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Abstract

In recent times, energy communities have gained significant interest. These communities
empower citizen prosumers by leveraging their own renewable energy generation and
storage assets to manage their energy requirements and engage in the broader energy
market. Such communities offer a promising solution for sustainable energy systems,
promoting renewable integration and active user involvement. Within energy communities,
members can engage in energy trading and invest in shared assets like production units,
energy storage, and network infrastructure. However, efficiently controlling these assets in
real-time and equitably distributing energy outputs among diverse members with varying
needs remains a vital challenge. Addressing this concern is of both research and practical
importance. It is essential to consider technical constraints like local low-voltage network
characteristics and power ratings during this process.

To tackle these challenges, this thesis presents a model that examines the techno-
economic benefits of community-owned versus individually-owned energy assets, account-
ing for physical asset degradation and network constraints. Employing cooperative game
theory principles, the thesis proposes a redistribution model for community benefits based
on the marginal contribution of each household. This redistribution mechanism utilizes
the concept of marginal value from coalitional game theory and distributed AI (specifi-
cally the multi-agent system). Study results demonstrate that the proposed marginal cost
redistribution mechanism is fairer and more computationally manageable than existing
state-of-the-art methods, thus providing a scalable approach for economic sharing of joint
assets in community energy systems.

However, integration of centrally shared community-owned energy assets may face
limitations due to network/grid constraints. To address this issue, the thesis proposes a
novel framework for a local peer-to-community (P2C) market mechanism as an alternative
solution to investing in community-owned assets. The dynamics of the P2C market
mechanism are studied for three different types of P2C sellers with non-uniform pricing
schemes and tested across various community settings (comprising a mix of prosumers
and consumers) and different rates of renewable energy adoption. All proposed models are
validated and applied to a real case study from a large-scale smart energy demonstration
project in the UK, using a substantial dataset of real renewable generation and demand. This
practical case study provides confidence in the robustness of the experimental comparison
results presented in the thesis.
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Chapter 1

Introduction

The decarbonization initiatives to achieve net-zero targets and the development of re-
newable and low carbon technologies are changing the electricity systems in UK and
worldwide. A radical transformation towards more distributed, resilient, decarbonised and
equitable energy systems has started at a global scale [1]. Access to affordable renew-
able energy resources (RES) represents a key element of an inclusive energy transition,
represented as one of the core UN sustainable development goals [2]. Enhancing the use
of locally-generated renewable energy is envisioned to reduce the energy system contri-
bution to climate change [3], achieve net-zero [4], and speed up the transition to a low
carbon economy [1]. This has led to an exponential growth in the deployment of RES.
The increasing number of distributed energy resources (DERs) connected to low-voltage
(LV) distribution networks is shifting the development of energy systems towards a more
decentralized structure, enabling a significant shift in market power form large producers
to individual prosumers (consumers with their own local renewable generation capacity
and storage) [5].

A number of regions, such as the European Union [6] and the United Kingdom [7] are
providing supportive regulations to encourage communities of prosumers to shift away
from the dependence on centralized energy generation, and towards more decentralized
and local energy generation and storage systems. A recent trend, emerging in both rural
communities and smart city neighbourhoods, is for groups of household prosumers to form
local energy communities that invest together in jointly owned renewable generation and
storage systems, sharing the benefits from these assets. Examples include the Responsive
Flexibility project on the Orkney Islands [8], the Brooklyn Microgrid project in the US [9],
the Grid Friend project in Amsterdam North [10], and the many energy communities
emerging in developing countries, such as Auroville [11] in India. Looking forward, such
energy communities are expected to play a key role in building a more decentralised,
decarbonised, and democratised energy system in which consumers use more locally-
generated renewable energy, and take control of their energy supply.

The main research work presented in this thesis is relevant to the research fields
of community energy systems, techno-economic data analysis and game theory. The
research in this study is focused on the complex issue of how to achieve smart (optimal)
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control of shared energy assets (including renewable generation and storage) in energy
communities. This thesis provides a model that first studies the comparison of techno-
economic benefits obtained when households/agents investment in their own distributed
individually-owned energy assets versus investment in a larger jointly-owned community
energy assets, considering the physical assets degradation and network/grid constraints.
Based on the case study presented in this thesis,the benefits of a jointly-owned or pooled
energy assets approach are evident. Next, the methodology in this thesis provides a several
practically applicable and computationally efficient mechanism to redistribute the benefits
obtained from these jointly-owned assets between homes in a fair way. The proposed
redistribution mechanism makes use of the key concept of marginal value – borrowed from
coalitional game theory and distributed AI (specifically, the multi-agent system), looking
at what each member contributes to (and costs) the local community.

Mechanisms for real-time control of energy community assets from an economic
and technical perspective is provided through the methodologies described in this thesis.
Compared to existing work on energy communities, the research in this study investigates
in greater detail the complex interdependencies within the system, such as using real
state-of-the art battery control which incorporates the power flow (physical network/grid
constraints), and physical degradation of the asset into the community energy optimization
models. Moreover, the research in this study includes a full model of power flows in a LV
distribution network describing an energy community, and, to the best of our understanding,
work in this thesis represents one of the initial endeavours to explicitly model the effect
of network constraints and curtailment imposed by the system operator to maintain LV
network operational compliance. This is coupled to both the algorithm for the smart control
of the battery and generation source, but also extends to the redistribution algorithm. This
represents a significant and novel contribution to the current state of the art.

The final part of this thesis focuses on providing a framework for a local peer-to-
community (P2C) market mechanisms. A crucial aspect of a community energy models
and projects is that they often involve sharing of some joint resources and assets. One
approach consists in creating a community energy coalition in the case of jointly-owned
community energy assets. Another approach is to facilitate local P2C or peer-to-peer (P2P)
trading in the case of individually-owned energy assets. The study is focussed mainly in
exploring the suitable characteristics that makes the community with P2C local market
mechanism profitable as compared to the previous setting of the community with jointly-
owned community assets and individually-owned assets without P2C market mechanisms.

Furthermore, the proposed methods are all implemented and validated based on real
commercially-available, dynamic tariffs from the UK market, as well as a whole year of
high-granularity demand and renewable generation data. More specifically, the context
of the research in this thesis is based on the Responsive Flexibility (ReFLEX) smart
energy demonstrator project that aims to develop a large-scale demonstrator for community
energy integration in Orkney, Scotland, UK [8]. This study is the largest whole system
demonstrator project in the UK. Results and methodology are fully detailed to allow
replication by other researchers. Given the topic of the thesis, it is intended to have
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significant appeal to both the scientific communities, but also to decision makers in
government, energy charities and industry, who have interests in an inclusive energy
transition, particularly in implementing community energy schemes. First, it has a clear
appeal to a number of scientific audiences and sub-audiences working in the energy space.
To give some examples: for researchers working in battery monitoring for renewable energy
integration, the community energy model provides a very attractive application area, and
the work in this thesis is the first of a kind to integrate a network/grid constraints and battery
depreciation model in community energy modelling. Moreover, for researchers interested
in cooperative game theory application in energy (which is a growing research area), the
model provided in this thesis is one of the first to use such concepts in a community energy
setting. Specifically, the research in this thesis proposes a redistribution model for benefits
in a community based on marginal value, a key concept in cooperative game theory.

The following sections of this Chapter 1 introduce the background area of topic, along
with the aims, objectives and main contributions of the research work presented in this
thesis.

1.1 Motivation and research question

Given the emergency our societies face against climate change, nations around the world
have mandated net-zero emissions targets. The decarbonisation agenda includes a funda-
mental shift in generation and supply by moving away from centrally produced carbon-
based fossil fuels towards local low-carbon and renewable DERs [4]. The increasing
number of DERs is shifting the market power from large centralised utility companies to
decentralised individual prosumers. These individual households/agents may also form
communities and collaborate to optimise their resources or invest in renewable projects.
Prosumers not only consume energy, but also produce energy from own assets (such as,
wind turbine, solar PVs, EVs, and batteries) and inject it back to the grid. On top of
consumer empowerment, which is expected to play a greater role in future energy systems,
the energy transition is also enabled by the integration of ICT and data technologies to
energy systems, which are providing new opportunities for more efficient operation of
energy systems [12]. For transmission system operators (TSOs) and distribution system
operators (DSOs), this increasing trend and local place-based energy transitions means that
generation and demand are more closely located, which could enable more local resilience
to failures in the power system if local flexibility such as storage is adequately incentivized.

However, the increase in penetration of distributed generation results in new challenges
for the operation of distribution networks. A key challenge with RES generators is that
they are intermittent, small-sized and distributed across the distribution network. They are
gradually transforming networks into active and two-way energy flow networks, crucially
challenging the way they are traditionally designed and managed. For instance, power
flows become reversed and the distribution network is no longer a passive circuit supplying
loads but becomes an active system with power flows and voltages determined by the local
embedded generation output as well as the loads [13]. Voltage out-of-bounds excursions
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(i.e. temporary fluctuations of voltage outside safe accepted limits, often determined by
regulation) are an example of the new challenges for the DSOs face when managing the
network in real-time.

In addition to the challenges faced by DSOs, the increasing electricity retail prices
and decreasing feed-in tariff rates have reduced the incentives for household and business
consumers to invest in distributed renewable energy sources. While feed-in-tariffs support
has led to fast embedded renewable adoption, they are also a very expensive, and hence
financially unsustainable support mechanism in the long-term. As a consequence, in many
developed countries worldwide (such as the UK or the EU), guaranteed FITs for renewable
electricity generated by small DERs are being phased out as a support mechanism, i.e. they
are gradually reduced or are well below retail tariffs available from large operators [14].
For instance, in the UK, FITs are no longer available to producers of any size since 31st

March 2019 [15]. Still, the energy transition that has started in many countries requires
households to keep investing in renewable energy generation. This is increasingly leading
to a need for establishing a consumer-centric business models (incentives) with substantial
innovation in the way the local networks are managed and balanced. This has led to the
emergence of smart local energy system (SLES) and transactive energy models such as
energy communities and local energy markets (LEMs) where household and business
prosumers aim to maximize behind-the-meter self-consumption from local renewable
generation to make DERs more profitable [16]. Proliferation of prosumers and DERs are
leading to a radical transformation of the centralised energy system into becoming more
decentralised, volatile and harder to manage. Consumer-centred transactive energy models
such as energy communities and LEMs are emerging as promising methods to coordinate
generation, storage, and demand-side flexibility in a local area. In this context, how local
energy systems are designed and shared, are open research questions that require novel
modelling paradigms that place end-users in the centre of the decision-making for the
energy system.

Smart local energy systems consist in energy systems that connects different energy
assets, infrastructures, and demand of energy services in a local area, and provide value
locally in an intelligent way [17]. SLES provides multi-vector (i.e encompassing electricity,
heat & transport ) energy system that utilizes digitalization as key enabler for achieving
distributed generation and flexibility from low-carbon energy sources. SLES may be
connected to the national energy system and aim to deliver a clean, fair and reliable
energy sources to local consumers. These systems adapt the local context and leverage
innovative technologies, such as Big Data Analysis, machine learning, IoT or blockchain
technologies that favour the local economy and social development by promoting local
initiatives, such as local production, energy management and energy exchanges [18]. An
energy community is made up of a number of individual prosumers connected to a low-
voltage distribution network, usually behind the same primary sub-station. Prosumer assets
(i.e. renewable generation capacity and storage) can be either distributed at individual
households or centrally installed and thus shared within the community. LEMs provide a
way for local prosumers to sell electricity to other members of the community, through
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specific local market mechanisms such as P2C or P2P energy trading markets [19]. Designs
of LEMs solutions and citizen-led energy communities differ widely in the literature and
are topics of intensive research. Generally, potential benefits of LEMs and SLES provide
opportunities for revenue generation or cost reduction for end-users and local communities
and enable market access to small-scale generation and storage, which may untap the
value of demand-side flexibility and improve wider network and system management, but
depend on the market design.

A key research area in this context is the development of appropriate community
schemes and control strategies for optimal scheduling of end-user production and con-
sumption. Therefore, there is an increasing interest from academics and industry in
community energy models for the optimization of self-consumption [20] in community
microgrids. Recently, several community energy projects have emerged in the UK, the
EU and worldwide. For instance, In the UK, Community Energy Scotland (a key local
organization supporting the development community energy projects) lists more than 300
community energy projects on their website [21]. Similar rising trends in smart energy
community initiatives can be seen across the United States (such as the Brooklyn Microgrid
project [9]), and across Europe (refer [22] for an overview). An area of focus for policy
makers is empowering communities with the development of innovative and integrated
local energy systems and networks as identified in the Scottish Energy Strategy [23]. In
a similar fashion, the UK government has committed to an extensive program to support
SLES initiatives and projects in order to reduce, purchase, manage and generate energy
by identifying clean growth as one of the four grand challenges in the UK’s Industrial
Strategy [24]. These policy initiatives show that governments have an instrumental interest
in SLES and seek to facilitate consumer-led, transformational and sustainable energy
transitions. Furthermore, the number of deployed and planned SLES demonstrator projects
has increased rapidly in the UK and worldwide. ReFLEX (Responsive Flexibility) [8]
based in Orkey island Scotland is one such initiative representing the largest SLES demon-
stration and ’living lab’ projects in UK. Another such active SLES demonstrator project is
Energy Superhub Oxford (ESO) [25] project that reduces the stress on the grid locally by
integrating smart EV charging, hybrid battery energy storage, low carbon heating and smart
energy management technologies. Similarly, Project Leo (local Energy Oxfordshire) [26]
is another active project that uses local flexibility to manage grid constraints and provide
routes to market and investment models supporting local renewable and distributed power
generation. These SLES demonstrator projects bring together the academia and relevant
industries to explore the innovation in local technology, markets and communities. This
clearly shows that the SLES scheme is an active area of research not only from academia
but also a strong drive from industry.

The main aim of such energy community microgrids is to increase the financial benefits
and the local consumption. In turn, this enables the community to use more locally
generated renewable generation, and shifts the market power from large utility companies
to individual prosumers. From the grid manager point of view, local energy communities
are also an incentive to increase local self-consumption, which will reduce the technical
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impacts of low carbon technologies on the grid, such as voltage violations. As a result,
energy communities are identified as a promising technical, social and economical solution
to the energy transition providing both incentives and technical solutions to the adoption
of low carbon technologies. Recently, this aspect of the local energy communities has
led regulatory bodies to implement frameworks that incentivise the deployment of such
energy communities [27]. For instance, in France, citizens living in an area determined by
a diameter of approximately 2km are allowed to gather into local energy communities for
a total power that does not exceed 3MW [28].

A crucial aspect of transactive energy models and community energy projects is
that they often involve sharing of some joint resources and assets. One approach is to
facilitate local energy market mechanisms in the case of individually-owned assets, in
which prosumers invest in their own energy assets (such as solar PV panels, wind turbine,
and or battery storage) and buy and sell energy with their neighbours directly, based on
their individually-owned assets. In this scenario, each prosumer is metered separately and
pays the value of its net metered electricity demand (demand after using its generation
and storage capacity). Local energy markets, allow energy communities with individually-
owned assets to trade electricity to other members of the community, through a specific
market mechanism [29]. Market mechanisms can either implement a full P2P market,
which ensures that a community member "A" is trading electricity to another community
member "B", with solutions such as in automated negotiations schemes [19], or can
implement a P2C scheme, in which case electricity from a specific community member is
traded to the community, without knowing exactly who will benefit from this electricity,
such as what is achieved through double auction market clearing mechanisms [30].

Another approach consists in creating a community energy coalition in the case of
jointly-owned community energy assets, where an aggregator or community energy opera-
tor is responsible for managing and distributing the benefits from shared assets to members
of the community. Here, the whole community is “behind the meter”, i.e. pays for the
net demand of the entire community over the billing period. A successful examples of
such transactive energy models include the “Ecovillage” of Findhorn in Scotland, UK [31],
Grid Friend project in Amsterdam North [10], and the many energy communities emerging
in developing countries, such as Auroville in India [11]. While energy communities are
a promising concept, a key challenge is how these assets can be efficiently controlled in
real time, how the useful lifetime of the asset can be modelled and enhanced using AI, and
how the energy outputs from these jointly-owned community assets should be shared fairly
among community members, given that not all members have the same size, energy needs
or demand profiles.

The physical network (the LV distribution grid) is an essential entity that allows the
exchange of energy in the settings of the energy communities. However, an important
aspect that has often been neglected in existing research on energy community models is
the relevance of the distribution grid’s technical limits. Installation of renewable generator
(solar PV/wind turbine) or batteries in the grid changes power flows, and might create
congestions, voltage excursions, or line over-heating. In such cases, the grid operator
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might consider the need for an Active Network Management (ANM) to remotely control
the injection of distributed renewable generator and storage assets. Therefore, due to this
congestion/voltage excursion, assets might be prevented from exporting/consuming to/from
the grid, reducing the benefits from their owners. For instance, when the grid is constrained
with voltage excursions, then the exports form PV/wind turbine and exports/imports from/to
battery can be curtailed as it is currently the case in Orkney Islands [32], UK. Therefore,
such curtailment events need to be accounted for in the energy community setting by
including power flow (physical network/grid constraints) in the techno-economic analysis.
For example, in most of the prior literature, the studied models of energy communities do
not consider the impact of physical network constraints in the assessment of the techno-
economic benefits of community-owned energy assets compared to individually-owned
energy assets.

Another challenge is that management of energy community assets consisting of
renewable generation and storage (integrated renewable energy systems) require careful
consideration of assets’ cost, sizing and operation, such as to maximize their Remaining
Useful Lifetime (RUL), and hence return on investment. Technically, for instance, the depth
to which a battery is discharged, the discharge current and the chemistry used has a direct
effect on its remaining useful lifetime. This translates into a considerable impact on the
total cost of operation and maintenance of the battery, especially as energy storage is one
of the most expensive components of an integrated renewable energy system. Moreover,
the frequent charging and discharging operations leads to cyclic ageing and incurs an extra
cost as it accelerates the depreciation of the battery. Along with the fact that batteries’
lifetime is comparatively shorter than that of renewable generators, this highlights the
importance of using an appropriate battery control mechanism to extend the system’s
useful life. In most of the literature reviewed, studies show that the community battery
storage system offers higher benefits as compared to individual household distributed
batteries [33, 16, 34–36]. However, most of existing studies, to our knowledge, do not
consider the battery degradation cost when determining the optimal battery capacity. The
battery lifetime depends on the charge/discharge cycles, which in turn are shaped by the
control scheme. Thus, there is a need to accurately estimate the depreciation of the battery
from the operating profiles and therefore assess the operational cost and overall economic
value of an integrated renewable renewable energy system.

Furthermore, although higher benefits can be achieved by investing in community
assets, how to redistribute these benefits among the individual households in the community
still remains a key open question, of both research and practical interest. Current energy
communities usually employ algorithms based on proportionality of consumption to
redistribute the benefits from the community-owned generator assets. However, such
methods are not fair (they provide an inherent advantage to large consumers), and not
applicable in the case of energy storage assets, where the proportionality of the asset
usage does not apply. Hence, there is a need to design an efficient and fair redistribution
mechanisms that applies to both community-owned renewable generator and storage assets,
while incorporating the asset’s degradation, and the physical network and operational
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constraints. Specifically, the prosumers share the outputs of jointly-owned energy assets,
as well as the energy bill for the aggregate residual demand, i.e. the part of the demand not
covered by the local generation and storage assets. Therefore, the community aggregator
is not only responsible for the control and distribution of energy in the community but also
for allocating any revenues from exporting energy and the bills of the residual demand.
Clearly, one of the key challenges in this setting is the redistribution of such costs and
benefits to the prosumers in a fair way.

Cooperative (or coalitional) game theory has long studied such redistribution problems
in a wide variety of systems. Game theory provides an insightful analytical and conceptual
framework along with mathematical tools to study and analyse the complex interaction
among independent rational players (in the case of this thesis, the households/agents) [37].
In the context of decentralized energy systems, coalitional game theory has been identified
as a promising solution for designing incentive mechanisms for community energy trading
and sharing. In a cooperative/coalitional game, players form coalitions to maximise a
common objective for mutual benefit. Then, the benefit is distributed equally or fairly
among themselves using incentive-based solution concepts, such as the Shapley value [38].
Recently, the Shapley value has begun receiving substantial attention in the energy ap-
plications – with a rapid increase in the number of papers using Shapley value in energy
systems (detail review presented in Chapter 2). However, a major challenge faced by com-
munity energy schemes utilising coalition game theory is the issue of scalability [39, 40].
Specifically, when determining the Shapley values in a coalition, the computation becomes
highly complex and time-consuming, as the number of players increases in the coalition,
making an exact computation intractable beyond a small number of agents. Moreover,
most of the existing redistribution frameworks are developed without considering network
constraints, in which case the computation becomes more challenging. Thus, there is
still a need to develop a redistribution mechanism that is fair, but also provide tractable
computational performance that scales well with the increasing number of members in the
energy community coalition, while considering operational network constraints.

