
Article https://doi.org/10.1038/s41467-024-49381-z

AI-NERD: Elucidation of relaxation dynamics
beyond equilibrium through AI-informed
X-ray photon correlation spectroscopy
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Understanding and interpreting dynamics of functional materials in situ is a
grand challenge in physics and materials science due to the difficulty of
experimentally probing materials at varied length and time scales. X-ray
photon correlation spectroscopy (XPCS) is uniquely well-suited for char-
acterizing materials dynamics over wide-ranging time scales. However, spatial
and temporal heterogeneity in material behavior can make interpretation of
experimental XPCS data difficult. In this work, we have developed an unsu-
pervised deep learning (DL) framework for automated classification of
relaxation dynamics from experimental data without requiring any prior
physical knowledge of the system. We demonstrate how this method can be
used to accelerate exploration of large datasets to identify samples of interest,
and we apply this approach to directly correlate microscopic dynamics with
macroscopic properties of a model system. Importantly, this DL framework is
material and process agnostic, marking a concrete step towards autonomous
materials discovery.

Structure-property relationships are the core of materials science and
condensed matter physics. However, defects and disorders make it
difficult to describe real materials with simple analytical models.
Adding to the complication,manymaterials are out of equilibrium and
either evolve through time or aremeta-stable, meaning their structure
and properties can experience significant and fundamental changes
due to small changes in the environment. In these cases, structural and
microstructural analysis are not enough to understand the system, and
the dynamics of the system must be studied to understand how the
temporal evolution of the microstructure manifests in bulk materials
properties.

Synchrotron X-ray scattering is ideally suited to studying struc-
ture and dynamics in complex systems due to high illumination
brightness, flux, and coherence combined with state-of-the-art X-ray

detectors and operando capabilities1–8. In particular, x-ray photon
correlation spectroscopy (XPCS) is capable of capturing material
dynamics with time resolution spanning μs - hours and spatial reso-
lution ranging from sub-nm - μm. Flexible experimental conditions
make XPCS experiments compatible with a variety of operando
environments. In this work, we consider the case of rheo-XPCS,
wherein the partially coherent X-ray beam illuminates an X-ray trans-
parent rheometer stage which can simultaneously shear the sample
and measure mechanical response. Built on the same fundamental
mechanisms as Dynamic light scattering (DLS), XPCS measures
dynamics via temporal decorrelation of scattered X-ray intensities9–11.
A schematic of XPCS is shown in Fig. 1A and B. A coherent X-ray beam
scatters off of a sample and produces a scattering pattern on a pixel-
array detector in the far field. The intensity autocorrelation is
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calculated between all pairs scattering frames, collected at times t1 and
t2, at a fixed scattering vector, Q, and is plotted as a two-time corre-
lation function, called C2(Q, t1, t2). XPCS correlations are calculated in
groups at several Q from the same raw scattering data; in Fig. 1B, we
illustrate that, for the data shown in this work, the scattering pattern is
divided into 18 azimuthal bins along the structure factor peak so that
C2 from each bin can be compared to gauge the isotropy of dynamics.
For systems at steady-state, where dynamics do not change with time,
a rigorous framework for extracting physical properties from XPCS
data exists. In these cases, intensity is averaged over equivalent delay
times, τ = t1 − t2, to produce a one-dimensional plot of the time-
averaged autocorrelation function, g2(q, τ), which is fit to well-
established analytical or empirical models to extract physical infor-
mation. In contrast to g2 which averages over τ and therefore cannot
expressnon-equilibriumdynamics,C2 is capableof describing any type
of relaxation dynamics and provides a “fingerprint" of the non-
equilibrium system at any given experimental time. A variety of ana-
lyses have been used to take advantage of both the fundamental
foundation for traditional XPCS analysis and the information-rich
correlations which describe changes between specific time
points12–15,15–18, however, the amount of human adjudication required
for interpretation of results from such advanced XPCS analysis meth-
ods, as well as the amount of data collected in synchrotron experi-
ments, pose significant barriers to the development of a more
quantitative physical understanding of dynamics in complex material
systems. To further complicate the matter, the variety of patterns
shown in experimental C2 from a single system varies drastically such
that even visual identification of relationships between data points is
difficult (see Fig. 1 C and Supplemental Fig. 1 for a sample of C2 data).
The limitation imposed by data interpretation bandwidth will become

even more pronounced with the use of high-frame-rate, large-pixel-
array x-ray detectors and the world-wide commissioning of ultra-
brilliant fourth-generation synchrotron facilities19–26.

Recent years have seen a tremendous increase in the application
of machine learning (ML) methods to scientific data with applications
ranging from assisting medical diagnosis and guiding autonomous
vehicles, to solving fundamental physical problems27–29. Specific to
x-ray characterization, MLmethods are being used across nearly every
characterization technique30. Examples include the use of ML to
determine the structure-property relationship31–35, accelerate and
enhance coherent characterization techniques36–41, accelerate emis-
sion spectroscopy, reduce dose and noise in tomography, and accel-
erate Bragg peak fitting42–45. In the XPCS community, recent work has
demonstrated the use of ML to denoise C2, which lead to significant
improvement of the quantitative interpretation of the XPCS results
and detection of anomalous results, and using ML to link physical
parameters with C2 topology from simulations to further our under-
standing of the origin of complexities in XPCS data46–48.

