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We present differential double-copy relations between gluon and graviton three-point functions in
AdSdþ1. We introduce a set of differential operators in anti–de Sitter (AdS) that naturally generalize on
shell kinematics of scattering amplitudes in flat space. This provides a way to construct AdS correlators by
replacing the kinematic variables of amplitudes with the corresponding differential operators and suitably
ordering them. By construction, the resulting correlators are manifestly conformally invariant, with the
correct flat-space limit and exhibit a differential double-copy structure.
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I. INTRODUCTION

Correlation functions in an approximate de Sitter (dS)
space are the fundamental observables of inflationary cos-
mology. The past several years have seen an intensive focus
on the study of cosmological correlators from a boundary
perspective. In this framework, basic physical principles such
as symmetry and unitarity are used as fundamental inputs to
determine the final observables, rather than arising as non-
trivial outputs of a calculation [1–27]. The ongoing program
of the cosmological bootstrap (see [28,29], for reviews) has
revealed the underlying analytic structure of cosmological
correlator, and powerful new ways of computing them that
are highly obscure from the Lagrangian formalism.
Both the philosophy and technology of the cosmological

bootstrap are heavily inspired by the modern on shell
program of scattering amplitudes [30–33]. In momentum
space, a direct connection between cosmological correlators
and amplitudes in flat space is furnished by the total energy
singularity [1,2]. Essentially, cosmological correlators aris-
ing from local bulk dynamics must reduce to amplitudes in
the limitwhen the sumof external energies goes to zero in the
complex energy plane [7,9–11], which allows us to think of
cosmological correlators as a particular deformation of
amplitudes away from the singular locus. This raises a
tantalizing prospect that many of the remarkable properties
of amplitudes can begeneralized to cosmological correlators.
One of the most striking features of amplitudes is the

double-copy relation between gauge and gravity theories,
which expresses graviton amplitudes as two copies of
gluon amplitudes. After its original discovery in string

theory [34], this relation has been extended to amplitudes at
higher multiplicities and multiple loops [35,36], to scalar
and supersymmetric theories [37,38], and has also found
applications in gravitational-wave physics (see [39–41], for
reviews). A natural question is then whether there exists a
generalized notion of double copy in curved backgrounds.
It remains technically challenging to compute graviton
correlators in anti–de Sitter (AdS) beyond three points
[3,42,43], and therefore, an extension of double copy
beyond flat space will be highly valuable.
A nontrivial insight from the Bern-Carrasco-Johansson

double copy [35,36] is that the right objects to be double
copied are the special combinations of kinematic variables
that obey the Jacobi relation. Thismotivates a similar strategy
in AdS. That is, to first identify the right kinematic building
blocks for correlators. In [10,14,16], so-calledweight-shifting
operators—differential operators that shift quantumnumbers
in conformal field theories [44,45]—were developed in the
context of cosmology. This approach highlighted the fact that
differential operators can be used as basic building blocks to
generate spinning correlators from simpler scalar correlators.
A similar approach was used in [46–54], showing that
exchange diagrams in AdS can be expressed as differential
operators acting on a scalar contact diagram. In particular,
these recent developments have uncovered the curved-space
generalization of the double copy of scalar theories. Yet, a
double-copy formulation of spinning correlators has so
far remained elusive, even at the three-point level (see
[48–51,55–63] for recent investigations).
In this paper, we present new differential representations

of the gluon and graviton three-point functions in AdSdþ1.
1

We first determine conformally invariant differential
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1Specifically, we consider Euclidean AdS correlators and dS
wave function coefficients on the respective boundaries, which
have the same kinematic structure up to overall normalization
factors that we drop.
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operators that serve as kinematic building blocks for
spinning conformal correlators. We find that these oper-
ators, when suitably ordered, become natural generaliza-
tions of the kinematic variables of amplitudes to AdS. This
mapping between the basic kinematic structures allows us
to promote flat-space amplitudes to the corresponding AdS
correlators in a straightforward fashion. We construct the
three-point functions of gauge and gravity theories in this
way and show that their kinematic building blocks exhibit a
manifest double-copy structure.

