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ABSTRACT

Introduction: Extrapolating long-term overall

survival (OS) from shorter-term clinical trial

data is key to health technology assessment in

oncology. However, extrapolation using con-

ventional methods is often subject to uncer-

tainty. Using ciltacabtagene autoleucel (cilta-

cel), a chimeric antigen receptor T-cell therapy

for multiple myeloma, we used a flexible Baye-

sian approach to demonstrate use of external

longer-term data to reduce the uncertainty in

long-term extrapolation.

Methods: The pivotal CARTITUDE-1 trial

(NCT03548207) provided the primary efficacy

data for cilta-cel, including a 12-month median

follow-up snapshot of OS. Longer-term (48-

month median follow-up) survival data from

the phase I LEGEND-2 study (NCT03090659)

were also available. Twelve-month CARTITUDE-

1 OS data were extrapolated in two ways: (1)

conventional survival models with standard

parametric distributions (uninformed), and (2)

Bayesian survival models whose shape prior was

informed from 48-month LEGEND-2 data. For

validation, extrapolations from 12-month

CARTITUDE-1 data were compared with

observed 28-month CARTITUDE-1 data.
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Results: Extrapolations of the 12-month CAR-

TITUDE-1 data using conventional uninformed

parametric models were highly variable. Using

informative priors from the 48-month LEGEND-

2 dataset, the ranges of projected OS at different

timepoints were consistently narrower. Area

differences between the extrapolation curves

and the 28-month CARTITUDE-1 data were

generally lower in informed Bayesian models,

except for the uninformed log-normal model,

which had the lowest difference.

Conclusions: Informed Bayesian survival mod-

els reduced variation of long-term projections

and provided similar projections as the unin-

formed log-normal model. Bayesian models

generated a narrower and more plausible range

of OS projections from 12-month data that

aligned with observed 28-month data.

Trial Registration: CARTITUDE-1 ClinicalTri-

als.gov identifier, NCT03548207. LEGEND-2

ClinicalTrials.gov identifier, NCT03090659,

registered retrospectively on 27 March 2017,

and ChiCTR-ONH-17012285.

Keywords: Ciltacabtagene autoleucel;

Relapsed/refractory multiple myeloma; Overall

survival; Extrapolation

Key Summary Points

Extrapolation of survival outcomes is key

to health technology assessments in

oncology to quantify lifetime benefit of a

novel intervention. Conventional

methods to extrapolate limited overall

survival (OS) data beyond clinical trial

follow-up may lead to high uncertainty in

long-term estimations. External data can

further inform the extrapolation of OS

data and increase confidence in estimates

of long-term survival outcomes.

The analysis focused on cilta-cel, a CAR-T

therapy for triple-class relapsed/refractory

multiple myeloma. Data from the initial

cutoff of the pivotal phase Ib/II

CARTITUDE-1 trial demonstrated strong

efficacy results (97% overall response and

89% 12-month OS rate) in this patient

population with limited therapy options.

OS data from CARTITUDE-1 were

extrapolated using various models,

including those using conventional

parametric methods (without

incorporating external data), as well as

Bayesian models that were additionally

informed by a related external data source

(i.e., the phase I LEGEND-2 trial).

Variability among parametric models was

greatly reduced when the external

LEGEND-2 data informed the

extrapolations from the pivotal

CARTITUDE-1 trial. These projections

were further validated with observed

28-month OS data from CARTITUDE-1.

INTRODUCTION

Estimates of long-term overall survival (OS)

benefits of new oncology treatments play an

important role in economic evaluations and

have an impact on patient access, especially in

countries where health technology assessment

focus is on lifetime benefits. However, typical

follow-up in pivotal oncology trials is limited,

and OS data may be too immature to demon-

strate robust lifetime benefits before marketing

authorization is granted [1]. This is specifically

the case for newer immune- or cell-based ther-

apies that have higher efficacy with longer

patient survival. Standard parametric survival

modeling is a conventional method of gener-
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ating extrapolations from observed trial data,

but is associated with significant uncertainty,

especially when trial data are highly immature

[1]. Furthermore, the underlying hazard (event

rate) function over time may not be appropri-

ately represented by standard parametric mod-

els [2]. This is particularly relevant for newer

cancer therapies that have the potential for

achieving durable survival benefits [3]. Plateau-

ing survival curves long after treatment

administration and heavy censoring toward the

end of the follow-up period present a challenge

for extrapolating long-term survival from short-

term clinical data [1].

