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Abstract 

Bac kgr ound: Cohort studies incr easingl y collect biosamples for molecular profiling and are observing molecular heterogeneity. High- 
throughput RNA sequencing is pro viding lar ge datasets capable of reflecting disease mechanisms. Clustering approaches have pro- 
duced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to 
perform exploratory clustering analysis of transcriptomic data r equir es dee p understanding of machine learning and extensi v e com- 
putational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we 
ha ve de veloped Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcrip- 
tomic data more accessible through automated machine learning–based functions. 

Findings: The efficiency of each tool was tested with 7 datasets c har acterized by differ ent expr ession signal str engths to captur e a 
wide spectrum of RNA expression datasets. Our toolkit’s decisions reflected the real number of stable partitions in datasets where 
the subgr oups ar e discernib le. Within datasets with less clear biological distinctions, our tools either formed sta b le subgr oups with 

differ ent expr ession pr ofiles and r obust clinical associations or r ev ealed signs of pr ob lematic data such as biased measur ements. 

Conclusions: In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making ad- 
v anced anal ysis accessib le and r elia b le ev en for those without extensi v e mac hine learning expertise . Implementation of Omada is 
av aila b le at http://bioconductor.org/packages/omada/ . 

Ke yw ords: unsupervised learning, cluster analysis, gene expr ession, softw ar e toolkit 

Introduction 

The r a pid de v elopment of next-gener ation sequencing boosted 

the quantitative analysis of gene expression in a variety of hu- 

man tissues and or gans [ 1 , 2 ], gener ating v aluable r esources [ 3 ] 

for downstr eam inv estigativ e anal ysis. In r ecent years, suc h anal- 

yses aim to elucidate disease mechanisms [ 4 ] and construct ge- 

nomic profiles [ 5 ] to explain diagnosis [ 6 ], prognosis, and treat- 

ment patterns. Ho w e v er, tr anscriptomic pr ofiles can be heter oge- 

neous due to se v er al causes pertaining to technical biases that 

pr oduce batc h effects [ 7 ], cellular div ersity [ 8 ], disease heter o- 

geneity [ 9 ], and differences between individuals and populations 

[ 10 , 11 ]. In turn, this heter ogeneity hinders r esearc h efforts aiming 

to identify subpopulations within complex diseases by a ppl ying 

unsupervised machine learning techniques [ 12 ]. More specifically, 

clustering algorithms have been applied to high-dimensional data 

fr om tr anscriptomic pr ofiling [ 13–15 ] and r e v ealed nov el molec- 

ular classes associated with different symptoms of disease [ 16–

18 ]. Despite the intrinsic capabilities of these algorithms, a re- 

curr ent c hallenge is the insufficiency of default configurations to 

tailor these models pr ecisel y to unique datasets, thereby imped- 

ing the extraction of critical insights into the heterogeneity of the 

samples . T his limitation underscores the complexity and hetero- 

geneity inherent in biological data, which often eludes a one-size- 

fits-all a ppr oac h to clustering. Empirical e vidence fr om numer ous 

comparisons and tests r e v eals that the algorithms exhibit variable 

efficacy across different datasets and disease contexts, accentu- 

ating the necessity for model tuning or optimization specific to 

the dataset in question, particularly with advanced methodolo- 

gies [ 19–22 ]. The challenge is further compounded by the possi- 

bility that the samples could be from a spectrum of states and 

ther e ar e no optimal metrics to gr oup them. 

Most clustering pac ka ges offer implementations of 1 or more 

algorithms without considering the pr e vious and subsequent 

steps of the clustering pr ocess, suc h as detecting useful features 

or estimating the number of subgroups in the data. Since clus- 

tering consists of multiple steps, it is important to carefully ap- 

pr oac h eac h step so that intermediate decisions are not arbitrary 

but based on a ppr opriate clustering theory. Due to this diversity in 

methodologies, there is a need for a toolkit that guides nonexpert 

users through the different parameters of common clustering al- 

gorithms for their unsupervised analysis. One of the most impor- 

tant aspects of sample partitioning is the stability of the gener- 

ated groups as unstable clusters, usually implying the lack of sig- 

nal that should be present and driving the clustering of samples. 
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Table 1: Comparison of clustering methodologies to w ar d identifying heterogeneous patient gr oups. Fiv e steps of the clustering process 
ar e r eflected in the columns below. Feasibility analysis assesses the potential of the dataset to be used efficiently by clustering methods 
based on its dimensions . T he clustering algorithm denotes the amount of algorithms available in the methodology. Feature selection 
allows the selection of the features that best discriminate samples during clustering. Cluster quality describes the methods/metrics 
used to validate the quality of the clusters produced. Number of clusters describes the a ppr oac h a methodology follows to estimate the 
most probable number of different groups in the dataset. 

Feasibility Clustering algorithm Feature selection Cluster quality Number of clusters 

Omada Stability based Multiple Stability based Internal indexes Multiple index 
voting 

pvclust [ 23 ] — Single — Bootstr a p 
probability 

Bootstr a p 
probability 

genieclust 
[ 24 ] 

— Single — Internal indexes —

ClusterR [ 25 ] — Multiple — Single external 
index 

Single index 

pdfCluster 
[ 26 ] 

— Multiple — Internal indexes —

clusterSim 

[ 27 ] 
— Single — Internal indexes Single index 

clustvarsel 
[ 28 ] 

— — Gaussian based — —

VarSelLCM 

[ 29 ] 
— Multiple BIC/MICL/AIC — BIC/MICL/AIC 

FCPS [ 30 ] — Multiple — Internal indexes Single index 

Signals from genes across the transcriptome can vary across dif- 

ferent tissues and diseases. Cluster instability can be caused in- 

her entl y by the data points or by the type and application qual- 

ity of a clustering technique . T here lacks a robust approach that 

incor por ates compr ehensiv e assessment of multiple clustering 

methods and parameters for different sources of transcriptomic 

data. 

Her e we intr oduce Omada, a toolkit with m ultiple functions 

based on cluster stability and quality metrics that supports both 

experienced and inexperienced users from dataset exploration to 

the formation of the sample clusters. In contrast to other method- 

ologies , we pro vided a flexible toolkit offering multiple metrics 

and algorithms for testing, as well as an end-to-end pipeline. Syn- 

thetic and real-world datasets from bulk tumor, single-cell se- 

quencing, and whole blood have been used to test the general us- 

ability of Omada. While we cannot guarantee finding the optimal 

par ameters, especiall y for healthy test samples where true clus- 

ters are unkno wn, w e aim to provide users with guidelines based 

on quality metrics and empirical best practices, in order to ensure 

that their clustering results are robust and well justified. 

Methods 

A number of clustering methodologies are shown in Table 1 along 

with the steps of the clustering process they address. 

This toolkit consists of a pipeline that takes in a gene expres- 

sion matrix to identify transcriptomic subgroups of samples (Fig. 1 

and Supplementary Fig. S1 ). Starting from a matrix of gene ex- 

pr ession v alues (e.g., tr anscripts per million from RNA sequenc- 

ing [RNA-seq]), the most suitable clustering method is chosen, fol- 

lo w ed b y selecting the tr anscript featur es for clustering and deter- 

mining the number of clusters and memberships. 

Sample and gene expression preprocessing 

A pr epr ocessing step is recommended by the user before the ap- 

plication of these tools on any dataset to heighten the chances 

of any underlying important signal to be discovered. Data biases 

and format can often drive clustering attempts to focus on dis- 

criminating data points based solely, or mostly, on known infor- 

mation producing no new insights irrespectively of the method 

used [ 21 , 31 ]. To address this, it is recommended to attempt to re- 

mov e/normalize an y data points that might be intr oducing str ong 

biases to allow the novel signal to be detected. Furthermore, nu- 

merical data may need to be normalized in order to account 

for potential misdirecting quantities (i.e., outliers) or specifically 

transformed to satisfy an algorithm’s input criteria. Various nor- 

malizations can be used, each catering for specific data types (i.e., 

arcsine transformation fit RNA-seq data, as described in section 

“Test datasets”). It is worth noting that Omada (bio.tools/omada, 

RRID: SCR_025409) applies the arcsine transformation on the in- 

put data during the first step and the transformed data are car- 

ried over to subsequent steps. Data points or samples have to 

be filtered based on field knowledge to allow the data to answer 

specific scientific questions. Expression data should go through 

pr oper quality contr ol depending on the manner of collection to 

identify outliers and r emov e unr eliable data points. For micr oar- 

ra ys , it is important to assess sample, hybridization, and ov er all 

signal qualities along with signal comparability and potential bi- 

ases [ 32 ]. Array correlations through principal component anal- 

ysis (PCA) and correlation plots should also be considered [ 32 ]. 