II. CORRELATOR BUILDING BLOCKS

Wewill consider correlators of conserved currents on the
boundary, which are dual to massless spinning particles in
the bulk. Two important physical criteria for these corre-
lators are conformal invariance and current conservation,
which are the analogs of Lorentz invariance and on shell
gauge invariance for amplitudes. To solve the symmetry
constraint, we will use the weight-shifting operators devel-
oped in [14,44,45,64]. These operators are naturally con-
structed using the embedding space formalism [65,66],
where conformal transformations in Rd are realized as
Lorentz transformations on a higher-dimensional light cone
embedded in R1;dþ1.
To make a direct connection with scattering amplitudes,

we consider the momentum-space version of the weight-
shifting operators. For three-point functions, we find it
most useful to consider the following set of operators [14],

Sab ≡ ρaρbðz⃗a · z⃗bÞ þ ðz⃗b · k⃗bÞDab þ ðz⃗a · k⃗aÞDba

þ ðz⃗a · k⃗aÞðz⃗b · k⃗bÞWab; ð1Þ

Dab ≡ ρaðz⃗a · K⃗abÞ − ðz⃗a · k⃗aÞWab; ð2Þ

Fab ≡ ðk⃗b · K⃗ab þ Δb − dÞz⃗a · K⃗ab − ðz⃗b · K⃗abÞðz⃗a · ∂z⃗bÞ
þ ðz⃗a · z⃗bÞ∂z⃗b · K⃗ab − ðz⃗a · k⃗bÞWab; ð3Þ

Wab ≡ 1

2
K⃗ab · K⃗ab; K⃗ab ≡ ∂k⃗a

− ∂k⃗b
; ð4Þ

where k⃗a is the momentum, z⃗a is an auxiliary null vector,
and ρa ≡ Δa þ la − 1, with Δa denoting the weight, and
la the spin of a conformal primaryOΔa;la. The subscripts a,
b ¼ 1, 2, 3 are field labels, the arrow over a variable
denotes a vector in Rd, and a dot product indicates the
Euclidean inner product of two vectors with the metric δμν,
with μ, ν labeling spatial indices inRd. The operators above
have the following action: the spin operator Sab raises the
spin at points a and b by one unit, whereas the weight
operator Wab lowers the weights at points a and b by one
unit. The spin-weight operator Dab raises the spin at point
a by one unit, while lowering the weight at point b. Finally,
Fab raises the spin and lowers the weight at point a by one

unit. The corresponding embedding-space expressions of
these operators can be found in [14,45].
In this paper, we aim to address the following question:

what is the flat-space limit of the weight-shifting operators?
As we will see, this knowledge will enable us to directly
construct AdS correlators given the corresponding ampli-
tudes in flat space via appropriate replacements of kin-
ematic building blocks. Seeing this requires a proper
normalization and ordering of these operators, which we
discuss next.

III. AMPLITUDE-CORRELATOR DICTIONARY

In the weight-shifting approach, boundary spinning
three-point functions in AdSdþ1 are represented as

hJlJlJli ¼ n̂lhΦΦΦi; ð5Þ

where n̂l represents a combination of weight-shifting
operators, Jl is a spin-l conserved tensor with ΔJl ¼
dþ l − 2, and Φ is an integer-weight scalar dual to a shift-
symmetric bulk scalar ϕ [67,68]. We use the index-free
notation Jl ≡ ϵμ1 � � � ϵμlJμ1���μll with the indices contracted
with the polarization vector ϵ⃗. The weight-shifting oper-
ators are nonsingular, whereas the three-point function ofΦ
diverges as K

3−d
2 for d > 3 (or − logK for d ¼ 3),

lim
K→0

hΦΦΦi ¼ Aϕ3 × ðk1k2k3ÞΔΦ−dþ1
2 K

3−d
2 ; ð6Þ

where ka ≡ jk⃗aj denotes the energy at point a, K≡
k1 þ k2 þ k3 is the total energy, and we have suppressed
the delta function that enforces spatial momentum con-
servation. The coefficient Aϕ3 is the corresponding constant
amplitude, which we will set to unity. The specifics
regarding the calculation of scalar seeds in momentum
space can be found in the Supplemental Material [69].
Due to the inherent noncommutativity of weight-shifting

operators, the differential representation (5) is far from
unique. A widely used strategy is to enumerate all possible
combinations of operators and fix their coefficients by other
dynamical constraints such as imposing the correct behavior
in the flat-space limit. However, naively applying this
procedure generically leads to representations of correlators
that are both algebraically cumbersome and physically unin-
tuitive, obscuring their connection to scattering amplitudes.
In fact, there is a canonical normalization and ordering of

operators that most directly reveals the flat-space limit.
First of all, it turns out that it is most natural to have all the
weight operators to act on the scalar correlator first. This is
due to the special property of Wab that it does not change
the degree of singularity in K when acting on a function
that goes as K

