering all ploidal levels with a normal distribu-
tion with variance free and uniform mixture, tetraploid
realistic samples were identified incorrectly as hexaploids
(Appendix S2: Figure S7). However, when a subset of
mixtures was considered, tetraploids could be properly
assigned as tetraploids for both simulation types (see
Appendix S2: Figures S25 and S43). The impact on sequence
coverage requirements was minimal (see Appendix S2).

In some instances, we found the probability of the
correct model choice to increase with the BIC difference
between the best and second‐best models; however,
accuracy and BIC score difference often did not have a
linear relationship (Appendix S2: Figures S56–S58). We
therefore caution against interpreting the difference in BIC
scores between the best and second‐best models as a
measure of confidence or accuracy.

Model performance on sample sets

As found with our simulated data, a single model was not
ideal for all real samples. However, we were able to identify
models that assigned ploidal level correctly to all samples or
a large subset of samples for all data sets, with the best
model for each sample set having at least 78% accuracy
(Figure 4, Table 2). For those sample sets without
pentaploid or hexaploid samples, we considered only
diploid, triploid, and tetraploid mixtures, as this reduced
assignment error. Our implementation of nQuire, as well as
the best model identified with nQuack, had equal or greater
accuracy than the original nQuire model (Table 2).

We were able to properly assign ploidal levels to all five
samples originally investigated by nQuire. For the yeast
sample set, all three distributions had multiple model types
that were able to properly assign ploidal level to all samples
under both filtering approaches; the model type implemented
in nQuire, variance free with a uniform mixture, was also able
to accurately assign ploidal level to all samples with all three
distributions. Notably, the normal distribution with alpha and
variance free and a uniform mixture was only suitable when
the allele truncation was the least constrained (D1). For the
oomycete sample set, only one model was suitable when allele
truncation was the least constrained: normal distribution with
alpha free and a uniform mixture. Surprisingly, for the
oomycete sample set, the nQuire model type (variance free
with a uniform mixture) was unable to properly assign ploidal

level to the diploid sample when filtering did not match
the filtering approach of nQuire. Additionally, the nQuire
filtering approach (D4) allowed the proper assignment of
both oomycete samples by at least two models from each
distribution. Unlike all other sample sets, the maximum
filtering approach (D4) increased the number of sites for both
oomycete and yeast sample sets (Appendix S2: Figure S59);
this is likely due to an excess of sites with high sequencing
depth.

For Glycine spp., the nQuire filtering approach had low
accuracy for all models (<60%); however, the minimum
filtering approach allowed 16 of 17 samples to be assigned
the correct ploidal level based on the beta‐binomial
distribution and the alpha‐ and variance‐free model with
a uniform mixture. We expected the alpha‐free model to be
the best model for Glycine spp. samples due to the history of
ancient polyploidization inGlycine spp. (Walling et al., 2006),
thus the proportions of each different heterozygote should
be unequal. As expected, alpha as a free variable was
informative for tetraploids; however, without a uniform
mixture, diploids were incorrectly identified. Under the best
model, the single incorrectly assigned diploid was an
individual of Glycine tomentella (D5Bb), which is known
to have a history of introgression (see Landis and
Doyle, 2023). Hybridization can lead to an increased gene
copy number; therefore, a more conserved filtering
approach to only retain single‐copy loci may be necessary
to improve accuracy.

The best model for Glycine spp. also had high accuracy
for Galax samples under the minimum filtering approach,
with 185 of 190 samples with properly assigned ploidal levels
with only two tetraploids and three triploids misidentified.
The tetraploid samples that were incorrectly identified had
weak support; the absolute difference between the BIC score
of the best model relative to the second‐best model was less
than 10, and these values were less than the BIC score
difference of all accurate estimates. Although we caution
against the interpretation of BIC score difference as a
measure of accuracy generally, evaluating this method on
samples with known ploidal level identified this potential
usage for a set of unknown samples. When sample sequence
data are more similar to the modeled data‐generating
process, these criteria may be informative. Here, we targeted
single‐copy loci with capture‐based sequencing, thus avoid-
ing variance among loci that would skew these models.
However, BIC score differences were not informative for the
incorrectly assigned triploid samples. Two of these three
triploid samples were incorrectly identified by all models;
both samples have a high abundance of sites with an allele
frequency of approximately 0.5, suggesting potential unequal
locus loss and retention across targeted sites, which may be
due to their origin from diploid–autotetraploid hybridization.
When low‐coverage sites remained (D1 and D3), the
distribution with the best model remained the beta‐
binomial with 184 of 190 samples correctly predicted under
the variance‐free with uniform mixture model. When low‐
coverage sites were removed (D2 and D4), the best model
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F IGURE 4 A large proportion of samples was properly assigned ploidal level when only considering a subset of mixtures (2x, 3x, and 4x for yeast,
oomycete, Glycine, and Galax; 2x, 4x, and 6x for Larrea). All samples were properly identified by at least one model for both yeast and oomycete sample sets.
For Glycine and Galax, the best model identified 16 out of 17 samples and 186 out of 190 samples, respectively. For Larrea, the best model was unable to
identify 60 samples, for a total of 210 out of 270 samples correctly identified.