Here, we use rheo-XPCS studies of relaxation in a glassy colloidal
suspension as an example system to develop a material- and process-
agnostic AI toolbox for exploring and understanding non-equilibrium
XPCS C2. Dynamic heterogeneity and non-linear rheological response,
both resulting from highly heterogeneous distributions of constituent
particles and their local cooperative motion, are well known in glassy
systems and lead to the observation of highly non-equilibrium
relaxation dynamics49. Understanding the role of microstructure,
jamming, and local heterogeneities on macroscopic properties is an
active area of research in complex fluids, granularmaterials, and other
fields studying non-equilibrium dynamics50,51. Among very few
experimental techniques that can study this heterogeneity, XPCS has

Fig. 1 | Schematicof the experimental setup andmachine learningworkflow for
x-ray photon correlation spectroscopy (XPCS) data. A In rheo-XPCS, a rhe-
ometer is placed in the beam path so that coherent X-rays scatter off the relaxing
sample. B XPCS two-time correlations, C2(q,ϕ) are calculated by correlating
intensity in a specific scattering region over time experimental times t1 and t2,
where q represents the radial scattering wavenumber and ϕ describes the

azimuthal scattering bin over which C2 is calculated. C shows a sample of experi-
mentalC2 to illustrate thewide variation indynamics seen innon-equilibriumXPCS.
The time scale bar in the left-mostC2 applies to all other images.DThe autoencoder
is trained to reproduce raw C2, and the learned latent representation is used to
cluster and classify data points (E).
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the advantages of providing information with high spatial and tem-
poral resolution52, and the ability to probe structural and mechanical
response simultaneously through the use of the operando rheological
environment.

We present our unsupervised framework for the exploration of
large, complex XPCS datasets, called AI-NERD - Artificial Intelligence
for Non-Equilibrium Relaxation Dynamics. We demonstrate the
development of a convolutional autoencoder (AE) for encodingC2 into
a reduced space and then apply K-Means Clustering to classify data
points based on their position in the latent space. Next, we exhibit the
utility of this type of analysis in a representative case, namely tracking
non-equilibrium relaxation dynamics in a colloidal glass. We illustrate
howclassifyingC2, andhowcomparing transitions between classes as a
function of time can map to rheological measurements showing the
evolution of shear stress within the material. Finally, we present how
our method can be used to take in user-specified C2 of interest and
return other samples from the dataset in order of similarity. In com-
parison to other applications of representation learning to understand
materials systems47,48,53,54, our method is the first to use unsupervised
learning in time-resolved experiments to guide understanding of non-
equilibrium dynamics without requiring background information on
the sample or experimental setup. Rapid changes in non-equilibrium
dynamics are invaluable for understanding how materials respond to
stimuli in situ acrosswide ranges in space and time, however capturing
these fluctuations is difficult with experiments outside of time-
resolved coherent X-ray scattering techniques such as XPCS.
Increased x-ray flux and coherence at next-generation light sources
will increase signal in XPCS correlation calculations and push analysis
towards the richer C2 representation of dynamics compared to the
traditional g2. Therefore, the need for reliable and generalmethods for
analyzing complex C2 is greater than ever. Our work demonstrates the
capability of applied machine learning to accelerate scientific dis-
covery through X-ray characterization and tomove towards the ability
to fully utilize experimental capabilities for high-frame rate, high-flux/
coherence experiments available at next-generation synchrotron light
sources.

Results
Unsupervised deep learning to elucidate relaxation dynamics
Machine learningmodels generally canfit into either the supervised, or
unsupervised learning paradigms. In supervised learning, scientists
provide a labeled dataset which is used to optimize themodel weights
based on the difference between model predictions and the provided
ground truth. Unsupervised learning is used in cases where labeled
data is unavailable or difficult to produce, and algorithms generally
aim to distill features of the raw data, identify statistical trends across
the dataset, or cluster the dataset based on the properties of the data
and similarities between data points. Unsupervised learning presents
opportunities for reaping the pattern recognition and processing
acceleration benefits of machine learning without requiring labeled
data or even a physical understanding of the system55,56. This is
incredibly useful for understating structure dynamics from experi-
mental C2 since non-equilibrium dynamics come in a variety of flavors
and are often poorly understood.

Autoencoder architectures perform unsupervised learning by
taking raw (or featurized) data as input, passing this through an
encoder model that compresses data into a latent representation, and
then decoding the latent representation back into the original data
dimension. While model weights are optimized by comparing the
output reconstruction with the raw input data, the ability of themodel
to decode the heavily compressed latent representation into an
accurate rendering of the input data signifies that the latent space
represents aminimal set of fundamental features that can describe the
data. In this type of representation learning, ensuing analysis of the
distribution of data in the latent space enables the identification of

global trends in the data57,58. Recent researchhas applied this approach
to one-dimensional spectroscopic datasets, and latent space analysis
has been used to relate subtle changes in peak position and shape
directly to the physical properties of a material53,54. For higher-
dimensional data such as XPCS C2, where data can be represented as
images, convolutional neural networks (CNN) are able to accurately
encode spatial information, and take advantage of the expressive
power of deep learning to provide an accurate and adaptive under-
standing of scientific data59. In this type of neural network, sliding
window filters act on an image, and spatially resolved weights are
learned. Convolutional autoencoders have been demonstrated both in
computer vision tasks and as flexible image compression algorithms
compatible with the representation learning framework mentioned
above60–62. We adapt this approach to encode experimental C2 and
classify data based on their latent representation. A schematic of our
autoencoder and latent space analysis is provided in Fig. 1 D and E.