This thesis explores the expanding range of opportunities that arise when citizens join
forces to form an energy community. The main objective is to optimize the generation,
consumption and storage of energy within such communities. Several modelling tools,
solutions and frameworks for SLES and energy communities are provided in this context.
Specifically, a techno-economic modelling tools that enables real-time controls and fair
sharing of renewable energy resources subjected to physical assets degradation and network
constraints. Findings of this study are related to a number of strands including community
energy system research and cooperative game-theoretic applications for energy systems,
but also to the area of electrical engineering and physical asset health monitoring of
batteries. Finally, as part of the contributions of this thesis, the proposed methods are
implemented in realistic community case studies, both in terms of demand, generation,
tariffs and battery data used, and in terms of size (up to 200 households), granularity and
duration (half-hourly data over a whole year). More specifically, the context of the research
in this thesis is based on the Responsive Flexibility (ReFLEX) smart energy demonstrator



1.2 Research objectives and contributions 9

project that aims to develop a large-scale demonstrator for community energy integration in
Orkney, Scotland, UK [8]. This provides a highly realistic case study to provide confidence
in the robustness of all the experimental comparison results presented in this thesis.

Relevant literature to this vein of work is discussed in great detail in Chapter 2. Next, the
research aims and objectives are presented along with a summary of the main contributions
of the work undertaken for the completion of this thesis.

1.2 Research objectives and contributions

The previous section introduced the broader topic area, major challenges and problem
statement of the research work presented in this thesis. In this section, the reader can find
a detail discussion on the specific research objectives and the novelty of the research work
undertaken in the context of this thesis.

The main objective of this thesis is to explore new optimization, smart control strate-
gies and fair sharing of renewable resources in energy communities using the tools from
distributed AI (specifically multi-agent systems) and cooperative game theory, incorpo-
rating the physical assets, network/grid and operational constraints. The specific goals
contributing towards the main broader objectives can be summarised in to the following:

• The thesis aims to provide an in-depth review of state of the art research and
practice in the field of smart local energy system (SLES) and transactive energy
models focused on energy communities and local energy markets (LEMs) such
as P2C or P2P energy trading schemes. The review aims to presents the signif-
icance of the identified research topic and how it fits to the broader context of the
thematic research area of resilient local or community energy systems.

• Primarily, this thesis aims to address the three major research problems identified
to align the focus to thematic research area of local resilient community energy
system. First, the Optimization Problem: the need for AI techniques and smart real-
time control strategies for optimal scheduling of local generation and consumption,
battery charging/discharging control, selection of pricing schemes, agent strategies
and demand response.

• Second, the Impact Problem: the need to assess the various impact of the pro-
posed new solutions to the existing electrical grid/network utilization, power quality,
network constraints and the overall distribution system planning and operation.
Specifically, the need to include the network/grid constraints in the development of
new solutions for SLES system and transactive energy models.

• Third, the Incentive Design Problem: the need to explore the potential of game
theoretic models and tools from distributed AI (specifically the multi-agent systems)
to design appropriate incentive mechanisms and consumer-centred business models
that are tailored to local communities and end-user needs.
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• Finally, the thesis aims to demonstrate the application of the developed theoretical
models in real-world community settings. To achieve this, the proposed methods
will be implemented and validated using a real case study from the UK-based smart
local energy demonstration projects using real commercially available, dynamic
tariffs from the UK market, as well as a whole year of high-granularity demand and
renewable generation data.

With these objectives in mind, this thesis developed several models and outputs, the
findings of which can be related to fields of smart local energy systems, energy economics,
distributed AI (specifically, the multi-agent systems), cooperative game-theoretic appli-
cations for energy systems, but also to the area of electrical engineering and physical
asset health monitoring of batteries. The main contributions and outputs of the work are
summarised in the following summary statements:

• First, this thesis provided a principled model of community investment and sharing
of energy assets, such as renewable generation and battery storage. More specifically,
research is focused on the techno-economic comparison between two configurations
of energy communities connected to a low-voltage distribution network. Initially,
the study considers a configuration with individually-owned distributed energy
assets, such as solar PV and residential batteries. Then, a second configuration in
which distributed energy assets are jointly-owned by the community, and installed
in a single location. The proposed two configurations of energy communities are
compared by studying the economic impacts of installing various energy assets on
the grid for both fixed and dynamic time of use (ToU) tariffs.

• Secondly, this thesis provided the modelling of single prosumer and energy commu-
nity control algorithm for maximization of the self-consumption behind the meter
by incorporating the latest heuristics of battery state of health into such control
algorithm, both at individual prosumer and community level. A battery degradation
model is integrated with renewable energy optimization by considering the battery
depth of discharge in each control cycle. To achieve this, the control scheme employs
a battery state of health degradation model based on the battery depth of discharge
in each control cycle. The proposed control algorithm takes into consideration the
battery’s depreciation cost, which is determined by the accurate enumeration of
battery cycles, including partial cycling i.e. battery cycles that do not start or end at
100% of SoC.

• Then, the control algorithm is extended to incorporate the effects of network/grid
constraints and curtailment imposed by the system operator to maintain the LV
network operational compliance. In practice, the addition of solar PV or batteries in
the LV grid changes power flows, and might create congestions or voltage excursions
(i.e temporary fluctuations of voltage outside safe accepted limits). Therefore, due
to this congestion/voltage excursion, assets might be prevented from exporting/con-
suming to/from the grid, reducing the benefits from their owners. Most of the current



1.2 Research objectives and contributions 11

state-of-the-art community energy models do not or rarely consider physical LV
network constraints in their modelling. To our knowledge, the model in this thesis
is the first that considers such curtailment events in the energy community setting
by including the power flow (network/grid constraints) in techno-economic analysis
of investment in distributed individually-owned energy assets versus jointly-owned
community assets.

• Next, inspired by coalitional game theory methods, this thesis provided a novel algo-
rithm to fairly redistribute among community members the benefits obtained from
jointly-owned community energy assets, which is shown to have desirable redistribu-
tion and computational benefits, compared to existing methods for sharing output
of community owned energy assets. This thesis have explored a number of benefit
redistribution schemes (four in total, based on different parameters). Some are intu-
itive and based on current practice, but we also proposed one based on the marginal
contribution, a key coalitional game-theoretic principle, an established methodology
for designing redistribution schemes in a number of practical domains. Results from
the study shows that the proposed marginal cost redistribution mechanism achieves
better performance than the others and it is also computationally tractable. These
are assessed in different scenarios and on a number of criteria, ranging from costs
and financial benefits to each prosumer, and correlation with intermittent renewable
output. The computation of savings from the proposed redistribution schemes for
various prosumer sizes has been conducted. The assessment includes evaluating
fairness and examining the impact of different redistribution schemes on the potential
uptake of renewable in energy communities. Furthermore, this thesis has proposed
an approximated marginal cost redistribution method to address the computational
challenge while considering the network/grid constraints. The results showed that
the individual agents’ yearly bills obtained after redistribution by approximated
marginal cost redistribution method are similar to results obtained by redistribution
mechanism without approximation, with the correlation coefficient of 99.99% for
both the fixed and dynamic tariffs. Hence, while considering the network constraints,
approximated marginal cost redistribution method can be used to redistribute the
benefits from community owned assets, as it is much more computationally tractable
particularly while considering the large realistically-sized community settings. This
represents a significant contribution to the state-of-the-art.

• Next, this thesis proposed a novel framework for peer-to-community (P2C) local
market mechanism to share and trade energy in the case with individually-owned
energy assets. A multi-unit auction market clearing mechanism is proposed. There
are indeed auctions every half-hourly of the operation, but there is one multi-unit
auction where the price (pence) per unit (kWh) is averaged for each unit. Within
the proposed P2C market mechanism, an assumption is made that each consumer is
obligated to meet their energy demands, drawing from either the grid or the local P2C
market. To ensure fairness in cost sharing, the approach adopted involves averaging
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over the multiple price units in that market.To incentivize households to participate
in local energy trading, such as P2C or P2P local markets, a proposed approach
ensures the fair distribution of the total energy available for the P2C local market
among the buyers and sellers. Furthermore, this thesis explored several settings
of the community to understand the suitable characteristics of the community that
makes the community with P2C local markets profitable as compared to centrally
shared community projects.

• Finally, the proposed energy community model is implemented and validated using
a real case study from large-scale ReFLEX (Responsive Flexibility) smart energy
demonstrator project based on the islands of Orkney, Scotland, UK [8], one of
the UK’s largest smart local energy demonstrator project. To our best knowledge,
this thesis models the control of energy community assets from an economic and
technical perspective with an unprecedented level of detail. This includes for ex-
ample, incorporating real state-of-the-art battery control and degradation functions,
using real commercially-available, dynamic tariffs from the UK market, as well as a
whole year of high-granularity demand and renewable generation data. Additionally,
the results of the thesis have been shared with industrial stakeholders involved in
implementing real community energy schemes. They expressed considerable interest
in the findings and found the information to be valuable and informative for their
ongoing projects. Although, while the experiments and validation are based on the
UK project, the proposed community energy methods are general in scope, and can
apply to any country where such community energy schemes are undertaken. The
concept of energy communities is equally important - arguably even more so - in
developing countries, where energy users in such communities often have limited or
no access to electricity from a central power grid, and hence rely on the community
energy project for their power needs. The following section presents the outline of
the thesis report.

1.3 Thesis organization

Chapter 1 has so far presented an introduction and the research motivation of the topic of
this thesis. It highlights the energy landscape of current and future energy systems, where
prosumers with distributed energy resources play a key role in deregulation of energy
markets. Specifically, Chapter 1 introduces the transactive energy models and elaborates on
the need for real-time control strategies and fair redistribution mechanisms incorporating
the network/grid and operational constraints, two key topics that form the core research of
this thesis. Research aims and objectives are presented in detail along with a summary of
the novelty and main contributions of this research work.

Chapter 2 of this thesis presents relevant literature reviews on the topics of SLES,
modelling of local energy communities and prosumer, sharing mechanisms in energy
communities, and modelling of physical network constraints. The significance of the
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identified research topic and how it fits to the broader context of the thematic research area
of resilient local or community energy systems is explored through an extensive literature
survey presented in this Chapter 2.

In Chapter 3, a single prosumer model along with the battery control algorithm, and
deprecation model is described. Chapter 3 focuses mainly on the integration of battery
degradation model and renewable energy optimization. Finally, this chapter also describes
a detail techno-economic study of behind-the-meter batteries for a single prosumer, and
discusses future scenarios in which batteries would become more profitable. The model
inputs, tariff structures, unitary cost of energy assets and the battery depreciation aspects
described in this Chapter 3 is applied to the community setting described in the following
Chapter 4, 5, and 6. Furthermore, the battery control algorithm described in this Chapter 3
is applied to each 200 individual agents as well as the aggregated community described
in Chapter 4 and 6. The same battery control algorithm is modified in Chapter 5 by
incorporating the voltage control mechanism to include the network constraints.

Chapter 4 presents a principled model of community investment and sharing of energy
assets for both fixed and dynamic tariffs. This includes a comprehensive data-driven
techno-economic analysis to quantify savings of community-owned versus individually-
owned energy assets. Then, a mechanism design for fair redistribution of benefits from
community-owned assets to individual households is provided. Chapter 4 explores a variety
of benefit redistribution schemes (four in total), each based on different parameters. Some
are intuitive and based on current practice, but this thesis also proposed one based on the
marginal contribution, a key coalitional game-theoretic principle. The results demonstrate
that this novel approach outperforms the other methods while remaining computationally
tractable. Furthermore, the optimal capacity for both individual assets and jointly-owned
community assets obtained in this Chapter 4 is applied to the community setting described
in following Chapter 5.

In Chapter 5, the energy community model is extended by incorporating the physical
network/grid and operational constraints. Chapter 5 studies the effect of network con-
straints and curtailment events in the energy community setting by including the power
flow (network/grid constraints) in techno-economic analysis of investment in distributed
individually-owned energy assets versus jointly-owned community assets. Furthermore,
Chapter 5 discusses the savings of the proposed benefit redistribution schemes for different
sizes of prosumers, and asses the effect of physical network/grid and operational constraints
on computational tractability of different redistribution schemes.

Chapter 6 studies the added value of facilitating local peer-to-community (P2C) market
mechanism for the energy community with distributed individually-owned energy assets.
This Chapter 6 of the thesis presents local P2C market based on centrally operated mecha-
nism, in which a community aggregator determines each trade’s characteristics (price and
quantity) by running the multi-unit auction. The dynamics of the P2C market mechanism
is studied for three different type of P2C sellers (non-uniform pricing scheme) and tested
for three different types of community settings (mix of prosumers and consumers) under
different rates of renewable energy adoption.
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Finally, the thesis is concluded in Chapter 7, where key findings of the thesis work are
summarised. Directions on future work are also outlined in this final chapter of the thesis.

Additional materials and information on the methodology and data used in this thesis
are shown in the Appendix A.



Chapter 2

Background and related work

Chapter 2 discusses prior research works that are most related to the scope of the thesis,
as found in the literature survey. Specifically, Chapter 2 presents the state of the art
research and practice in the field of smart local energy system (SLES) focused on energy
communities and local energy markets (LEMs) such as Peer-to-Peer (P2P) energy trading
schemes. An extensive review of state-of-the-art research that models prosumers and
energy communities with renewable generation and storage assets is presented, as this is
the base of the work proposed in this thesis. Furthermore, this chapter highlights the key
current research gaps such as need for a fair and computationally tractable redistribution
schemes for energy communities, need for the integration of physical assets degradation and
network constraints in community optimization models, and need for robust P2P market
dynamics that exhibit acceptable characteristics such as fair market clearing mechanisms.

2.1 State of the art in smart local energy system (SLES)

Net-zero targets and development of low carbon technologies are changing electricity
systems. Proliferation of prosumers (i.e. consumers with micro generation and/or storage)
and distributed energy resources (DERs) are leading to a radical transformation of the
centralised energy system into becoming more decentralised, volatile and harder to manage.
Smart Local Energy Systems (SLES) consist in energy systems that connects different
energy assets, infrastructures, and demand of energy services in a local area, and provide
value locally in an intelligent way [17]. The SLES concept models multi-vector (i.e
encompassing electricity, heat & transport) energy system, that utilizes digitalization as
key enabler for achieving distributed generation and flexibility from low-carbon energy
sources. SLES may be connected to the national energy system and aim to deliver a
clean, fair and reliable energy sources to local consumers. These systems adapt the local
context and leverage innovative technologies, such as big data analysis, machine learning,
IoT or blockchain technologies that favour the local economy and social development
by promoting local initiatives, such as local production, energy management and energy
exchanges [18].
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SLES such as local energy communities and LEMs are emerging as promising new
methods to coordinate generation, storage, and demand-side flexibility in a local area [41].
In energy communities, end-users may trade energy with each other or invest in shared-
ownership assets, such as production units, energy storage, or shared network infrastruc-
ture [42]. LEMs provide a way for local prosumers to sell electricity to other members
of the community, through specific local market mechanisms such as P2P energy trading
markets [19]. Designs of LEMs solutions and citizen-led energy communities differ widely
in the literature and are topics of intensive research.

Local or community energy models consist of a group of households that are able to
generate, store and trade energy with each other. This has led to decentralised energy
systems with significant shift in the market power from large utility companies to individual
prosumers [43]. This local place-based energy transition means that the generation and
consumption are more closely located, which could enable more local resiliency to failures
in the power system. Hence, there has been a growing effort in the U.K and the world at
large to enhance the local energy resiliency, particularly at the community level [4]. An area
of focus for policy makers is empowering communities with the development of innovative
and integrated local energy systems and networks as identified in the Scottish Energy
Strategy [23]. In a similar fashion, the UK government has committed to an extensive
program to support SLES initiatives and projects in order to reduce, purchase, manage and
generate energy by identifying clean growth as one of the four grand challenges in the UK’s
Industrial Strategy [24]. Similar rising trends in smart energy community initiatives can
be seen across the United States (such as the Brooklyn Microgrid project [9]), and across
Europe (see [22] for an overview). These policy initiatives show that governments have an
instrumental interest in SLES and seek to facilitate consumer-led, transformational and
sustainable energy transitions. Therefore, there is an increasing interest from academics
and industry in the development of appropriate SLES schemes.

SLES schemes are a fast-growing area of research that have gained increased attention
in the literature. For instance, the relevant literature identified using the Scopus search
engine shows that the number of scientific publications on the subject has seen an increasing
order of magnitude (around 10 times), between 2012 and 2021, as shown in Figure 2.1.
The Scopus search engine is the largest abstract and citation database of peer-reviewed
literature. The queries used in the search engine are: "Local AND Energy System", "Energy
AND Communities", "Local AND Energy Market". All the results obtained from Scopus’
queries have been carefully reviewed and filtered to include the papers related to SLES
only, not just part of the wider energy domain.

Power, transport and heat are the three main energy vectors that are expected to be
fully decarbonized to achieve a realistic and sustainable net-zero energy system [45]. This
low-carbon energy transition calls for a significant adoption of DERs and electricity-based
loads such as electric vehicles (EVs) and heat pumps. The connection of these intermittent
DERs and electricity-based loads to physical network (low-voltage grid) changes the
power and increases the local voltage out-of-bounds excursion, line over-heating and
congestion at the distribution grid level. To lower these impacts, distribution system
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Figure 2.1: Evolution of scientific publications related to smart local energy system (SLES)
based on the Scopus search engine [44].

operators (DSOs) can enforce curtailment of local renewable generation at times of out-of-
bounds deviations, otherwise DSOs must resolve with expensive and lengthy traditional
solution of grid reinforcement. SLES such as local flexibility markets are identified as
a promising low-cost solutions to address these grid issues as an alternative option to
expensive grid reinforcement and unnecessary curtailment [46]. Furthermore, in addition
to achieving the desired decarbonization and providing the grid services, SLES provides
resilience and reliability by enabling distributed assets to supply local consumers in case
of disconnection with the main grid. This requires SLES to include a diversity of energy
production assets and to have the ability to manage these local assets to ensure robust
operation in islanded mode [47].

The empowerment of local communities to actively manage their own energy system
is at the heart of SLES, that also seek to develop local employment opportunities, local
redistribution of wealth and local energy services in line with community values. Recently,
the SLES scheme has gained increased attention from social perceptive focussed on social-
technical transition of the energy system. For instance, Ford et al. [18] have explored the
socio-technical transition and its impacts of SLES as compared to the already adopted
centralised energy system. Their study shows that the most important challenges in the
transition to digitalization and decentralization are non-technical, including the fact that
the local actors (local authorities and stakeholders) participation may face strong resistance
of change from dominant incumbents, and they stress that the social barrier can be more
challenging than the technical barrier in the successful implementation of SLES. A recent
study by Walker et al. [48] focused on placed-based narratives, specifically to explore and
understand the term ’local’ in the context of SLES. The study highlights that the ’local’ is
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project specific defined by placed-based and geo-spatial boundaries. It recommends that a
well-defined collective place-based approach is crucial in understanding of how SLES can
leverage both ’smart’ and ’local’ elements, within a system boundary, to deliver additional
value and co-benefits to that locality.

Rae et al. [49] have conducted a detailed review of the key technical barriers that have
been identified during the planning and operating phases of the SLES schemes in UK.
Technical barriers correspond to characteristics of engineering systems or services that are
critical for successful SLES deployment, but have been highlighted as difficult to achieve.
Multi-vector integration, grid connection, energy storage systems, smart technology and
adoption of EVs were the key barriers identified in the review. According to their study,
diversity, uncertainty and integration are the three fundamental technical challenges faced
in achieving the successful implementation and adoption of new technologies in those
key identified areas. Similarly, Knox et al. [50] have reviewed the various antecedents of
energy justice in SLES and the role of smart technology can play in mitigating these (in)
justices. They have identified various frameworks for social impacts of SLES, and one
of the highlights closely related to our work is the importance of fairness and equability
of realised benefits. Equal and balanced redistribution of costs and benefits among the
community members is identified as one of the hearts of the energy justice in SLES.
Vendantham et al. [51] have provided an overview of the information and communication
technology (ICT) infrastructures associated with SLES. Likewise, Vigurs et al. [52] have
reviewed various privacy concerns in sharing data in SLES. These studies highlights the
need for more investment in ICT infrastructures and data management system for the
successful implementation of the SLES. It recommends the development of appropriate
data storage solutions to enable data access to relevant stakeholders, and favouring open
access to data and scripts.

Morstyn et al. [53] have provided an energy management software tool to support SLES,
the Open Platform for Energy Networks (OPEN) which is an open-source Python based
platform for testing SLES management applications. This clearly shows that the SLES
scheme is an active area of research not only from academia but also a strong drive from
industry. Recently, the number of deployed and planned SLES demonstrator projects has
increased rapidly in the UK and worldwide. ReFLEX (Responsive Flexibility) [8] based in
Orkey island Scotland is one such initiative representing the largest SLES demonstration
and ’living lab’ projects in UK. Recently, Benoit et al. [54] provides a detail frameworks
and comprehensive list of smart local energy systems key performance indicators (KPI),
and lessons learnt from ReFLEX. The key lessons learned from the ReFLEX project are:

• Integration challenges: Renewable energy projects often face challenges related to
integrating different energy sources, such as wind, solar, and energy storage, into
the existing grid infrastructure. Lessons learned from previous projects include the
importance of planning for grid stability, grid management, and the need for flexible
and scalable solutions.
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• Community engagement: Engaging with local communities and stakeholders is
crucial for the success of renewable energy projects. Lessons learned emphasize the
importance of early and ongoing engagement to address concerns, build trust, and
ensure community acceptance.