8 of 12 | nQUACK R PACKAGE FOR PLOIDAL LEVEL PREDICTION

 21680450, 0, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11606 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [16/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



shifted to the normal distribution with alpha free and a
uniform mixture. The highest accuracy was found under the
D4 filtering approach with the normal distribution with alpha
free and a uniform mixture; this model accurately assigned
ploidy to 186 of the 190 individuals, only failing to identify a
single tetraploid and three triploids.

For the Larrea data set, we were able to identify all
triploids, tetraploids, pentaploids, and hexaploids under at
least one model; however, the best model and filtering
approach for each ploidal level differed. Based on the 18
different models and four different filtering approaches
investigated for all cytotypes or only a subset of ploidal
levels (2x, 4x, and 6x), we identified 22 and 39 instances,
respectively, where all 70 hexaploids were assigned the
correct ploidal level. For tetraploid samples, all 135
individuals were correctly identified in two instances for
all cytotypes and two instances for only a subset of ploidal
levels. Similar to the triploids in the Galax sample set, there
were multiple diploid samples that our implemented models
failed to identify correctly. These diploid samples were
found to occur in mixed ploidal sites or at the edge of the
species range, suggesting that ongoing mixed‐ploidy
introgression or divergence from the reference may skew
the models' ability to accurately assign ploidal levels due to
increased gene copy number or mapping error, respectively.
When considering all five potential ploidal levels, the best
model was the beta distribution with alpha free and a
uniform mixture, with 189 of 270 samples correctly assigned
ploidal level under the D2 filtering approach; this prediction
misidentified all hexaploids and pentaploids, as well as three
tetraploids and four diploids. When we reduced the mixture
of ploidal levels considered to include only diploids,
tetraploids, and hexaploids, the best model shifted to the
beta distribution with variance free under the maximum
filtering approach with 210 samples correctly identified; the
misidentified samples included all triploids and pentaploids,
six diploids, 20 tetraploids, and 29 hexaploids. The original
nQuire model incorrectly estimated the ploidal level for
only six diploids and one tetraploid from the diploid,
triploid, and tetraploid Larrea samples; comparatively, our
implementation of nQuire incorrectly assigned ploidal level

to an increased number of tetraploid samples due to the
inclusion of a hexaploid mixture model, which was
identified as more likely for these samples. Although
reducing the number of ploidal levels considered can
increase the number of correctly assigned samples, we do
not advise ignoring the presence of triploid, pentaploid, or
hexaploid cytotypes in a system to improve model accuracy.
Overall, our approach increased the Larrea sample set
accuracy compared to nQuire by 8% (Table 2).

CONCLUSIONS

Here, we provide expanded tools and implementations to
improve site‐based heterozygosity inferences of ploidal
level. Our program nQuack provides data preparation
guidance and tools to decrease noise in input data. These
tools include a maximum sequence coverage quantile filter
and sequence error–based filter to remove biallelic sites that
are likely not representative of copy number variance in the
nuclear genome. We also consider only the frequency of
allele A or B at each site, instead of both, as implemented in
nQuire, as this would inflate the observation by enhancing
the signal or noise found in the data. Our model builds
upon, and improves, the nQuire framework by extending it
to higher ploidal levels (pentaploid and hexaploid),
correcting the augmented likelihood calculation, imple-
menting more suitable probability distributions, and allow-
ing additional “fixed” models. We also decrease model
selection errors by relying on BIC rather than likelihood
ratio tests (Taper et al., 2021). Overall, nQuack facilitates
model exploration, as demonstrated by the 513,792 models
explored in this study, and improves the accuracy of ploidal
estimation based on site‐based heterozygosity.

Through the intensive testing of the methods presented
here, we found that many variables influence model
accuracy. Based on our simulated data, we observed that
each model implementation and model type can be
influenced by the number of sites, sequencing coverage,
and amount of variance or noise in a data set. In real data
sets, this noise can be introduced through sequencing error
or general sequence mapping error. In addition, although
we attempted to retain only single‐copy loci by removing
repetitive regions, additional filtering may increase accuracy
to ensure estimates are not conflated by variation among
loci at non‐single‐copy sites. By examining a large amount
of empirical sequence data from diverse organisms with
different life histories, we determined that the most accurate
model for each data set differed, suggesting that both
filtering strategies and model selection must be explored on
a set of known samples before applying these models to any
sample with an unknown ploidal level to achieve accurate
ploidy assignment. Although we attempted to connect
model inference errors to the known biology of our sample
sets, it is difficult to untangle the biological limitations of a
model that is based on pattern. Furthermore, model
accuracy will be impacted by any process that modifies

TABLE 2 Accuracy of nQuire compared to nQuack's implementation
of nQuire (normal distribution with variance free and a uniform mixture
with the maximum filtering approach, D4) and the best model by nQuack.