3−d
2 , which is precisely the behavior of the

scalar seed function in (6). In other words,
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lim
K→0

WabðfK3−d
2 Þ ¼ lim

K→0
ðWabfÞK3−d

2 ; ð7Þ

with f some function of momenta. Let us define the
normalized version of the operator as

Ŵab ≡ −
2Wab

ðΔa þ Δb − Δc − 2ÞðΔa þ Δb − Δ̃c − 2Þ ; ð8Þ

where a, b, c are field labels with c ≠ a, b and
Δ̃c ¼ d − Δc, and the weights appearing on the right-hand
side are those before acting with the weight-shifting
operator. This choice ensures unit normalization in the
flat-space limit and takes into account the weights for
which the singularity in K vanishes after acting with Wab.
Another advantage of acting first with Wab is that this
avoids acting on the longitudinal factors z⃗a · k⃗a in the other
weight-shifting operators. These factors vanish when we
evaluate the correlator on shell, by which we mean
computing the transverse-traceless part of the correlator
with z⃗a replaced by the physical polarization vectors ϵ⃗a.
Next, consider the spin operator Sab. This has a nonde-

rivative term that becomes ϵ⃗a · ϵ⃗b on shell, while all of its
derivative terms get multiplied by longitudinal factors.
Consequently, they have a very simple on shell action,

Ŝa1b1 � � � Ŝanbn jz→ϵ ¼ ðϵ⃗a1 · ϵ⃗b1Þ � � � ðϵ⃗an · ϵ⃗bnÞ; ð9Þ

when no other operators act on them, where we have
normalized the operator as

Ŝab ≡ 1

ρaρb
Sab: ð10Þ

It is thus most natural to act with the spin operators last, in
which case they simply turn into a product of polarization
factors.
It remains to discuss the spin-weight operators Dab and

Fab. While their on shell actions are less trivial, it turns out
that they both turn into ϵ⃗a · k⃗b in the flat-space limit. To see
this, consider the on shell action of two Dab operators,
which can be expressed in terms of energy derivatives as

D̂abD̂cdjz→ϵ ¼
ðϵ⃗a · k⃗bÞðϵ⃗c · k⃗dÞ

kbkd

�
∂kb∂kd −

δbd
kd

∂kd

�

þðϵ⃗a · ϵ⃗cÞ
�
δbd − δad

kd
∂kd − δbc

�
∂kc

kc
þWcd

ρc

��
;

ð11Þ

where δ is the Kronecker delta, and we have normalized the
operator as

D̂ab ≡ 1

ρa
Dab: ð12Þ

The two-derivative term in the first line of (11) gives themost
singular term in K and reduces to the aforementioned
kinematic structure in the flat-space limit. The other terms
in (11) have different consequences depending on the index
permutations of the operators. To see why, consider corre-
lators of conserved currents in odd d. These are rational
functions of energies, whereas the scalar seeds always have a
logarithmic singularity. The spin-weight operators must
then combine to remove this logarithmic singularity, which
implies a set of selection rules for index permutations that
can appear. For instance, the one-derivative term in the first
line of (11) gives a logarithmic singularity that cannot be
canceled against other terms due to its polarization structure,
which forbids the operator combinations such as D̂13D̂23, for
which b ¼ d. Similarly, Fab has the same kinematic
structure as Dab in the flat-space limit due to the fact that
k⃗b · K⃗ab in (3) does not increase the degree of singularity in
K. Its normalized version is given by