The development of autoencoder models that enforce continuity
and orthogonality in the latent space, such that latent dimensions are
independent and hopefully interpretable, is a major concern in the
field of representation learning. A common approach for latent space
conditioning is seen in variational autoencoders (VAE), where an
additional loss term is used in the training process to enforce that
latent variables are drawn from multivariate Gaussian distributions63.
Enforcing the shape of latent variable distributions helps to develop
continuity in the latent space. Further loss or regularization terms can
be added to the neural network model to enforce orthogonality
between latent parameters. These additional constraints produce
learned representations which are often more directly interpretable,
however, the model training process is significantly more difficult and
optimizing these conditioning factors comes at the cost of sacrificing
image/data reconstruction quality. For instance, a β-Autoencoder
attempts to address this concern by using a parameter β to weight the
relative importance of latent space conditioning and reconstruction
error, however choice of β can be difficult and depends on the exact
goal of the ML task54. While these approaches have proven successful
in the X-ray characterization papers mentioned above, we have found
that using a VAE framework drastically deteriorated the quality of
output reconstructions such that we could not trust that latent
representations corresponded with input data. We attribute the
model’s inability to accurately represent our data in the presence of
latent space training constraints to the large variability in our training
set which may make distillation of the data into a fundamental set of
parameters difficult. Therefore, we have chosen to use a standard
convolutional autoencoder to maximize the amount of information
our model can learn at the expense of the guarantee of a continuous
latent space.

We have employed an hourglass-style convolutional autoencoder
which compresses 256 x 256 pixel C2 into a 64-dimensional latent
space and then decodes the latent representation to reproduce the
input data. Further details of model optimization and data augmen-
tation are presented in Section IV D. The sample reconstruction shown
in Fig. 1D appears as a smoothed version of the raw input. More
examples of experimental C2 and corresponding AE outputs can be
seen in Supplemental Fig. 1. These results signify accurate model
performance - random fluctuations in C2 will be difficult to capture
with image filters optimized for performance on an entire dataset, so
the absence of high-frequency variation suggests that learned filters
focus on more important image features. The output reconstruction
from our optimized architecture maintained long-range features and
time-scale information such as the position of changes in the width of
the diagonal correlation band, and off-diagonal patterns. To ensure
that the latent space encoding accurately represents the distribution
of experimental data, after training we used the model to generate
artificial C2 by adding noise to the latent representation of real C2 and
passing the noisy representation through the AI-NERD decoder. In the
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ideal case, passing these artificial latent vectors through the decoder
model will produce new data that is similar to the original C2. Sup-
plemental Fig. 2 demonstrates that our model can generate realistic
data at a variety of noise levels, suggesting that the latent space is
representative of the data. Here, 16 unique artificial C2 were generated
by addingGaussiannoisewith σ =0.3 to the target latent vector. σ =0.3
represents the average standard deviation of all latent variables for the
encoded test dataset. While generating synthetic data from latent
representations is an effective way to ensure that the latent space
properly captures the distribution of real data, our goal is not to useAI-
NERD as a generative model but rather to explore the distribution of
experimental data in a reduced space. Therefore, the moderate noise
condition of σ =0.3 is sufficient to verify that small regions in the latent
space contain similar real data.

C2 Clustering and latent space analysis
After training the optimized model, a new dataset, corresponding to
Rheo-XPCSmeasurement from a single rheological shear cycle was fed
through the encoder model. Unsupervised classification of the new C2

dataset was performed by applying the k-means clustering algorithm
directly to the latent representation of the data, determining the ideal
number of clusters using the elbowmethod (Supplemental Fig. 3). This
showed that four-six clusterswas the ideal number, with fewer clusters
separating data solely based on image intensity and more clusters
separating the data into unrealistically small groupings.

Due to the high dimensionality of even the latent representation,
further embedding is required to visualize the distribution of the
encoded data and the clustering results. We used Uniform Manifold
Approximation andProjection (UMAP) to transform the latent spaceof
the dataset into two dimensions; this visualization is shown in Fig. 264.
UMAP is closely related to t-distributed Stochastic Neighbor Embed-
ding (tSNE), a more common method for non-linear dimensionality
reduction65. Both of these methods consider the local structure of the
data distribution and attempt to project data points onto a lower
dimensionalmanifold, however, in comparison to tSNE, UMAPdistorts
the data distribution such that it is uniformly distributed in the pro-
jection space. This helps maintain the global structure of the dataset
and generates projections that are more stable against variation in
initialization and hyperparameters than those generated by tSNE66.
This visualization allows us to qualitatively check the accuracy of the
clustering results by seeing whether optimal cluster centers coincide
with the densest regions of the UMAP embedding.

Viewing images from each cluster (Fig. 2) shows that relaxation
times decrease with increasing cluster labels. Following the trajectory
across the UMAP distribution in Fig. 2A fromCluster 0 to Cluster 4, we

can see the transition between nearly stationary dynamics in Cluster 0
(high correlation across long times relates to slow structural changes)
to slow evolution in Cluster 1 (seen as flat C2 features with lower
intensity), to increasingly fast evolution in Clusters 2, 3, and 4. Dis-
tances in these embedding spaces should not be quantitatively com-
pared and only serve a qualitative metric of similarity between data
points67. Outlying yellow regions assigned toCluster 4 in Fig. 2A appear
very similar to the sample image from Cluster 4 in Fig. 2B - they have
rapid decay and very low intensity away from the main diagonal.
Finally, we note the nearly continuous transition between clusters in
the latent space which is evidence that the data set contains a con-
tinuous spectrum of relaxation dynamics.