RNA-seq experiments also produce data that need to be controlled 

for potential trimming of adapter sequences, low-quality reads, 

uncalled bases, and contaminants by using a plethora of available 

tools [ 33 , 34 ]. Qunatitative PCR (qPCR)–generated data should be 

c hec ked for abnormal amplification, positive and negative control 

samples, and control on PCR replicate variation and determine 

r efer ence gene expr ession stability and de viating sample normal- 

ization factors [ 35 ]. Additionally, high-dimensional data such as 

the single-cell transcriptomic data should be pr operl y quality- 

contr olled wher e dying (or nonviable) cells and cells with empty 

dr oplets or m ultiplets should be r emov ed. Together with nor- 

malization, scaling, clustering, and cell type–specific quality con- 

tr ol, suc h data pr epr ocessing steps ensur e high-quality data to be 
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Figure 1: An ov ervie w of steps for discovering gene expression subgroups using Omada’s clustering tools. Processing and quality control should 
precede the application of Omada to ensure more accurate inputs. Step 1 of Omada allows a feasibility analysis to ensure that the input data are 
suitable for clustering. Step 2 selects the clustering methodology that provides the most consistent partitions for downstream analysis. In step 3, the 
genes that best discriminate samples and yield the most stable clusters are determined. Step 4 estimates the number of clusters (k) through majority 
v oting b y internal machine learning indexes . T he final output of step 5 pro vides a cluster assignment to eac h sample driv en solel y by its expr ession 
profile. P er centage thresholds are recommended values that can be modified. 
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considered for further analysis. As for the number of genes, it is 

advised for larger gene sets ( > 1,000 genes) to filter down to the 

most variable ones (few hundreds) before the application of any 

function as genes that do not v ary acr oss samples do not con- 

tribute to w ar d identifying heterogeneity. In this step, the filtering 

should not be very strict but rather should discard genes with 

zero or near-zero variance (i.e., housek ee ping genes). In Omada, 

the main filtering is ac hie v ed in a later stage by identifying the 

set of genes that outputs the highest stability of generated clus- 

ters, as described in section “Stability-based assessment of fea- 

tur e sets.” Mor eov er, lar ge gene sets r equir e incr eased computa- 

tional po w er and extended runtime without adding an y r eal v alue 

due to the large number of nonuseful genes. Lastly, it is important 

to note that technical artifacts, such as sampling location or ma- 

chine specifications , ma y drive clustering, causing the formation 

of very distinct clusters that can solely be attributed to relevant 

biases. It is very important for those cases to be identified and ex- 

tracted insights should be disregarded as they do not reflect real 

signals or data trends. 

Determining clustering potential 
At the start of each study, we assess the suitability of the input 

dataset for clustering, using the Omada pac ka ge pr epipeline anal- 

ysis, to ensure general dataset attributes do not influence the pro- 

cess (Fig. 1 ). The number of samples and features (e.g., genes), 

as well as the balance of the 2 dimensions, dir ectl y affects the 

capabilities of clustering methods to handle the dataset. An in- 

adequate number of samples does not provide enough training 

po w er [ 36 ], while an ov er abundance of samples might clutter the 

provided information and confuse most methodologies [ 37 ]. Sim- 

ilarl y, too fe w featur es can lead to weak clustering criteria and 

too many features might lead a methodology a wa y from the fea- 

tures that can really differentiate between clusters of samples. 

Ther efor e, to estimate the feasibility of a clustering pr ocedur e 

on a specifically sized dataset, we rely on measurable metrics 

of cluster quality, such as stability. Clusters of high stability de- 

note both a partitionable dataset as well as a dataset-suitable 

methodology [ 38 ]. The feasibility score of any dataset is a func- 

tion of both dimensions as well as the number of classes re- 

quested. As such, if too many or a single class is requested of a 

r elativ el y small dataset, the calculation will reflect low feasibil- 

ity due to insufficient samples and/or features to form the de- 

sired classes. Omada’s functions feasibilityAnalysis() and feasibil- 

ity_anal ysis_based_on_data.R can sim ulate datasets with dimen- 

sions similar to any dataset and calculate their stability across dif- 

ferent numbers of clusters to determine whether such a dataset 

can be stable enough to be considered for clustering. 

Simula ting da tasets 
To assess the quality of the dataset to be used, our toolkit includes 

2 functions for simulating datasets of different dimensionalities 

for stability assessment. We use those to understand the relation 

between the number of samples , genes , and cluster sizes . T he first 

function simulates datasets, allowing for selecting the number of 

samples ( n ), genes ( m ), and clusters ( c ). Each cluster contains n c 
samples drawn from a normal distribution with a different mean 

and standard de viation. Eac h mean is drawn from a sequence of 

c e v enl y spaced integers that belong to the r ange [ 5 , c ∗ 10 ] . Eac h 

standard deviation is similarly drawn from a range of [ 1 , c ∗ 2 ] . To 

estimate the difference between distributions, we calculate the 2- 

sided K olmogoro v’s D statistic between each pair of distributions 

r epr esenting the generated classes and plot the empirical cumu- 

lative distribution function (EDCF). 

Subsequently, we calculate the stability of each k 

(number of clusters for a particular clustering run) us- 

ing the clusterboot function in R pac ka ge fpc v2.2–3. 

The number of clusters k to be considered belong to 

k ∈ [ number o f classes − 2 , number o f classes + 2 ] , with a min- 

imum of k = 2. The maximum and average stabilities over all 

k ar e r eported, pr oviding a stability-based quality score that 

provides an insight in deciding whether a prospect dataset is 

suitable for a clustering study. 

To assess the clustering feasibility of an existing dataset, this 

toolkit also provides a similar function that generates a simulated 

dataset based on an input dataset and the user’s estimation of the 

number of classes . T he number of samples and genes equal those 

of the input dataset and its mean ( m input ) and standard deviation 

( sd input ) affect those of eac h gener ated class within the dataset. 

Specifically, if n ∈ ( 1 , 2 , 3 , . . . ) is the number of classes, each class 

mean ( m class ) equals m input ∗ 10 ∗ n and each class standard devia- 

tion ( sd class ) equals sd input ∗ 2 ∗ n . 

Intramethod clustering agreement 
Unsupervised learning offers a multitude of methods to be ap- 

plied on specific types of data due to their nature (e .g., numeric , 

binary) or underlying signal to be detected. Most studies employ 

widely used methods (e.g., hierarchical clustering) without exer- 

cising any kind of selection method that would point to w ar d the 

most effective methodology. Selecting an a ppr opriate a ppr oac h 

r equir es extensiv e mac hine learning and data anal ysis knowledge 

coupled with tuning and testing of multiple different algorithms. 

To enable users without ML expertise to use the v ast ca pabilities of 

this field and avoid limited efficiency of default methodologies, we 

present a clustering selection tool that offers an intelligent selec- 

tion method with unbiased results through parameter random- 

ization. The nature of this selection method allows any number 

of well-established unsupervised methods to be considered. 

To address the lack of class labels and thus a performance mea- 

sure in unsupervised models, we compare how consistently dif- 

fer ent a ppr oac hes partition our data when 1 or mor e par ameters 

change. As high consistenc y, w e define the high agreement score 

calculated between different variations of a clustering algorithm. 

When 2 different clustering runs agree on the partitioning of the 

samples, they also show robustness since they do not r andoml y 

assign samples to subgroups but rather are driven by the under- 

l ying structur e of the data. 

We implemented a tool (Fig. 1 ) to calculate an av er a ge a gr ee- 

ment score per clustering approach by comparing a number of 

runs within each of the 3 clustering a ppr oac hes (hier arc hical 

[ 39 ], k -means [ 40 ], spectral clustering [ 41 ]) using multiple pa- 

r ameters (kernels, measur es, algorithms) specificall y based on 

the dataset pr ovided, whic h is alr eady arcsine tr ansformed fr om 

the first pipeline step. The aforementioned clustering methods 

were selected to represent fundamentally different approaches 

of partitioning data so as to cover several types of datasets. Hi- 

er arc hical clustering is well suited for hier arc hical data or data 

that can be r epr esented as dendr ogr ams, suc h as taxonomies 

[ 42 ]. K -means allows a different approach of partitioning sam- 

ples, namely, centroid-based clustering, which is based on non- 

hier arc hical clusters, v ector quantization, and r epr esenting clus- 

ters with their centroids [ 42 ]. Spectral clustering adds a spatial 

component to k -means as it uses a similarity matrix to create a 

gr a ph wher e clusters with irr egular sha pes ar e inv estigated [ 42 ]. 
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Although the above approaches are not exhaustive, the modular 

nature of Omada allows for additional a ppr oac hes to be added in 

subsequent versions. 

The number of comparisons ( c ), between runs of the same ap- 

pr oac h, is an additional ov er arc hing par ameter of this tool and 

contributes to the a gr eement scor e. Eac h comparison r equir es 2 

variations of the same algorithm. These variations are expressed 

as clustering parameters such as distance measures or, in the 

case of hier arc hical clustering, linka ge type (Table 2 ). A differ- 

ence in such parameters produces clustering models that, de- 

spite using the same algorithm, have different formulas to cal- 

culate clusters. If these different formulas agree on how to parti- 

tion the data, then the algorithm using them demonstrates that 

it can ca ptur e an underl ying signal in the data rather than ran- 

domly distributing data points. For each comparison, the param- 

eters of the 2 runs are drawn from a predefined set (Table 2 ) se- 

lected r andoml y with r eplacement while not allowing the same 

parameters to be used within 1 comparison. As we have to de- 

cide on a dataset without prior training on similar data, the choice 

of multiple parameters is more reliable than selecting any single 

par ameter. Additionall y, in the inter est of performance and com- 

putational time, we suggest 3 comparisons to be used instead of 

exhaustiv el y using e v ery par ameter . Depending on c , we gener - 

ate variations of the base clustering algorithms (package kernlab 

v0.9–29), along with the various distance measures and cluster- 

ing categories they belong to . W ithin each pair of clustering runs, 

the a gr eement is calculated using the adjusted Rand Index (pack- 

age fossil v0.3.7), the corrected-for-chance version of the original 

Rand index [ 43 ], which is based on the number of times any pair 

of points is partitioned in the same subgroup throughout different 

clustering runs. To calculate the a gr eement within eac h cluster- 

ing algorithm (spectr al, k -means, hier arc hical), we ar e considering 

pairs of runs using the same algorithm but different parameters. 