To support long-term projections from short-

term trial data, external information is often

utilized. External source data with longer fol-

low-up can help inform the selection of plausi-

ble extrapolation curves from the observed trial

by providing evidence for external validity.

Additionally, external source data can be more

formally combined with trial data in the sur-

vival modeling to generate extrapolation curves

[2].

Joint modeling of clinical trial data and

individual patient-level data from external

sources is an area of active research [4–6]. A

review of methods for extrapolating survival

from randomized trials using external data

presented a structure for model choices based

on various assumptions about how the disease

population hazards relate to external popula-

tion hazards [5]. In the literature, joint model-

ing of trial and external data is typically

undertaken using a Bayesian framework [7]. In

the Bayesian approach recently illustrated by

Soikkeli et al. [8], external information was used

in specifying prior distributions for the shape

parameter of the survival distribution, provid-

ing a flexible framework for incorporating

external individual patient data. These approa-

ches often assume less restrictive exchangeabil-

ity assumptions than formally pooling data and

hence are less vulnerable to differences in

baseline characteristics from the external data.

Ciltacabtagene autoleucel (cilta-cel) is a chi-

meric antigen receptor (CAR)-T cell therapy

approved in the USA and in Europe for patients

with relapsed/refractory multiple myeloma

(RRMM) after C 4 (USA) or C 3 (EU) prior lines

of therapy, including a proteasome inhibitor

(PI), an immunomodulatory drug (IMiD), and

an anti-CD38 monoclonal antibody [9]. Patient

T cells are genetically modified to target B-cell

maturation antigen on the surface of multiple

myeloma (MM) cells. CARTITUDE-1 was the

registrational, phase Ib/II trial of cilta-cel. Initial

results were reported at median follow-up of

12.4 months [10], at which point the 12-month

OS rate was 89%. Updated results reported a

median follow-up of 28 months with a

27-month OS rate of 70% [11]. Extrapolating

CARTITUDE-1 OS data to estimate cilta-cel’s

long-term treatment benefit for economic eval-

uation is challenging, as most patients were still

alive at the end of trial follow-up. Estimations of

OS, particularly in the post-trial period, can

differ substantially when various standard

extrapolation models are used.

In this analysis, we implemented a Bayesian

approach as outlined by Soikkeli et al. [8] to

estimate long- term OS of cilta-cel from the

CARTITUDE-1 study 12-month data cut. Exter-

nal data from the LEGEND-2 study, a phase I

trial assessing LCAR-B38M (a CAR construct

identical to that of cilta-cel) with median fol-

low-up of 48 months [12], were formally lever-

aged to inform these predictions. Availability of

an additional CARTITUDE-1 data cut at

28 months provided an opportunity to support

and validate this approach.

METHODS

Source Data 1: CARTITUDE-1 Pivotal Trial

CARTITUDE-1 was a single-arm, open-label,

multicenter, phase Ib/II study conducted pri-

marily in the USA (NCT03548207) [10, 11]. The

objectives of the study were to characterize

cilta-cel safety, confirm the recommended

phase II dose (phase Ib), and evaluate clinical

efficacy. Eligible patients were C 18 years of age,

had a diagnosis of MM per International Mye-

loma Working Group diagnostic criteria [13],

measurable disease at baseline, and Eastern

Cooperative Oncology Group performance sta-

tus of 0 or 1. All patients received C 3 prior lines

of therapy including a PI, an IMiD, and an anti-
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CD38 antibody, or were double refractory to a

PI and an IMiD and received an anti-CD38

antibody, with evidence of progressive disease

within 12 months of the last line of therapy.

Patients received a single cilta-cel infusion [tar-

get dose 0.75 9 106 CAR-positive viable T cells/

kg (range 0.5–1.0 9 106)] 5–7 days after lym-

phodepletion with 300 mg/m2 cyclophos-

phamide and 30 mg/m2 fludarabine daily for

3 days. Ninety-seven patients, all from the USA,

received treatment with cilta-cel and were

included in the present analysis. OS was a sec-

ondary endpoint. Data have been published

from a September 2020 data cutoff (median

12 months follow-up) [10] and from a January

2022 data cutoff (median 28 months follow-up)

[11]. Patients in CARTITUDE-1 had an

unprecedented overall response rate of 98%,

with 83% of patients experiencing complete

response, and median OS and progression-free

survival had not yet been reached at 28 months

median follow-up.