Probing non-equilibrium dynamics using AI-NERD
With a trained autoencoder and the ability to rapidly encode and
classify experimental data in hand, we nowdescribe how this approach
can be used to track changing dynamics, explore patterns in large
datasets, and guide the selection of quantitative physical models to
describe complex systems.

Bringing us one step closer to our goal of bridging information
across length scales, our first test aims to understand how fluctuations
in rheological measurements correspond with the evolution of the
structure and local dynamics of a complex fluid. Full experimental
details can be found in Section IV A, briefly, after forcing the system to
flow under a high shear rate, the applied shear is removed and the
material is allowed to relax to study the impact of non-equilibrium
deformation on flow in the complex fluid; simultaneous rheological
and X-ray scatteringmeasurements are collected during the relaxation
process to track the mechanical response and structural changes,
respectively. The rheological data describing relaxation (Fig. 3A)
clearly shows non-monotonic behavior, however since the complex C2

patterns seen in experimental data preclude direct quantification of
the dynamics, it remains impossible to link thesemacroscopic changes
to microscopic dynamics. To address this, Fig. 3B shows a time-
resolved histogram of cluster labels describing the progression of
average dynamics through time. The histogram is built by clusteringC2

collected from each azimuthal bin (Fig. 1B) at each time step and
tabulating the results as vertical, color-coded bars. Vertical black lines
in both panels show the times of shear stress minima. The growing
peaks of slow dynamics (low cluster numbers) seen between shear
stress minima indicate that tracking material behavior through latent
space encoding is able to tie intermittent microscopic dynamics to
macroscopic rheological changes. Dark peaks seen in Fig. 3B corre-
spond with increases in shear stress and are also seen at later times
(t = 2000 and 2500 s) wherewe see no changes in the bulk shear stress

Fig. 2 | Depiction of the latent space after applying Uniform Manifold
Approximation and Projection (UMAP) and k-means clustering. A shows the
UMAP visualization of the 64-dimensional latent space. Point colors correspond to
the cluster labels defined by k-means clustering with 5 clusters, and match the

image labels in (B). B shows randomly sampled two-time correlations (C2) from
each cluster. As high correlation intensity and long-ranging intensity bands show
slowly evolving dynamics, we see that increasing cluster number corresponds to
increasingly fast relaxation dynamics.
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measurement. Since the incident X-rays probe local dynamics while
rheology captures the average behavior of the macroscopic system,
the presence of these peaks highlights that XPCS dynamics which
happen within the scattering volume of the incident X-ray beam but
may notmanifest in themacroscopic response.Many physical systems
ranging from granular materials in industrial systems to geological
motion and earthquakes depend on intermittent, avalanche-like
dynamics which may not be present in measurements of the average
properties of the system. Thus, the impact of data-driven methods on
dynamics which link anomalies with their physical response across
length and time-scales is far reaching68–70.

Analysis of cluster labels as a function of azimuthal scattering
angle provides more information about the system. Figure 3C displays
a heatmap of cluster labels as a function of the azimuthal bin (Fig. 1B)
and experimental time. We observe that dynamics are anisotropic,
highlighting the presence of directed motion. Through the cluster
labels, we see that dynamics initially slow down in the flow direction
(parallel to the applied shear, bins 5 and 14) with comparatively faster
dynamics in the vorticity direction perpendicular to the applied shear
(bins 1, 9, 10, and 18). Finally, in Fig. 3D we observe the distribution of
dynamics throughout the experiment by selecting three experimental
time points, and projecting all 18 azimuthal C2 associated with each
time point into the latent dimension UMAP plot. We see that, in
agreement with Fig. 3C, the initial stages show tight groups of similar
dynamics for all C2 collected at a given time, while as timeprogress the
distribution in the latent space spreads drastically. SinceourMLmodel
learns to encode spatial features of C2 into the latent space, the posi-
tion and spreadof latent space points correspond to the appearanceof
C2. The wide latent space distribution from points collected at later
times shows that, in addition to the angular dependence of relaxation
rate, the visual appearance of C2 differs significantly with the scatter-
ing angle.

While XPCS is capable of precisely capturingmaterial dynamicsby
measuring the decorrelation time between successive scattering
frames, a physical model of the process is still required to extract
quantitative information describing, for example, particle motion or
relaxation rate in the sample. Model selection is difficult for non-

equilibrium systems, where either physical models do not exist, or the
selection of a model is complicated by the presence of rapid unex-
pected changes in dynamics. Furthermore, though theoretical
descriptions of dynamicsoften address themeanbehavior of a system,
XPCS experiments probe local dynamics which may differ from
expected behavior on experimental time scales. Selection of a model
based on visual inspection of a few sample C2 from an entire experi-
ment is difficult and potentially unreliable. Therefore, the ability to
categorize different types of XPCS C2 patterns to guide the develop-
ment of structural and dynamics models for evolving materials is
crucial.

Results from analysis in Fig. 3A–D suggest that: 1. Dynamics slow
down through time, initiated in the flow direction, 2. the intermittent
microscopic dynamics are tied to macroscopic rheological fluctua-
tions (however, not all microstructural changes are reflected in the
macroscopic response), and 3. in addition to the rate of dynamics, the
appearance of C2 differs drastically depending on scattering angle.
These conclusions guide us towards the selection of the heterodyne
scatteringmodel to describe our data, which occurs when a difference
in velocity between two or more dynamically distinct components in
the system leads to constructive/destructive interference in correla-
tion patterns and enables the extraction of system-independent
information about the relative velocity between components71–73.
Heterodyne scattering produces a uniquely recognizable fringe pat-
tern in XPCS C2 in specific scattering directions. This phenomenon has
been documented in some experimental systems, however, it has not
been observed in experiments with colloidal glasses. Thus, our AI-
guided model selection provides unique insight into microstructure
evolution in complexmaterials and enables future research to quantify
the properties and dynamics in this system.