For those pairs, the a gr eement is av er a ged acr oss clustering runs 

and k number of clusters tested. The algorithm that presents the 

highest intramethod agreement over a logical range of clusters 

( k ∈ [ 2 , x ] ) is noted as the most a ppr opriate clustering of the sam- 

ples based on a detected signal. A logical range of k is considered 

a set of successive k s (where k � 2) that is most probable to ex- 

ist within our data, often determined by prior knowledge of the 

data, pr e vious studies, or domain expertise. This selection proce- 

dure is mainly affected by the type and size of the data, leading 

similar datasets to opt for the same method due to the specific 

mathematical formulas within each algorithm. 

Spectral clustering algorithm [ 41 ] 

Given a set of points S = {s 1 …,s n } in R l that we want to cluster into k 

subsets: 

1. Form the affinity matrix A ∈ Rn ×n defined by Aij = exp(- || si—sj || 2/2 σ2) if i � = 

j, and Aii = 0 

2. Define D to be the diagonal matrix (where A(i,j) = 0) whose (i, i)-element is 

the sum of A’s i-th row, and construct the matrix L = D − l / 2 AD − l / 2 

3. Find x 1 , x 2 , …, x k , the k largest eigenvectors of L (chosen to be orthogonal to 

each other in the case of repeated eigenvalues), and form the matrix X = [x 1 x 2 
… x k ] ∈ 

n ×k by stacking the eigenvectors in columns 

4. Form the matrix Y from X by renormalizing each of X’s rows to have unit 

length (i.e., Y ij = X ij / ( �j X 
2 
ij ) 

1/2 ) 

5. Treating each row of Y as a point in R k , cluster them into k clusters via 

K-means or any other algorithm (that attempts to minimize distortion) 

6. Finally, assign the original point s i to cluster j if and only if row i of the matrix 

Y was assigned to cluster j 

Hier arc hical clustering algorithm (av er a ge linka ge) 

Given a set of points S = {s 1 …,s n } that w e w ant to cluster into k subsets: 

1. Initialize with n clusters, each containing one data point (s i ) 

2. Compute the between-cluster distance D(r, s) as the between-object distance 

of the two data points in clusters r and s respectively , r , s = 1, 2, …, n. Let the 

square matrix D = (D(r, s)). Various distances can be used (euclidean, 

manhattan, canberra, minkowski, maximum). 

3. Find the most similar pair of clusters r and s, such that D(r, s) is minimum 

among all pairwise distances 

4. Merge r and s to a new cluster t and compute the between-cluster distance 

D(t, k) for any existing cluster k � = r, s. Once the distances are obtained, delete 

the rows and columns corresponding to the old cluster r and s in the D matrix, 

as r and s do not exist anymore. Then add a new row and column in D 

corresponding to cluster t. 

5. Repeat Step 3 a total of n − 1 times until there is only one cluster left 

(effectively minimizing the number of redundant clusters). 

6. Decide on a point to cut the cluster tree created above so as to obtain the 

desirable number of clusters (k) 

K -means [ 40 ] 

K: kernel matrix, k: number of clusters, w: weights for each point, tmax: 

optional maximum number of iterations, { πc 
(0) } k c = 1 : optional initial 

clusters 

1. If no initial clustering is given, initialize the k clusters π1 
( 0) , …, πk 

(0) (i.e., 

randomly). Set t = 0 

2. For each a i and every cluster c, compute 

d(a i , m c ) = K ii — + 

3. Find c ∗(a i ) = argmin c d(a i , m c ), resolving ties arbitrarily. Compute the updated 

clusters as 

π c 
(t + 1) = {a: c ∗(a i ) = c} 

4. If not converged or t max > t, set t = t + 1 and go to Step 2; Otherwise, stop 

and output final clusters 

{ π c 
(t + 1) } k c = 1 

Feature set subsampling 

While gene expression data provide measures on the thousands 

of transcripts in the transcriptome, not all of them may provide 

discriminative information on the samples and may not be use- 

ful for clustering. Mor eov er, most clustering algorithms are heav- 

ily affected by a large number of features both computationally 

due to input size and in performance due to misdirecting data 

noise [ 42 ]. A common strategy to select interesting and potentially 

useful RNA features is to measure their variance across samples 

and select the ones with the highest scores instead of those that 

are either housek ee ping or do not differentiate in our context. In 

this tool, we exclude RNA features that remain stable across sam- 

ples and are therefore unable to offer any discriminatory po w er to 

our unsupervised machine learning models . Furthermore , the ex- 

haustiv e featur e selection pr ocedur e incr ementall y considers all 

the genes in the feature set and takes into account the stability 

of all generated test clusters and number of cluster ranges . T his 

step does not r equir e an y deep knowledge or filtering decisions by 

the user. 

Based on this observation, our sample selection step, which is 

a part of the tool for bootstr a p r esampling of featur es pr esented 

in Figs. 1 and 2 A, first r anks featur es in a descending order of vari- 

ance (var function from the Stats R package) across samples, gen- 

erating a list of the most variable features. Subsequently, multiple 

datasets of all samples and subsets of featur es ar e gener ated. All 
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Table 2: The clustering algorithms, their a ppr oac h category, and the various distance measures tested 

Clustering 

algorithms Category Distance measures/kernels Additional parameters 

K -means Partitioning Hartigan–Wong, Lloyd, Forgy, MacQueen —

Hier arc hical Hier arc hical Euclidean, Manhattan, Minkowski, Canberra Av er a ge , complete , median (linkage) 

Spectral Gr a ph Theory Rbfdot, Polydot, Tanhdot, Laplacedot, 

Vanilladot, Anovadot, Splinedot 

—

Figure 2: Sample selection ov ervie w. (A) Ranking of samples based on their variance across features and the subsequent generation of datasets of 
increasing size. (B) Calculation of the stability score of each generated dataset. Initially, we select a cluster range to run our clustering method for each 
dataset. After the clustering pr ocedur e, we calculate and av er a ge the stability over the generated clusters. Finally, we average the stabilities over k per 
dataset and determine a final stability score for each dataset. The features of the dataset with the highest stability are the ones that compose the 
most a ppr opriate set for the downstr eam pipeline. 

subsets draw a different number of features from the top of the 

variance list with replacement. The first dataset uses a r elativ el y 

small number of features ( n ), depending on the total number of 

features ( N ) and the granularity of the result desired. The follow- 

ing datasets r edr aw fr om the initial list increasing the number of 

features by n , ending up with N n datasets. 

Stability-based assessment of feature sets 
To assess the suitability of eac h r esampled featur e set for our clus- 

tering, we measure the average stability of the clusters they gen- 

erate per run when a clustering method is applied over a range 

of k s (Fig. 2 B). First, the clustering r ange, wher e the stability of 

each dataset will be calculated, is selected. The lo w er end of this 

range is 2, the minimum possible number of clusters and the up- 

per case is selected by the user. For each dataset, we generate the 

bootstr a p stability for e v ery k within range (clusterboot function 

in R pac ka ge fpc v2.2–3 using nonpar ametric bootstr a p, spectr al 

clustering, and 25 resampling runs). To calculate each bootstrap 

stability score, the data are randomly sampled with replacement 

and clustered internally using a spectral approach. We then com- 

pute the J accar d similarities between the original clusters and the 

most similar clusters in the resampled data. The above procedure 

results in a stability score for each k and each dataset. We then 

calculate the final stability of each dataset by av er a ging the sta- 

bility over k . The genes that comprise the single dataset with the 

highest stability are the ones that compose the most a ppr opriate 

set for the downstream analysis. 

Choosing k number of clusters 
Most clustering methods r equir e the number of k clusters to be 

defined as a parameter before the application of the algorithm on 

the data. The lack of a concrete way to determine the real number 

of clusters in a dataset led many studies to base their estimation 

on field/prior knowledge or various estimation methods such as 

the Silhouette score [ 44 ]. Ho w ever, each method fav ors different 

aspects of the generated clusters (i.e., how compact clusters 

are and how far apart cluster centers are) and therefore suits 

specific datasets and may introduce bias to w ar d the selection of 

k . To encompass these different angles in one methodology, avoid 

the risk of selecting an ineffective index, and present a more 

general solution, this tool uses an ensemble learning approach 

(Fig. 1 ) wher e m ultiple internal cluster indexes contribute to 

the decision-making [ 45 ]. This a ppr oac h pr e v ents an y bias fr om 

specific metrics and frees the user from making decisions on 

any specific metric and assumptions on the optimal number of 

clusters. 