Source Data 2: LEGEND-2 Trial (Historical

External Data)

LEGEND-2 was a phase I, single-arm, open-label

study conducted in four sites in China

(NCT03090659) [12]. Enrolled patients were

aged 18–80 years and had a diagnosis of RRMM.

Lymphodepletion regimen varied by study site,

using either cyclophosphamide 300 mg/m2 or

cyclophosphamide 250 mg/m2 plus fludarabine

25 mg/m2 for 3 days [14, 15]. LCAR-B38M CAR-

T cells were infused either in three separate

infusions or in a single infusion. Seventy-four

patients received treatment with LCAR-B38M.

Data have been published for a May 2021 data

cutoff (median 48 months follow-up) [12]. This

is the longest follow-up of OS in patients with

RRMM receiving CAR-T therapy to date.

Comparison of CARTITUDE-1

and LEGEND-2 Studies and Populations

Both CARTITUDE-1 and LEGEND-2 enrolled

patients with RRMM, were of similar design and

size, and used the same CAR construct to

manufacture the study CAR-T cell product.

There were important differences between the

two studies in trial design (cilta-cel dosing

schedule and lymphodepletion regimens), eli-

gibility criteria (previous exposure to

immunomodulatory drugs, proteasome inhibi-

tors, and anti-CD38 monoclonal antibodies),

and baseline patient characteristics (Table 1);

however, LEGEND-2 is currently the best avail-

able external source to utilize in modeling long-

term projections of the patients with RRMM

from CARTITUDE-1.

Compliance with Ethics Guidelines

The LEGEND-2 and CARTITUDE-1 studies were

conducted in accordance with the Declaration

of Helsinki and an institutional review board or

independent ethics committee at each study

site approved the respective study protocol. The

current analysis is based on previously con-

ducted studies and does not contain any new

studies with human participants or animals

performed by any of the authors.

Statistical Analysis: Comparison

of LEGEND-2 and CARTITUDE-1 OS

Outcomes and Hazards

The authors had access to individual patient

data from the two studies, and also utilized the

published OS data [10–12]. Extrapolation of OS

from 12-month CARTITUDE-1 data, adjusting

for general population mortality, was carried

out using two approaches: (1) an uninformed

approach that used solely 12-month CARTI-

TUDE-1 data in conventional survival models

with standard parametric distributions, and (2)

an externally informed approach using Baye-

sian survival modeling to extrapolate 12-month

CARTITUDE-1 data with informative shape

prior from LEGEND-2 (similar to that previously

described by Soikkeli et al.) [8].

The informative Bayesian method provides

flexibility in how much weight is given to the

information provided by the external source.

Also, consistent with Soikkeli et al. [8], the

shape parameter was selected as the informative

prior, since the median survival is less prone to

changes in the shape parameter compared with

316 Oncol Ther (2023) 11:313–326



Table 1 Comparison of baseline characteristics of patients from LEGEND-2 and CARTITUDE-1 trials

Characteristic CARTITUDE-1
(N = 97) [11]

LEGEND-2
(N = 74) [12]

Age, median (range), years 61 (43–78) 55 (27–74)

Male sex 57 (58.8) 45 (60.8)

Time since diagnosis, median (range), years 5.9 (1.6–18.2) 4.0 (1–9)

ECOG performance status score

0 39 (40.2) 30 (40.5)

1 54 (55.7) 32 (43.2)

2 4 (4.1) 12 (16.2)

ISS stage

I 61 (62.9) 33 (44.6)

II 22 (22.7) 14 (18.9)

III 14 (14.4) 21 (28.4)

Unknown 6 (8.1)

Extramedullary disease 13 (13.4) 22 (29.7)

No. prior lines of therapy, median (range) 6 (3–18) 3 (1–9)

Previous autologous stem cell transplantation 87 (89.7) 18 (24.3)

Prior therapies

Proteasome inhibitors 97 (100) 54 (73.0)

Bortezomib 92 (94.8) 53 (71.6)

Carfilzomib 83 (85.6) 3 (4.1)

Immunomodulatory agents 97 (100) 65 (87.8)

Lenalidomide 96 (99.0) 35 (47.3)