• Regulatory and policy frameworks: The regulatory and policy environment plays
a significant role in facilitating or hindering renewable energy projects. Lessons
learned highlight the importance of stable and supportive regulatory frameworks,
clear permitting processes, and consistent policies to encourage investment and
innovation.

Another such active SLES demonstrator project is Energy Superhub Oxford (ESO) [25]
project that reduces the stress on the grid locally by integrating smart EV charging, hybrid
battery energy storage, low carbon heating and smart energy management technologies.
The following are key findings that have emerged from the project:

• Holistic approach: ESO highlights the importance of taking a holistic approach to
energy systems planning and implementation. By integrating various technologies
and sectors such as renewable energy, battery storage, electric vehicles, and heat
pumps, ESO aims to optimize energy generation, distribution, and usage. The project
emphasizes the need to consider multiple facets of the energy system simultaneously
to maximize efficiency and carbon reduction.

• Scalability and replicability: ESO serves as a testbed for scalable and replicable
energy solutions. The project’s focus on deploying modular systems allows for
easier replication in different locations. Lessons learned from ESO can potentially be
applied to similar urban environments or other communities seeking to decarbonize
their energy systems. The project’s design, technology selection, and operational
practices can be fine-tuned and adjusted for different settings, promoting wider
adoption of low-carbon energy solutions.

• Grid flexibility and resilience: ESO recognizes the importance of grid flexibility
and resilience when integrating high levels of intermittent renewable energy sources.
The project aims to explore the role of battery storage systems in managing energy
supply-demand imbalances and providing grid stability. ESO’s experience can
provide insights into grid management strategies, demand response mechanisms,
and storage optimization, enabling a smoother integration of renewable energy into
existing grids.

• Data and analytics: ESO emphasizes the value of data collection, analysis, and
modeling to optimize energy system performance. By gathering real-time data from
various energy assets, ESO can analyze system behaviour, identify patterns, and
develop predictive models. These data-driven insights can be used to optimize energy
dispatch, storage utilization, and demand-side management, leading to improved
energy efficiency and cost savings.
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• Stakeholder engagement: ESO recognizes the importance of engaging stakehold-
ers throughout the project lifecycle. Collaboration between researchers, industry
partners, policymakers, and the local community is crucial for successful implemen-
tation and acceptance of new energy technologies. The project highlights the need
for effective communication, awareness campaigns, and involvement of end-users in
shaping the future energy landscape.

Similarly, Project Leo (local Energy Oxfordshire) [26] is another active project that uses
local flexibility to manage grid constraints and provide routes to market and investment
models supporting local renewable and distributed power generation. The following lessons
represent key takeaways from the project:

• Local energy marketplaces: Project Leo has developed a local energy marketplace
that allows residents and businesses to trade energy directly with each other. This
lesson highlights the potential of localized energy markets in enabling peer-to-peer
energy transactions, fostering community engagement, and promoting the use of
renewable energy sources.

• Energy flexibility and demand response: The project has implemented energy
flexibility and demand response mechanisms to optimize energy consumption based
on supply and demand conditions. This approach helps balance the grid, reduce peak
demand, and increase the integration of renewable energy sources.

• Virtual power plants: Project Leo has demonstrated the concept of virtual power
plants, where multiple decentralized energy resources are aggregated and coordinated
to operate as a unified entity. This lesson showcases the potential of virtual power
plants in enhancing grid stability, optimizing energy dispatch, and maximizing the
value of distributed energy resources.

• Local energy tariffs: The project has explored the development of innovative local
energy tariffs that incentivize energy efficiency, renewable energy generation, and
demand response behaviours. This highlights the importance of designing pricing
structures that align with local energy goals and encourage sustainable energy
practices.

• Data sharing and analytics: Project Leo has emphasized the importance of data
sharing and analytics to enable informed decision-making and optimize energy
systems. Lessons can be learned about the value of collecting and analyzing energy
consumption data, integrating various data sources, and utilizing advanced analytics
techniques to gain insights and improve energy management.

• Collaboration and partnerships: Project Leo has engaged in collaborations with
various stakeholders, including local authorities, technology providers, and energy
companies. This lesson underscores the significance of forming partnerships and col-
laborations to leverage diverse expertise, resources, and funding to drive successful
local energy initiatives.
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These SLES demonstrator projects bring together experts from academia and stake-
holders from relevant industries and local authorities, to explore the innovation in local
technology, markets and communities.

Relevant modelling techniques for community energy models includes multi-agent
system (MAS), market frameworks, distributed artificial intelligence (AI) and optimization.
Further, modelling should be able to include the technologies (such as blockchains) that
empower end users to take control of their own energy. Optimization and integration of
such technology with data generated from communication infrastructure is essential for
developing appropriate algorithms and mechanisms for more efficient operation of SLES
and the power system as a whole. A recent trend, emerging in both rural communities and
smart city neighbourhoods, is for groups of household prosumers to form local energy
communities. Looking forward, such energy communities formed by citizen prosumers
are envisioned to be the future of SLES. The state-of-the art in modelling of the energy
communities and prosumers is described in the next section 2.2 .

2.2 Modelling of local energy communities and prosumers

An energy community is made up of a number of prosumers, who are defined to be
consumers but also producers of locally generated renewable energy [5]. Prosumer as-
sets (renewable generation capacity and storage) can be either distributed at individual
households or centralized and thus shared within the community. A key research area in
this context is the development of appropriate community schemes and control strategies
for optimal scheduling of end-user production and consumption. Therefore, there is an
increasing interest from academics and industry in community energy models [20].

2.2.1 Prosumer models

A prosumer is an owner of various DERs, and is able to generate electricity as well as
consume electricity [5]. Recently, the decrease in the cost of solar panels, wind generation
and battery storage has enabled individual households and consumers to generate their
own electricity. This has lead to a decentralised energy system with significant shift in the
market power from large utility companies to individual prosumers (i.e. consumers with
micro generation and/or storage) [55].

Figure 2.2 shows the basic prosumer model, such models typically involves distributed
renewable electricity generation-usually wind or solar PV, battery energy storage system
and flexible/non-flexible demand normally installed behind the meter. Generally, prosumers
aim to maximize behind-the-meter self-consumption from local renewable generation to
make DERs more profitable. In such settings, prosumers import electricity from the grid
when their assets cannot cover their own consumption, whereas they can export electricity
to the grid when they have production surplus. A key objectives of the home batteries is the
reduction of prosumer electricity bills while home energy management systems (HEMS)
are mainly used for the control of the power flows. The recent trend and innovation related
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Figure 2.2: Prosumer model.

to the prosumer model is mostly focussed on developing real-time optimization and battery
control algorithm embedded with HEMS to maximise self-consumption. For these reasons,
the literature survey focuses on the state-of-the-art in HEMS, with special attention to
battery storage system degradation aspects. First, the review of the state-of-the-art in
HEMS is presented.

Home energy management systems (HEMS) and prosumer optimization for maxi-
mization of behind-the-meter self-consumption

In existing literature, self-consumption from renewable generators is mostly achieved
at individual household level through home energy management systems (HEMS) [56–
58]. In most HEMS systems reviewed, matching of generation and demand profiles is
performed through the integration of battery energy storage systems (BESS) with demand
side management (DSM) strategies and flexible tariffs. Thus, BESS has become an
indispensable asset in HEMS for maximization of self-consumption, which is mostly
defined in terms of reduction of the energy bill. In the work of Golmohamadi et al. [59]
battery is integrated with HEMS to minimize the bill by reducing the energy consumption
of thermostatically controllable appliances. Mehrjerdi et al. [60] proposed a unified HEMS
that coordinates a hybrid system of renewable generators (solar and wind), BESS, demand
response and flexible demand, including electrical and hydrogen vehicles. It recommends
that BESS should be optimally sized in order to maximize self-consumption. Hemmati
& Saboori [61] presented a HEMS with optimal BESS scheduling for optimal utilization
of solar PV generation, while also taking into account the uncertainty associated with
solar irradiation. In the work of Castillo-Cagigal et al. [62], the BESS is integrated with
DSM to maximize the self-consumption from solar PV generation. Various optimization
techniques are applied by HEMS to reduce energy bills. An extensive review on various
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optimization techniques employed in HEMS is presented by Qayyum et al. [57] and,
Beaudin & Zareipour [63].

End-users such as consumers and prosumers are considered to be an integral part of
the smart grid due to the fact that they are able to change their consumption patterns and
behaviour based on the information and (dis)incentives they may obtain [64]. Demand Side
Management (DSM) especially Demand Response (DR) is an effective mechanism for
energy management in residential, commercial and industrial buildings. In DR programs,
consumer shift their electric usage by responding to the pricing signal or to the incentives
being provided [65]. HEMS is normally a demand response tool that shifts and curtails
demand to a house according to electricity price signals and incentives provided [63].
Scheduling of the home appliances in accordance to various DR signals is the major area
of research addressed in prior literature [56]. The detailed list of common appliances
considered in HEMS is presented by Beaudin & Zareipour [63]. Individual appliances
possess unique characteristics, thus many works [63, 58, 64, 65] in literature have attempted
to simplify modelling complexity by creating a response classes for all the appliances
based on the flexibility it provides in the DR program.

In HEMS, home loads are commonly scheduled based on the DR signals, normally
based on the incentive provided on reducing the load during peak hours and minimizing
the electricity cost by operating devices during low hours tariff. Shareef et al. [58] and
Beaudin & Zareipour [63] have presented various appliance scheduling techniques. As
shown in Figure 2.3, the optimal scheduling of appliance to DR signals is achieved through
rule-based, AI and optimization techniques. In HEMS, various objective functions are

Figure 2.3: HEMS appliance scheduling techniques [58, 63].

used along with the DR programs and scheduling techniques [59]. The most common
objective functions used in literature are:

• Cost: Minimization of energy cost.

• Well-being: Maximization of consumer comfort and satisfaction.

• Load profiling: Minimization of peak to average ratio (PAR), reducing the peak
demand for the utility, reducing the grid dependence for the consumer, load shifting
and valley filling.
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• Emissions: Reduction of greenhouse gas emissions associated with consumption of
electricity.

The pricing scheme is one of the most important signals of DR program. In HEMS, end-
users are motivated to shift their electricity usage in response to price signals. The various
pricing mechanism adopted in HEMS as reported in the literature includes; Time-of-use
(ToU) tariff [60, 66, 67], Stepwise power tariff (SPT) [67–69], Real time pricing (RTP) [70,
59, 71], Incremental block rates (IBR) [72–74], and Critical peak pricing (CPP) [75–77].
ToU price tariff is the most widely adopted pricing scheme. An extensive review on the
various optimization techniques employed in HEMS is presented by Qayyum et al. [57]
and Beaudin & Zareipour [63]. However, by addressing a single objective, the HEMS may
fail to find the optimal strategy. For this reason, many studies [60, 66, 67, 59, 74] consider
multi-objective optimization to schedule household consumption.

To align with the identified aim and objectives of the research, the literature survey
on HEMS is specifically focussed on how renewable energy sources (wind and solar) and
BESS has been integrated into HEMS. In HEMS the grid is used as a permanent power
supply, renewable energy sources (wind and solar) and BESS as intermittent source. In
addition to appliance scheduling based on DR signals, most algorithms are based on the
comparison of power from renewable energy sources, the state of charge (SoC) of battery
and the availability of the grid power supply and price tariff to the load consumption [56].
BESS is normally used for storing energy during off-peak and low-cost hours, and discharge
energy during on-peak and high cost hours [60, 66, 67, 70, 59, 68, 61]. In most of the
HEMS schemes the BESS is charged from the renewable energy sources and not from the
grid, then surplus energy from renewable energy sources is stored in the BESS and then the
rest is sold to grid [61, 60, 67, 70]. The selling price to grid is normally fixed lower than the
grid buying price [60, 67, 59, 70]. However, BESS is also designed to store electricity from
the commercial grid when the price is low and also from the microgrid in high electricity
generation hours [78]. Uncertainty associated with RES are normally modelled using
probability distribution function (PDF) [61] and stochastic programming [60, 59].

A few literature sources, Wu et al.[79], Liu et al. [69] and Erdinc et al. [70], have
included the network constraints by considering the maximum power that can be sold or
injected to the grid as one of the constraints in objective function. Of these three, only Wu
et al. [69] have considered the voltage constraints-increase in the voltage level caused by
power injected into grid. Otherwise, network constraints are not addressed in most of the
HEMS schemes. Interaction of the microgrid central controller with the HEMS is presented
in work by Liu et al. [69]. The microgrid central controller coordinates scheduling of
distributed energy resources and energy storage systems at the microgrid level. Most of the
research works on HEMS reported in the literature have not considered the exact useful
life of batteries in the HEMS models. Battery degradation or useful life is assumed based
on the warranty provided by the manufacturers, such as Hemmati [68] has assumed BESS
life time of eight years and five years in the work of Lokeshgupta & Sivasubramani [66].

As highlighted through various HEMS schemes, adoption of battery storage assets
enables prosumer to maximise the self-consumption and decrease the electricity bills.
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However, battery have power and energy limits, and the cost of the battery storage system
is high compared to renewable generators. Moreover, the SoC of the battery need to be
constantly monitored as their useful lifetime are mostly correlated with charge cycles at
different depth of discharge (DoD). Along with the fact that batteries’ lifetime is compar-
atively shorter than that of renewable generators, the frequent charging and discharging
operations leads to cyclic ageing and incurs an extra cost as it accelerates the depreciation
of the battery. Therefore, there has been a growing effort in developing an appropriate
battery control mechanisms and sizing strategies, so that the remaining useful lifetime
(RUL), performance and size of the battery storage system can be optimized to meet both
economical and technical service requirements. The recent trends and the state-of-the-art
battery modelling is discussed in the following subsection.

2.2.2 Modelling of battery energy storage system

i Battery model:

For a given BESS, the prediction of battery useful life is important for deciding the
system cost and performance analysis. In modelling of batteries in hybrid power
system, the most common characteristics to be considered are:

(a) Performance or charge model: Focuses on modelling the state of charge of
the battery, which is the single most important quantity in system assessments.

(b) Voltage model: Used to model the terminal voltage so that it can be used
in more detailed modelling of the battery management system and the more
detailed calculation of the losses in the battery.

(c) Lifetime model: Used for assessing the impact of a particular operating scheme
on the expected lifetime of the battery.

Lifetime models are studied in detail to specifically align with the identified aim and
objectives of the thesis. In integrating the battery storage system into smart grid,
important factors to be considered are cost, lifetime, power delivery, environmental
impact and safety [80]. Most common method of calculating the battery lifetime are:

(a) Calendar life: This refers to the number of years the battery is expected to last
till the battery reaches End of Life (EoL). It is independent of how much the
battery is charged and discharged. However, calendar life is dependent on the
state of charge of the battery and the temperature. EoL is normally defined as a
state of the battery when the maximum capacity of the battery reduces to 80%
of its rated initial capacity. Battery degradation under calendar life is refereed
as static degradation [81].

(b) Ah-throughput counting & calendar life: Method assumes that there is a
fixed amount of energy that can be cycled through a battery before it requires
replacement, regardless of the depth of the individual cycles or any other
parameters specific to the way the energy is drawn in or out of the battery. In
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most cases the estimated throughput is derived from the depth of discharge
versus cycles to failure curve provided by the manufacturer. It simply counts
the amount of charge through the battery.

(c) Cycle counting & calendar life : The service life of the batteries usually
degrades when subjected to repeated charge/discharge cycles. Battery life not
only depend on total number of cycles, but also to the DoD of the cycles. This
method specifically involves estimation of battery life based on the number
of cycles versus DoD data sheet provided by manufacturers. Cycle life is
expressed in terms of the number of charging/discharging cycles that the
battery can undertake before it has to be replaced. Battery degradation due to
cyclic operation is referred as dynamic degradation [81].

Calendar life due to self degradation of the battery corresponds to the normal
corrosion process, which is independent of its cycling behaviour, and thus normally
regarded as constant [82]. For instance, if the battery shelf life is 10 years, it means
that the daily degradation is at least 1/365/10 = 0.0274% no matter whether that
battery is in operation or not. However, battery degradation due to cyclic operation
is not constant, and the battery lifetime depends on the charge/discharge cycles,
which in turn is shaped by the control scheme. Technically, for instance, the depth
to which the battery is discharged, the discharge current and the chemistry used
has direct effect on its remaining useful lifetime. This translate into a considerable
impact of the total cost of the operation and maintenance of the battery, especially
as BESS is one of the most expensive component of a integrated energy system
consisting of renewable generation and storage. The current state-of-the art and
methods employed in an estimation of the useful life of the battery is discussed in
the following subsection.

ii Battery degradation model:

Cycle life due to cycle degradation corresponds to number of charge/discharge
cycles a battery can undergo based on certain DoD as specified by the manufacturers.
Typically, the number of cycles versus DoD is specified in the data sheet as shown
in Figure 2.4. For instance, if the total number of permitted battery cycles is 2000
with 80% DoD, it means every cycle from 100% state of charge (SoC) to 20% SoC
consumes 1/2000 = 0.05% of the total life. Specifically, cycle ageing is the life
lost each time the battery cycles between charging and discharging. Figure 2.4
shows that, as the DoD of the charging/discharging cycle increases, the expected
cycle-life of the battery decreases. This means, a battery that is exposed to shallow
charging/discharging cycles is expected to have a longer cycle-life than a battery that
is exposed to deeper discharges [83]. It is important to note that the number of cycles
versus DoD curve provided by manufacturers is obtained at specific temperature and
C-rate.
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Figure 2.4: Relationship between number of life cycles and DoD of Ni-Cd battery [84].

A cycle is defined to have been completed when the battery depth of discharge has
returned to a starting point before discharge and recharge began. Cycles consist of:

• Full cycles: Cycle consisting of one equal discharging and charging event. For
example, 100%-to-20%-back to-100% SoC or 0%-to-80%-back to-0% SoC.

• Half cycles: Cycle consisting of one charging or discharging event. For
example, 100%-to-20% SoC or 0%-to-80% SoC.

Further, depending on the starting and ending SoC, battery cycles are categorized as
regular and irregular cycles [85, 86] or in some literature as complete and incomplete
cycles [87].

• Regular/complete cycles: In this cycling process the starting SoC is 100%,
then it is discharged to certain SoC corresponding to specific DoD and recharged
back to 100% SoC. For example, 100% SoC-to-50% SoC-back to 100% SoC
which corresponds to 50% DoD cycle.

• Irregular/incomplete cycles: In this case, the starting SoC is not necessarily
100% SoC, cycles starts at any arbitrary SoC value. For example, 80% SoC-to-
30% SoC which also corresponds to 50% DoD cycle.

In both the cases, DoD may be same but the battery degradation is sensitive to
starting SoC as most of the number of cycles versus DoD as specified in the data-
sheet by manufacturers are based on regular cycles [87, 85, 88, 83]. Although, the
cycle-life data-sheet is based on regular cycles, in real life the battery can hardly
run regular cycles from 100% SoC to a specific DoD [85]. Thus, a vital aspect in
integrating battery storage in power system is to build a battery degradation model
to reflect irregular cycle impacts [85, 87, 86, 82, 84]. In order to develop a specific
empirical cycle life models, the relationship between battery cycle life and DoD are
formulated using different curve fitting techniques as adopted in existing literature:

• Fourth-order polynomial function [89].
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• Least square quadratic function [90].

• Exponential function [91, 92, 86, 81, 93].

• Power function [94–96].

• Piecewise linear function [83].

• Numerical curve fitting-extrapolation [97].

The choice of such a model for the battery cycle life curve should not be under-
estimated as it has an important impact on the estimation of the remaining life of
the considered battery after irregular cycles. In almost all the literature surveyed,
regardless of the various specific cycle life models a rainflow counting algorithm
is adopted to calculate the full and half cycles. Then, rainflow counting algorithm is
further modified to account for the regular and irregular cycles. The cycle counting
method used is known as "rainflow" counting. It was initially proposed by Socie
& Downing [98] for material fatigue estimates. The complete rainflow counting
algorithm is implemented by Nieslony in MATLAB [99]. The input to this rainflow
algorithm is the SoC profile and the following results are the output:

(a) Cycle Amplitude.

(b) Cycle mean value.

(c) Cycle number (0.5 for half cycle and 1 for full cycle).

(d) Cycle begin time.

(e) Cycle end time.