F̂ab ≡ 1

Δa þ lb þ lc − 2
Fab: ð13Þ

Similar to (8), this takes into account the spin and weight
combinations for which correlators become trivial.
We will refer to the ordering Ŝ � � � Ŝ X̂ � � � X̂ Ŵ � � � Ŵ of

the weight-shifting operators as normal ordering, where
X̂∈ fD̂; F̂g. These properly normalized, normal-ordered,
weight-shifting operators then serve a dual purpose: they
trivialize both conformal symmetry and the flat-space limit.
In particular, we have the following dictionary between the
kinematic variables for amplitudes and the normalized
weight-shifting operators in the flat-space limit:

ϵ⃗a · ϵ⃗b ↔ Ŝab; ϵ⃗a · k⃗b ↔ D̂ab; F̂ab;1↔ Ŵab; ð14Þ

when normal ordered. While the weight operators reduce to
unity in the flat-space limit, they need to be suitably
inserted in correlators to give the correct scaling weights.
As we describe below, the choice between D̂ab and F̂ab
depends on the type of interactions under consideration.
Note that for ϵ⃗a · k⃗b, this is in fact a one-to-two mapping;
ϵ⃗1 · k⃗2 ¼ −ϵ⃗1 · k⃗3 but D̂12 ≠ −D̂13 away from K ¼ 0.
These two permutations typically only differ by a local
term that has a delta-function support in position space,
which is the boundary manifestation of the field redefini-
tion freedom in the bulk.

IV. THREE-POINT DOUBLE COPY

The three-particle amplitudes for Yang-Mills (YM)
theory and general relativity (GR) take the form,2

2To make a direct comparison with correlators in the flat-space
limit, we have shown the amplitudes computed in axial gauge and
also suppressed the coupling constants and color factors.
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AYM ¼ ðϵ⃗1 · ϵ⃗2Þðϵ⃗3 · k⃗1Þ þ cyc; AGR ¼ A2
YM; ð15Þ

AF3 ¼ ðϵ⃗1 · k⃗2Þðϵ⃗2 · k⃗3Þðϵ⃗3 · k⃗1Þ; AW3 ¼ A2
F3 ; ð16Þ

where the first line shows the pure YM and GR amplitudes,
while the second line shows the amplitudes from the
higher-derivative interactions F3 and W3, with F the
YM field-strength tensor and W the Weyl tensor. We see
that the three-point amplitudes exhibit manifest double-
copy relations between gauge and gravity theories. In this
section, we present similar differential double-copy rela-
tions for spinning three-point functions in AdS space.

A. YM and GR

Let us first consider the three-point function of con-
served spin-1 currents dual to bulk gluons. The idea is to
promote the amplitude building blocks in (15) to differ-
ential operators via the dictionary (14). This turns ðϵ⃗1 ·
ϵ⃗2Þðϵ⃗3 · k⃗1Þ into, e.g., the spin-raising combination Ŝ12D̂31,
which lowers the weight at point 1 by one unit. To land on
the correct weight for the conserved spin-1 current ΔJ1 ¼
d − 1 at all three points, a natural seed object to use is the
massless scalar three-point function hΦΦΦi with ΔΦ ¼ d
accompanied by Ŵ23. This allows us to write

hJ1J1J1i ¼ ðŜ12D̂31Ŵ23 þ cycÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡n̂1

hΦΦΦiΔΦ¼d: ð17Þ

By construction, this is conformally invariant and has the
correct flat-space limit. One still needs to check the current
conservation condition, which requires the correlator to
be annihilated by the divergence operator in embedding
space [66],

diva ≡ ∂Xa
· TZa

; ð18Þ

TZa
≡

�
d
2
− 1þ Za · ∂Za

�
∂Za

−
1

2
Za∂Za

· ∂Za
; ð19Þ

where Xa is an embedding-space coordinate and Za is an
auxiliary null vector in R1;dþ1, which are related to k⃗a and
z⃗a upon projection to Rd. The equivalent condition in
momentum space is the Ward-Takahashi (WT) identity
[5,16,23,70], which relates the longitudinal part of a
correlator to lower-point functions. It can be checked that
(17) is indeed divergenceless in general dimensions.
We now come to our double-copy construction of the

graviton three-point function. Note that the naive procedure
of squaring the whole correlator would not work for the
following reasons. First, since ΔJ2 ¼ ΔJ1 þ 1 and the
operator n̂1 has an overall scaling weight of −1, we need
to accordingly adjust the weight of the seed scalar from
ΔΦ ¼ d to ΔΦ ¼ dþ 2. Another important subtlety is that