Initiall y, the v alue of the 15 indexes is calculated for eac h k 

within a cluster range of [ 2 , x ] , where x is a logical upper limit 

of the number of clusters realistic for our dataset (i.e., the present 

conditions within a dataset). The means over k are calculated per 

index and the optimal k is estimated by majority voting of the 

14 means that e v aluate the compactness and/or the distance be- 

tween differ ent subgr oups . T he selection of indexes can be found 

in Table 3 . It is important to note that the most important aspect of 

determining k is minimum loss of information, which directs us 
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Table 3: The list of 15 internal indexes used to estimate the optimal number of clusters ( k ). All indexes are using different formulas 
to score a partitioning, measuring 1 or both of the following concepts: (a) how compact each cluster is and (b) how well the clusters 
separ ate. For eac h index, we pr esent whic h v alue is pr eferr ed (min or max) and its source. For the form ulas: k = number of clusters, n = 

number of data points, E T = sum of the distances of all the points to the barycenter G of the entire dataset, E W = sum of the distances 
of the points of each cluster to their barycenter, N B = pairs constituted of points that do not belong to the same cluster, N B = pairs 
constituted of points that belong to the same cluster, N T = N W + N B , S W = sum of the N W distances between all the pairs of points inside 
each cluster, S MIN = sum of the N W smallest distances between all the pairs of points in the entire dataset, S MAX = sum of the N W largest 
distances between all the pairs of points in the entire dataset, S B = sum of the between-cluster distances, α = weight equal to the value 
of av er a ge scattering of clusters obtained for the partition with the gr eatest number of clusters. 

Internal index Ideal Formula Source 

Calinski–Harabasz Max 
( between cluster variation 

k −1 ) 
( within cluster variation 

n −k ) 
[ 46 ] 

Dunn Max min ( intercluster distance ) 
max ( distance between all pairs ) [ 47 ] 

Pbm Max 1 
k ×

E T 
E W × D B [ 48 ] 

Tau Max concordant pairs −discordant pairs 
√ 
N B ∗N W 

N T ( N T −1 ) 
2 

[ 49 ] 

Gamma Max concordant pairs − discordant pairs 
concordant pairs + discordant pairs [ 50 ] 

C index Min S W − S MIN 
S MAX − S MIN 

[ 51 ] 

Davies–Bouldin Min 1 
n ∗

n 
∑ 

i =1 
max ( clusters scatter difference cluster seperation ) [ 52 ] 

McClain–Rao Min N B 
N W 

∗ S W 
S B 

[ 53 ] 

sd_dis Min a ∗ ( avg scattering for clusters ) + 

t ot al separation between clusters 

[ 54 ] 

Ray–Turi Min 1 
n ∗

within −cluster dispersion 
min o f the sq. distances between all the cluster barycenters [ 55 ] 

g_plus Min 2 ∗ s −
N T ( N T − 1 ) [ 56 ] 

Silhouette Max Average distance between clusters [ 44 ] 

s_dbw Min Mean dispersion of clusters + between cluster density [ 57 ] 

Compactness Max Intracluster distance [ 58 ] 

Connectivity Max The extent by w hic h the items are placed in the same cluster as 

their nearest neighbors in the data space 

—

to ov er estimate and not under estimate k [ 42 ] while inter pr eting 

the voting r esults. Furthermor e, cases that present only a single 

k as the optimal number of clusters should be treated with cau- 

tion in case they are a result of a biased dataset. Omada scores 

each k within the set range [2, x ] enabling the user to observe the 

most probable number of clusters according to the above criteria 

(function clusterVoting()). This prediction is agnostic to any other 

type of biological information except gene expression. Ho w ever, 

after the clustering groups are formed, it is advised for the user 

to investigate whether they represent relevant to the specific case 

biological subgroups. 

Optimal parameter tuning 

Pr e vious steps have selected the optimal method, number of fea- 

tures , and clusters . To perform the optimal clustering, we auto- 

mate the selection of parameters for each method so that man- 

ual tuning is not r equir ed. To w ar d that goal, we use cluster sta- 

bilities to decide on the parameters (which depend on the specific 

algorithm, i.e., kernels in k -means and spectral clustering, link- 

age method in hierarchical clustering) selected by this toolkit. All 

av ailable par ameters (Table 2 ) participate in the selection proce- 

dur e wher e we measur e the av er a ge bootstr a p stability of the clus- 

ters (clusterboot function in R pac ka ge fpc v2.2–3) using the pre- 

viously determined optimal k and feature set for each parameter. 

The parameter that produces the highest stability is used for the 

optimal clustering run. 

Test datasets 
Se v en datasets wer e used to v alidate differ ent ca pabilities of the 

Omada pac ka ge. First, 2 datasets wer e sim ulated by Omada’s 

functions. Function feasibilityAnalysisDataBased() was used to 

generate a multiclass dataset with 359 samples and 300 genes 

based on the contents and dimensions of the original RNA-seq 

data [ 18 ] and composed of 5 groups of samples drawn from 5 

different distributions with means (5, 16, 27, 38, 50) and SD (1, 

3, 5, 7, 10), r epr esenting the 5 classes. Function feasibilityAnal- 

ysis() simulated a single-class dataset of 100 samples and 100 

genes dr awn fr om a single distribution. For the multissue pan- 

cancer dataset, w e do wnloaded RN A-seq expression data for 2,244 

samples and 253 genes r epr esenting 3 types of cancers: breast ( n 

= 1,084), lung ( n = 566), and colon/rectal ( n = 594) downloaded 

through cbioportal [ 59 ] from The Cancer Genome Atlas (TCGA) 

PanCancer Atlas [ 60 ] (PANC AN). T he mRN A expression w as in the 

form of z -scores relative to normal samples where we applied an 

extra step of arcsine normalization. This type of transformation 

calculates a (proportional) pseudocount per gene instead of us- 

ing 1 constant ov er all pseudocount, whic h cr eates a compression 

effect that also accommodates genes with low expr ession v alues. 

After filtering for tissue-specific genes [ 61 ] for the 3 cancer types, 

we retained 243 genes. An additional TCGA LUAD dataset was ac- 

quir ed fr om the GDC data portal [ 62 ]. Only patients with adeno- 

carcinoma, not otherwise specified (NOS), whose primary tumor 

site was br onc hus and lung with av ailable tr anscripts per kilobase 

million (TPM) data, were included. No missing information on gen- 
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der, ethnicity, race, and vital status w as allo w ed. To reduce com- 

plexity, we additionally removed patients with more than 1 TPM 

file. Altogether, 240 patients with unique TPM data were merged 

and genes with av er a ge TPM fe wer than 2 or gr eater than 500 wer e 

r emov ed, r esulting in 16,088 genes remaining after quality con- 

trol to be used for further downstream analysis. Next, we used 

a pulmonary arterial hypertension (PAH) dataset (25,955 genes) 

gener ated fr om 359 patient samples with an idiopathic (IPAH) or 

a heritable (HPAH) nature . T he transcriptomic data can be found 

in the EGA (the European Genome-phenome Archive) database 

under accession code EGAS0000100553265 [ 63 ] (restricted access) 

and all pr epr ocessing details and parameters used can be found 

in [ 18 ]. We also used an RNA dataset from the whole blood of 238 

mothers during midgestation (26–28 weeks of pr egnancy), wher e a 

whole tr anscriptome libr ary was constructed based on Illumina’s 

standard protocol and quantified using real-time PCR. Sequencing 

was based on an Illumina HiSeq 4000 system. Read counts were 

extr acted fr om GEO (accession number GSE182409 [ 64 ]) and wer e 

then read into R and converted into TPM using the convertCounts 

function available in the DGEobj.utils package . For the purpose of 

clustering, we mapped the TPM dataset to the list of 24,070 genes 

used in the PAH dataset described in a pr e vious section. Finall y, we 

downloaded single-cell peripheral blood mononuclear cell (PBMC, 

8k and 4k) data from a single healthy donor from the 10X ge- 

nomics website in cellRanger output. UMI reads were merged 

and pr epr ocessed using standard Seur at 4.3.0 [ 65 ] pipeline. Briefly, 

cells with percent mitochondria exceeding 5%, feature counts be- 

low 200 or exceeding 2500, and empty droplets or doublets were 

excluded from further analysis . T his procedure aimed to identify 

and select the top 2,000 most variable genes for subsequent down- 

str eam anal ysis, whic h included data scaling and PC A analysis . 

The goal of these additional steps was to choose the top 10 prin- 

cipal components (PCs) capable of explaining at least 75% of the 

variation for clustering analysis. For cluster identification, we ini- 

tially constructed a K-nearest neighbor (KNN) graph and a shared 

near est neighbor (SNN) gr a ph. Subsequentl y, the Louv ain method 

was applied using default settings. 

Cell types identification involved a consensus a ppr oac h, com- 

bining insights from 4 different methods: the candidate marker 

method based on the Garnette database [ 66 ], RCAv2 (utilizing 

GlobalPanel), scType [ 67 , 68 ] (leveraging the Immune system 

database), and DISCO [ 69 ] (focusing on blood tissue). Subse- 

quently, cell type–specific quality control (QC) measures were im- 

plemented to eliminate any outlier cells within each identified cell 

type. In total, 9,303 samples with 19,171 features were retained, 

covering 7 major cell types. For the clustering analysis, we delib- 

er atel y selected onl y 4 clusters, emphasizing those wher e the ma- 

jority of cells predominated, for further in-depth analysis. 