This basic algorithm is further modified in most of the literature to account for
the irregular cycles. In almost all the literature the battery lifetime is estimated by
comparing the number of cycles at specific DoD determined from simulation to the
permitted cycles specified by manufacturer. The cycles are defined as:

(a) Regular and irregular cycles (ncyclesregular/irregular
DoD )

(b) Maximum permitted cycles as per manufacturer (NcyclesMax
DoD)

For instance, in the work of Ke et al. [87] battery life (L) based on regular cycles is
calculated as:

Lregular
DoD =

ncyclesregular
StartDoD

NcyclesMax
EndDoD

(2.1)

For, irregular cycles the depreciation factor is calculated as:

Lirregular
DoD = ncyclesirregular

StartDoD × [
1

NcyclesMax
StartDoD

− 1
NcyclesMax

EndDoD
] (2.2)

Finally;

LEquivalent
Total =

DoD=100%

∑
DoD=0%

Lregular
DoD +LIrregular

DoD (2.3)
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Battery life is estimated based on the Eq. (2.3) as:

L =

0,New battery with rated capacity

1,Dead battery with zero capcity
(2.4)

When L = 1, the battery is supposed to be dead with zero capacity, which requires to
be replaced by new battery. The proposed method is further analysed based on the
empirical values provided in the paper. The maximum permitted number of cycles
at specific DoD used in their paper was:

• NcyclesMax
10%DoD = 5000

• NcyclesMax
20%DoD = 1000

• NcyclesMax
30%DoD = 500

Here, if StartDoD = 10%, EndDoD = 20% and number of cycles counted at this
starting DoD is one (ncycles = 1). As the starting DoD is not 0% (100% SoC) the
cycle is a irregular cycle, as per Eq. (2.2) the battery life (Lirregular

10%DoD) computed is
-0.0008, that means battery is permitted to have large number of cycles before L is
equal to 1, which is not true in real applications. This shows that at 10% irregular
cycle battery will have a very long life. While, in a regular cycle which starts at 0%
(100% SoC) for the same 10% DoD the life of a battery (L10%DoDregular ) determined
from Eq. (2.1) is only 0.0002. On careful analysis, a huge difference in the life
time estimated between the irregular cycles and the regular cycles was observed. In
response to this draw back in the proposed methodology, a much more conservative
approach in estimating the battery life due to irregular cycles is proposed in this
thesis. Detail explanation is given in section 3.4.2 of chapter 3.

Useful battery lifetime depends on the frequency of charging/discharging and DoD.
Most existing and emerging battery degradation models are focused in developing
a methodology for estimating the useful life of a battery due to cyclic degradation.
Ke et al. [87] have proposed an equivalent charge cycle estimation method to
evaluate the effect of providing the energy balancing service on battery life. Yan et
al. [81] incorporated dynamic battery life degradation in cost accounting model of
energy storage system used for providing grid frequency regulation in the ancillary
services market. Similarly, Ju et al. [84] proposed a hybrid energy storage system
incorporating the degradation cost of battery and supercapacitor based on DoD and
lifetime, while Xu et al. [86] developed a semi-empirical battery degradation model
that assesses battery-cell life loss from operating profiles. In the work of Wang et
al. [85], battery degradation and wind-battery optimization models are integrated and
used for operation and bidding in real-time electricity markets. Recently, Terlouw
et al. [100] have proposed a multi-objective optimization framework for energy
arbitrage using community energy storage incorporating battery degradation in the
optimization problem. However, developing a detailed battery degradation model
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for determining the optimal battery capacity using real data, is still an open question.
Furthermore, the need to include battery degradation models in the real time decision
process of an Energy Management System (EMS) has not been discussed until now.

2.2.3 Community energy schemes

Energy communities formed by prosumers are increasingly becoming a promising solution
to delivering sustainable energy systems that promote renewable integration and active
participation of end-users. Local energy communities are expected to provide a new source
of revenues for DERs owners, that could support the deployment of distributed low carbon
energy assets, as direct financial incentives such as feed-in tariffs are being reduced [14] and
even removed [15] in many countries. The aim of such energy community microgrids is to
increase the financial benefits and meet the local demand with locally generated electricity.
In turn, this enables the community to use more locally generated renewable generation,
and shifts the market power from large utility companies to individual prosumers. From
the grid manager point of view, local energy communities are also an incentive to increase
local self-consumption, which will reduce the technical impacts of low carbon technologies
on the grid, such as voltage violations. As a result, energy communities are identified as a
promising technical, social and economical solution to the energy transition providing both
incentives and technical solutions to the adoption of low carbon technologies. Recently, this
aspect of the local energy communities has led regulatory bodies to implement frameworks
that incentivise the deployment of such energy communities [27]. For instance, in France,
citizens living in an area determined by a diameter of approximately 2km are allowed to
gather into local energy communities for a total power that does not exceed 3MW [28].

Recently, Gjorgievski et al. [101] have reviewed the state-of-art literature on social
arrangements, technical designs and the impact of energy communities. They have identi-
fied various gaps in the literature, and one of the highlights closely related to the work in
this thesis is the need to design a more realistic pay-off distribution among the community
members for stable coalition of the energy community. Similarly, Seyfang et al. [102] have
conducted a detailed UK-wide survey on energy community projects, and concluded that
energy communities are diverse and rapidly growing. Recently, the modeling of energy
community has gained increased attention from a social perspective focused on niche
areas of: socio-technical energy system [103], social innovations and dynamics [104],
socio-technical energy transitions [105], social entrepreneurship [106], grassroots inno-
vation [107], multi-sectoral approaches [108], social acceptance and participation [109],
social investments [110] and social factors in AI research [111]. Huang et al. [112] have
reviewed various simulation tools and models available for community energy system
planning, design and optimization. Similarly, Mendes et al. [113] have surveyed numerous
energy optimization and simulation tools for integrated community energy systems plan-
ning and analysis. Using a smart energy and AI perspective, other works have modeled a
number of related concepts, such as Virtual Power Plant (VPP) optimisation [114–116],
demand-side response aggregation [117, 118, 55, 119–122], renewable energy curtailment
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in remote communities[123, 124], battery storage monitoring and optimisation [125–128],
and P2P energy trading and blockchains [129–132].

Battery energy storage systems, along with renewable generators (solar PV, wind
turbine) are the most common assets considered in the existing energy community mod-
els. In energy communities, individual households can invest in their own energy assets
(renewable generation capacity and storage), or can jointly invest in larger community-
owned energy assets and can then share energy and associated financial benefits within
the community. Hence, techno-economic assessment between energy communities with
individually-owned prosumer assets and models with community-owned assets have re-
cently gained increased attention in the literature [33, 16, 34–36]. Most of the studies
focus on comparing the battery storage adoption at the individual household scale with
storage adoption at the community scale. For instance, Dong et al. [33] have compared
community energy storage (CES) to household energy storage (HES). Their results indicate
that both HES and CES can improve the community self-consumption rate (SCR) and
self-sufficiency rate (SRR). HES is found more suitable for households with lower demand
profiles, while households with higher demand profiles benefit more from CES. The same
authors’ extended their study by comparing the performance of HES and CES with demand
side management (DSM) under ToU pricing scheme [16]. CES is found to be more effec-
tive at improving self-consumption for consumers and shaving peak demand for network
operators. Similarly, Van Der Stelt et al. [34] have evaluated the techno-economic analysis
of HES and CES for residential prosumers. The economic value of both HES and CES was
assessed by considering the cost of energy imported from the grid. The results showed that
both HES and CES can reduce the annual energy costs by 22 to 30%, and improve the use
of on site PV generation by 23 to 29% compared to a baseline households without storage
system. The economic feasibility of both HES and CES is found to be largely determined
by the investment cost of the storage capacity per kWh. Similar comparison of storage
adoption at the individual household level to storage adoption at the community level is
studied by Barbour et al. [35]. Their results show that the community battery is better
in terms of economic revenues compared to individual household batteries, as it requires
less storage capacity overall and increases the self-consumption rate. Likewise, Walker &
Kwon [36] have compared the economic and operational performance of individual and
community shared storage. Their results also showed that the shared CES can achieve the
maximum cost savings and significantly improve the utilization of energy storage.

Recently, Koirala et al. [133] have provided an overview of the state of the art in
CES. Similarly, an overview of the economic potential and current research on CES was
outlined by Sardi & Mithulananthan [134] and Strickland et al. [135]. The review states
that CES have a huge potential to reduce import from the utility grid and thus maximize
the self-consumption of the community. Hence, the advantages of CES over HES is well
identified in the literature [33, 16, 34–36, 136–141]. However, most of the existing studies
on comparison of individually-owned assets versus centrally located community-owned
assets, while considering both the renewable generation and battery, have not included the
battery degradation cost in their techno-economic analysis. Moreover, although community
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assets are found to provide more benefits compared to individually-owned assets, still, the
question of how to allocate financial gains from shared community-owned assets to the
members of the community is not addressed in most of the existing frameworks.

Furthermore, several approaches have been proposed recently to integrate the network
constraints such as electric cables thermal limits and voltage excursions in the market
structures and trading strategies of the energy communities [13, 142–148]. However, most
of the existing studies on the techno-economic analysis of individually-owned versus
community-owned assets have not considered the network constraints. Installation of
renewable generator (solar PV/wind turbine) or batteries in the grid changes power flows,
and might create congestions, voltage excursions, or line over-heating. In such cases,
the grid operator might consider the need for an Active Network Management (ANM)
to remotely control the injection of distributed renewable generator and storage assets.
Therefore, due to this congestion/voltage excursion, assets might be prevented from
exporting/consuming to/from the grid, reducing the benefits from their owners. For
instance, when the grid is constrained with voltage excursions, then the exports form
PV/wind turbine and exports/imports from/to battery can be curtailed as it is currently
the case in the Orkney Islands [32], UK. Therefore, such curtailment events need to
be accounted for in the energy community setting by including power flow (physical
network/grid constraints) in the techno-economic analysis of individually-owned assets
versus community-owned assets. The battery control mechanisms and power flow control
through various HEMS schemes for the community energy can be same as the case of the
prosumers.

Transactive energy communities

Energy communities can invest in either distributed individually-owned energy assets
or jointly-owned community energy assets, and then communities can share or trade
electricity. A crucial aspect of a community energy models and projects is that they often
involve sharing of some joint resources and assets. One approach is to facilitate P2P
sharing in the case of individually-owned assets, whereas another approach consists in
creating a community energy coalition in the case of community-owned assets, where an
aggregator or community energy operator distributes the benefits within the community.
The coalitional model of the energy communities often involve jointly-owned energy assets
such as community-owned wind turbines, solar PVs and/or shared battery storage. An
important challenge that such energy community schemes raise is the need for reaching
agreements that ensure fair allocation of revenues and benefits earned by jointly-owned
assets. State of the art approaches for redistribution (sharing) of benefits from jointly-
owned community energy assets among energy communities are described in the following
Section 2.3.

Local energy markets allow energy communities to trade electricity to other members of
the community, through a specific market mechanism [29]. Market mechanisms can either
implement a full peer-to-peer (P2P) market, which ensures that a community member "A" is
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trading electricity to another community member "B", with solutions such as in automated
negotiations schemes [19], or can implement a peer-to-community (P2C) scheme, in
which case electricity from a specific community member is traded to the community,
without knowing exactly who will benefit from this electricity, such as what is achieved
through double auction market clearing mechanisms [30]. A comprehensive study on the
recent trends and the state-of-the art energy trading models for the energy communities
is presented in the Section 2.4. First, the review of the state-of-the-art in energy sharing
models is presented in the following subsection. Energy coalition and investment in the
jointly-owned community energy assets are the recent trends, and there has been a growing
effort in developing a fair redistribution or energy sharing mechanism. Hence, in this
thesis, the focus has been on energy sharing mechanisms from jointly-owned community
assets instead of P2P sharing mechanisms.

2.3 Sharing of energy in energy communities

Energy community projects often involve jointly-owned assets such as community-owned
wind turbines or shared battery storage. Yet, this raises the question of how these assets
should be controlled – often in real time, and how the energy outputs jointly-owned assets
should be shared fairly among community members (prosumer agents), given not all
members have the same size, energy needs or demand profiles. Game theory provides an
insightful analytical and conceptual framework along with mathematical tools to study
and analyse the complex interaction among independent rational players (in the context
of this thesis, the households/agents) [37]. Cooperative (or coalitional) game theory has
been identified as a useful tool in designing incentive mechanisms and business models in
decentralized energy systems. In a cooperative/coalitional game, players form coalitions to
maximise a common objective for mutual benefit. Then, the benefit is distributed equally
or fairly among themselves using incentive-based solution concepts, such as the Shapley
value [38].

In the context of energy communities characterized with renewable energy systems,
coalitional game theory has been identified as a promising solution for energy sharing
schemes [149], cost allocation [150], and benefit redistribution [151, 152] schemes among
the community members. For instance, Alam et al. [40] proposed an energy exchange
mechanism in rural communities that aimed to reduce battery usage and where an ap-
proximated Shapley value was used for the distribution of benefits among the households.
Although they have proposed that the approximated Shapley value improves the com-
putational time as compared to the original Shapley value, it still poses a significant
computational challenge with the increase in the number of agents in the coalition.

Recently, Moncecchi et al. [153] have proposed a two-level benefit distribution scheme
based on coalitional game theory. At the first level, the benefit is distributed to a group of
community members. Then, at the second level, the benefit is distributed proportionally to
individual members. While various operational scenarios were studied, only few players
(nine community groups only) were considered in the coalition formation. Similarly,
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Longxi Li [154] have proposed a cost-sharing scheme developed according to the Shapley
value method. However, only four players are considered, thereby raising the issue of
computational tractability and hence the practical application of the proposed redistribution
mechanism is limited. Likewise, Chakraborty et al. [155] investigated the sharing of
storage systems among consumers in a ToU pricing scheme using cooperative game theory.
The sharing mechanism is illustrated using only five households which raises the issue of
scalability and practicality as the household number increases in the coalition. Moreover,
storage is considered ideal thereby neglecting the degradation aspect of the battery. In
the work of Marzband et al. [156], cooperation among energy communities was studied
in order to reduce the annual electricity cost, and profit redistribution mechanisms based
on various solution concepts from cooperative game theory such as, Shapley, Nucleolus,
and Merge and Split are proposed. Furthermore, Robu et al. [157] considered coalition
formation for minimizing group buying risk. Here, consumers cooperate to form a group to
buy electricity under one or several tariffs. Lately, a blockchain-based coalitional formation
algorithm for trading energy was proposed by Thakur & Breslin [158].

A more recent study by Tveita et al. [159] compared annual electricity cost allocation
among prosumers and consumers using solution concepts from cooperative game theory.
Both Nucleolus and Shapley solution concepts were used to determine the annual electricity
cost deviations as key asset parameters vary. While various operational scenarios were
studied, only four players were considered, thereby raising scalability issues associated with
increasing players and effects on coalition formation. Likewise, Chiş and Koivunen [160]
have proposed a coalitional cost-game optimization of a portfolio of energy assets using
Shapley value as the underlying redistribution method, modelling a realistic case study
of 9 households. Safdarian et al. [161] have used the Shapley value for coalition-based
value sharing in energy communities consisting of 24 apartments in southern Finland.
Vesperman et al. [162] have also used number of solution concepts such as the Nucleolus
and Shapley values in the market design of a local energy communities ranging in size
from 4 up to 16 prosumers. Various energy, cost, and profit redistribution schemes based on
coalitional game theory can also be found in [163–166]. All these recent works shows that
the incentive-based solution concepts, such as the Shapley value is proposed as a promising
redistribution mechanism. However, in most of the work reviewed, their numerical case
studies consider only a small number of agents (up to ∼20), to keep the computation of
the exact Shapley value tractable. Yet, realistically sized energy communities have more
members, e.g., there are usually 50-200 consumers behind a substation/LV transformer in
Europe [167], or potentially even more sharing an asset such as a large community wind
turbine.

Hence, one of the major challenges in redistribution schemes based on coalition game
theory is the issue of scalability. Specifically, when determining the solution concepts
such as Shapley values in a coalition, the computation becomes highly complex and
time-consuming as the number of players increases in the coalition. Moreover, most
of the existing redistribution frameworks are developed without considering network
constraints, in which case the computation becomes more challenging. Thus, there is
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still a need to develop a redistribution mechanism that is fair, but also provides tractable
computational performance that scales well with the increasing number of members in
the energy community coalition, while considering operational network constraints. In
the case of energy communities with individually-owned energy assets, prosumers can
also share resources through specific local market mechanism such as P2P energy trading
markets. Such emerging LEM solutions are reviewed in the following section 2.4.

2.4 Electricity trading in energy communities

Trading of energy between large producers, utility companies and consumers with estab-
lished wholesale and retail markets is current practice; however, P2P energy trading and
sharing between prosumers, consumers and the established electricity markets is a trending
topic within the industry and research community. P2P energy trading is an emerging local
market arrangement in distribution networks, in response to the challenges posed by the
increasing penetration of distributed generation from renewable energy sources and the
increasing electricity retail prices with decreasing feed-in tariff rates. The direct energy
trading among consumers and prosumers is called peer-to-peer energy trading, which is
developed based on the “P2P economy” concept (also known as sharing economy) [168].
In this section 2.4, literature survey is mainly focussed on the following aspects of P2P:

• Overall P2P architecture adopted including P2P agents modelling schemes.

• Various P2P market and incentive mechanisms, and state-of-the-art business models.

• Application of game theoretic modeling in P2P, focussed on coalitional game theory.

2.4.1 Overall P2P architecture adopted

P2P energy trading involves various entities such as consumers, prosumers, microgrids
and the utility grid. In a normal power system, microgrids consisting of consumers and
prosumers are connected to a distribution networks, and multiple distribution networks are
connected to a transmission network [169]. Based on this power system framework, Long
et al. [170] and Zhang et al. [171] proposed three hierarchical levels of P2P. The proposed
architecture is further extended and presented by Abdella & Shuaib [169] as:

1. Intra-microgrid trading: P2P energy trading takes place between prosumers,
consumers and utility in the same microgrid (within microgrid).

2. Inter-microgrid trading: P2P energy trading is conducted between multiple micro-
grid connected to same distribution network.

3. Distribution level trading: Energy trading takes place between multiple microgrid
connected at different distribution networks.
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Most of the P2P energy trading frameworks are based on the intra-microgrid trading
architecture, so far inter-microgrid and distribution level P2P trading has not been discussed
or implemented [169]. Furthermore, in the work of Long et al. [170] and Zhang et al. [171],
a group of microgrids under the same distribution network is also defined as cell. Most
of the existing P2P energy sharing studies and practical projects involve coordinators.
However, in some decentralized blockchain-based papers and projects the coordinators
are played by machine code automated algorithms rather than conventional intermediaries
run by a human mediator. The structure of P2P energy trading and sharing reported in the
literature can be categorized into two major groups as proposed by Jogunola et al. [172]:

1. Centralized structure [173, 5, 174–180]: In this architecture, a central entity acts
as mediator between different producers and consumers. The various terms used
for central coordinator are: Energy Sharing Provider (ESP) [173], Energy Sharing
Coordinator [5], Central Unit [177], Elecbay [179, 178], P2P Market Operator
(P2PMO) [180].

2. Decentralized/distributed structure [181, 182, 158]: Prosumers and consumers
trade energy directly without the central mediator. Most of the literature on decen-
tralised structure is based on blockchain-based distributed ledger technology [183,
158, 182]. Decentralised/distributed architecture provides faster mechanism for
local balancing of energy demand and generation. It also, provides optimization
benefits in terms of cost reduction from transportation and direct transaction between
neighbours [172]. However, the major challenge for this type of P2P structure is the
lack of adequate control over energy transactions. For example, there is no assurance
that a buyer will get the right amount of energy purchased. Scaling and privacy
issues are the most challenging aspect of decentralize/distributed structured P2P
architecture [169].

In P2P trading models, generally an intelligent agent is modeled as controlling the
individual home (prosumer/consumer) resources. This agent acts on behalf of the household
to maximise the identified utility. Community is formed by connecting all the individual
households through individual agents which is collectively refereed as multi-agent system.
Such, agent modelling schemes are presented in the work of [40, 181, 5, 174, 182, 175,
184, 185]. The various assets coordinated by household agent are:

• Renewable energy generators which mostly includes solar PVs and wind turbine.

• Household demand load.

• Energy storage system: battery and EV.

• HEMS is also included in the work of Guerrero et al. [181] and Han et al. [184].

An example of P2P multi-agent system (MAS) is as follows, following what was imple-
mented in several papers, such as Zhou et al. [5]. The topology of the P2P trading model
is centrally controlled structure. The proposed framework includes three types of agents
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and the dynamic behaviour and characteristics of these agents are defined though three
corresponding models. Three types of agent are:

1. Prosumer agent (PA): Represents the independent individual households. Char-
acterized by a specified decision-making model concerning its own demand and
assets.

2. Energy sharing coordinator agent (CA): Coordinator coordinates between pro-
sumer agents and retailer agent. Characterised by pricing model. CA manages
the local energy trading among the prosumers and serve a aggregator to the grid
by communicating with the retailer agent, which is done through implementation
model.

3. Retailer agent (RA): Represents the grid. Considered as passive agent who simply
sells/buys energy to/from CA based on the requested amount at pre-announced
retail/export price. CA could also initiate demand response programs.

Three models defining the dynamic characteristics of agents are:

1. Decision making model for the PA: All the actions taken by PA is defined in deci-
sion making model. Household level optimization and control strategies including,
scheduling of generation and demand, and corresponding demand response programs
are defines in this model.

2. Pricing model from the CA: Local pricing scheme for trading among individual
prosumers are defined. Grid export and import pricing schemes are defined in this
model.

3. Implementation model for interactions between agents: P2P market mechanism
is defined in the implementation model. Specific trading rules and regulations are
also defined in this model.

2.4.2 P2P market mechanisms

In most of the literature, P2P energy trading and sharing is exclusively formulated as a
game or an optimization. Bayram et al. [186] have classified P2P market mechanism based
on the architecture as follows:

1. Distributed optimization based mechanism: Applicable for centralized structure.
If the energy trading involves a central controller who coordinates trades among
different entities, then it is proposed that the appropriate framework would be to use
single objective maximization tool such as convex, stochastic, or swarm optimization
to maximize social welfare.