conformal symmetry combined with the flat-space limit
does not fully guarantee that the resulting correlator
satisfies the WT identity. As we described before, only
certain operator combinations cancel the undesired singu-
larity of the scalar seed. To see this, note that
Ŝ12Ŝ23Ŝ31hΦΦΦijΔΦ¼d is conformally invariant and has
the correct quantum numbers of a conserved spin-2 three-
point function, and so it can in principle be part of the
correlator. However, it has an unphysical, lower-order
singularity, which is not constrained by the flat-space limit.
Taking these considerations into account, we have found

that the graviton three-point function admits the following
representation:

hJ2J2J2i ¼ ∶n̂21∶|fflffl{zfflffl}
≡n̂2

hΦΦΦiΔΦ¼dþ2; ð20Þ

where operators enclosed within colons are normal ordered,
with D̂abD̂cd ordered such that a ≤ c. This ordering of the
operators ensures the cancellation of the undesired singu-
larity of the scalar seed. Explicitly, we have

n̂2jŴ¼1 ¼ Ŝ212D̂
2
31 þ Ŝ223D̂

2
12 þ Ŝ231D̂

2
23 þ 2ðŜ12Ŝ23D̂12D̂31

þ Ŝ12Ŝ31D̂23D̂31 þ Ŝ23Ŝ31D̂12D̂23Þ: ð21Þ

To avoid clutter, we have only shown part of the formula
after stripping off various factors of the weight operators on
the right. To reintroduce them, note that each D̂ab in (17) is
accompanied by Ŵcd with b ≠ c ≠ d. We see that the
kinematic operator n̂2 ¼ ∶n̂21∶ exhibits a double-copy
structure, akin to the amplitude (15). In the flat-space
limit, the correlator directly reduces to the amplitude AGR,
as implied by the dictionary (14). Again, it can be checked
that (20) is divergenceless in general dimensions.
The differential representation is not unique, evenwhen the

operators are normal ordered. This is due to the nonvanishing
commutator ½D̂ab; D̂cd� ≠ 0 for a ≠ c. (In contrast, Ŝab and
Ŵab have vanishing commutators among themselves.) We
may also take two copies of n̂1 with different permutations,
which gives the same nonlocal part of the correlator, but can
differ by local terms. For instance, there exists a cyclic-
symmetric representation of operators given by

n̂cyc2 jŴ¼1 ≡ Ŝ212D̂
2
31 þ 2Ŝ12Ŝ13

D̂23D̂31 þ D̂21D̂32 − D̂23D̂32

3

þ cyc; ð22Þ
which give the same correlator as (21) at separated points
but differs from (21) by a local term.3 In d ¼ 3 momentum

3These local terms are relevant for renormalization of con-
formal correlators, which absorb the divergences of the scalar
seed integrals [70,71]. However, they do not affect the dynamical,
nonlocal part of the correlator.
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space, representation (22) precisely reproduces the graviton
three-point function computed in [1,72]. For concreteness,
let us also provide the expressions for d ¼ 5, 7 obtained
from (22),4

hJ2J2J2ijd¼5 ¼
AGR

K3
½2e23 þ 3ðe2 þ K2Þe3K

þ 3ðe22 − 3e2K2 þ K4ÞK2�; ð24Þ

hJ2J2J2ijd¼7 ¼
3AGR

K4
½2e33 þ ð4e2 − K2Þe23K

þ 5ðe22 þ 3e2K2 − 3K4Þe3K2

þ 5ðe32 − 6e22K
2 þ 5e2K4 − K6ÞK3�; ð25Þ

where e2 ≡ k1k2 þ k2k3 þ k3k1 and e3 ≡ k1k2k3. We
derived these results using the scalar seed correlators of
weight ΔΦ ¼ 7, 9 as the initial input. These seed functions
can be computed using either the integral representation or
the weight-shifting technique, both of which are elaborated
in the Supplemental Material [69]. When using the former
approach, the integrals are formally divergent due to the
chosen weights and therefore renormalization is necessary
(for details, see [71]). Interestingly, both the logarithms and
the dependence on the renormalization scale are fully
projected out in the representation (22).