Pomalidomide 89 (91.8) 3 (4.1)

Thalidomide 21 (21.6) 47 (63.5)

Prior proteasome inhibitors ? immunomodulatory agents 97 (100) 48 (64.9)

Monoclonal antibodies 97 (100) 2 (2.7)

Daratumumab 94 (96.9) 1 (1.4)

Isatuximab 8 (8.2) 1 (1.4)

ECOG Eastern Cooperative Oncology Group, ISS International Staging System

Oncol Ther (2023) 11:313–326 317



other parameters (e.g., scale). For instance, in a

Weibull distribution, the shape parameter

describes increasing or decreasing hazards over

time [16], whereas scale parameter is propor-

tional to the median survival [17].

The first approach (conventional, unin-

formed) was accomplished by conducting stan-

dard survival models in R software. The eligible

list of distributions to be explored in the second

approach was selected on the basis of the clin-

ical plausibility of 5-year projections from the

models developed using the first approach.

In the second approach (informative Baye-

sian), we first used Bayesian survival models on

the 48-month LEGEND-2 data using non-infor-

mative priors (i.e., the extrapolation was

informed only by LEGEND-2 data) for each

distribution explored. A moment-fitting

approach was used to fit the matching gamma

distribution to the posterior Monte Carlo Mar-

kov chain simulation results of the shape

parameter from the Bayesian survival models

conducted on 48-month LEGEND-2 data. This

fitted gamma distribution from LEGEND-2

48-month OS data was used as an informative

prior for the shape parameter used in the

Bayesian survival analysis of the CARTITUDE-1

12-month data.

The gamma distribution was chosen to

characterize the shape parameter prior because

shape parameter needs to be always non-nega-

tive, and it was consistently used in Bayesian

analyses from the previous literature [18].

This method assumes the shape parameter is

exchangeable for the CARTITUDE-1 and

LEGEND-2 cohorts. The strength of the infor-

mative prior was adjustable. When the fitted

gamma distribution from the posterior of the

LEGEND-2 results was used as the shape prior

distribution for the CARTITUDE-1 Bayesian

analysis, the resulting shape parameter was

informed by both CARTITUDE-1 and LEGEND-

2 data based on their corresponding trial sizes

(referred to as an informed prior). If the fitted

gamma distribution parameters from the

LEGEND-2 data posterior were multiplied by a

constant factor greater than 1 (e.g., 100), the

resulting shape parameter from the CARTI-

TUDE-1 Bayesian extrapolation was informed

mostly by the LEGEND-2 data (referred to as a

strongly informed prior).

The ranges of projection results from unin-

formed and informed approaches were com-

pared, and the extrapolations of OS from

12-month CARTITUDE-1 data (September 2020)

using informed approaches were validated with

later follow-up, using 28-month CARTITUDE-1

data (January 2022).

RESULTS

OS in CARTITUDE-1 and LEGEND-2

OS data from CARTITUDE-1 had 28 months of

available follow-up, at which point 70.4% of

patients were still alive. Data were heavily cen-

sored towards the end of the follow-up period

(Fig. 1A). With 48-month data, LEGEND-2 rep-

resented the longest available follow-up of any

clinical study of cilta-cel or any other CAR-T

treatment in RRMM. The plateauing of the OS

curve around month 36 and the empirical haz-

ard for LEGEND-2 suggested that the hazards of

death decreased over time (Fig. 1B). In the

12-month CARTITUDE-1 dataset, this decreas-

ing hazard behavior was not fully observed,

with high uncertainty of hazard estimates

towards the end of the follow-up period, which

increased the uncertainty in the standard para-

metric extrapolations.

Bayesian Informed Priors Approach

Reduces Uncertainty Versus Standard

Parametric Extrapolations

Twelve-month data from CARTITUDE-1 were

extrapolated using the standard parametric

Weibull, log-normal, log-logistic, and expo-

nential distributions, and hazards from these

standard models were capped by the generalized

population mortality hazards from US data [19]

(Fig. 2A). Generalized gamma and Gompertz

projections were deemed clinically implausible

(5-year estimated OS projections were 0%;