2. Game theoretic based mechanism: Applicable for decentralized/distributed
structure. Suitable for trade scenario involving multiple peers, who are either
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interested to optimize their own utilities or form coalition to optimize the mutual
benefit. Simulation based solutions are proposed to model the behaviour of the
multiple agents involved in the energy trading. Appropriate and suitable incentive
mechanism can be designed based on game theoretic models, which encourages
peers to participate in the energy trading.

Sousa et al. [29] has categorized P2P markets based on the degree of decentralization and
P2P topology as follows:

1. Full P2P market: Trading based on decentralized/distributed P2P structure.

2. Community-based market: Trading based on centralised P2P structure.

3. Hybrid P2P market: Combination of full and community-based P2P market.

Detailed comparisons among the three different markets are elaborated in the literature.
A well structured design in community-based market allows the community manager
to provide services to the grid operators as an aggregator. Abdella & Shuaib [169] has
classified trading model based on the demand response optimization techniques as; cen-
trally controlled models, incentive-driven models, cooperative-based and non-cooperative
based game theoretic models. Primarily, the P2P market mechanism in all the proposed
classification are based on topology, objectives of the peers, and incentive mechanisms. As
presented in [186, 187, 183] the major trading mechanisms are discussed below:

1. Auction based mechanism [181, 182, 5, 188, 189]: This trading mechanism is
normally designed for competitive peers where every peer participates in auction for
energy trade. Auction theory is an analytical framework that matches peers interested
in trading, rather than holding any of the traded commodity itself. The trading
mechanism is related to distributed optimization based P2P market mechanism.

2. Stackelberg game-based mechanism [190–192]: Trading mechanism suitable for
self-oriented peers, who want to maximize their own utility by participating in the
P2P trade. This market mechanism consists of a leader who announces the prices
of the energy and set of followers. A central controller or aggregator is usually
the leader. The trading mechanism is related to game theoretic based P2P market
mechanism.

3. Coalition formation-based mechanism [158, 185, 189, 184]: Applicable for coop-
erative peers who are willing to form a coalition to increase their mutual benefit. Fair
and equal distribution of the benefits among peers are normally achieved through
Shapley value and core solution concept techniques. The trading mechanism is also
related to game theoretic based P2P market mechanism.

Optimization based P2P market mechanism

In most of the existing P2P business models, the network/grid constraints is not included
in the trading mechanisms. This has shifted the research focus and efforts in P2P business
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models. However, the recent research trend is on the integration of the network constraints
P2P trading mechanisms. This is mostly achieved by including the power flow equations
in the market optimization constraints. Recently, Guerrero et al. [13] have proposed a
simplified version of AC Optimal Power Flow (AC OPF) for continuous double auc-
tions, using voltage sensitivity coefficients and power transfer distribution factors (PTDF).
Likewise, Wang et al. [193] and Han et al. [194] have proposed Distributed Locational
Marginal Prices (DLMP) for P2P markets to promote energy trades that contribute to
voltage and power losses regulation. Similarly, most of the current works that consider
grid constraints also include an additional cost for energy transactions that is proportional
to the power losses [13, 193–195]. Furthermore, another emerging active area of research
is the integration of disruptive and distributed enabling technologies such as blockchain
and smart contracts into P2P trading mechanisms [42]. Distributed ledger technologies
(DLT) such as smart contracts in blockchain have emerged as one of the key driver for
decentralized P2P markets. Smart contracts consist in programs running on a blockchain
that are executed in a distributed way. In P2P energy trading applications, smart contracts
can be used to execute specific functions. Normally, smart contracts first receive and
process the bids, offers and money deposit from the stakeholders (prosumers and con-
sumers).Then, smart contracts have been used to clear a P2P market. Various DLT-based
market clearing mechanisms are proposed in the literature. For instance, Han et al. [194]
and Khalid et al. [196] have used heuristic approaches to match buyers with sellers. While,
Lasla et al. [197] and Kang et al. [198] have implemented auction mechanisms without
grid constraints to clear the P2P market. Likewise, Leeuwen et al. [199] have used smart
contract to clear the market by including the power flow constraints. In heuristic-based
clearing mechanism, the smart contract usually matches buyers and sellers and validates
a transactions as the bids are placed. In distributed optimization-based market clearing
mechanism, the optimization problem is solved in a distributed way, using methods such
as primal-dual gradient [200], alternating direction method of multipliers (ADMM) in
which the global optimization problem is broken into smaller pieces that do not require
all the information of the original problem and can be solved in a distributed way. A
smart contract is used to coordinate a distributed AC OPF optimization using ADMM,
where each node solves its sub-problem offline. Finally, smart contracts can also be used
in the settlement phase of a market, where they can coordinate the monitoring of energy
delivered and consumed by the households. Hence, by nature, smart contracts facilitate
decentralization of energy markets as they remove the dependency in a third party operator,
and replace it by distributed nodes achieving the same functions in a decentralized way.

Game theoretic based P2P market mechanism

Game theory provides an insightful analytical and conceptual framework along with
mathematical tools to study and analyse a complex interaction among independent rational
players (for instance, peers in P2P) [201]. It is broadly classified into two main branches:
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1. Non-cooperative game theory: Mathematical formulation is based on strategies.
Equilibrium based solution concept, mostly solution addressed in terms of Nash
equilibrium.

2. Cooperative game theory: Mathematical formulation is based on coalition among
the players. Incentive based solution concept, mostly solution addressed in terms of
Shapley value, core, Nash bargaining and Pareto optimality.

In this section, in order to align with the identified objectives, literature survey is focussed
more in application of cooperative(coalitional) game theory in P2P energy trading. In a
cooperative game players communicate among themselves and form coalition to maximise
the common objective for mutual benefit. Then, the benefit is distributed equally and
fairly among themselves using solution concepts such as Shapley value and core. Overall
battery usage is reduced by P2P energy trading based on coalitional game theory in [40],
blockchain based coalitional formation algorithm for trading energy is proposed in [158].
P2P energy trading schemes based on coalitional game theory is presented in [172, 169,
39, 186]. An insightful general step-wise procedure for designing P2P energy trading
mechanism based on cooperative game theory is presented by Tushar et al. [39] as follows:

• Step-1: Choose a suitable architecture for the P2P community.

• Step-2: Identify an appropriate utility function for each agent that clearly cap-
tures the benefit of coalition. Check if the utility function holds the property of
superadditivity.

• Step-3: Examine for the existence of core in the coalition formation.

• Step-4: Conduct a stability test. Ensure to make the coalition stable by designing a
suitable revenue distribution mechanism that lies in a core if a core is non-empty.

• Step-4: Design a fair and equal revenue distribution mechanism. Solution concepts
such as Shapley value, Banzhaf Index (fairness criterion), the core (coalitional
stability), Nucleolus (based on the notion of deficit), Kernel and Stable set are
normally used.

One of the major challenges in P2P energy trading scheme based on coalition game theory
is the issue of scalability. While determining the Shapley value, the computation becomes
large and complex as the number of players increases in the coalition [39, 40]. To address
this challenge, a significant work has been reported in literature. Most of the work is
based on using the sampling techniques to approximate the Shapley value. In the work
of Castro et al. [202], the Shapley value is approximated by a sampling based method
that achieves a polynomial processing-time, which is implemented in the ApproShapley.
Instead of using a normal Shapley value, an Asymptotic Shapley value is proposed by
Lee et al. [175]. In work of Misra et al. [203], approximation is conducted by deriving
differential equations from the axioms of Shapley value. Alam et al. [40] has adopted the
sampling algorithm presented in [202]. Still, there are significant challenges associated
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with sampling-based approach in a larger settings, as it requires large number of samples
to obtain a reasonable approximation of the true Shapley value, which increases the
computation cost considerably. Furthermore, application of sampling-based methods in
energy communities is limited as they may not produce consistent result if they need to be
return for verification purposes [38]. The results are normally inconsistent as approximation
calculation is performed using random samples, which generates slightly different results
even on the same data.

As highlighted by most of the available literature, an energy communities can share and
trade electricity. However, exchanges of electricity is different from any other exchange
of goods. It requires physical network (grid) lines to allow the exchanges of electricity.
Technical limits of the physical network such has low voltage (LV) distribution grid can
have severe impact on the way the electricity is shared and traded in energy communities.
Therefore, the physical network constraints must be included in electricity trading models.
The state-of-the-art in modelling of physical network constraints is explained in the
following Section 2.5.

2.5 Modelling of physical network constraints

The physical network (the LV distribution grid) is an essential entity that allows the
exchange of energy in the settings of the energy communities. Recently, several approaches
have been proposed to integrate the network constraints such as electric cables thermal
limits and voltage excursions in the market structures and trading strategies of the energy
communities. Several approaches can be used to model a grid and assess the impact
of integrating the DERs connected to the low voltage distribution network. Power flow
approaches aim to determine the power flow, voltages and currents at every bus of the grid.
The inputs of these approaches are usually the loads and producers characteristics, such as
their forecasted consumption and production power, or current. A proper assessment of
the different types of the electrical grid and needs of the energy communities are crucial in
determining the type of method to be used in calculating the power flow and voltages. In
this section, different state of the art power flow approaches are presented.

2.5.1 Linear models of electrical grids

The power flow problem models the non-linear relationships among power injected at
each bus, demand power, bus voltages and angles, and circuit parameters. In most of the
applications, the non-linear models are approximated with suitable assumptions to facilitate
the use of fast load-flow solutions. However, the application of these linear approximated
approaches in LV distribution grids are limited as they often tend to neglect the active
power losses. Different linear models proposed in the literature are:

1. Impedance based model: In this model, the voltage is assumed to be constant all
the time. Current and voltage are related by fundamental Ohm’s law as shown in the
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Eq. (2.5)
[I] = [Y] [V] (2.5)

Where, [Y] is the admittance matrix of the network, [I] is the current flow in the
network, and [V] is the voltage at every node of the network. In the impedance based
model, it is assumed that the voltage does not vary, and that the current required by
each load is given by:

I =
S∗

V
(2.6)

Here, S is the apparent power of the load at each bus, and the superscript ∗ corre-
sponds to the complex conjugate [204]. Unfortunately, this type of approach gives
errors of magnitude close to 10%, which is not suitable for the purpose of local
energy markets that usually already rely on consumption and production forecasts
which are another important cause of errors.

2. Power based model linearisation: In the power based model, the power balance
is computed at every node of the grid. The apparent power that is consumed or
produced at node i is given by:

Si = Pi + jQi (2.7)

Then, the overall power balance is summarized as shown by Eq. (2.8) .

Pi = |Vi|∑
j

∣∣Vj
∣∣ ∣∣Yi j

∣∣cos(δ j −δi + γi j)

Qi =−|Vi|∑
j

∣∣Vj
∣∣ ∣∣Yi j

∣∣sin(δ j −δi + γi j)
(2.8)

Where, Yi je jγi j = Y i j is the admittance of the connection between bus i and bus j,
and Pi is the sum between the generated power (accounted for positively) and the
consumed power at node i. The voltage at each bus i is defined by V i =Vie jδi , with
δi the voltage angle. To make such formulation linear, it is often accepted to simplify
the sin and cos functions, considering that the angle difference between node i and
node j can be neglected, which yields to the following expression, that corresponds
to a DC power flow (direct current) assumption:

Pi = |Vi|∑
j

∣∣Vj
∣∣ ∣∣Yi j

∣∣cos(γi j)

Qi =−|Vi|∑
j

∣∣Vj
∣∣ ∣∣Yi j

∣∣sin(γi j).
(2.9)

Although this method is well suited for non-resistive network (transmission net-
works), it is not well applicable to LV distribution grids that are usually more
resistive.
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Therefore, for low voltage distribution grids where active and reactive power losses cannot
be neglected, it is necessary to adopt a more comprehensive approach, based on non-linear
formulations such as the one expressed in Eq. (2.8) .

2.5.2 Non-linear models of electrical grids

In the literature, distribution load flow approach and AC power flow approach (based on
Eq. (2.8)) are the two main models implemented for non-linear power flow computations,
as described below:

1. Distribution load flow: Distribution load flow approaches take advantage of the
radial characteristics of distribution grids to make the resolution of every bus’ voltage
quicker [205]. Starting from the bus at the top of the network, the algorithm computes
the voltage of each sub-level (noted i+1) one after the other using the following
equations:

Pi,i+1 = Pi−1,i − ri,i+1
P2

i−1,i +Q2
i−1,i

V 2
i

−Pi+1

Qi,i+1 = Qi−1,i − xi,i+1
P2

i−1,i +Q2
i−1,i

V 2
i

−Qi+1

Vi+1 =

√
V 2

i −2(ri,i+1Pi−1,i + xi,i+1Qi−1,i)+(r2
i,i+1 + x2

i,i+1)
P2

i−1,i +Q2
i−1,i

V 2
i

(2.10)

where level i is the parent level of level i+1 in the radial architecture, ri,i+1 and xi,i+1

are the line resistance and reactance between levels i and i+1, Pi,i+1 is the active
power flowing from level i to level i+1, and Pi+1 is the active power consumed or
injected by the assets installed at the considered node. Although this method is well
adapted to radial distribution power flow, it requires a forward-backward process to
entirely capture the power flow in each branch, as the first branch’s power cannot be
known exactly otherwise.

2. AC power flow: In the literature, Current-based and power-based methods are the
two different types of AC power flow approaches implemented. In current-based
method, the algorithm aims to solve Eq. (2.11).

[V]N+1 = [Y]−1 [I] ([VN ]) (2.11)

where N is the iteration step of the resolution algorithm. This algorithm consists in
initializing all voltages at a value of 1 per unit, then compute the current injection at
each node from Eq. (2.5), Eq. (2.6), or from the constant current consumed/produced
by the asset installed at the considered node, depending on the ZIP type of the asset
(constant impedance, constant power or constant current respectively). The resulting
current vector is then reinjected into Eq. (2.11) until the voltage has converged.
While, in power-based method, the algorithm aims to solve Eq. (2.8), knowing what
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is the power injected/consumed at each node of the grid. However, this requires to
make some assumptions for nodes with large generation assets, such that the voltage
amplitude is regulated, which is a weak assumption in transmission grids. Also,
similar to the current based method, it requires to fix the voltage value to 1 per unit
at one bus of the grid, called the Slack bus, which is often the bus at which the
power injected is the greatest (connection with the main grid, or largest power plant
modelled). Then, mathematical methods to solve Eq. (2.8) are either Gauss-Seidel or
Newton-Raphson using the Jacobian matrix of the grid impedance [206]. Normally,
the Newton-Raphson numerical approach allows a quicker convergence.

Power-based non-liner AC power flow approach is the most commonly used method.
For instance, Guerrero et al. [181] have used Newton-Raphson power flow approach to
determine the voltage sensitivity coefficients for the peer-to-peer (P2P) energy trading
mechanism. Similarly, Azim et al. [145] have used power based method using IEEE
8500-node distribution test feeder to estimate the losses associated with P2P transactions.
Furthermore, Couraud et al. [147] have studied the impact of fully decentralized reactive
power control on low distribution network using the power based non-linear AC power
flow approach. Recently, Tevar-Bartolome et al. [148] have assessed the impact of the
distributed PV penetration on the LV distribution network using the planning-oriented load
flow solver based on non-linear AC power flow approach. Likewise, Grzanic et al. [207]
formulated a distribution network model using Newton-Raphson power flow method to
study the impact of electric vehicle (EV) penetration on the LV distribution network. These
various power flow approaches are formulated to account the network constraints such
as power balance, line capacity and voltage excursions. However, most of the existing
studies on the techno-economic analysis of individually-owned versus centrally-shared
community-owned assets (renewable generator, battery storage) have not considered the
network constraints. These energy assets might be prevented from exporting/consuming
to/from the grid due to network constraints.

2.6 Key findings (main research gaps)

Chapter 2 presented the literature review relevant to the topic of this thesis. At first, a
literature survey on smart local energy system (SLES) was presented. SLES such as energy
communities and LEM are emerging as new methods to coordinate distributed energy
assets in a local area and provide new financial incentives [4]. Generally, potential benefits
of SLES includes opportunities for revenue generation or cost reduction for end-users
and local communities and enable market access to small-scale generation and storage,
which may unleash the value of demand-side flexibility and improve wider network
and system management, but depend on the market design. There are also challenges
and risks associated with the adoption of SLES, most importantly coalitions in energy
communities and LEMs need to be adopted by end-users. Hence, the key to successful
deployment is to place the consumers at the centre of the energy revolution and to design
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solutions that are tailored to local communities and end-user needs, while achieving desired
decarbonisation [43].

The decarbonization targets and the development of renewable and low carbon tech-
nologies are changing the electricity systems in UK and worldwide. The sustainable
implementation of these changes in the energy markets can be achieved only if the con-
sumers/prosumers are rightly incentivised. Similarly, the integration of the system, trans-
mission and distribution network operators in the overall local energy portfolio is crucial
for the successful and practical operation of the SLES. The current gaps and needs for
unlocking the potential of SLES are evident from the various relevant reports and publica-
tions:

• “Unlock value of customer actions and assets”, Energy Digitisation Taskforce
report-Delivering a Digitalised Energy System [12].

• “. . . .the design of our retail market has led to instability and a race-to-the-bottom
on price, without providing incentives for consumers to invest in decarbonization
or the demand flexibility that our future system desperately needs”, Tony Blair
Institute for Global Change report-Powering Ahead: The Need to Reform UK
Energy Markets [208].

• “..a capability gap in social factors within multi-agent energy system modelling”,
UKERC Briefing paper 2: Strengths and Weakness of Energy Modelling in the
UK [209].

• “..current Supplier Hub Model Review should provide the mechanism for consumers
to engage with the market”, University of Exeter, Energy Policy Group-Unlocking
Local Energy Markets [210].

• “Transition of Distribution Network Operator (DNO) to Distribution System Op-
erator (DSO) is critical for the successful operation of Local Energy Markets”,
University of Exeter-Policy and Regulatory Barriers to Local Energy Markets in
Great Britain [211].

• “. . . the current regulatory incentives for network companies to adopt demand side
or flexible operational approaches to solve network constraints are clearly developed
than the incentives for long-term capital investments”, CATAPULT Energy Systems-
The policy and regulatory context for new Local Energy Markets [212].

In addition to the challenges faced by DSOs leading to local generation and load
curtailments, financial incentives for renewable energy production such as feed-in tariffs
are being reduced considerably, which impacts the pace of energy transition. Hence, the
current energy market settings and regulatory frameworks do not offer the right incentives
to consumers for adoption of the low-carbon energy assets. This is increasingly leading to
a need for establishing a consumer-centric business models (incentives) with substantial
innovation in the way the local networks are managed and balanced. In this context, how



46 Background and related work

SLES are designed and shared, are open research questions that require novel modelling
paradigms that place end-users in the centre of the decision-making for the energy system.

In most of the literature reviewed, studies show that the community battery storage
system offers higher benefits as compared to individual household distributed batteries.
However, most of existing studies do not consider the battery degradation cost when
determining the optimal battery capacity. The battery lifetime depends on the charge/dis-
charge cycles, which in turn are shaped by the control scheme. Thus, there is a need to
accurately estimate the depreciation of the battery from the operating profiles and there-
fore assess the operational cost and overall economic value of the integrated renewable
energy system. Furthermore, although higher benefits can be achieved by investing in
jointly-owned community energy assets, how to redistribute these benefits among the
individual households in the community still remains a key open question, of both research
and practical interest. Current energy communities usually employ algorithms based on
proportionality of consumption to redistribute the benefits from the community-owned
generator assets. However, such methods are not fair, and not applicable in the case of
energy storage assets, where the proportionality of the asset usage does not apply. Hence,
there is a need to design an efficient and fair redistribution mechanisms that applies to both
community-owned renewable generator and storage assets, while incorporating the asset’s
degradation, and the physical network and operational constraints.

Furthermore, installation of renewable generator (solar PV/wind turbine) or batteries in
the grid changes power flows, and might create congestions, voltage excursions, or line over-
heating. In such cases, the grid operator might consider the need for an Active Network
Management (ANM) to remotely control the injection of distributed renewable generator
and storage assets. Therefore, due to this congestion/voltage excursion, assets might be
prevented from exporting/consuming to/from the grid, reducing the benefits from their
owners. For instance, when the grid is constrained with voltage excursions, then the exports
form PV/wind turbine and exports/imports from/to battery can be curtailed. Therefore,
such curtailment events need to be accounted for in the energy community setting by
including power flow (physical network/grid constraints) in the techno-economic analysis.
For example, in most of the prior literature, the studied models of energy communities do
not consider the impact of physical network constraints in the assessment of the techno-
economic benefits of community-owned energy assets compared to individually-owned
energy assets. Moreover, most of existing redistribution frameworks are developed without
considering network constraints, in which case the computation cost becomes even more
challenging. hence, there is an urgent need to develop practically applicable redistribution
mechanism that is scalable and computationally tractable.