Ev alua tion of runtime and memory usage 

Scalability performance was assessed by incr ementall y incr easing 

the number of samples and features while maintaining the upper 

limit of clusters (kmax). Each combination of samples and fea- 

tures underwent 10 iterations, and the av er a ge runtime and mem- 

ory usa ge wer e computed. Runtime measur ements wer e con- 

ducted using the sys.time() function, capturing the time difference 

between the initiation and completion of Omada’s pipeline. Con- 

curr entl y, memory usa ge was e v aluated using the memory_used() 

function from the “pryr” package in R. This compr ehensiv e anal- 

ysis provided insights into how adjustments in the parameters 

such as the number of samples and number of features can influ- 

ence both the computational time and memory r equir ements of 

Omada’s processing. When benchmarking Omada on simulated 

datasets, the upper number of clusters was set to 3. Analyses were 

run on a Linux-based operating system, Intel 8268 48-core plat- 

form at 2.9 GHz Nvidia V-100. 

Benchmarking Omada against other clustering 

approaches 
To benchmark Omada against other clustering a ppr oac hes, we 

performed clustering analyses using the algorithms (hier arc hical, 

k-means, SOM, AP) used in [ 13 ] on the TCGA dataset (3 cancer 

types , LUAD, BRC A, COAD) as described in section “Test datasets.”

We extracted the resulting clusters for k = 3 and calculated the 

adjusted Rand Index to assess the similarity between the cluster- 

ing results of Omada and each of the additional algorithms. 

Results 

Omada was applied to 7 diverse gene expression datasets to 

demonstrate its utility in guiding cluster analysis and identify- 

ing plausible subgroups of samples. Two datasets were simulated 

by our tools . T he simulated dataset with multiple distinct classes 

was used to determine Omada’s ability to accur atel y estimate k 

with reasonable stability when we know the existence of sam- 

ple classes. In contrast, samples in the single-class simulated 

dataset wer e dr awn fr om a single class and used to demonstrate 

the toolkit’s ability to point to w ar d the lack of sample subgroups 

by indicating inconclusive low scores throughout the analysis. A 

multitissue PANCAN dataset was introduced to assess Omada’s 

capability to generate signal-based clusters that closely follow 

the tissue-specific patient sample distributions. A second TCGA 

LUAD dataset was also included to determine whether Omada 

can accur atel y r eca pitulate similar outcomes in terms of over- 

all survival based on the cluster membership identified. To de- 

termine whether Omada can identify distinct heterogeneous sub- 

gr oups fr om data without any prior classification information but 

potential pr esent heter ogeneity, we used a whole-blood RNA-seq 

dataset from patients with PAH [ 18 ]. In addition, implementa- 

tion of the toolkit on a whole-blood expression dataset collected 

from women during pregnancy (GUSTO) was included to demon- 

strate a case with potential technical biases and no known sub- 

groups since it is composed of healthy participants. Finally, single- 

cell PBMC data from a healthy donor were incorporated to assess 

Omada’s capability in handling high-dimensional datasets . T his 

addition served as a means to assess scalability performance in 

terms of both runtime and memory usage. 

For the abo ve , w e measured its consistenc y on algorithm, fea- 

ture, and number of clusters ( k ) selection and the stability of the 

generated clusters for a particular k ( stability k ) and the average 

across k s ( stability avg ). It is important to note that the value of this 

validation is derived from the fact that unstable clusters should 

not be inter pr eted as this instability comes from problematic data 

or an incorrect approach. Ho w ever, cluster stability only provides 

a mechanistic way to assess the underlying data structure and 

further information is r equir ed to fully biologically validate the 

clusters [ 38 ]. 

Identifying known clusters 
Single-class dataset: Homogeneously simulated dataset 

To demonstrate Omada’s ability to identify datasets without any 

present clusters where all patients belong to 1 class, we used 

the single-class simulated dataset (see “Test datasets” in Meth- 

ods). All potential k of 2 or higher ac hie v ed low scor es with 
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F igure 3: P erformance criteria for single-class sim ulated dataset. The r esults demonstr ate low scor es for the majority of steps . (A) T he a v er a ge 
partition a gr eement of all 3 algorithms below the 52% mark, indicating v ery unstable clustering runs ov er all. Using spectr al clustering (highest 
partition a gr eement) for all downstr eam steps, in (B) we observ e that the stability of e v ery possible subset of genes does not sur pass 51.3% underl ying 
ov er all unstable clusters. (C) Five clusters as the first estimate (voted by 8 metrics), significantly different from the 1 class this dataset contains (in this 
case, 14 scores were used as certain metrics are [infrequently] unable to produce a score and therefore omitted from voting). 

Figure 4: (A) Expression boxplots for the 5 clusters showing the means and standard deviations . (B) T he cumulative probability (as calculated from the 
empirical cum ulativ e distribution function) for the 5 clusters calculated by a 2-sided Kolmogor ov–Smirnov test. (C) Av er a ge ov er- k stabilities for 
simulated datasets of increasing sample and gene numbers. A small number of samples consistently provides extremely unstable clusters (orange) 
while increasing both numbers consistently produces datasets that pass the stability threshold of 60% (blue). 

av er a ge and maximum stabilities of 45% and 55%, r espectiv el y 

( Supplementary Table S1 ). It is recommended to avoid clustering 

analysis on such low score datasets and instead opt for scores of at 

least 60%. Ideally, stabilities of 80–90% are considered very strong 

[ 70 ], but the potential of se v er al signals in transcriptomic data and 

the exploration across multiple k generally decreases the output 

stability to an acceptable threshold of 60–70%. Next, Fig. 3 A shows 

the ov er all low partitional consistencies (av er a ged ov er all tested 

k ) for all algorithms with spectral average partition agreement of 

52%, k -means av er a ge partition a gr eement of 3%, and hier arc hi- 

cal av er a ge partition a gr eement of 26%. With the best-performing 

algorithm showing an a gr eement of ar ound 50%, we can assume 

that the tested algorithms are randomly assigning memberships; 

ther efor e, we cannot ac hie v e a r obust model with the curr ent 

data. When using spectral clustering to select the most appropri- 

ate set of genes, the cluster stability r a pidl y dr opped below 50% 

when using more than 20 genes (Fig. 3 B), indicating that the al- 

gorithm got worse in assigning memberships as we considered 

mor e sim ulated genes. Finall y, the ensemble v oting step sho w ed 

the majority of the votes supporting 5 clusters (Fig. 3 C), a signif- 

icant variation from the single simulated class of this dataset. In 

such unexpected outputs, one should examine the generated met- 

ric scores (Table 3 ; Supplementary Table S3 ). 

Multiclass dataset: Five distinct simulated expression 
classes r epr esenting heter ogeneity 

Omada’s basic function is to help identify samples that come from 

different sources and group together samples that come from the 

same sour ce. To w ar d that end, w e simulated a dataset with 5 sets 

of expr ession pr ofiles with 50 samples eac h and 120 genes sourced 

from 5 unique distributions of expression data that r epr esent het- 

erogeneity within our samples . T he means and standard devia- 

tions of each class are presented in Fig. 4 A, depicting the expres- 

sion differ ences. Additionall y, the empirical cum ulativ e distribu- 

tion functions (ECDFs) of the 5 simulated classes (Fig. 4 B) as well 

as the high av er a ge Kolmogor ov–Smirnov distances ( D avg = 88.3%, 

Supplementary Table S2 ) show distinct differences between the 

distributions in respect to the expression in the simulated RNA- 

seq dataset. To demonstrate the effect of different sample and 

gene numbers, multiple datasets were simulated with an increas- 
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F igure 5: P erformance criteria for 2 heter ogeneous datasets, sim ulated m ulticlass and PANC AN dataset. T he multiclass dataset contains artificial 
samples from 5 distinct clusters and the PANCAN dataset is composed of 3 different cancer types presenting biological heterogeneity. (A) The 
a gr eement between the predicted and true clusters (Adjusted Rand Index) from 3 different clustering algorithms (HC: hierarchical; KM: k -means; SC: 
spectral clustering) applied to the 2 datasets. (B) The real number of clusters for the dataset (black text) and the 2 most likely number of clusters k , 
with estimates of their percent probability. (C) The contingency tables of the combinations between generated clusters (first estimates) and real 
classes in the datasets. Darker red color intensity denotes higher frequency. 

ing number of samples and genes (Fig. 4 C). The calculated cluster 

stabilities, wher e eac h v alue r epr esents the stability ov er a r ange 

of k and a specific number of samples and features, show 5 or 

fewer samples per class provide highly unstable and unreliable 

clusters . T he minimum acceptable stability threshold of 60% was 

ac hie v ed with at least 20 samples and a reliable stability of 75% 

was ac hie v ed using 1,000 samples . T he majority of metric scores 

are worse in testing single-class instead of multiclass simulations 

( Supplementary Table S3 ), especially in lo w er compactness and 

shorter distance between clusters. 

To test the ability of the clustering tools to produce stable clus- 

ters in various contexts, we first apply them in sequence on strate- 

gicall y sim ulated data. The data are composed of distinct classes 

(based on class mean m class and standard deviation sd class ), and 

due to that strong signal, our tools are expected to determine 

an accurate k with reasonable stability, scoring above 60%. To al- 

low for a mor e dir ect comparison, we used a multiclass simu- 

lated dataset from random sampling of real RNA-seq data [ 18 ]. 