Supplemental Fig. 4 shows the UMAP latent space, where each
pixel is colored by the proportion of neighboring data points that
come from the flow direction; yellow regions show higher-than-
average concentration of flow-direction C2, blue regions show high
concentration of vorticity-direction C2, and dark/black regions show
regions where C2 are isotropically distributed. Since our selected het-
erodyne model states that the tell-tale fringe C2 is linked to flow/

Fig. 3 | Plotting the cluster distribution of the data as a function of time and
azimuthal bin reveals information about the system. Mechanical response
during relaxation is plotted in (A) where vertical black lines correspond to shear
stressminima (corresponding times are alsomarked in (B) and (C)).B Showsa time-
resolved histogram of cluster labels, where clear peaks of low cluster numbers
appear in between shear stress minima. Plotting cluster label as a function of time
and azimuthal angle in (C) shows clear anisotropy, with slowing dynamics initiated
in the flow direction (bins 5 and 14). In (D), we show the distribution of data in the

latent space (after Uniform Manifold Approximation and Projection, UMAP,
embedding) as a function of time to understand how the appearance of C2 change
through time, and across scattering angleswithin a single time step.Note that times
in (D) do not correspond with the vertical black lines in (A), (B), and (C); the time
stamps in (D) were chosen to demonstrate that early in the relaxation process data
are tightly clusteredwith no angular dependence, and that as theprocess continues
thedynamics spread across clusters anddevelop strong anisotropic characteristics.
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vorticity anisotropy, sampling from latent space regions which
strongly correspondwith specific scattering directions should allow us
to confirmour hypothesis. Sampling from the blue region in the upper
center of Supplemental Fig. 4 yields the target images in Fig. 4 which
indeed show the characteristic heterodyne fringes. While to this point
all analysis could be completed without having to view or interpret
individual C2, this type of ML-guided sampling allows us to verify our
hypothesis that the data exhibits heterodyne scattering.

In addition to the difficulty of quantifying dynamics from XPCS
data, another major bottleneck for the analysis of synchrotron scat-
tering experiments is the amountof rawdata that is collected, and then
mustbe processed, reduced and analyzed. For context, advanced x-ray
detectors used at APS can routinely collect 10–50GB of raw scattering
data per second. Many experiments may run continuously for hours
producing terabytes of data from a single experiment, makingmanual
and offline analysis impracticable. With this in mind, we demonstrate
how our unsupervised latent space analysis can be used to easily
explore immense experimental datasets. Since the autoencoder learns
to recognize over-arching features of the entire data distribution, we
canuse the latent spacedistancebetween auser-specified target image
andother points as ametric of similarity to identify other experimental
conditions that produce the same behavior. In this case, our goal is to
identify fringed heterodyne C2, based on the model suggested above.
Target images were selected to have similar overall appearance (all
show fringed C2), yet still represent significantly different behaviors:
Images 1 and 2 show lower frequency fringes than Images 3 and 4, but
the intensity along the diagonal band is unique in each test image. If
our model accurately encodes C2, all four test images should appear
close together in the latent space,with Images 1-2 and Images 3-4 being
even closer together. Fig. 4A shows each test image (markedwith large
X’s) in the UMAP embedding of the latent representation, and the
corresponding four nearest neighborsmeasuredby euclideandistance
in the latent space (the UMAP distribution is only used for visualiza-
tion, all distances are calculated based on the AE encoding).

Amajor challengewith this approachof identifying patterns in the
dataset by comparing distances between points is that many C2

topologies only appear once, or a few times, even in very large data-
sets. While, our autoencoder can accurately capture and reproduce
even the most unique and complicated patterns (see Supplemental
Fig. 1 for a demonstration of C2 reconstructions), it is still difficult to
identify neighbors in the latent space for these complex data - the
closest samples in latent space may still be very different from the

target of interest. This is demonstrated in Supplemental Fig. 5, where
we see that the nearest neighbors for complex or rare patterns are less
similar than the samples shown in Fig. 4.

Even thoughmachine learning offers an opportunity to overcome
bottlenecks in experimental data analysis, reliability, generalization to
new data, and the danger of applying complex algorithms as a black
box are areas ofmajor concern for the application ofmachine learning
in scientific data. In addition, the inner workings and results of the
model can be difficult to interpret.With this inmind,ML results should
be compared against analyses possible through simpler methods to
evaluate the trade-off between increased accuracy at the cost of
interpretability. To address this issue, we have performed additional
tests to understand the benefits brought by studying our experimental
system in the AI-NERD latent space, compared to performing similar
analyses on the raw data. For the following analyses, shown in Sup-
plemental Figs. 6, 7), AI-NERD refers to the 64-parameter latent space
vector describingC2, while the rawdata representation refers to simply
flattening the 256 x 256-pixel images to vectors of size 2562 such that
both representations can be processed in similar ways. We find that
clustering results and the appearance of the UMAP visualization are
very similar regardless of C2 representation, and therefore do not
benefit from latent space analysis (Supplemental Fig. 6). This can be
attributed to the fact that the main feature of the data is the mean
intensity of C2 corresponding to the average dynamics, and that clus-
tering algorithms groups data by this dominant feature regardless of
the dimensionality of the data set. That being said, AI-NERD shines in
identifying similarities and differences between data, which is seen as
the euclidean distance between C2, rather than the assigned cluster
label. To test the accuracy of AI-NERDsimilarity analysis versus analysis
on raw image data, we manually identified a visually striking target
image (Supplemental Fig. 7) and found the 300most similar C2 from a
large dataset (13,000 unique C2) using euclidean distance in raw image
space, and the latent space. Three authors of this paper, who are
experts in XPCS data collection and analysis but were not involved in
ML model development or training, were asked to evaluate where the
suggested C2 was in fact similar to the target in a blind review process:
each expert was handed two sets of 300 C2, without knowing how they
were obtained or labeled (see specific description in Section IV F).
Experts were provided deliberately vague instructions, asking only
whetherC2 is similar to the targetwithout definingwhat features of the
target were important; in this way, humans were essentially provided
with the same information as the AI-NERD model. As shown by the