One of the major challenges in P2P energy trading scheme based on coalition game
theory is the issue of scalability. Specifically, when determining the solution concepts
such as Shapley values in a coalition, the computation becomes highly complex and
time-consuming as the number of players increases in the coalition. Moreover, most
of the existing redistribution frameworks are developed without considering network
constraints, in which case the computation becomes more challenging. Thus, there is
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still a need to develop a redistribution mechanism that is fair, but also provide tractable
computational performance that scales well with the increasing number of members in the
energy community coalition, while considering operational network constraints. These
challenges are addressed in the following Chapters 3, 4, and 5.

Although innovative P2P transactive models are proposed as a promising solutions for
SLES, implementation of a fair market clearing mechanism still remains as one of the
biggest technical challenges of the P2P energy trading schemes. Moreover, there is still
a need to study the impacts of a community’s characteristics on the profitability of P2P
transactive schemes. For instance, local P2P energy trading market may not be profitable if
all the members of the community own a larger energy asset. There is a significant knowl-
edge gap on such sensitivity study on identifying the right or suitable characteristics of the
community that makes the P2P local market profitable for the community. Furthermore,
there is need to study the self-sufficiency of the community with and without local P2P
markets, particularly the kind or markets that are determined in terms of import/export
from the grid and P2P local markets. These issues are further investigated in the following
Chapter 6.





Chapter 3

Modelling the control of energy assets
for a single prosumer

Chapter 3 focuses on the modelling of the real-time control of energy assets for a single
prosumer. In this chapter, a comprehensive model of a single prosumer is proposed with
the objective to determine the benefits a prosumer can expect from owning a Renewable
Energy System (RES) and/or a Battery Energy Storage System (BESS). As highlighted
in chapter 2, the management of integrated renewable energy systems (consisting of
renewable generator and storage) requires a careful consideration of assets’ cost, sizing and
operation, such as to maximize their Remaining Useful Lifetime (RUL), and hence return
on investment. Technically, for instance, the depth to which a battery is discharged, the
discharge current and the chemistry used has a direct effect on its remaining useful lifetime.
This translates into a considerable impact on the total cost of operation and maintenance
of the battery, especially as energy storage is one of the most expensive component of
an integrated renewable energy system. Moreover, the frequent charging and discharging
operations leads to cyclic ageing and incurs an extra cost as it accelerates the depreciation
of the battery. Along with the fact that batteries’ lifetime is comparatively shorter than
that of renewable generators, this highlights the importance of using an appropriate battery
control mechanism to extend the system’s useful life. In this chapter, a rule-based battery
control algorithm is proposed for maximization of behind the meter self-consumption,
which considers the effect of battery life degradation. Furthermore, pricing schemes along
with a comprehensive analysis and power generation profile from wind turbine an solar
PV, and demand profile for a prosumer is presented in this chapter. These pricing schemes,
renewable generation and demand profiles are adopted in the community settings of this
thesis. Finally, this chapter also describes a techno-economic study of energy assets, and
discusses future scenarios in which assets would become more profitable to a prosumer.

Part of the research work presented in Chapter 3 were published in peer-reviewed
scientific paper [213].
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3.1 Research contributions

The state of the art in modelling the prosumer were presented in detail in chapter 2. In this
thesis, a prosumer model is presented to study the techno-economic benefits of investment
in energy assets such as renewable generator (wind/solar PV) and battery assets. With
respect to the scientific publications found in the literature review, the main contribution
of this work relates to the development of real-time battery control algorithm for optimal
scheduling of prosumer (end-user) renewable energy production and consumption. This
rule-based battery control algorithm maximizes behind the meter self-consumption of
the prosumer and it considers the effect of physical assets life degradation in the overall
techno-economic analysis. As shown in section 2.2.2 of chapter 2, most of existing studies
do not consider the battery degradation cost when determining the optimal battery capacity.
The battery lifetime depends on the charge/discharge cycles, which in turn are shaped
by the control scheme. Work presented in this chapter aims to accurately estimate the
depreciation of the battery from the operating profiles and therefore assess the operational
cost and overall economic value of the integrated renewable energy system consisting of
RES and BESS. The methods developed provide a useful control strategy for a single
prosumer for optimal scheduling of the renewable generation and battery storage that
maximizes local consumption and decreases the simple payback period of storage assets
to make them profitable. The major contribution of this work is that the optimization
formulation (real-time control algorithm) integrates consideration of battery lifespan by
accurately computing the DoD of each discharge half-cycle experienced by the battery,
which is not fully addressed by the state of the art formulations.

In summary, the research contributions of the work presented in chapter 2 that progress
beyond the state of the art are:

• This work models the control of prosumer energy assets from an economic and
technical perspective with an unprecedented level of details. This includes, incor-
porating real state-of-the-art battery control and degradation functions, using real
commercially-available, dynamic tariffs from the UK market, as well as a whole
year of high-granularity demand and renewable generation data.

• A real time rule-based battery control algorithm is proposed. The control scheme
consists of operational real-time decisions to charge or discharge the battery, and
this if-then rule based control strategy includes several objectives, such as local bill
reduction, and maximization of self-consumption.

• The key novel feature of the proposed framework is an integration of battery degra-
dation model with renewable energy optimization. To achieve this, the control
scheme employs a battery state of health degradation model based on the battery
depth of discharge in each control cycle. The proposed control algorithm takes into
consideration the battery’s depreciation cost, which is determined by the accurate
enumeration of battery cycles, including partial cycling i.e. battery cycles that do
not start or end at 100% of SoC.
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• A comprehensive techno-economic study of benefits provided by energy assets
connected behind-the-meter for a single prosumer is presented for both fixed and dy-
namic tariffs. The proposed real-time battery control algorithm is implemented using
different parameters (battery characteristics, prices, production and demand time-
series) that can be changed in order to realize a sensitivity study on the profitability
of a DERs at a prosumer level.

• The proposed control scheme, experimental and the economic study of the single
prosumer (including the sensitivity analysis) is validated using a real case study from
large-scale ReFLEX (Responsive Flexibility) smart energy demonstrator project
based on the islands of Orkney, Scotland, UK [8], one of the UK’s largest smart
local energy demonstrator project.

The detail modelling of the control of energy assets for a single prosumer is presented
in the following sections.

3.2 Methodology

A prosumer is an owner of various DERs, and is able to generate electricity as well as
consume electricity [5]. Figure 3.1 shows the basic prosumer model, such models typically
involve distributed renewable electricity generation-usually wind or solar PV, battery
energy storage system and flexible/non-flexible demand normally installed behind-the-
meter (power that can be used directly without passing through the utility grid meter [214]).
Generally, prosumer’s aim is to maximize behind-the-meter self-consumption from local
renewable generation to make DERs more profitable.

Figure 3.1: Prosumer model.

In the methodology employed, a prosumer model is utilized to examine the techno-
economic advantages associated with investing in energy assets, including renewable
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generators (wind/solar PV) and battery assets. This is illustrated in Figure 3.1. To achieve
this, there is a need to use a simulated control of assets by implementing appropriate
control algorithm considering the real time-series generation and demand data, simulated
for different electricity pricing schemes. First, the model inputs are presented. This
model inputs includes modelling of a real time-series data of production (wind/solar PV),
prosumer demand and electricity pricing schemes (fixed tariff & dynamic ToU tariff). Then
a comprehensive prosumer model with battery control mechanisms are described. Finally,
a comprehensive techno-economic study is presented to determine the benefits offered
by energy assets to prosumers, taking into account the degradation of physical assets and
operational constraints.

3.3 Model data input

3.3.1 Demand profile data

Regarding the demand data available for simulation, a collection of energy demands of
households connected to a smart grid during the Thames Valley Vision project [215]
are utilized. The Thames dataset by Scottish & Southern Electricity Networks contains
consumption data for 220 UK Elexon profile class-1 and class-2 households over a timespan
of a year (from January 2017 to December 2017). Demand data consist of half hourly
consumption load in watt-hour (Wh). In this thesis, the demand dataset for 200 houses
of class-1 profile, which corresponds to domestic unrestricted customers, was used for
the prosumer model. Two hundred households have been classified as either small or
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Figure 3.2: Hourly average demand of largest consumer (highest annual consumption) and
smallest consumer (lowest annual energy consumption)

large consumers based on their annual energy consumption. Among these households,
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the demand range varies significantly, ranging from the lowest annual consumption of
1001 kWh to the highest annual consumption of 18736 kWh. In order to determine
the community demand, the individual demands of all 200 households are aggregated,
providing an overall representation of the energy consumption within the community.

To analyse the energy consumption patterns of the highest consumer, lowest consumer,
and the overall community, the average hourly demand for each category is computed.
This provides insights into their respective energy usage throughout the day. Figure 3.2
showcases the average hourly demand for the highest consumer and lowest consumer. This
figure enables a visual comparison of their energy consumption patterns, highlighting the
peak and off-peak periods. The highest consumer’s demand represents the household with
the most significant energy usage in a year, while the lowest consumer’s demand depicts
the household with the lowest annual energy consumption.
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Figure 3.3: Hourly average demand of the community (aggregated demand of 200 house-
holds))

In Figure 3.3, the average hourly demand for the community is displayed. This plot
illustrates the collective energy usage of all 200 households within the community. It show-
cases the overall energy demand over the course of a day, allowing for the identification of
peak hours and general consumption trends. These figures provide valuable insights into
the energy consumption patterns of different consumer types within the community. By
comparing the average hourly demands for the highest consumer, lowest consumer, and
community demand, a comprehensive understanding of energy usage variations can be
obtained. These insights are crucial for designing effective energy management strategies
and optimizing resource allocation within the community.
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In this thesis, the utilization of demand data from the Thames Valley region in the
South of England, rather than Orkney, was primarily driven by practical considerations.
Specifically, it was found that the ReFLEX project, which had just commenced in Orkney,
required more time to collect a sufficient amount of data from the installed smart meters.
Meanwhile, comprehensive demand data from the Thames Valley area was readily available.
Given the importance of having a substantial dataset for meaningful analysis, the decision
was made to leverage the existing data from the Thames Valley region. This dataset
provided a robust foundation for studying demand patterns, consumption behaviours, and
other relevant factors within a real-world context.

On the other hand, for assessing the renewable generation potential of PV and wind
resources, the decision was made to rely on Orkney’s data. Known for its abundant
renewable energy resources, Orkney provided a suitable setting to investigate the feasibility
and optimization of integrating renewable energy sources into the local energy system.
By combining the available demand data from the Thames Valley with the renewable
generation data from Orkney, this thesis aims to contribute valuable insights into renewable
energy systems. The broader objective is to enhance our understanding of renewable
energy integration in different geographical contexts, ultimately facilitating the adoption
and optimization of sustainable energy solutions worldwide. Furthermore, it is important
to emphasize that throughout this thesis, a high priority has been given to the development
of a robust methodology. While the dataset used is crucial for analysis, the focus has
primarily been on ensuring rigorous research methods and sound analytical techniques to
generate reliable and meaningful insights for the integration of renewable energy systems.

3.3.2 Wind speed and power model data

Real wind data from the UK Met Office Integrated Data Archive System (MIDAS) [216]
provided by British Atmospheric Data Centre (BADC) was used for the analysis. The
MIDAS dataset consist of meteorological observations from weather stations located at
various parts of the UK. Wind data from the Kirkwall airport weather station located in
Orkney, Scotland was specifically chosen to align with the objective of setting a local
community energy system based on ReFLEX project [8]. Wind data obtained consist
of hourly mean wind speed measured from anemometers at a nominal height of 10 m
above the ground and ground is 26 m above sea level, rounded to the nearest knot (1
Kn = 0.5144 m/s). Wind data was cleaned and the missing data was replaced by double
spline interpolation function. Similar methods adopted by Fruh [217, 218] and Andoni et
al. [219] are applied for converting wind speed to power.

A power curve was adopted based on an Enercon E-33 [220] wind turbine of 330 kW
rated capacity and a hub height of 50 m. The wind turbine has cut-in speed of 3 m/s and
cut-out speed of 25 m/s. Logarithmic shear profile is used to extrapolate wind speed in m/s
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from nominal anemometer height(Za) to nominal wind turbine hub height(Zh):

Uh =Ua
log

Zh

Z0

log
Za

Z0

(3.1)

where, Uh is the wind speed at hub height, Ua is wind speed at anemometer height and Zo

is the surface roughness. Za = 26 m, Zh = 50 m and the surface roughness Z0 = 0.03 m
(as adopted in [217–219]) are used in estimating the wind speed at hub height. The power
curve of the Enercon E-33 wind turbine was used in estimating the power output of the
wind turbine, and the generated power was normalised to the rated capacity or nominal
power output. Then, the intermediate values of the estimated power are approximated by a
sigmoid function with parameters a = 0.7526 s/m and b=8.424 m/s as per the Eq. (3.2).

f (u,a,b) =
1

1+ e−a(u−b)
(3.2)

Wind power estimated in kW was converted to W and one hour resolution data is converted
to half hourly data (using double spline interpolation function). Conversion of wind power
was performed to make it compatible with the resolution of demand data. The wind power
estimated from the power curve of the Enercon E-33 wind turbine is shown in Figure 3.4.
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Figure 3.4: Power curve of Enercon E-33 wind turbine and best sigmoid fit function based
on Eq. 3.2.
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3.3.3 Solar radiation and PV power data

Similar to wind generation data, for the analysis we have used a real solar radiation data
from the UK Met Office Integrated Data Archive System (MIDAS) [221] provided by
British Atmospheric Data Centre (BADC). The MIDAS dataset consists of meteorological
observations from weather stations located at various parts of the UK. In this thesis, solar
irradiance data collected by station located at Kirkwall, Orkney is used.

The UK hourly solar radiation data contain the amount of solar irradiance received
during the hour ending at the specified time. All sites report ’global’ radiation amounts.
This is also known as ’total sky radiation’ as it includes both direct solar irradiance and
’diffuse’ irradiance as a result of light scattering. To optimize energy production, solar
panels are commonly angled in accordance with the latitude of the installation site. This
practice enables the panels to effectively capture sunlight throughout the year by aligning
them perpendicular to the sun’s rays at noon during the equinoxes. In the case of Kirkwall,
Orkney, which has a latitude of approximately 59 degrees north, a recommended tilt angle
for solar PV panels would typically range from 60 to 65 degrees from the horizontal plane.
This steeper tilt compensates for the reduced sunlight during the winter months and ensures
efficient solar energy generation in the region.

The process of estimating solar PV power generation involves converting hourly solar
radiation data from kilojoules per square meter (kJ/m2) to watts per square meter (W/m2).
This conversion establishes a direct correlation between solar radiation intensity and
potential power output. The data is then normalized, taking into account the system’s
efficiency and panel area, to ensure a more accurate estimation of actual power generation.
To align the solar PV power data with the resolution of the demand data (i.e., half-hourly
intervals), a conversion from hourly resolution to half-hourly resolution is performed.
This adjustment enables a consistent analysis and comparison of the solar PV power
data with the demand data. The resolution adjustment is typically achieved using double
spline interpolation, which estimates power values at intermediate time points based on
the available hourly data. By following these steps, the solar radiation data is effectively
transformed into solar PV power data at a compatible resolution, allowing for accurate
analysis and comparison with the demand data.

3.3.4 Tariff structure data

In this thesis, the focus was not on the consideration of the feed-in tariff (export tariff).
Instead, two types of pricing schemes for energy imports from the main utility grid were
taken into account. Export tariff to the grid was not included as many developed countries
worldwide (such as the UK or the EU), guaranteed feed-in-tariffs (FITs) for renewable
electricity generated by small DERs are being phased out as a support mechanism, i.e. they
are gradually reduced or are well below retail tariffs available from large operators [34].
For instance, in the UK, FITs are no longer available to producers of any size since 31st

March 2019 [15]. A fixed and a dynamic time of use (ToU) import tariffs were considered
as described below:
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• Fixed tariff: a fixed tariff of 16 pence/kWh was adopted after comparing the fixed
electricity prices offered by various UK-based electricity suppliers using web-tools
in price comparison site Money Supermarket [222]. This website is one of the
several price comparison sites approved and accredited by the Office of Gas and
Electricity Markets (Ofgem) [223], the government regulator for the electricity and
downstream natural gas markets in UK.

• Dynamic tariff (ToU): the dynamic ToU tariff was based on Agile Octopus [224]
offered by Octopus Energy, a UK-based electricity supplier. Agile Octopus tariff
consist of a maximum price of 35 pence/kWh, an average price of 15.9 pence/kWh,
and a minimum of 2.8 pence/kWh. Both the fixed and dynamic ToU pricing schemes
corresponds to real tariffs applied in 2022.

3.3.5 Unitary cost of energy assets

In this thesis, a battery cost of 150 £/kWh was assumed based on 2022 Lithium-ion battery
forecasts estimated by BloombergNEF [225, 226]. According to BloombergNEF [226]
and PV Europe-Energy Storage [227], battery costs are expected to drop even further in
the following years with an estimated cost of less than $100/kWh expected in 2023. The
chosen battery cost of 150 £/kWh for the year 2022 is consistent with the Lithium-ion
battery cost forecasts for 2022 and 2025 published in the McKinsey quarterly report [228].
A cost of 1100 £/kW for solar PV generation capacity, and 1072 £/kW for wind generation
capacity was assumed based on the production and installation cost of solar PV and wind
turbines according to EIA, Annual Energy Outlook 2022 [229]. These costs reflects
the average values of levelized cost of electricity (LCOE) and levelized avoided cost of
electricity (LACE) for solar PV generating technologies entering service in 2025.
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3.4 Model overview

The model of a single prosumer includes the following assets owned by the prosumer:

1. Wind turbine or solar PV.

2. Battery.

3. Non-flexible loads.

A power flow diagram of the single prosumer model is shown in Figure 3.5. The overall
power balance of the system at any given time t is given by:

pgrid(t) = d(t)− pbat(t)−gwind/solar(t), ∀t ∈ [0,T ] (3.3)

where T corresponds to the end of the considered time period for the operation of the
system. For example, if the operation window [0,T ] consists of a full calendar year
with half-hourly time steps, then |[0,T ]|= 365×48 = 17520 time steps. gwind/solar(t) is
the power (or energy as fixed time interval is considered) generated by the renewable
generator (either wind turbine or a solar PV installation). pgrid(t) represents the power that
a prosumer can buy/sell power from/to the grid. pbat(t) represents the power of the storage
system, which is considered negative when the battery is charging (battery considered as
load), and positive when the battery is discharging (battery considered as generator). d(t)
is the power consumed by the prosumer.

Renewable energy
generator (wind/solar)

Utility grid

Battery energy
storage system Prosumer demand

gwind/solar(t) pgrid(t)

pbat(t) d(t)

d(t)

Figure 3.5: Power flow diagram of the single prosumer model.

The battery is used to store the excess power from the intermittent power source (wind
or solar). The prosumer demand d(t) is considered inflexible and needs to be satisfied
at all times by these three power sources (RES, BESS and the utility grid). The control
algorithm for the battery to meet the demand d(t) with these three power sources is defined
in the following subsection.



3.4 Model overview 59

3.4.1 Battery modelling and control algorithm

The operation of the battery is constrained by the state of charge (SoC) levels, and a maxi-
mum power (pbat,max) that the battery can be charged or discharged at, which corresponds
to its maximum C-rating. At any given time t of a charging phase, the battery is charged
with an efficiency (ηc) until it reaches the maximum battery capacity (SoCmax). Charging
constraints are defined as:

SoC(t)≤ SoCmax (3.4)

pbat(t)≤ pbat,max (3.5)

Similarly, the battery can be discharged with an efficiency (ηd) until it reaches its minimum
battery capacity (SoCmin). Discharging constraints are defined as:

SoC(t)≥ SoCmin (3.6)

pbat(t)≤ pbat,max (3.7)

The minimum battery capacity corresponds to the maximum allowable depth of discharge
(DoD). A battery control scheme consists of operational real-time decisions to charge or
discharge the battery. In this subsection, a rule-based battery control algorithm is proposed.
The primary objective of this algorithm is to charge the battery during periods of power
surplus and discharge the battery during periods of power deficit. The algorithm can be
described as follows:

If gwind/solar(t)> d(t), there is excess of power generated from the intermittent source.
The control strategy of the battery dictates the following:

i If SoC(t) ≤ SoCmax and pbat(t) ≤ pbat,max then the excess power is stored in the
battery (charging operation, pbat(t)< 0).

ii If the battery is full (SoC(t) > SoCmax) or if available power is greater than the
maximum acceptable charging power ( pbat(t)> pbat,max), then the prosumer sells
the excess power to the utility grid at a selling price equal to τs(t).

The resulting SoC profile and the energy exported es(t) to the grid during the identified
duration of excess generation are determined as:

pbat(t) =−min
(

min
([

gwind/solar(t)−d(t)
]
, pbat,max

)
,
[SoCmax −SoC(t −1)]

ηc∆t

)
(3.8)

SoC(t) = SoC(t −1)−η
c pbat(t)∆t (3.9)

es(t) =
[
gwind/solar(t)−d(t)+ pbat(t)

]
∆t (3.10)

where ∆t corresponds to the duration of the considered time step.
Similarly, if gwind/solar(t) < d(t), then there is a deficit in power supplied by the

intermittent source and the battery will operate as follows:
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i If SoC(t) ≥ SoCmin and pbat(t) ≤ pbat,max then discharge the battery to meet the
demand (discharging operation, pbat(t)> 0).

ii If the battery energy or power are not enough (i.e SoC(t) < SoCmin or pbat(t) >
pbat,max) to compensate the power deficit at this time step, the prosumer buys the
remaining deficit power from the utility grid at a buying price equal to τb(t).