B. Higher-derivative interactions

For correlators arising from higher-derivative inter-
actions, it turns out that it is most useful to use the operator
F̂ab to replace ϵ⃗a · k⃗b in (16). This is due to the property,

divaF̂
l
abhΦΦΦi ∝ ðdþ 2l − 2 − ΔΦÞ × � � � ; ð26Þ

after acting on a scalar correlator and taking the divergence,
where we have just shown the proportionality constant.
This property also holds for F̂l

abF̂
l
cdF̂

l
ef with a ≠ c ≠ e, as

long as the operators are grouped in this way. This means
that the resulting correlator becomes automatically diver-
genceless if we use the scalar seed with ΔΦ ¼ dþ 2l − 2.
The seed function choice then agrees with that in (17) and
(20) due to the fact that both F̂l

abF̂
l
cdF̂

l
ef and n̂l have an

overall weight of −l, so that they give the correct weight
for the conserved spin-l current, ΔJl ¼ dþ l − 2.

The above discussion implies the following spin-l
formula for three-point functions from higher-derivative
interactions,

hJlJlJlih:d: ¼ F̂l
12F̂

l
23F̂

l
31hΦΦΦiΔΦ¼dþ2l−2; ð27Þ

where we have picked a particular permutation of the
operators.5 For l ¼ 1, this agrees with [49,73]. For general
spins, one should also check that (27) comes purely from
higher-derivative interactions. This is not immediately
obvious in embedding space, since the divergenceless con-
dition does not distinguish between the types of interactions.
In momentum space, however, these higher-derivative con-
tributions solve the homogeneous WT identity and are thus
identically conserved [16,23], as well as having higher-order
singularities in K (see footnote 4). We have explicitly
checked that (27) gives identically conserved momen-
tum-space correlators, up to local terms, for l ¼ 2, 3.

V. CONCLUSIONS

What are the right kinematic variables for cosmological
correlators? Given an amplitude in flat space, canwe directly
reconstruct the corresponding correlator in curved back-
grounds? In this paper, we have provided plausible answers
to these questions for three-point functions in AdSdþ1. In
particular, we used the weight-shifting operators developed
in [14,44,45] as basic kinematic building blocks to construct
AdS three-point functions. We introduced a normal ordering
and the proper normalization of the weight-shifting oper-
ators, which allowed us to treat them as the AdS analogs of
the kinematic variables of amplitudes. Remarkably, the final
differential representation of the gluon and graviton three-
point functions in general dimensions has exactly the same
kinematic structure as the corresponding amplitude, and thus
exhibits amanifest double-copy relation. Our final results for
AdSdþ1 three-point functions are valid in both embedding
and momentum spaces.
The logical next step is to generalize our three-point

double-copy construction to higher spins and higher multi-
plicities. In flat space, the spin-l three-point amplitude is
simply given by thelth power of the spin-1 amplitude, which
motivates us to find a differential generalization of this in
AdS. A generalization to higher multiplicities would involve
enlarging the basis set of differential operators to include
combinations of conformal generators, which are the AdS
analogs of the Mandelstam variables [46–51]. In addition, it
would be interesting to work out a supersymmetric gener-
alization and make contact with the existing double-copy
formulation inAdSMellin space [61], although their analysis

4The flat-space limit of spinning three-point functions that is
consistent with our normalization convention is

lim
K→0

hJlJlJli ¼ Al ×
ðk1k2k3Þdþ2l−5

2�
δd;3 þ d−3

2

��
d−1
2

�
l−1

K
3−d
2
−l; ð23Þ

where ðaÞn is the Pochhammer symbol and Al is the correspond-
ing spin-l amplitude in flat space. For three-point functions from
higher-derivative interactions (27), the scaling instead becomes
K

3−d
2
−3l.

5As with (21) and (22), there are multiple possible orderings of
(27) that can differ in local terms but still produce the same
nonlocal part of the correlator. In the Supplemental Material [69],
we provide a general proof of the formula (27) that is valid for any
ordering.
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was restricted to scalar components of super-multiplets. A
similar differential technique has proven useful in recent
generalizations of the scattering equations [74–76] to AdS
[46,47,52,53,63,77], and it is worth exploring the synergy
between related approaches. Finally, our findings may also
have implications to analytic studies of spinning correlators in
conformal field theories with a weakly coupled bulk dual
[73,78,79].
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