Fig. 4 | Distances in the latent space are used to suggest similar images to user-
specific imagesof interest. In (A) sampleheterodyne two-timecorrelations,C2, are
plotted in the Uniform Manifold Approximation and Projection (UMAP) visualiza-
tion of the latent space as large X’s. Nearest neighbors (calculated by Euclidean

distance in the latent space) are shown as corresponding solid points. The UMAP
visualization is cropped so that test data is easier to see. In (B) sample images are
displayed alongside their nearest neighbors to evaluate similarity.
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black curves in Supplemental Fig. 7 which represent the average of all
expert evaluations, AI-NERD suggestions achieved greater than 50%
accuracy for 260 out of the 300 suggested images, while raw data
analysis only saw comparable accuracy on the 70 nearest neighbors
(shown as vertical black lines in Supplemental Fig. 7). The differences
in expert evaluations highlights the need for automatedmethods - this
task is difficult and subjective even for trained experts, so automating
data processing removes bias and variability. The drastic difference in
performance between AI-NERD and raw data suggestions can be
attributed to data sparsity, or the curse of dimensionality which states
that distances between data points become increasingly indis-
tinguishable as the dimensionality of the data increases. In summary,
the ability of the latent space to represent complex relationships
between data enables easier and accelerated exploration of data sets
which will be crucial for experiments at next-generation light sources
where the data production rates will makemanual analysis impossible.

Discussion
Our work has focused on encoding and categorizing full C2, however,
out-of-equilibrium systems exhibit multiple timescales, both within a
single C2, representing the milliseconds to seconds timescale, and
acrossmany C2 in an entire experiment. Moreover, visual inspection of
experimental non-equilibrium C2 (for example, Fig. 1C) shows that
dynamics in our glassy colloidal system are intermittent inmany cases-
rather than constantly changing dynamic characteristics, transitions
appear as unpredictable changes between otherwise near-equilibrium
states. Aside from temporal heterogeneity, spatial heterogeneity fur-
ther complicates understanding non-equilibrium processes since the
comparison of bulk scale measurements with XPCS measurements on
a small area of the sample requires mechanistic descriptions that can
cross length scales. In light of these challenges, understanding such
transitions requires a systematic and unbiased method for observing
and recognizing anomalous changes in large sets of data. Machine
learning methods are an ideal choice for capturing subtle transitions
while removing human bias, however, to date, applications of repre-
sentation learning to scientific data focus on experimental techniques
where data have discernible features, e.g., peaks with finite positions
and widths. In contrast, our method focuses on using AI to identify
important features in data that aredifficult to interpret by eye, even for
human experts. AI-NERD represents a step towards automatic recog-
nition of fluctuations in time-resolved X-ray scattering, and under-
standing how these fluctuations relate to measurable properties.
Future work could extend our method to not only cluster and track
dynamics between C2, but within sections cropped out of individual C2

to investigate how relaxation behavior changes as a function of time-
scale. Previous studies have demonstrated the fractal nature of
relaxation processes in colloidal gels, meaning that structure and
dynamics vary in a self-similar fashion across length and time scales.
Our ability to track these changes, both within and across C2, with
statistical certainty will allow a greater understanding of how and why
these mechanisms occur in disordered materials74–76. Interestingly,
researchers have also identified fractal relationships between structure
and dynamics in metallic glasses77. As our approach is not specific to
studying colloidal suspensions and can be adapted for other classes of
materials simply by retaining the CNN, this is another interesting case
where our AI-NERD approach could be applied to understand relaxa-
tion across length and time scales.

The increasing rate of data production is an ubiquitous problem
in nearly every field of technology. This is particularly a challenging
problem for materials science and physics research, where scientific
data often is high-resolution, time-resolved, and multi-dimensional
making even data storage, without considering processing and analy-
sis, challenging. Applications of machine learning to address these
challenges have been wide-ranging in fields such as electron micro-
scopy, high-energy physics, and synchrotron x-ray scattering. Despite

this progress,many scientificML applications are limited to use in very
specific types of experiments, data, or materials. ML also demands a
significant barrier to entry, making adoption and adaptation of these
techniques very difficult for scientists specializing in experimental
research. Therefore, general scientific ML methods are required to,
first, enabledata analysis and discoveryof new science in the age of big
data, and, second, reach a wide audience to increase scientific pro-
ductivity and creativity across fields. Our goal with AI-NERD is to
develop a general workflow that uses AI to enhance real-time data
analysis. Attention was paid to avoiding training the model in a way
that would strictly apply to rheo-XPCS experiments (such as incor-
porating timescales in to the training data, or training on data occuring
only under specific rheological conditions). As our model can accu-
rately reproduce a wide range of C2 topologies, we expect that appli-
cation to other material classes should be as simple as fine-tuning the
model on new data. Since training set generation involves simply
placing all available experimental data into a single numpy array, with
no need for curation andminimal preprocessing, the barrier to entry is
reduced and scientists can focus on the results rather than issues with
the training process. Moreover, in cases where less data is available,
transfer learning from the pre-trained model should allow reasonable
performance on new data. While, at this point, more work is required
to extract quantitative physical information from the AI framework,
our method for flexible and intuitive dataset exploration accelerates
scientific research through the identificationof areasof interest so that
scientists can focus on understanding the system rather than
wrangling data.