Hence, the SoC profile and energy imported eb(t) from the utility grid during the identified
duration of deficit in energy are determined as:

pbat(t) =min
(

min
([

d(t)−gwind/solar(t)
]
, pbat,max

)
,ηd

[
SoC(t −1)−SoCmin

])
(3.11)

SoC(t) = SoC(t −1)− pbat(t)
ηd ·∆t (3.12)

eb(t) =
[
d(t)−gwind/solar(t)− pbat(t)

]
∆t. (3.13)

Inputs
gwind/solar(t),d(t),SoCinitial

gwind/solar(t)> d(t)

SoC(t)≥ SoCmax

or
pbat(t)> pbat,max

SoC(t)≤ SoCmin

or
pbat(t)> pbat,max

Sell excess
energy to the
grid at τs(t)

Charge
the battery

Buy deficit
energy from

the grid
at τb(t)

Discharge
the battery

Yes No

Yes No Yes No

Figure 3.6: Flowchart of rule-based battery control strategy.

A flowchart of the proposed control strategy is shown in Figure 3.6. Algorithm 3.1
outlines this if-then rule based control strategy. The proposed control algorithm is generic
in nature and can be easily extended to incorporate decisions based on price signals,
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although our extensive experiments showed that incorporating current ToU price signals in
the algorithm did not provide greater benefits to the prosumer.

Algorithm 3.1: Rule-based battery control algorithm
1 Input1: generation gwind/solar(t), demand d(t), and grid price: τb(t),τs(t)
2 Input2: battery specifications: ηc, ηd , SoCinitial, SoCmax, SoCmin, pbat,max, rated

capacity of the battery as variable input
3 for t = 1 : T do
4 ∀t ∈ [0,T ], excess of energy or deficit in energy is determined
5 if gwind/solar(t)≥ d(t) then
6 pbat(t) =

−min
(

min
([

gwind/solar(t)−d(t)
]
, pbat,max) , [SoCmax −SoC(t −1)]

ηc∆t

)
7 When, SoC(t)≤ SoCmax and pbat(t)≤ pbat,max

8 Charging the battery (pbat(t)< 0):
9 SoC(t) = SoC(t −1)−ηc pbat(t)∆t

10 When, SoC(t)> SoCmax or pbat(t)> pbat,max

11 Sell excess energy to the grid at τs(t):
12 es(t) =

[
gwind/solar(t)−d(t)+ pbat(t)

]
∆t

13 else
14 pbat(t) =

min
(
min

([
d(t)−gwind/solar(t)

]
, pbat,max) ,ηd [SoC(t −1)−SoCmin])

15 When, SoC(t)≥ SoCmin and pbat(t)≤ pbat,max

16 Discharge the battery (pbat(t)> 0):

17 SoC(t) = SoC(t −1)− pbat(t)
ηd ·∆t

18 When, SoC(t)< SoCmin or pbat(t)> pbat,max

19 Buy deficit energy from the grid at τb(t):
20 eb(t) =

[
d(t)−gwind/solar(t)− pbat(t)

]
∆t

21 end
22 end
23 Output: ∀t ∈ [0,T ], SoC(t), input to rainflow cycle counting algorithm used to

calculate the battery depreciation factor, es(t) energy exported to grid at a selling
price equal to τs(t), and eb(t) energy imported from grid at a buying price equal
to τb(t).

The performance of the rule-based battery control strategy was compared with an
optimisation-based battery control [230] based on Mixed Integer Linear Programming
(MILP) that determines the optimal battery schedules for a future period (day-ahead for
example) based on forecasts of future renewable generation, demand and electricity prices.
Figure 3.7 shows the comparison of the bill of a prosumer for different battery control
algorithms, such as the proposed rule-based algorithm (in yellow), and two optimization
based control algorithms with different time horizon. The first optimization control with
the time horizon of 1 day corresponds to an optimization-based battery control approach
where the optimization problem is solved to determine the optimal battery schedules for
the next 24 hours (1 day). This strategy considers forecasts of renewable generation,
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Figure 3.7: Comparison of the annual bill achieved for a prosumer using optimization
based and rule-based control algorithms for batteries capacities ranging from 0 to 20 kWh.

demand, and electricity prices within a 24-hour time frame. The second optimization
based control with time horizon of 3 days strategy is another optimization-based battery
control approach with an extended time horizon. In this case, the optimization problem
is solved to determine the optimal battery schedules for the next three days (72 hours).
The forecasts of renewable generation, demand, and electricity prices are assumed to be
accurate for this three-day period. The comparison of the prosumer’s bill allows for an
evaluation of the financial benefits obtained from each battery control strategy. It assesses
the cost savings or other relevant metrics achieved by the rule-based approach compared
to the optimization-based approaches with different time horizons. One can see that the
longer the optimization time horizon is, the better the control decisions will be. However,
this does not include the risk of forecast uncertainties.

The comparison demonstrated that longer optimization time horizons led to improved
control decisions. However, this analysis did not account for the risk of forecast uncertain-
ties. In the case where electricity import prices (τb(t)) consistently exceeded electricity
export prices (τs(t)), both the rule-based battery control and the optimization based bat-
tery control for arbitrage yielded comparable benefits to the prosumer. However, the
optimization based approach exhibited significantly greater complexity and uncertainty.
Consequently, the thesis focused solely on the rule-based battery control scheme, as it pro-
vided satisfactory benefits without the added complexities associated with the optimization
based approach.
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3.4.2 Battery degradation for economic study

To determine the economic viability of integrated renewable energy systems that include
battery energy storage system, it is important to assess the depreciation (degradation) of
the battery, since the battery lifespan is much shorter than the one of other assets such as
renewable generators [86, 85]. The useful battery lifetime depends on the frequency of
charge/discharge cycles, and on the depth of discharge (DoD) [81]. Indeed, frequent deep
charging and discharging operations lead to cyclic ageing inflicting additional costs, as the
depreciation of the battery is accelerated [82]. Thus, there is a need to accurately estimate
the depreciation of the battery to assess the operational cost and overall economic value of
the battery energy storage system.
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Figure 3.8: Li-ion battery life cycle data used in the modelling based on data from [86].

Calendar life refers to the number of years a battery is expected to last until it reaches
its end of life (EoL). EoL is normally defined as a state of the battery when the maximum
capacity of the battery reduces to 80% of its rated initial capacity. It is independent of its
cycling behaviour, and thus it is normally regarded as constant [82]. Predominantly, the
service life of the battery usually degrades when subjected to repeated charge/discharge
cycles. Furthermore, battery life not only depends on total number of cycles, but also to
the depth of discharge (DoD) of the cycles as specified by the manufacturers. Therefore,
most of the emerging and existing battery degradation models assess the useful life of a
battery by considering cyclic degradation [86, 84, 81, 85, 82, 87, 83, 69].

A battery cycle life corresponds to the number of charge/discharge cycles the battery
can undergo based at a certain DoD as specified by the manufacturer. Typically, the number
of cycles in a battery lifetime versus the cycle’s DoD is specified in the battery data sheet
as shown in Figure 3.8 . For instance, if the total number of permitted battery cycles is
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2000 with 80% DoD, it means that every cycle from 100% state of charge (SoC) to 20%
SoC consumes 1/2000 = 0.05% of the total life. Figure 3.8 shows that, as the DoD of the
charging/discharging cycle increases, the expected cycle-life of the battery decreases. This
means, a battery that is exposed to shallow charging/discharging cycles is expected to have
a longer cycle-life than the battery that is exposed to deeper discharges [83]. It is important
to note that the number of cycles versus DoD curve provided by manufacturers is obtained
at specific temperature and C-rating.

A cycle is considered complete when the battery’s depth of discharge returns to its
initial point. Within these cycles, there are two types: full cycles and half cycles. Full
cycles involve equal depths of discharging and charging, while half cycles consist of either
a charging or discharging phase. Additionally, cycles can be further categorized as either
regular or irregular based on the starting and ending state of charge (SoC) within the cycle.
The specific definitions for regular and irregular cycles are as follows:

• Regular cycles: in this cycling process the starting SoC is 100%, then it is discharged
to a certain SOC corresponding to a specific DoD and recharged back to 100% SoC.
For example, 100% SoC-to-50% SoC-back to 100% SoC corresponds to 50% DoD
cycle.

• Irregular cycles: in this case, the starting SoC is not other than 100% SoC, i.e. cycles
start at any arbitrary SoC value. For example, 80% SoC-to-30% SoC-back to 80%
SoC, which also corresponds to a 50% DoD cycle, relatively to the starting SoC.

In both cases, the DoD may be same, but the battery degradation is sensitive to the starting
SoC. Note here that the number of cycles versus DoD specified in manufacturer data-sheets
are based on regular cycles only. In real-life applications, the battery can hardly run
regular cycles from 100% SoC to a specific DoD [85, 87]. Thus, an important aspect when
integrating battery storage degradation in the economic analysis of a prosumer, is to assess
the impacts of irregular cycles.

In this thesis, a rainflow cycle counting algorithm [98, 99] is adopted to count half
and full cycles. Then, the algorithm is further modified to determine regular and irregular
cycles. This algorithm was initially proposed by Socie and Downing [98] for material
fatigue estimates, and has been widely used for extraction of full or partial cycles in battery
degradation models [82, 86, 87, 85, 231]. In this thesis, the focus is solely on Lithium-ion
battery technology. The battery cycle life data utilized in this study is sourced from [86].
Figure 3.8 shows the number of cycles, noted Ncycles, that a battery cell can perform before
the battery capacity reduces to 80% of its initial capacity.

The input to the rainflow cycle counting algorithm is the SoC profile resulting from the
simulated operation of Algorithm 3.1. Outputs include the number of cycles the battery
experienced, which are classified by type (full or half cycles, regular or irregular) [86]. The
number of cycles is also classified by their DoD and starting/ending SoC. The depreciation
factor (DF) is then determined to estimate the battery lifetime.
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The overall battery depreciation factor (DF), can be expressed as the sum of the
depreciation from regular cycles (DFr) and from irregular cycles (DFi):

DF = DFr +DFi (3.14)

Regular cycles can be combined into DoD bins of size ∆, where NDoD is the maximum
number of cycles at the given DoD specified by the battery manufacturer as shown in
Figure 3.8, and nDoD

r is the number of regular cycles observed within the range of DoD±
1
2

∆. With this, the contribution to the depreciation from regular cycles is determined as:

DFr =

100%−
∆

2
∑

DoD=
∆

2

nDoD
r

NDoD (3.15)

For, irregular cycles the depreciation factor is calculated with the following process,
inspired from the work of Ke et al.[87]. The overall battery depreciation factor , DF , can
be expressed as the contribution to the depreciation from each cycle. Since the data only
provide information for regular cycles, an equivalent Depth of Discharge, DoDeq, has to
be defined.

For irregular cycles, the model assumes that the Depth of Discharge for an irregular
cycle can be approximated by an equivalent Depth of Discharge for the highest SoC during
a cycle, SoCmax, and the lowest SoC, SoCmin. The equivalent DoD is determined as:

DoDeq = 100%−SoC (3.16)

where, SoC = SoCmax or SoCmin.
Using the equivalent DoD and accounting for a full cycle with m = 1 and a half cycle

with m =
1
2

, the contribution from irregular cycle j is determined as:

DFj = m j ×

 1

N
(

DoDeq
j, min

) − 1

N
(

DoDeq
j, max

)
 (3.17)

While this is derived for irregular cycles, it can also be applied to a full or half regular
cycle assuming that N becomes infinite at zero DoD, and 1/N zero. The accumulated
depreciation factor over J irregular cycles then becomes:

DFi(J) =
J

∑
j=1

DFj (3.18)

where J is the set of all irregular cycles.
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3.5 Techno-economic study of prosumer energy assets

The main aim of the techno-economic study is to determine the benefits provided by energy
assets (renewable generation capacity and storage) to prosumers, subjected to physical
assets degradation and operational constraints. To achieve this, the presented Algorithm 3.1
is implemented by considering the different pricing schemes. A yearly energy bill savings
(reduction of annual electricity bill of prosumer), which is a fairly intuitive indicator, is
used to determine the economic value offered by energy assets to a prosumer. The resulting
bills for a single prosumer are then compared in order to identify what parameters have the
greatest impact on the energy assets profitability.

Broadly speaking, the yearly bill of a prosumer b(T ) can be expressed as the sum of
the cost of the annual energy consumption and the depreciation cost of the assets cA, minus
the sum of revenues earned by exports to the grid, as shown below:

b(T ) =
T

∑
1

eb(t)τb(t)−
T

∑
1

es(t)τs(t)+ cA(T ) (3.19)

where the energy import eb(t) at time step t is given by Eq. (3.13), and the energy export
es(t) at time step t is given by Eq. (3.10). However, as many countries have reduced
or removed export prices under the form of feed-in tariffs, our analysis will not include
revenues from energy export. Hence, the yearly bill without feed-in tariff is determined as:

b(T ) =
T

∑
1

eb(t)τb(t)+ cA(T ) (3.20)

In Eqs. (3.19) and (3.20), cA represents the depreciation cost which is due to the usage of
the asset within the considered period. For example, for a considered period T equal to
one year in which the asset is used following the manufacturer’s recommendations, cA(T )
corresponds to the annualized cost of the asset, given as follows:

cA(T ) =
Asset cost

Life time (in years)
(3.21)

Taking into consideration the depreciation inflicted by battery operation and control Algo-
rithm 3.1, the computation of the depreciation cost cA must be updated as follows:

cA(T ) = max
(

1
DF

,
Asset cost

Life time (in years)

)
(3.22)
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3.6 Experimental results for the case of a single prosumer

3.6.1 Techno-economic study of asset sizing

Initially, it is crucial for the prosumer to determine the appropriate capacity of energy assets
to be installed. In this study, an optimal size was chosen for both the renewable generator
(wind turbine, solar PV) and battery storage energy assets. To determine the optimal
capacity that minimizes the billing expression defined in Eq. (3.20), a sensitivity analysis
was conducted on the energy assets’ capacity. This analysis allows for an investigation of
the optimal sizing of the energy assets. To illustrate the sensitivity analysis, a prosumer
with an annual demand of 7888 kWh (as discussed in Section 3.3.1) was considered. The
simulations were conducted for two pricing schemes: a flat tariff of 16 pence/kWh [222]
and the dynamic Agile Octopus ToU tariff [224] (as described in Section 3.3.4).

The optimal size of energy assets is determined based on achieving the minimal simple
payback period. In this thesis, the process of determining the optimal capacities of the
energy assets follows a step-by-step approach, as outlined below:

i Optimal renewable generator only: Initially, the focus is on determining the
optimal capacity for the renewable generator (such as wind turbines or solar PV
panels) without considering any storage. This step establishes the baseline for
understanding the optimal capacity of the renewable generator alone.

ii Optimal renewable generator and optimal battery storage capacity: Building
upon the previous step, the optimal capacity of the battery storage system (BESS) is
determined by integrating it with the previously determined optimal capacity of the
renewable generator. It is important to note that this thesis assumes the prosumer has
already invested in the optimal renewable generator, and the battery storage is added
to enhance the existing generation capacity. However, if the renewable generator
and battery storage are considered as a new investment, the optimal capacity of the
renewable generator may differ when combined with battery storage.

For both types of energy assets (renewable generators and batteries), the investment cost
and degradation resulting from their operation are taken into account. The computation of
the simple payback period for each energy asset involves simulations utilizing the battery
control Algorithm 3.1 over a one-year period. Furthermore, the yearly bill of a prosumer
without any energy assets (referred to as the baseline yearly bill) is determined. This
baseline yearly bill serves as a reference for comparing the savings or benefits achieved
from investing in generation and storage assets.

To elaborate further, the subsequent subsections of this thesis will detail the specific
methodologies used to determine the optimal renewable generator capacity in the absence
of storage and the subsequent calculation of the optimal battery capacity when integrated
with the established renewable generator. The logical progression through these chapters
ensures a comprehensive understanding of the varying optimal capacities for different
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energy asset configurations. First, the optimal renewable generator capacity is determined
as described in the following subsection.

Optimal renewable generator (wind turbine, solar PV) without battery storage assets

In the given scenario, it is assumed that the prosumer has the option to own either a solar
PV or a wind turbine renewable generator. In this case, only the investment cost of the
renewable generator is taken into consideration. The depreciation cost resulting from the
operation of the renewable generator is not included, as it is assumed that the operations of
the generator follow the manufacturer’s guidelines. Furthermore, it is assumed that every
prosumer owns a renewable generator with a rated power equal to the optimal rated power
specifically determined for that prosumer. This represents the most conservative scenario
for individual renewable generators, whether it is a solar PV or a wind turbine. Optimal
rated capacity of the renewable generator corresponds to that rated power that achieves
the minimum annual bill given by Eqs. (3.20). Simulations are performed for one year,
without a battery energy storage system, and for both flat and ToU pricing schemes.

Pricing scheme
Optimal wind turbine

Optimal ca-
pacity (kW)

Annual bill
with optimal
wind (£)

Annual bill with-
out assets (base-
line) (£)

Annual
saving
(£)

Flat tariff 4.1 680 1262 582
ToU tariff 4.2 672 1274 601

Table 3.1: Prosumer optimal wind turbine capacity, and the corresponding annual bill and
saving for both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU
tariff [224].

Pricing scheme
Optimal solar PV

Optimal ca-
pacity (kW)

Annual bill
with optimal
PV (£)

Annual bill with-
out assets (base-
line) (£)

Annual
saving
(£)

Flat tariff 3.4 1090 1262 172
ToU tariff 3.4 1077 1274 196

Table 3.2: Prosumer solar PV capacity, and the corresponding annual bill and saving for
both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224].

Results of an optimal renewable generator size, the corresponding annual bill and the
saving for the prosumer are shown in Table 3.1 for wind turbine and Table 3.2 for solar PV,
obtained for both the flat tariff and dynamic ToU tariff pricing schemes. Figure 3.9 shows
the evolution of prosumer yearly bill as a function of wind turbine capacity and shows
that the optimal capacity for this prosumer simulated for a fixed tariff is 4.1 kW. With this
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Figure 3.9: Annual bill versus wind turbine capacity for prosumer with annual demand of
7888 kWh simulated for the flat grid import tariff of 16 pence/kWh [222].

0 2 4 6 8 10 12 14 16

Solar PV size (kW)

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

A
n

n
u

a
l 

b
il

l 
o
f 

th
e 

p
ro

su
m

er
 (

£
)

Prosumer optimal solar PV size = 3.4 kW

Figure 3.10: Annual bill versus solar PV capacity for prosumer with annual demand of
7888 kWh simulated for the dynamic Agile Octopus ToU grid import tariff [224].
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optimal wind turbine, prosumer is able to save £582 yearly as compared to the baseline
case without any energy assets (as shown in Table 3.1).

Similarly, Figure 3.10 shows the evolution of prosumer yearly bill as a function of
solar PV capacity simulated for a dynamic ToU tariff. In this case, the optimal solar PV
size obtained for the prosumer is 3.4 kW. With this optimal solar PV, prosumer is able to
save £196 yearly as compared to the baseline case without any energy assets (as shown in
Table 3.2).

Optimal battery storage capacity

In this scenario, it is assumed that the prosumer invests in battery storage systems in
addition to the renewable generator (solar PV or wind turbine). The power ratings of the
prosumer’s renewable generator(s) are determined as the optimal ratings obtained in the
previous Section 3.6.1, which considered renewable generators only without any storage
assets. Similar to the case with the renewable generator only, the prosumer invests in a
battery of the optimal size, taking into account the investment costs for both the battery
and the optimal renewable generator. The depreciation factor of the battery is included to
account for the battery usage cost, as defined in Eq. (3.14).

Pricing scheme
Optimal battery (integrated with
wind generator)

Optimal
capacity
(kWh)

Annual bill
with optimal
battery & wind
(£)

Annual bill with-
out assets (base-
line) (£)

Annual
saving
(£)

Flat tariff 13 601 1262 661
ToU tariff 12.8 591 1274 683

Table 3.3: Prosumer battery capacity, and the corresponding annual bill and saving for
both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224].
Prosumer battery integrated with wind generator.

Pricing scheme
Optimal battery (integrated with
solar PV generator)

Optimal
capacity
(kWh)

Annual bill
with optimal
battery & PV
(£)

Annual bill with-
out assets (base-
line) (£)

Annual
saving
(£)

Flat tariff 7 1044 1262 218
ToU tariff 6 1024 1274 249

Table 3.4: Prosumer battery capacity, and the corresponding annual bill and saving for
both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224].
Prosumer battery integrated with solar PV generator.
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Simulations are performed for one year using the battery control Algorithm 3.1 for
both the flat and dynamic ToU pricing schemes. Additionally, the battery depreciation
cost is considered. The optimal rated capacity of the battery corresponds to the rated
storage capacity that achieves the minimum annual bill, as determined by Eq. (3.20). The
prosumer optimal battery capacity and corresponding annual bill are determined. Results
of the optimal battery capacity obtained from battery integrated with the wind turbine
renewable generator is shown in Table 3.3, and Table 3.4 for the battery integrated with
solar PV renewable generator.