When considering ranges of k , we are using [ 2 , 6 ] clusters to ob- 

serve a broader range of results for comparison reasons . T he clus- 

tering feasibility tool sho w ed that the highest stability was 78% 

( Supplementary Table S4 ), providing a strong indication of stabil- 

ity across our clusters. Since we selected a limited range of k ∈ 

[ 2 , 6 ] where the stability should remain high, the a veraged-o ver- 

e v ery tested k -stability (stability avg ) of 72% indicates a dataset of 

adequate size and class definition to proceed to clustering analy- 

sis. It should be noted that when large ranges of k are selected, the 

av er a ge stability will natur all y decr ease as the calculations will 

take into account k s m uc h lar ger or smaller than the actual num- 

ber of classes in the data. In such cases, the user can review the 

individual k stabilities generated as part of this tool to conclude 

whether those values are satisfying (i.e., a minimum of 60%). Next, 

we calculated the partitioning a gr eement of 3 clustering algo- 

rithms, and spectral clustering sho w ed the highest av er a ge scor e 

of 56% (Fig. 5 A and Supplementary Table S4 ). Partitioning agree- 

ment scores should be interpreted across algorithms applied on 

the same dataset rather than as absolute values, k ee ping in mind 

that a score below 50% represents a random partitioning and sub- 

sequentl y a nonr obust clustering. In the subsequent feature selec- 

tion step, the highest av er a ge stability was r egister ed when using 

all 300 features (stability avg = 78%, Supplementary Table S4 ), not 

discarding an y featur e as they all demonstr ated v ery similar v ari- 

ance due to the nature of the simulated data. Finally, 8 out of 15 

internal metrics voted 5 clusters as the optimal number during 

the k estimation step (Fig. 5 B), providing a confident estimation 

above 50%. 

Discriminating cancer types from pan-cancer 
tissue expression data 

An integral capability of Omada is to accur atel y str atify pa- 

tients according to an y biologicall y r ele v ant signal pr esent in 
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Table 4: The ARI of the top k estimate of various datasets with different numbers of cancer types 

Real clusters 

Algorithm 3 5 7 

Hierarchical 0.55 ( k = 2) 0.13 ( k = 2) 0.19 ( k = 2) 

K -means 0.80 ( k = 3) 0.54 ( k = 4) 0.45 ( k = 6) 

Spectral 0.83 ( k = 3) 0.84 ( k = 5) 0.58 ( k = 6) 

M3C 0.78 ( k = 3) 0.85 ( k = 5) 0.63 ( k = 9) 

Table 5: The ARI of the top k estimate of various datasets with different numbers of simulated classes 

Real clusters 

Algorithm 3 5 7 

Hierarchical 0.57 ( k = 2) 0.9 ( k = 7) 0.9 ( k = 9) 

K -means 1.00 ( k = 3) 1.00 ( k = 5) 0.79 ( k = 8) 

Spectral 0.57 ( k = 2) 1.00 ( k = 5) 1.00 ( k = 7) 

M3C 0.57 ( k = 2) 0.78 ( k = 5) 0.54 ( k = 4) 

expression data and detect differences stemming from genes, 

pathwa ys , tissues , and so on. Real multitissue samples are of- 

ten the focus of exploratory studies as they present cell-type dif- 

ferences but still unknown factors that may discriminate them. 

Using expression data from multiple cancer types (pan-cancer 

dataset as described in “Test datasets” in Methods), we expect our 

tools to identify clusters that are consistent with the samples’ tis- 

sues of origin. Due to the different types of tumors, we explored 

the potential cluster range of [2, 5] for each pipeline step. The 

clustering feasibility of the dataset (2,244 samples, 243 genes) pre- 

sented an av er a ge stability of 88% and maxim um stability of 100% 

( Supplementary Table S5 ), providing confidence for the down- 

str eam anal ysis. Spectr al clustering sho w ed the highest consis- 

tency (partition a gr eement avg = 63% closely resembling the simu- 

lated multiclass dataset, Fig. 5 A) and was therefore deemed as the 

most robust. In this example, hierarchical clustering sho w ed high 

instability, as shown in Fig. 5 A, demonstrating the importance of 

selecting the a ppr opriate algorithm to cr eate a r obust model. Ac- 

cording to our selection tool, all 243 genes produced the most sta- 

ble set of clusters with a stability of 96% ( Supplementary Table S5 ), 

which, coupled with the high algorithm robustness, indicated a 

model that most likely detects a signal in the data. Additionally, a 

v ery important observ ation is that all genes wer e deemed impor- 

tant to produce nearly perfectly stable clusters agreeing with the 

filtering of genes based on the cancer-type annotations we per- 

formed prior to this clustering analysis . T he ensemble voting tool 

estimated our dataset to contain 3 clusters of samples with the 

support of 57% of the metrics (Fig. 5 B). When comparing these 

results with the simulated 5-class dataset, both achieved higher 

certainty on the 5 clusters ( > 50%, Fig. 5 B), reflecting the rigid dif- 

ferences between the clusters when dealing with cancer tissues 

and simulated classes. In the case of the PANCAN partitioning, the 

breast, lung and colon/rectal samples almost perfectly grouped in 

their r espectiv e clusters (Fig. 5 C). 

Omada also has the ability to supply additional information 

for assessing whether the existing dataset lacks signal for po- 

tential clustering. In this context, Omada was used to analyze 

separate TCGA LUAD whole-transcriptome data obtained from 

PMID35664309 [ 62 ]. The objective was to compare the clustering 

and ov er all surviv al outcomes between Omada and the unsuper- 

vised clustering method emplo y ed b y Pan et al. [ 62 ]. We restricted 

the dataset to 240 patients diagnosed with adenocarcinoma, NOS, 

and included 16,088 genes after quality control measures. We an- 

ticipate that Omada will categorize patients according to their 

survival or disease states . T he feasibility of clustering demon- 

strated an average stability of 68%, with a maximum stability of 

100%, instilling confidence for subsequent anal ysis. Spectr al clus- 

tering exhibited the highest av er a ge partition a gr eement at 48%, 

with the peak a gr eement occurring when k = 2. Through clus- 

ter v oting, w e identified 45 patients in cluster 1 and 195 patients 

in cluster 2. To assess surviv al differ ences between the 2 iden- 

tified clusters, we employed surviv al anal ysis using the Kaplan–

Meier method. Remarkably, the identified clusters did not exhibit 

an ov er all disparity in surviv al, as indicated by a P v alue of 0.4 

( Supplementary Fig. S4 ). This finding aligns with observations in 

Pan et al. [ 62 ]. A plausible explanation for this outcome may be 

attributed to a lack of signal in the data for clustering, possibly 

stemming from a low ov er all av er a ge partition a gr eement scor e, 

which falls below 50% based on spectral clustering. 

Not all algorithms can detect the true number of 
clusters 
We tested the ability of 4 algorithms to cluster samples that be- 

long to 3 cancer types. As seen in Table 4 , hier arc hical cluster- 

ing was not able to identify the 3 cancer types (Adjusted Rand 

Index [ARI] = 0.55) as it selected 2 clusters as most probable. On 

the contr ary, spectr al clustering separ ated the samples most ac- 

cur atel y (ARI = 0.83) with a clear pr efer ence for 3 clusters (8/14 

votes) closely followed by k -means (ARI = 0.80 and 5/14 votes). 

Consensus clustering follo w ed with an ARI of 0.78 but a widest 

spread of estimated k as it selected 5 and 6 clusters as second and 

third c hoices, r espectiv el y. On the sim ulated dataset (Table 5 ), k - 

means estimated the correct number of clusters and managed to 

assign the memberships perfectly (ARI = 1). All other algorithms 

selected a different k and therefore presented a much lo w er ARI 

(as comparing a set of 2 clusters with a set of 3 clusters cannot 
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result in a high ARI). Both Omada and consensus clustering M3C 

suggest k = 3 as the second estimate. Ho w e v er, Omada alr eady 

supplies the memberships for k = 3 as part of the k estimation 

ac hie ving a perfect ARI of 1 if that partitioning is selected for all 

3 algorithms. 

RN A-seq da ta from diseased tissue with 

unknown heterogeneity 

It is important for Omada to be able to r obustl y identify patient 

subgroups when heterogeneity for the cohort has not been pre- 

viousl y c har acterized. We a pplied our tools on suc h a dataset 

(PAH dataset as described in “Test datasets” in Method s ) to as- 

sess whether they can still produce stable clusters that differ in 

terms of expression profiles and other phenotypic measures . T he 

feasibility for this dataset’s simulation sho w ed an average stabil- 

ity of 61% and a maximum stability of 74% both acceptable to 

proceed with the clustering analysis ( Supplementary Table S6 ). 

A notable 13% difference between av er a ge and maxim um sta- 

bility provides a positive indication that a specific k might pr ov e 

significantl y mor e stable downstr eam. The spectr al clustering 

tec hnique r ecor ded the highest partitional consistenc y (partition 

a gr eement avg = 86% and partition a gr eement max = 96%) when we 

examined each algorithm’s partition agreement for up to 10 clus- 

ters . T he bootstr a pping subset selection tool estimated the 300 

most variable genes as the most stable clustering parameter with 

a maximum stability of 73% (Fig. 6 A), showing an impr essiv e r e- 

duction from the initial gene set (25,955) and ensuring the r emov al 

of a lot of data noise. According to the ensemble voting tool, 2 

clusters w ere v oted b y 71% of the internal metrics, follo w ed b y 

k = 3 (14%) and k = 5 (7%). Despite the strong indication of 2 

clusters, k = 5 was selected to pr e v ent loss of information occur- 

ing when smaller embedded clusters are disregarded. As shown 

b y the do wnstr eam anal ysis, full y pr esented in [ 18 ], selecting the 

higher k , e v en as a second estimate, allo w ed us to detect strong 

expr ession pr ofiles . After considering cluster sizes , the 3 predom- 

inant subgroups sho w ed significant differences in expression, im- 

m unity, and surviv al pr ofiles as well as risk category distributions 

(Fig. 6 B, C). 