Table 2). The exponential distribution was not

explored in the informative Bayesian approach

as it is a single-parameter distribution and does

318 Oncol Ther (2023) 11:313–326



not have a separate shape parameter. OS

extrapolation of the CARTITUDE-1 data based

on standard parametric survival models led to

wide uncertainty. The exponential distribution,

which assumes constant hazard rate in time,

provided the minimum Akaike information

criteria and Bayesian information criteria (with

a small margin compared with other distribu-

tions; Table 2); however, it conflicted with the

empirical hazard from long-term survival data

of LEGEND-2, which indicates a decreasing

hazard after 1 year. In contrast to the expo-

nential distribution, other distributions can

reflect changing hazard trends over time. For

example, the Weibull function assumes mono-

tonically increasing (or decreasing) trends, and

log-normal and log-logistic functions assume

unimodal hazards. However, extrapolation

using standard (uninformed) Weibull, log-nor-

mal, and log-logistic distributions on CARTI-

TUDE-1 12-month data still resulted in wide

variations in OS across distributions [e.g., 5-year

and 10-year OS estimates ranged from 27% to

50% and from 3% to 31%, respectively, and

5-year and 10-year restricted mean survival time

(RMST) estimates ranged from 37.70 to

43.38 months and from 44.60 months to

66.59 months, respectively; Table 2].

Bayesian (informed) survival models for the

Weibull, log-normal, and log-logistic distribu-

tions were performed on the 12-month CARTI-

TUDE-1 data with informative priors from

LEGEND-2. Resulting extrapolations adjusted

for general population mortality showed

Fig. 1 A Overall survival Kaplan–Meier curves for LEGEND-2 (48-month data) and CARTITUDE-1 (12-month and
28-month data). B Empirical hazards from CARTITUDE-1 and LEGEND-2

Oncol Ther (2023) 11:313–326 319



reduced variability across distributions (smaller

differences in estimates of OS and RMST at

5-year intervals) (Fig. 2B and Table 2). The rel-

ative range reduction with respect to the unin-

formed approaches is higher for projections at

later timepoints (e.g., 5-year and 10-year RMST

estimates ranged from 43.36 to 45.17 months

and from 67.59 to 75.73 months, respectively;

Table 2). Strongly informative priors (informed

primarily by the LEGEND-2 data) reduced vari-

ability more than informative priors (informed

by both CARTITUDE-1 and LEGEND-2 data).

Validation of Bayesian Informed Prior

Approach Using Observed Data at Later

Timepoints

To determine how closely Bayesian informative

prior extrapolations tracked with observed data

versus standard parametric extrapolations,

model projections generated from 12-month

CARTITUDE-1 data using informative priors

were compared with observed 28-month data

from CARTITUDE-1 (Fig. 3 and Table 3).

Extrapolations using informative priors and the

uninformed survival model with log-normal

Fig. 2 Projections based on A standard parametric
extrapolations versus B Bayesian informative prior (CAR-
TITUDE-1 12-month data). The Bayesian approach

reduced variability in projections compared with standard
parametric extrapolations. KM Kaplan–Meier, OS overall
survival

320 Oncol Ther (2023) 11:313–326



Table 2 OS projections based on standard parametric extrapolations versus Bayesian informed prior extrapolations

Standard (uninformed) parametric extrapolations Bayesian (informed) prior extrapolations

Weibull Exponential Log-

normal

Log-

logistic

Gompertz Gen

gamma

Informed

Weibull

Informed

log-

normal

Informed

log-

logistic

Strongly

informed

Weibull

Strongly

informed

log-normal

Strongly

informed

log-logistic

AIC 250.87 250.66 251 251.07 250.67 252.62 – – – – – –

BIC 256.02 253.24 256.14 256.22 255.82 260.34 – – – – – –

5-Year

OS, %

27 50 50 40 0 0 53 59 57 58 61 59

Range 27–50 53–57 58–61

10-Year

OS, %

3 25 31 19 0 0 31 44 40 40 48 44

Range 3–31 31–44 40–48

15-Year

OS, %

0 13 22 12 0 0 18 36 31 29 40 35

20-Year

OS, %

0 6 16 8 0 0 11 28 24 21 31 28

5-Year

RMST

(months)

37.70 43.38 42.90 40.32 28.22 31.97 43.36 45.17 44.43 44.38 45.64 44.92

Range 37.70–43.38 43.36–45.17 44.38–45.64

10-Year

RMST

(months)

44.60 65.10 66.59 56.84 28.22 31.97 67.59 75.73 72.71 73.20 77.91 75.37

Range 44.60–66.59 67.59–75.73 73.20–77.91

Lifetime

mean OS

(months)