Sample set Total nQuire
nQuack's
nQuire

nQuack's
best model

Yeast 3 3 (100%) 3 (100%) 3 (100%)

Oomycete 2 2 (100%) 2 (100%) 2 (100%)

Glycine spp. 17 9 (53%) 9 (53%) 16 (94%)

Galax 190 172 (91%) 179 (94%) 186 (97%)

Larrea 270 189 (70%) 205 (76%) 210 (78%)

Note: The percent of total samples accurately assigned is given in parentheses. nQuire
was run on alignments before our recommended preprocessing steps.
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biallelic allele frequencies or proportions relative to the
expectation for each ploidal level. As described above, allele
frequencies and proportions may be modified by many
biological processes including, but not limited to, the mode
and timing of WGD, gene duplication or loss, and
chromosomal behavior during meiosis. We do not expect
inferences to be inhibited by processes that lead to excess
homozygosity, such as double reduction, as these would
only decrease the number of biallelic sites compared in a
model, which is accounted for in the BIC score.

We explored nQuack's performance on an extensive set
of simulated data and multiple real‐world data sets. These
analyses allowed us to benchmark model performance and
identify data features that affect nQuack's predictive power.
However, the biological data sets we explored cannot
represent the full diversity of polyploid systems, and
additional tuning is required for real data sets. For example,
these models would not be suitable in an allotetraploid with
strict disomic inheritance as no AAAB or ABBB loci would
occur; therefore, the most likely model could be identified as
a diploid, although BIC score parameter corrections would
allow the most probable model to be hexaploid or
tetraploid. Additional biological systems will likely intro-
duce more complexities and may work best under different
filtering conditions. For example, uneven nuclear genome
copy number among cells would not modify biallelic allele
frequencies; however, processes such as endoreduplication
may reduce model accuracy and complicate ploidy assign-
ment based on sequence data alone. To identify the factors
that dictate which strategy is the most accurate, multiple
mixed‐ploidy systems with high‐quality reference genomes,
well‐classified polyploidization events (e.g., mode of forma-
tion, timing of polyploidy events, chromosomal segregation
patterns), and well‐characterized reproductive history
should be explored in future model iterations. Regarding
summary statistics, non‐parametric bootstrapping after
model selection would allow for assessing the strength of
the evidence in favor of every model and the robustness of
model selection results. We provide functions to perform
this non‐parametric bootstrap sampling; however, complet-
ing a full non‐parametric bootstrap for all of our real data
sets was neither practical nor feasible due to computational
limitations. Because all mathematical models are misspeci-
fications of the true data‐generating process (Dennis
et al., 2019), errors are probable when selecting the model
closest to the truth. Therefore, by resampling the data, we
can assess the reliability of the model choice. In addition, if
analytical‐based inferences continue to be pursued, a sliding
window approach will likely improve ploidy inferences.

Our results open many interesting avenues for future
research. Site‐based heterozygosity models such as the ones
used here are in essence phenomenological statistical models,
which focus on reproducing patterns rather than generating
patterns based on a fundamental biological process. Although
statistical models embodying fundamental biological pro-
cesses are common in many areas of biology (for instance, in
phylogenetics), in this particular case it is extremely difficult

to capture the complexities of nature in an analytical‐based
inference, and future model exploration utilizing data‐based
inference to classify ploidal levels is warranted. Alternatively,
demographic models such as those we proposed elsewhere
(Gaynor et al., 2023) may provide the ecological and
evolutionary framework necessary to design process‐based
predictions for mixed ploidy. These models, however, require
rigorous coupling with evolutionary and genomic theory.

Overall, this analysis reveals that it is critical to thoroughly
examine proposed methods before inferring biological mean-
ing. Neither nQuack nor nQuire should be used to infer the
ploidy in a system for which very little is known, as these
models are often positively misleading. As suggested above,
both filtering strategies and model selection must be explored
on a set of known samples before applying these models to
any sample with an unknown ploidal level to achieve accurate
ploidy assignment. We also suggest caution when relying on
any method using site‐based heterozygosity to predict ploidy
of a sample even when a known data set is analyzed before
applying the method to a sample of unknown ploidy due
to the potential impact of various biological processes
(e.g., hybridization, divergence) on model inference. Despite
the many caveats to this method, nQuack is the best approach
currently available and can be easily implemented to leverage
sequence data for ploidal estimation.
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genomes and population genetics data are available via open
repositories (see Appendix S3 and S4 for accessions). Sequence
data for Galax urceolata and Larrea tridentata will be
published in open repositories with future publications. An
exemplar data set and processing times required for every step
of model implementation (1.46–2.09 s for models with the
normal distribution; 6.41–23.16min for models with the beta
distribution; 9.54–46.15min for models with beta‐binomial
distribution), as well as the output of each step of our method,
are available on our GitHub (https://mlgaynor.com/nQuack/
articles/BasicExample.html).
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