RN A-seq da ta from healthy whole blood tissue 

Next we tested how Omada would discriminate samples from 

healthy individuals from a single tissue type. Generally, in stud- 

ies based on a dataset with no discernible heterogeneity to be ex- 

plored (i.e., a dataset without patients of dissimilar outcomes or 

controls), clustering algorithms may not be robust and may gener- 

ate variable results. Useful partitioning might still be formed, such 

as unforeseen disease subgroups, but these observations must 

be validated. To w ar d that end, w e used the GUSTO RN A whole- 

blood dataset of 238 mothers obtained during mid-gestation, as 

seen in “Test datasets” in Methods. During determining cluster- 

ing potential, our simulated dataset sho w ed stability avg = 56% 

and stability max = 59% ( Supplementary Table S7 ), a similar low- 

stability score as in the simulated single class (45% and 55%). We 

examined a k -range of [2, 5] where spectral and k -means cluster- 

ing sho w ed v ery similar internal av er a ge partitional a gr eements 

of 61% and 60% and very high maximum agreements of 93% and 

88%, r espectiv el y. The extr emel y high a gr eement scor es should be 

inter pr eted with caution as they might not reflect a very strong 

signal but an underlying bias that partitions samples in similar 

gr oups r epeatedl y, ov er po w ering the par ameter c hanges . T he 50 

most variable genes were estimated to produce the most stable 

clustering with maximum stability = 71% (Fig. 6 A). Similarly to 

the a gr eement scor es, a small n umber of genes dri ving the most 

stable clusters (starting from 24,070 genes) might indicate either 

a str ong expr ession signal or a pr eexisting bias. When estimating 

the number of clusters, 2 (46%) and 3 (40%) clusters were voted 

by the majority showing a general consensus. Considering all the 

abov e str ong indications, we need to assess the dataset and the re- 

sulting subgroups for potential biases befor e r el ying on the cluster 

memberships. To w ar d that end and using clinical data, the asso- 

ciation results show the dataset might be biased based on techni- 

cal batches with sequencer machine (Fig. 6 E) and flowID (Fig. 6 F) 

pr esenting significant differ ences between clusters (1.39e-03 and 

2.55e-06, r espectiv el y) with hospital location coming close to sig- 

nificance with P = 0.072 ( Supplementary Table S8 ). Additional 

statistical tests and r egr ession anal ysis with maternal and fetal 

physiological and clinical phenotypes did not show any associ- 

ation with the clusters . T he expr ession pr ofiles of the 2 clusters 

show visible differences (Fig. 6 D) as do the t-distributed stochas- 

tic neighbor embedding (t-SNE) and PCA analyses (Fig. 6 H) with 

the first principal component of the latter explaining 79% of the 

variance in the GUSTO dataset. 

Scalability performance 

To e v aluate and benc hmark Omada’s scalability, we used 2 

distinct groups of datasets: simulated datasets (generated by 

Omada’s feasibilityAnalysis() function) and subsets of a high- 

dimensional single-cell PBMC dataset. For each dataset, we ran 

the Omada pipeline on a varying number of samples and features 

with each combination repeated 10 times. Average runtime and 

memory usa ge wer e r ecorded and pr esented in Supplementary 

Figs. S2 –S 3 , as well as Supplementary Tables S9 –S12 . 

Both types of datasets unveiled an increase in runtime and 

memory r equir ement as the number of cells (i.e., samples) ana- 

l yzed incr eased while maintaining kmax and the number of fea- 

tur es. A m uc h smaller increase in time was observed when aug- 

menting the number of features (i.e., genes). 

When examining the simulated datasets (3 generated classes) 

setting 500 samples, we noticed a small runtime difference when 

using 100 and 1,000 features (4.2 and 4.8 min utes, respecti vely, 

Supplementary Table S9 ). Similarly, the difference in memory 

used was not substantial with 201 megabytes and 214 megabytes, 

r espectiv el y ( Supplementary Table S10 ). As demonstrated, the in- 

crease in number of samples was the only factor that affected 

Omada’s runtime ( Supplementary Fig. S2A ) but not memory us- 

age ( Supplementary Fig. S2B ). Neither of the above was gr eatl y 

affected by the increase of features ( Supplementary Fig. S2C, D ). 

In the single-cell PBMC data, the av er a ge time taken and mem- 

ory consumption for processing 1,000 samples with 1,000 features 

amounted to a ppr oximatel y 11.0 minutes ( Supplementary Table 

S11 ) and 915 megabytes ( Supplementary Table S12 ), r espectiv el y. 

Likewise , the a verage time taken and memory consumption to an- 

alyze 1,000 samples and 1,000 features on the simulated dataset 

was 20.3 minutes and 220.8 megabytes. Across 10 iterations, mem- 

ory usa ge r emained consistent, with onl y slight v ariations in run- 

time ( Supplementary Fig. S3 ). These variations can be attributed 

to the selection of fewer or more genes during the feature selec- 

tion step. It is important to also note that depending on the spar- 

sity/complexity of the input matrix, there may be variations in 

memory usage and computational time. 

Benchmarking with other clustering algorithms 
All tested algorithms except affinity pr opa gation (AP) pr ovided 

nearly identical subgroups, as shown in Supplementary Table 

S13 . The gener ated subgr oups wer e compar ed to the r eal can- 

cer classes ( Supplementary Table S14 ) with Omada, hier arc hical, 
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F igure 6: P erformance criteria for PAH and GUST O datasets , which ha v e no known subgr oups . (A) T he a v er a ge and max sample set stabilities 
(percentage) for both datasets . T he red dashed line represents the threshold of a stable clustering (60%). The PAH RNA-seq dataset contains expression 
of IPAH patients with (B) showing the gene expression heatmap and (C) survival profiles for discovered subgroups (subgroups 3 and 4 are omitted as 
they were not used in downstream analysis due to their size). The GUSTO dataset contains expression from healthy maternal whole blood with (D) 
showing the gene expression heatmap. The following panels show the distribution of cluster members across (E) sequencer machines (chi-square P = 

1.39e-03), (F) flow IDs (c hi-squar e P = 2.55e-06), and (G) hospitals where the data were collected (chi-square P = 0.072). (H) t-SNE and PCA plots of the 
expr ession pr ofiles with labeling of the 2 discov er ed subgr oups. 
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k -means, and SOM demonstrating high accuracy in identifying the 

cancer types ( ∼85%) and AP showing consider abl y lo w er perfor- 

mance ( ∼37%). When a ppl ying Omada to a subset of the single- 

cell data containing 1,000 samples, wherein 250 cells were ran- 

domly selected from each of the 4 major cell types (B cells, mono- 

cytes , CD4 T cells , and CD8 T cells), along with 10,000 random fea- 

tur es, spectr al clustering r e v ealed the highest a gr eement in par- 

titioning when k was set to 2, resulting in a maximum partition 

a gr eement of 1. Subsequent cluster voting indicated that 57% of 

the votes supported a 2-cluster solution, while 28% supported a 

3-cluster solution based on internal metrics. Ho w e v er, to avoid 

information loss, a k value of 3 was selected. Notably, the anal- 

ysis r e v ealed distinct cluster compositions: cluster 1 comprised 

cells of B-cell origin, cluster 2 had monocytes, and cluster 3 con- 

tained cells originating from T cells, including both CD4 and CD8 

T cells. To better distinguish between CD4 and CD8 T cells, a larger 

dataset is r equir ed. 

Discussion 

Omada is designed to enable the assessment of multiple cluster- 

ing solutions arising from transcriptomic studies of human sam- 

ples. With the plurality of unsupervised methods available and 

their specialized nature, the selection of the most a ppr opriate a p- 

pr oac h is a multifactor problem, and suggesting a general sys- 

tem of recommendation is impossible without considering each 

dataset in advance [ 21 ]. Many decisions on technical parameters 

ar e r equir ed fr om the user of clustering a ppr oac hes in order to get 

a meaningful set of subgroups [ 71 ]. To assist with this problem, 

our toolkit initially assesses the potential of a target dataset and 

pr ovides r ecommendations for the most a ppr opriate clustering al- 

gorithm, gene set, and number of possible subgroups. Omada can 

also be run as a pipeline and, ther efor e, does not r equir e deep prior 

knowledge of the algorithms , parameters , and metrics by the user. 

All outputs of the pipeline, intermediate and final, are observable, 

and each step is justified by m ultiple measur es and indices rep- 

r esenting widel y used clustering techniques. We sho w ed that a 

user of Omada can conduct analysis to assess the feasibility of 

a ppl ying differ ent clustering algorithms and par ameters to differ- 

ent RNA-seq datasets from healthy and diseased tissue samples. 