45.27 86.23 109.39 78.89 28.22 31.97 100.58 145.71 132.90 128.80 154.99 144.74

Range 45.27–109.39 100.58–145.71 128.80–154.99

AIC Akaike information criteria, BIC Bayesian information criteria, OS overall survival, RMST restricted mean survival time

O
n
co
l
T
h
er

(2
0
2
3
)
1
1
:3
1
3
–
3
2
6

3
2
1



distribution tracked most closely to the

observed Kaplan–Meier curves from the later

CARTITUDE-1 data cut, as these distributions

had the smallest area differences between the

extrapolation curve and the observed 28-month

curve. Despite the constant hazard rate impli-

cation, the uninformed exponential distribu-

tion projection also tracked closely with the

observed data. Uninformed Weibull distribu-

tion fit to the 12-month CARTITUDE-1 data

(which implied monotonically increasing haz-

ard in time) was furthest from the observed

28-month curve, whereas the impact of the

informed Bayesian approach on the Weibull

function [i.e., moving from monotonically

increasing (uninformed) to monotonically

decreasing (informed) function] reduced the

variation of long-term projections and

increased the validity of projections with

respect to the observed OS CARTITUDE-1 data

from the later timepoint.

DISCUSSION

In this analysis, the Bayesian informative prior

approach was used to decrease uncertainty in

OS extrapolations and help validate plausible

long-term extrapolation based on standard

parametric functions. There is currently no

formal guidance on the use of Bayesian curves

in OS extrapolations, but external data may be

used to inform long-term survival estimates or

assess plausibility of extrapolations [8]. The

results of our analysis are consistent with other

analyses that used external information to

increase accuracy and decrease uncertainty of

OS extrapolations [4, 8, 20].

The primary benefit of the Bayesian infor-

mative prior approach is that it provides more

flexibility in combining information from

multiple sources to inform the trajectory of the

hazard over a longer time. LEGEND-2 48-month

data show that the risk for death decreased over

time, such that the OS curve plateaued starting

around 36 months. Clinically, this plateau may

reflect long-term efficacy of cilta-cel treatment

in the subset of patients who were able to tol-

erate treatment and mount an effective and

durable anti-tumor response after CAR-T cell

infusion. A higher death rate early in the study

reflects the advanced stage of disease of the

study population as well as adverse events that

occurred in the period after infusion. Because

the CARTITUDE-1 data are less mature, the

population had less advanced disease at base-

line, and due to heavy censoring, the decreasing

hazard rate in time observed in LEGEND-2 was

not yet reflected in the observed CARTITUDE-1

data. Long-term projections were validated by

comparing estimates derived from early CAR-

TITUDE-1 data cuts to observed data at later

timepoints.

Fig. 3 Bayesian informative prior approach based on CARTITUDE-1 12-month data predicts observed data at 28 months.
KM Kaplan–Meier, OS overall survival
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Using evidence of decreasing hazards from

LEGEND-2 data to inform the shape parameter

of the CARTITUDE-1 curve decreased the vari-

ation of OS long-term projections. Specifically,

using LEGEND-2 to inform the shape parameter

prior altered the original (uninformed) Weibull

distribution from a monotonically increasing to

a monotonically decreasing hazard function.

This may be plausible, given the durable clinical

response. LEGEND-2 OS and the 28-month

CARTITUDE-1 data did indeed suggest that the

uniformed Weibull projections based on the

12-month CARTITUDE-1 data were overly pes-

simistic. The extrapolations using informed

distributions generally had the effect of

increasing survival estimates, as well as

decreasing uncertainty of the projections and

providing closer estimations to the OS from the

later CARTITUDE-1 data cut.

This method relied on the assumption that

the shape parameter used as an informative

prior was exchangeable for both cohorts.

LEGEND-2 had a similar trial population and

treatment as CARTITUDE-1 but a longer follow-

up period. However, there are differences in the

treatment practices between China and the

USA, including availability of treatments after

cilta-cel, as well as differences in patient base-

line characteristics. These differences would not

violate exchangeability if the two cohorts

demonstrated similarity in the distribution of

effect modifiers that impact the shape parame-

ters only (e.g., for the Weibull distribution, how

the hazard rate changes over time). We

acknowledge that there remains uncertainty in

the degree of exchangeability of shape parame-

ters between the cohorts; however, the flexibil-

ity of the Bayesian approach allowed us to

explore different exchangeability assumptions

(i.e., different distributions), and the later data

cut from CARTITUDE-1 provided additional

evidence for the appropriateness of borrowing

information using the Bayesian approach. The

validity of this approach should be reassessed

when OS from later data cuts become available.