In summary, we presented an unsupervised procedure for the
automation of XPCS data exploration and analysis. The workflow
allows us to explore the structure and distribution of large experi-
mental datasets that would be difficult to otherwise interpret. More-
over, unique visualizations allow us to understand the dynamics of an
evolving system, build links between microstructural evolution and
macroscopic properties in a way that is impossible using traditional
data analysis, and select physical models to describe non-equilibrium
dynamics. As characterization instrumentation continues to improve,
the amount of data collected in a single experiment will grow expo-
nentially, yet the amount of data that can be manually analyzed
remains stagnant. Therefore, automation of as much of the data ana-
lysis process as possible is imperative to fully utilize modern experi-
mental equipment. Our work using AI to guide the initial stages of data
exploration and qualitative analysis represents an important step
towards increasing the amount of available data that can be used and
presents a framework for parsing large datasets. As each C2 dataset is
associated with many metadata parameters (such as collection time,
position in the sample, viscosity, shear stress, volumetric concentra-
tion, particle size, etc.), visualization of the latent space is key for the
explanation of the relationships between parameters. More impor-
tantly, this visualization and encoding framework is flexible and can be
applied to experiments on other classes of materials, or even on dif-
ferent types of experimental data; while our analysis clearly showshow
unsupervised deep learning can be used to link structure-property
relationships across length scales in rheo-XPCS, our method is a gen-
eric image processing framework which requires no physical infor-
mation and can therefore be applied to any experimental data which
can be represented in two-dimensional/image space.

Methods
Rheology experiments
A sample of silica nanoparticles (200-300 nm) dispersed in poly-
ethylene glycol (M.W. = 200) at a volume fraction of 60.5% is used to
study the dynamics of glassy systems. The sample was loaded into a
poly carbonate cylindrical Couette cell with a bob and cup (5.5mm
and 5.7 mm radii, respectively). The shear cell was driven by an Anton
PaarMCR301 rheometer. TheX-raybeam is aligned at the center of the
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shear cell, so the detector plane is in the qv - qΔxvdirection. The sample
is sheared under various conditions including preshear, steady shear
ramp, and start-up shear. After the shear sequence, the shear rate was
set to zero, and the XPCS experiments were conducted tomonitor the
dynamics of particles at various positions of the sample. Through
XPCS measurements, the rheometer constantly monitors the stress
relaxation process.

X-ray Photon Correlation Spectroscopy on Silica
Nanoparticle Glass
The XPCS measurement was performed at Beamline 8-ID-I of
Advanced Photon Source, Argonne National Laboratory. An X-ray
beam was generated by tandem 33mm period, 2.4m length undula-
tors and was first deflected from a plane silicon mirror at an angle of
incidence of 2.5 mrad and then filtered through a Ge(111) double-
crystal monochromator with a relative bandpass of 0.03% to select a
longitudinally coherent X-ray beam with a photon energy of 11 keV.
The beam was then apertured horizontally to match the transverse
coherence length at the entrance of the X-ray focusing optics (Ber-
yllium Compound Refractive Lenses) and focused along the vertical
direction, resulting in a 15μm× 10μm footprint on the sample with a
total flux of 1.2 × 1010 photons per second.

The scattered X-ray intensities were collected at a distance of 8 m
from the sample using a Lambda 750k photon-counting detector
with 55μmpixel size and 512 × 1536 pixels78. The XPCS analysis focuses
on the region of detector pixels (Region of Interest, ROI) within
the vicinity of the first peak in the structure factor
(0.019 nm−1 <Q <0.029 nm−1), and the ROI was further partitioned into
18 smaller ROIs in the angular direction (20∘ width) to account for the
azimuthal asymmetry of the dynamics resulting from the rheological
shear. C2 is calculated from the multiplication of normalized intensity
fluctuation D(Q, t) averaged over the entire ROI13,79:

C2ðt1,t2Þ= hDðQ,t1Þ � DðQ,t2Þii, j ð1Þ

where 〈. . . 〉i, j indicate the pixel average. D(Q, t) is defined as:

DðQ,tÞ= IðQ,tÞ � hIðQÞit
hIðQÞit

ð2Þ

where 〈I(Q)〉t is the 1D Small-angle x-ray scattering (SAXS) intensity at
the pixel with momentum transfer Q, i.e., azimuthal average of the
time-average from the detector frame sequence.