Conducting unsupervised learning of expression datasets is of- 

ten not a straightforw ar d task as the true heterogeneity of the 

health condition or tissue of origin is unknown. No methods or 

metrics can give a definitive answer without validation from exter- 

nal biological or clinical insights, and ther efor e, the output of each 

algorithm has to be used with caution. Determining the dataset 

clustering potential is an indication rather than a clear sign that 

partitioning the dataset will yield informational subgroups [ 71 ]. 

Additionally, clustering can often contain nondeterministic steps 

(i.e., k -means initial cluster centers selection [ 40 ]) allowing for 

each function to behave slightly differently between similar runs. 

In order to e v aluate the uncertainty and provide a robust set of 

tools, Omada has been applied to gene expression datasets where 

we have prior confidence in the number of clusters (simulated 

and cancer type data) and where we have little prior knowledge 

(GUSTO whole blood, PAH). Even in data from healthy tissue, such 

as from GUSTO whole blood, small technical biases can result 

in prominent clusters detected by Omada. It is also possible for 

Omada to hint to w ar d the existence of a single homogeneous clus- 

ter by consistently revealing low partition agreement and stability 

scor es acr oss m ultiple functions, as demonstr ated in our single- 

class datasets . Furthermore , Omada can help in selecting a small 

group of genes with potential partitioning capabilities as the fea- 

ture selection step is expected to gr eatl y r educe the number of 

genes, which in most cases count to thousands. 

This toolkit curr entl y encompasses common clustering tech- 

niques , metrics , and test datasets , but its modular nature allows 

its extension to more specific clustering pr oblems, suc h as for 

single-cell and spatial data. Furthermore, the structure of this 

toolkit allows for additional algorithms and metrics to be added 

to the pool of clustering methods to be e v aluated during an analy- 

sis run. Systematic empirical testing of algorithms using Omada’s 

a ppr oac h may r esult in mor e r obust and better-justified clustering 

outputs for a variety of biomedical studies. 

Availability of Supporting Source Code and 

Requirements 

Project name: Omada 

Pr oject homepa ge: 10.18129/B9.bioc.omada, https://github.com/ 

BioSok/omada 

Operating system(s): Platform independent 

Pr ogr amming langua ge: R 

Other r equir ements: R-4.2 

License: GPL-3 

RRID: SCR_025409 

bio.tools ID: omada 

Additional Files 

Supplementary Table S1. Simulated single-class dataset results, 

composed of 100 samples and 100 genes drawn from a single dis- 

tribution. 

Supplementary Table S2. K olmogoro v’s D statistic for a simulated 

dataset containing 5 clusters (A, B, C, D, E). Each distance D has a 

P value of less than 2.2e-16. 

Supplementary Table S3. The scores of all internal indexes used 

to decide on the ensemble voting of the number of clusters for 

the multi- and single-class simulated datasets . T he scores for the 

most voted k are presented for each dataset along with the ideal 

score (min/max) for each index. 

Supplementary Table S4. Sim ulated m ulticlass dataset r esults, 

where distribution is represented by around 120 samples and 3 

clusters are used as a default parameter. 

Supplementary Table S5. P ancan m ultitissue RNA-seq dataset re- 

sults using 3 cancer classes. 

Supplementary Table S6. RNA-seq iP AH/HP AH dataset results as 

shown in [ 6 ]. 

Supplementary Ta ble S7. Whole-blood RN A-seq dataset from 

pregnant mothers (GUSTO). 

Supplementary Table S8. P values of chi-square statistical and 

gener alized linear r egr ession anal ysis r esults for clinical v ariables 

and maternal phenotypes from the GUSTO dataset. 

Supplementary Table S9. Runtimes of Omada applied on simu- 

lated datasets with increasing numbers of samples and features. 

Supplementary Table S10. Memory usage of Omada applied on 

simulated datasets with increasing numbers of samples and fea- 

tures. 

Supplementary Table S11. Runtime of Omada applied on single- 

cell RNA-seq datasets. 

Supplementary Table S12. Memory usage of Omada applied on 

single-cell RNA-seq datasets. 

Supplementary Table S13. P artitioning a gr eement (adjusted Rand 

Index) between Omada and 3 clustering algorithms. 
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Supplementary Table S14. P artitioning a gr eement (adjusted Rand 

Index) between each clustering method and the real cancer types. 

Supplementary Fig. S1. Supplementary Figure 1: Steps of the 

Omada pipeline (A) Calculate the partition a gr eement fr om m ul- 

tiple runs per clustering method, (B) For each subset of features 

calculate the av er a ge cluster stability. (C) Select the number of 

clusters k with the most quality metrics votes (D) Optionally, use 

a supervised method to extract the clinical signatures based on 

Omada’s cluster memberships and additional clinical metadata 

Supplementary Fig. S2. Evaluating scalability performance across 

different scenarios on multiple simulated datasets: (A) measuring 

runtime and (B) memory usage as the number of samples per fea- 

tur es v aries, and (C) measuring runtime and (D) memory usa ge as 

the number of features per samples varies. Black line represents 

av er a ge runtime and memory usage across samples or across fea- 

tures. 

Supplementary Fig. S3. Evaluating scalability performance across 

different scenarios on a high-dimensional single-cell PBMC 

dataset: (A) measuring runtime and (B) memory usage as the 

number of samples per features varies, and (C) measuring run- 

time and (D) memory usage as the number of features per sam- 

ples v aries. Blac k line r epr esents av er a ge runtime and memory 

usa ge acr oss samples or acr oss featur es. 

Supplementary Fig. S4. Ka plan–Meier surviv al anal ysis on the 

2 clusters generated by using Omada on TCGA LUAD whole- 

transcriptome data from PMID35664309. 

Da ta Av ailability 

The expression datasets used in this work can be accessed 

through the following sources: the 2 simulated, by Omada, 

datasets (single and multiclass) can be accessed and downloaded 

[ 72 ]. The Pan cancer tissue expression data can be accessed 

through [ 73–75 ]. A second TCGA LUAD dataset can be accessed 

through the Genomic Data Commons (GDC) Data Portal [ 76 ] un- 

der dbGAP study accession phs000178. The transcriptomic data 

used in this study can be accessed through the EGA (the Euro- 

pean Genome-phenome Arc hiv e) database under accession code 

EGAS00001005532 [ 77 ]. In compliance with the ethics under which 

these data and samples have been collected, the transcriptomic 

data are available through restricted access for approved re- 

searc hers who a gr ee to the conditions of use (i.e., k ee ping them se- 

cur e and onl y using them for a ppr ov ed pur poses). To a ppl y for ac- 

cess, please contact cohortcoordination@medschl.cam.ac.uk . You 

will r eceiv e an a pplication form within 30 da ys . T he “UK National 

PAH Cohort Study Data Access Committee” will r e vie w r equests 

within 3 months of receipt of the completed application form and, 

if a ppr ov ed, pr ovide details for access to the RNA-seq data stored 

at the EGA. All requesters must agree to the data access condi- 

tions found in EGA. The data used to generate statistics , plots , 

and figures are accessible through our interactive portal found in 

[ 78 ]. T he GUST O expression dataset is available in NCBI Gene Ex- 

pression Omnibus [ 79 ] under the accession numbers GSE182409 

(Corr esponding Re vie wer tok en n umber: qjolmmeudnofnsv). The 

Single-cell PBMC 8k and 4k data ar e publicl y av ailable thr ough 

[ 80 ]. Snapshots of our code and other data further supporting this 

work ar e openl y av ailable in the GigaScience repository, GigaDB 

[ 81 ]. 

List of Datasets Used 

� Single-class simulated dataset (100 × 100): Simulated by us- 

ing specific mean and standard deviation [ 72 ]. 

� Multiclass simulated dataset (359 ×300): Simulated by using 

specific means and standard deviations [ 72 ]. 
� Pan-cancer dataset (2,244 × 253): Sourced from 3 cancer type 

datasets: br east cancer [ 73 ], color ectal cancer [ 74 ], and lung 

cancer [ 75 ]. 
� Second TCGA-LUAD dataset (240 × 60,661) [ 76 ]: Primary tu- 

mor: Lung & Br onc hus, Dia gnosis: Adenocarcinoma, NOS. 
� PAH dataset (359 × 300): can be found in the EGA (the Euro- 

pean Genome-phenome Arc hiv e) database EGAS00001005532 

[ 77 ]; needs permission from its Data Access Committee. 
� GUSTO dataset (238 × 24,070): Can be found in the GEO 

database with accession number 
� GSE182409. 
� Single-cell PBMC dataset (8k and 4k from healthy donor) [ 80 ]: 

Cell Ranger output, pipeline version 2.1.0. 
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AIC: Akaike information criterion; AP: affinity pr opa gation; 

ARI: Adjusted Rand Index; BIC: Bayesian information criterion; 

BRCA: breast cancer; COAD: chronic obstructive airway disease; 

EDCF: empirical cum ulativ e distribution function; i/H/PAH: id- 

iopathic/hereditary/pulmonary arterial hypertension; KNN: k- 

nearest neighbor; LUAD: lung adenocarcinoma; MICL: minimum 

incremental coding length; mRNA: messenger RNA; PANCAN: 

P ancr eatic Cancer Action Network; PCA: principal component 

anal ysis; qPCR: quantitativ e pol ymer ase c hain r eaction; SOM: 

self-or ganizing ma p; TCGA: The Cancer Genome Atlas; TPM: tran- 

scripts per kilobase million; t-SNE: t-distributed stochastic neigh- 

bor embedding. 
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