The generalizability of this approach to other

disease states, therapies, and trials depends on

the exchangeability of the shape parameter

between the external data and the dataset being

extrapolated. This requires a degree of similarityT
ab
le
3

C
om

pa
ri
so
n
of

O
S
pr
oj
ec
ti
on
s
us
in
g
st
an
da
rd

pa
ra
m
et
ri
c
ex
tr
ap
ol
at
io
n
an
d
B
ay
es
ia
n
in
fo
rm

at
iv
e
pr
io
r
ap
pr
oa
ch

ve
rs
us

ob
se
rv
ed

28
-m

on
th

m
ed
ia
n
fo
llo
w
-

up
da
ta

K
M

2
8
m
o
n
th

U
n
in
fo
rm

ed
W
ei
b
u
ll

U
n
in
fo
rm

ed
ex
p
o
n
en
ti
al

U
n
in
fo
rm

ed
lo
g-
n
o
rm

al
U
n
in
fo
rm

ed
lo
g-
lo
gi
st
ic

In
fo
rm

ed
W
ei
b
u
ll

In
fo
rm

ed
lo
g-
n
o
rm

al
In
fo
rm

ed
lo
g-
lo
gi
st
ic

40
.4
-m

on
th
sa
R
M
ST

(m
on
th
s)

3
2
.1
2

30
.5
0

32
.3
3

32
.0
4

31
.1
9

32
.0
1

32
.7
7

32
.4
7

A
re
a
be
tw
ee
n
ex
tr
ap
ol
at
io
n
an
d
28
-m

on
th

C
A
R
T
IT
U
D
E
-1

O
S
K
M

(m
on
th
s)

1.
81

0.
58

0.
48

1.
10

0.
77

0.
92

0.
82

T
h
e
va
lu
e
is
bo
ld
ed

to
in
di
ca
te

it
is
ob
se
rv
ed

da
ta
,
w
h
er
ea
s
th
e
ot
h
er

va
lu
es

in
th
e
ta
bl
e
re
fe
r
to

ex
tr
ap
ol
at
ed

da
ta

K
M

K
ap
la
n
–
M
ei
er
,
O
S
ov
er
al
l
su
rv
iv
al
,
R
M
S
T
re
st
ri
ct
ed

m
ea
n
su
rv
iv
al
ti
m
e

a M
ax
im

um
du
ra
ti
on

of
K
M

da
ta

Oncol Ther (2023) 11:313–326 323



between the two data sets, although adjust-

ments can be made to control for population

differences across datasets. For example, an

analysis using Bayesian approaches to extrapo-

late OS data on nintedanib in progressive

fibrosing interstitial lung disease used external

data from trials of nintedanib in idiopathic

pulmonary fibrosis, using propensity score

matching to ensure that patients in the analysis

had similar baseline characteristics [21]. In the

case of cilta-cel, a similar approach of adjusting

for baseline characteristics could be used in

Bayesian extrapolations of future trials in MM

populations earlier in their disease course using

CARTITUDE-1 as the external dataset.

CONCLUSIONS

The method outlined aimed to reduce uncer-

tainty in OS extrapolations by informing

12-month CARTITUDE-1 OS extrapolations

with the shape parameter obtained from

48-month LEGEND-2 OS data. It offered a flex-

ible approach allowing adjustable degrees of

influence from the reference external data (i.e.,

informed versus strongly informed priors) on

the shape parameter used in survival models

fitted to CARTITUDE-1 data. Although this

approach is not widely used currently, its

advantages have been recognized by the UK

National Institute for Health and Care Excel-

lence (NICE) and was preferred over unin-

formed extrapolations (e.g., NICE technical

support document on flexible survival methods

and NICE technology assessment of nintedanib

for lung disease) [2, 21, 22]. Use of external data

sources to inform OS projections from pivotal

clinical trials might increase certainty of long-

term projections, especially in the initial data

cuts from the trial that are available at the time

of the product launch.
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