Machine learning dataset construction
All C2 in the dataset were measured on scattering patterns from silica
sphere suspension at differing volume fractions and rheological con-
ditions. AllC2 collectedduring one experimental timewere aggregated
to build an initial training set of 13,248 unique C2. Experimental data
were collected at 100 frames per second for 50 seconds, so raw C2 are
5000 x 5000 pixels. Data were downsized to 256 x 256 for model
training using the scikit-image resize function with gaussian anti-
aliasing (σ = 2)80. After downsizing to 256 x 256 pixels, each C2 was
subject to data augmentation by 25 random shifts along the diagonal
to increase the size of the dataset to 331,200 unique samples. Finally,
before training all data were scaled so that intensities fell in the
range [0,1]

CNN autoencoder model
We used a standard hourglass-style convolutional neural network as
our autoencoder architecture. Thismodel uses three stages in both the
encoding and decoding networks, where each stage consists of two
convolutional layers, followed by dropout regularization (factor of
0.25), and ReLU activation. The number of features in each encoding
stagewas 8, 16, 16, and 32 (the decodingmodel uses the reverse). After

three convolutional stages, the data was flattened into a vector and
passed through a fully connected layer. This produces the latent
representation of data. A second fully connected layer is used to start
the decoding process, and the output of this layer is transformed back
into tensor form before passing to the decoder CNN. An exact
description of CNN architecture is shown in Supplemental Fig. 8. To
rapidly reduce the dimensionality of the data, and reduce the number
of trainable parameters, we applied max-pooling to reduce the size of
images by a factor of four after each stage; in the decoding model, it
was found that upsampling after the convolutional layers performed
better than using transpose convolution layers to upsample the
images81,82. Increasing either the number of convolutional layers or the
number of filters per layer was found to degrade the quality of output
image reconstructions; even with the augmented dataset, model
convergence was not stable as the size of the model increased. Simi-
larly, including KL-divergence loss for latent space regularization (as
used in training VAE) severely reduced the quality of reconstruction.

We trained models with latent dimensions varying from 2 - 1024
(increasing in powers of two) to optimize the expressive power of the
latent representation. After training each model, the mean squared
error was evaluated on a test data set and the mean of the error was
plotted as a function of latent dimension. As shown in Supplemental
Fig. 9, the error rapidly decreased and leveled off at a latent dimension
of 16. We chose to use a bottleneck layer of size 64 for the final model
to balance high accuracy with the complexity of the latent
representation.

The model was trained on the 100-times augmented dataset for
60 epochs using a cyclic learning rate in the Pytorch DL framework83.
Learning rate scheduling parameters are as follows: learning rate step
size was defined to be 6N, where N is the number of mini-batches per
training epoch, and the minimum and maximum learning rates were
1 × 10−4 and 1 × 10−3, respectively. The learning rate cyclewasdefinedby
the triangular2 mode in Pytorch. Mean squared error loss was used to
optimize the weights. Scripts for defining and training these ML
models can be found on GitHub.

Clustering and visualization
After training the autoencoder, C2 images were passed through the
encoder stage only to produce the latent representation of the
dataset. KMeans clustering was initially applied using the scikit-learn
library with the number of clusters ranging from 2 to 1284. Plotting
distortion and the silhouette score as a function of the number of
clusters, the ideal number of clusters was determined to be in the
range of four - six using the elbow method (Supplemental Fig. 3). In
this work we have chosen to use the K-means clustering algorithm
because of it’s scalability to large data sets which enables rapid
analysis and iteration. However, the choice of clustering algorithm
must be made with regards to its underlying assumptions, and we
note that when using AI-NERD in other applications which show
strong structuring, non-uniformity, or large numbers of outlying
data points in the latent space, the K-means algorithm may not be
most effective. We performed systematic tests of other clustering
algorithms, especially those which do not require the user-specified
number of clusters, and found in general that these algorithms
converge to an unrealistic number of clusters and depend heavily on
hyperparameter tuning. Aside from the choice of the clustering
algorithm, the choice of the number of clusters has the potential to
impact the ensuing analysis. While the elbow method is commonly
applied to determine the ideal number of clusters, the exact place-
ment of the elbow can be subjective. We have found that our clusters
correspond to the relative rate of dynamics in a nearly continuous
distribution, and therefore variations in the number of clusters do
not significantly impact our findings. We caution that in other
applications where stronger clustering behavior is present, careful
attention must be paid to clustering results and visualization. Plots
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showing our systematic tests of clustering algorithms and cluster
number choices can be found in our analysis code.

Samples from each cluster were drawn to evaluate similarity
within each cluster. Uniform Manifold Approximation and Projection
(UMAP) was used to project the 64-dimensional latent space into a
two-dimensional visualization to inspect the quality of the clustering
results and the position of optimized cluster centers. UMAP para-
meters were optimized manually, and we found that setting the
number of neighbors and minimum distance parameters to 5, and
0.25, respectively, produced a visualization with clear trends, and
which maintains similarity between C2 in the same general region.

Blind expert evaluation
The blind review was carried out as follows:

1. A target C2 pattern was chosen with specific fringe features of
interest.

2. The 300 nearest neighbors to the target image were identified
using both AI-NERD and Euclidean distance in the raw data space.

3. Data for each case were provided as an unlabeled PowerPoint
slide deck to domain experts (Q.Z., S.N., E.D.), who then went
through all 600 C2 suggestions and labeled them as ‘similar’ or
‘not similar’. We emphasize the researcher who collected and
prepared the data did not participate in the evaluation of the
suggestions, and that the sets of C2 images were unlabeled such
that it was impossible to tell whether suggestions came from AI-
NERD or conventional analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study and used for analysis have been
deposited in the Zenodo database under https://doi.org/10.5281/
zenodo.10005900085. Source data for plots presented in this work
are providedwith this paper. Source data are providedwith this paper.

Code availability
Python scripts for reproducing analyses presented in this paper are
available in a GitHub repository with persistent https://doi.org/10.
5281/zenodo.1002242386,87.
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