0 5 10 15 20 25 30 35

Battery size (kWh)

600

610

620

630

640

650

660

670

680

690

A
n

n
u

a
l 

b
il

l 
o

f 
th

e 
p

ro
su

m
er

 (
£

)

Prosumer optimal battery size = 13 kWh

Figure 3.11: Annual bill versus battery capacity for prosumer with annual demand of
7888 kWh simulated for the flat grid import tariff of 16 pence/kWh [222] for a system of
prosumer battery integrated with wind generator.

Figure 3.11 shows the evolution of prosumer yearly bill as a function of battery capacity
and shows that the optimal capacity for this prosumer simulated for a fixed tariff is 13 kWh.
Furthermore, for this prosumer, the optimal battery size is close to the battery capacity
of a Tesla battery [232]. With this optimal battery and wind turbine, prosumer is able to
save £661 yearly as compared to the baseline case without any energy assets (as shown in
Table 3.3).

The unitary cost of the assets and electricity prices are important economic parameters
that affect the profitability of energy assets owned by prosumer. The main aim of the
techno-economic study of prosumer energy assets is to validate the proposed battery
control Algorithm 3.1, and also determine what conditions make the adoption of energy
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assets most profitable to prosumer. To achieve this, the proposed control algorithm was
implemented for different economic parameters that were altered in order to investigate
and realize a sensitivity study on the profitability of energy assets at a prosumer level. In an
integrated renewable energy system, battery is the most expensive component and batteries’
lifetime is comparatively shorter than that of renewable generators, this highlights the
importance of using an appropriate battery control mechanism to extends the system’s
useful life. Hence, the sensitivity analysis is focussed more on the economic analysis of
the flexibility provided by the battery energy storage systems.

Sensitivity analysis of the battery cost : a flat grid import tariff of 16 pence/kWh [222]
as described in Section 3.3.4 is used for the sensitivity study. Figure 3.12 shows the
evolution of the annual bill of a prosumer as a function of the size of the battery that the
prosumer buys and for different battery costs. Simulation results clearly show that there is
an optimal battery capacity that minimizes the annual bill, although the benefit in terms
of bill reduction highly depends on the battery cost. Furthermore, one can see that the
higher the cost of batteries is, the smaller the optimal battery capacity is. This information
is extremely useful as it allows a company to size a prosumer’s battery based on their
particular consumption and production profiles. Nevertheless, it is worth noting that the
bill reduction is still quite low (£190) even in the most advantageous case of a battery cost
of 50 £/kWh.
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Figure 3.12: Prosumer annual bill versus battery capacity for different battery prices
(£/kWh) simulated for the flat grid import tariff of 16 pence/kWh [222] for a system of
prosumer battery integrated with wind generator.
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Sensitivity analysis of the electricity price: the grid buying electricity price (τb) is
the third parameter included in the economic analysis of the energy assets. To conduct the
sensitivity analysis on the electricity price, a specific scenario was chosen, considering
a battery cost of 150 £/kWh. This cost value is recommended in [225]. The selected
scenario allows for an examination of how changes in electricity prices can impact the
optimal sizing and performance of the energy storage system. The baseline electricity
buying price is the flat grid import tariff of 16 pence/kWh, adopted after comparing the
fixed electricity prices offered by various UK-based electricity suppliers using web-tools in
price comparison site Money Supermarket [222]. This website is one of the several price
comparison sites approved and accredited by the Office of Gas and Electricity Markets
(Ofgem) [223], the government regulator for the electricity and downstream natural gas
markets in UK.
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Figure 3.13: Prosumer annual bill versus battery capacity for different grid buying price
(τb) with the battery cost of 150 £/kWh simulated for the flat grid import tariff, obtained
from a system of battery integrated with wind generator.

The chosen baseline electricity buying price from grid is consistent with the average
cost for the standard electricity in the UK as per the quarterly energy prices, quarter 2 (April
to June) 2022 report [233] published by Department of Business, Energy & Industrial
Strategy. Similar flat rate is adopted in the works of Zhou et al. [5], and Luth et al. [174].
To conduct the study, different scenarios were analysed, each one corresponding to a
specific electricity buying price, as shown in Figure 3.13 . The simulation results shows
that annual bills increase with the increase in electricity price. This increase in annual
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bills is expected as the prosumer spends more money to satisfy his electricity consumption.
Results show that the higher the price of electricity is, the more advantageous it is to install
a battery system. For instance, for the scenario of a buying price equal to 40 pence/kWh,
the decrease in annual bill is £438 with an optimal battery size of 33.5 kWh, while it is
£14.68 in the case of a buying price of 8 pence/kWh and a battery capacity of 3.12 kWh.

3.7 Discussion of results and concluding remarks

Results from this techno-economic analysis shows that the increase of electricity prices
along with the decrease of unitary cost of assets can make energy assets profitable for
prosumers (as shown in Figure 3.12 and 3.13). Furthermore, as shown in Figure 3.9, 3.10
& 3.11, increasing the energy assets’ capacity too much will increase the annual bill.
Indeed, if a prosumer buys an energy asset that is much larger than the required size, the
extra capacity will not be used, and will correspond to a loss of revenue.

The simulations show that with current market prices, the batteries are not profitable for
most prosumers, unless economic parameters such as the battery cost and electricity price
change, as it might be expected in the next decade [225]. The result is similar to the findings
by Stelt et al. [14], who concluded that the economic feasibility of batteries depends largely
on the battery cost, and that the current battery cost is found to be economically infeasible.
Indeed, it is important to acknowledge that in the model described, no benefits or revenues
resulting from energy or grid services provided by the battery have been taken into account.
Services such as frequency regulation and demand response, which can be facilitated by
the battery, have not been considered in the analysis. Including these additional benefits
could further enhance the economic viability and value proposition of the energy storage
system. Furthermore, prosumer is not able to obtain the maximum benefit from renewable
generators (wind turbine, solar PV) as consumption is not the same time as the production.
This mismatch between the renewable generation and consumption makes the renewable
generators less profitable to the prosumer. Hence, there is a need to explore suitable
optimization techniques to optimize the maximum benefits from usage of energy assets.

In this work, a model of a prosumer-based control algorithm was presented and assessed
by incorporating the latest heuristics of battery state of health at a prosumer level. The
control algorithm was implemented for different economic parameters that were altered in
order to investigate and realize a sensitivity study on the profitability of energy assets at
a prosumer level. Results from this work display a good performance of the rule-based
scheduling when electricity import prices are relatively higher than export prices. The
simulation analysis (based on real demand profiles, generation data, physical asset profiles
and import prices in the United Kingdom at the time of writing) shows that investment
in energy assets can be an economical feasible proposition, but this result depends on
economic parameters of energy assets such as the unitary cost of the assets, the export
prices of electricity, but also the type of services for which the assets can get revenues.



Chapter 4

Modeling energy assets ownership
schemes in a community without
network constraints

Chapter 4 focuses on a comparative study of benefits provided by DERs and BESS to
prosumers between a scenario where every prosumer installs his own assets, which corre-
sponds to the case presented in Chapter 3, and a scenario where prosumers join together
to invest in community assets. Then, a novel approach is presented for redistributing
the revenues generated by community assets to the members of the community. Energy
community projects often involve jointly owned energy assets such as community-owned
wind turbines, solar PVs and/or shared battery storage. While energy communities are
a promising concept, a key challenge is how these assets can be efficiently controlled in
real time, how the useful lifetime of the asset can be modelled and enhanced, and how the
energy outputs from these jointly-owned assets should be shared fairly among community
members, given that not all members have the same size, energy needs or demand profiles.
Crucially, such real-time control and fair sharing of energy must also consider the physical
assets degradation and operational constraints.

To address these challenges, this chapter introduces novel algorithms for intelligent
control of energy assets and redistribution mechanisms. These methods lead to more
fair and equitable strategies for dividing joint gains, utilizing tools from distributed AI
(specifically, the multi-agent systems) and cooperative game theory. First, the study
compare the case when individual households invest in their own home energy assets
(renewable generator, storage) versus investing in a larger jointly-owned community energy
asset. Through the case study presented in this thesis, the advantages of a collectively-
owned or pooled energy assets approach are demonstrated. Next, several practical and
computationally efficient mechanisms are proposed to fairly distribute the outputs from
these jointly-owned assets among the households of the community.

Part of the research work presented in Chapter 4 were published in peer-reviewed
scientific paper [213].
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4.1 Research contributions

A comprehensive literature review on the state-of-the-art in community energy modelling
and benefits redistribution mechanisms was presented analytically in the previous Chap-
ter 2 (Section 2.2 & 2.3). As highlighted in Chapter 2, there is an urgent need for methods
to increase energy access, resilience and reliability of communities. One way is for the
community to invest in its own energy generation assets like solar PV and wind turbine,
and battery energy storage systems. But, this raises the question of discovering benefit-
s/drawbacks when investment in energy assets is performed individually or jointly on a
community level. In other words, renewable generators and storage could be installed
either individually at a household level, or jointly-owned, which all households in the com-
munity could use on a pre-agreed sharing basis. Hence, there is a need for a comprehensive
method to study the techno-economic benefits of investment in jointly-owned community
energy assets versus individually-owned distributed energy assets considering the physical
assets degradation and operational constraints.

A literature survey on previous techno-economic analyses of such schemes reveals
that community-owned assets could provide more savings (higher benefits) compared
to distributed individually-owned assets. For instance, studies show that the commu-
nity battery storage system offers higher benefits as compared to individual household
distributed batteries [33, 16, 34–36, 136–141]. However, most of the existing studies on
comparison of individually-owned assets versus centrally located community-owned assets,
while considering both the renewable generation and battery, have not included the battery
degradation cost in their techno-economic analysis. The battery lifetime depends on the
charge/discharge cycles, which in turn are shaped by the control scheme. Thus, there is
a need to accurately estimate the depreciation of the battery from the operating profiles
and therefore assess the operational cost and overall economic value of the integrated
renewable energy system.

Furthermore, although higher benefits can be achieved by investing in community
assets, how to redistribute these benefits among the individual households in the community
still remains a key open question, of both research and practical interest. Hence, there is a
significant knowledge gap in how to design efficient and fair redistribution mechanisms
to incentivize energy communities to invest in joint renewable energy assets, especially
when incorporating physical asset constraints or the physical degradation during use of
community assets.

This Chapter 4 provides a redistribution mechanism based on the marginal contribution
of an individual household in the benefits from the community-owned assets, incorporating
physical assets degradation. The mechanism proposed uses principles from mechanism
design and cooperative game theory. Game theory provides an insightful analytical and
conceptual framework along with mathematical tools to study and analyse the complex
interaction among independent rational players (in our case the households) [37]. Coopera-
tive (or coalitional) game theory has been identified as a useful tool in designing incentive
mechanisms and business models in decentralized energy systems. In a cooperative game,
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players form coalitions to maximise a common objective for mutual benefit. Then, the
benefit is distributed equally or fairly among themselves using incentive-based solution
concepts, such as the Shapley value. One major challenge faced by community energy
scheme utilising coalition game theory is the issue of scalability [39, 40]. Specifically,
when determining the Shapley values in a coalition, the computation becomes highly
complex and time-consuming, as the number of players increases in the coalition. To
address this computational challenges, in this thesis a more computationally tractable
(and hence more practically applicable) redistribution mechanism based on the marginal
contribution of each players is proposed. Another gap identified in the literature, is that
techno-economic analysis of individual versus community assets is mostly focused on bat-
tery and solar PV only, and wind turbines have not been adequately investigated. Inclusion
of wind-battery systems though is very important, especially in a country with remarkable
wind resources like the UK.

Given the above challenges, the study in this thesis utilises real commercially-available,
dynamic tariffs from the UK market, as well as a whole year of high-granularity demand
and renewable generation data and develop a mechanism for fair redistribution of benefits
from jointly-owned community energy assets to individual members (agents/households)
of the energy communities. Findings of this work are related to a number of strands
including community energy system research and cooperative game-theoretic applications
for energy systems, but also to the area of electrical engineering and physical asset health
monitoring of batteries. In more detail, the specific contributions of the work presented in
Chapter 4 advance the state-of-the-art are:

• First, in this work, a principled model of community investment and sharing of
energy assets is presented. The focus is on renewable generation and battery storage
for both fixed and dynamic time of use (ToU) tariffs. The approach incorporates
a comprehensive data-driven analysis to quantify the savings achieved through
community-owned energy assets in comparison to individually-owned ones.

• Secondly, the incorporation of physical battery degradation into community energy
optimization models is addressed, along with its impact on redistribution schemes.
To achieve this, a battery state of health degradation model is employed, which relies
on the battery depth of discharge in each control cycle.

• Thirdly, an investigation and proposal of redistribution schemes for sharing the
benefits of community energy assets are conducted, drawing on principles from
cooperative game theory. Cooperative game theory is an established methodology
utilized for designing redistribution schemes in various practical domains [37, 40].
These redistribution schemes are assessed in different scenarios and based on multi-
ple criteria, encompassing costs and financial benefits to each prosumer, as well as
correlation with intermittent renewable output.

• Lastly, the savings achieved by the proposed redistribution schemes are discussed
concerning various sizes of prosumers. Additionally, an assessment is conducted to
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evaluate the fairness of these schemes and their impact on the potential uptake of
renewable energy within energy communities.

The energy community is initially modelled based on the description provided in the
following section.

4.2 Energy community setting

In this scenario, a community of 200 prosumers is taken into consideration, each having real
half-hourly demand profiles derived from the dataset provided by the Thames Valley Vision
End Point Monitor project [215]. These 200 demand profiles are further aggregated [35]
to represent a single community demand profile. A community is formed by connecting
all individual prosumers or individual agents into a system that is collectively referred to
as a multi-agent system.

In this work, the first aim is to compare two configurations of energy communities.
One configuration will consider the community as 200 individual agents, each one of
them with their own consumption and local production, but without financial nor energy
interaction between them. In such configuration, agents import electricity from the grid
when their assets cannot cover their own consumption, whereas they can export electricity
to the grid when they have production surplus. The second configuration corresponds to the
case of an energy community in which agents invest together in jointly-owned community
assets, such as community-owned wind or solar production, and community batteries. The
demand of agents is considered inflexible. A renewable generator (either wind turbine
or a solar PV installation), a battery energy storage system and the utility grid are the
three power sources considered for satisfying the inflexible demand at all times. A power
flow diagram of an agent or of the energy community considered as a whole is shown in
Figure 4.1.
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owned)
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Figure 4.1: Power flow diagram of the energy community model.
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An energy community model comprises a group of individual prosumers (agents)
connected to a low-voltage distribution network. Specifically, for an agent i with i =
1..N and N = 200 in the context of this thesis, gi(t) represents the generation from the
intermittent renewable source and di(t) the demand at time t ∈ [0,T ]. The energy bill of
agent i at time t is represented by bi(t), whereas if the considered period T is equal to one
year, then bi(T ) represents the total annual bill as outlined by Eq. (3.20).

The community C , i.e. the set of all agents i, is formally defined as C = {Ai | i ∈ [1,N]}
where N = 200 agents. Accordingly, gC (t) and dC (t) represent the generation and demand
of the community C at time t. Similarly, the community bill at time t is represented by
bC (t), and the annual bill is given by bC (T ).

The overall power balance at any given time t of an agent i or of the energy community
C is given by:

pgrid
i/C (t) = di/C (t)− pbat

i/C (t)−gwind/solar
i/C (t) (4.1)

where gwind/solar
i/C (t) is the power generated by the renewable generator, that can be indi-

vidually owned, or owned by the community. pgrid
i/C (t) represents the power that an agent

or that the community can buy/sell from/to the grid. pbat
i/C (t) represents the power of the

storage system (individually-owned, or centrally located and owned by the community),
which is considered negative when the battery is charging (battery considered as a load),
and positive when the battery is discharging (battery considered as a generator). di/C (t)
is the power consumed by an agent or by the community considered as a whole, i.e the
aggregated demand power of 200 agents.

The model inputs, battery control Algorithm 3.1, battery depreciation aspects and
the economic setting of the single prosumer model described in Chapter 3 are applied to
the community setting. The consideration in this study involves either a prosumer or the
entire community owning a wind turbine or a solar PV renewable generator, along with a
battery energy storage system, as outlined in Section 3.4 of Chapter 3. The cost of energy
assets are assumed to be 150 £/kWh for the battery [225], 1100 £/kW for solar PV [229]
generation capacity and 1072 £/kW for the wind turbine [229] generation capacity. As
outlined by Eq. (3.20), the annual bill for agent i and the community C are defined as:

bi(T ) =
T

∑
1

eb
i (t)τ

b(t)+ cA
i (T ). (4.2)

bC (T ) =
T

∑
1

eb
C (t)τ

b(t)+ cA
C (T ). (4.3)

where, eb
i (t)τ

b(t) is the cost of energy imports from the utility grid by agent i at time t
and cA

i (T ) is the depreciation cost of assets owned by agent i in the considered period T .
Similarly, eb

C (t)τ
b(t) is the cost of energy imported from the utility grid by the community

as a whole at time t and cA
C (T ) is the depreciation cost of jointly-owned community assets

for the considered period T .
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This chapter introduces an energy community model that explores the advantages
of community-owned energy assets compared to individually-owned ones, while also
considering asset degradation functions. To evaluate the benefits of installing various
assets, including a comprehensive battery degradation model, an approach based on real-
time series data from a community is proposed. This approach compares the benefits
of community-owned assets to those expected from individually-owned assets, while
accounting for physical asset degradation constraints. Subsequently, a redistribution model
for community benefits is proposed using using the methodology and principles from
cooperative ( or coalitional) game theory [234], particularly focusing on the concept of
marginal value. The outlined energy community modeling approach is summarized in
Figure 4.2.
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Figure 4.2: Overview of the energy community modeling approach.

First, the comparison of technical and economic benefits of investment in individually-
owned or community-owned energy assets is assessed as described in the following
Section 4.3.

4.3 Comparison of yearly bills obtained from investment
in distributed individually-owned assets with jointly-
owned community energy assets

Energy communities are able to maximize the behind-the-meter self-consumption by
investing in the individual or jointly-owned community-shared renewable energy assets. In
order to assess the most profitable investment options, the benefits (savings) obtained from
the investment in the distributed individually-owned assets are compared to the benefits
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obtained from the investment in the jointly-owned community-shared assets. The yearly
savings are determined by comparing annual bills after investing in the assets (as described
by Eqs. (4.2) and (4.3)) with the yearly bills before the assets were installed (i.e. without
assets).

First, a baseline scenario is defined. In this baseline scenario, yearly bills for individual
agents and the community are computed without generation or storage assets (renewable
generator and BESS) for both the flat tariff of 16 pence/kWh [222] and dynamic Agile
Octopus ToU tariff [224]. Table 4.1 shows the community annual bill (bC (T )) and the
sum of individual agents annual bills (∑N

i=1 bi(T ), where N = 200). It can be observed that
without these local assets, annual bills are equal, which can be expected as the community
represents the aggregated demand profiles of the individual agents. This baseline scenario
is used for comparing the savings (benefits) from investing in generation and storage.

Without assets (baseline)
Flat tariff ToU tariff

Annual bill (£) Annual bill (£)

Sum of individual agents yearly bills 134455 143923
Community yearly bill 134455 143923

Table 4.1: Baseline scenario: the sum of individual agents yearly bills and community
yearly bill without the assets (renewable generator and battery) for both the flat tariff of 16
pence/kWh [222] and dynamic Agile Octopus ToU tariff [224].

4.3.1 Individual renewable generator vs community renewable gener-
ator without storage

First, the benefits provided by a community renewable generator are compared to those
offered by individually-owned distributed renewable generators, without considering any
storage system. It is assumed that the prosumer or the community can own either a solar
PV or a wind turbine renewable generator. In this scenario, only the investment cost of
the renewable generator is considered. Also, the study assumes the operations of the
renewable generator follow the manufacturer operations. Hence, the depreciation cost
of the renewable generator operation is not included. Furthermore, it is assumed that
every prosumer owns a renewable generator with a rated power equal to the optimal rated
power for this prosumer, which is the most conservative scenario for individual renewable
generators (solar PV or wind turbines). Optimal rated capacity of the renewable generator
corresponds to that rated power that achieves the minimum annual bill given by Eqs. (4.2)
and (4.3). Simulations are performed for one year, without a battery energy storage system,
and for both flat and ToU pricing schemes (similar to the case with single prosumer as
described in Section 3.6.1 of Chapter 3).

The sum of individual agents optimal renewable generator capacities and the corre-
sponding sum of individual annual bills are determined. Similarly, the community optimal
renewable generator capacity and the corresponding annual bill are determined. Results
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of these optimal renewable generator capacities and the corresponding annual bills are
shown in Table 4.2 for wind turbine and Table 4.3 for solar PV renewable generator. The
computation of the simple payback period for renewable generator is based on simulations
using the battery control Algorithm 3.1 for one year.

Assets
Flat tariff ToU tariff

Optimal ca-
pacity (kW)

Annual
bill (£)

Optimal ca-
pacity (kW)

Annual
bill (£)

Sum of individual agents op-
timal wind turbines

484 76339 518 80543

Community optimal wind
turbine

405 64792 456 68448

Table 4.2: Sum of individual agents optimal wind turbine capacities, sum of individual
agents annual bills, and community optimal wind turbine capacity and corresponding
annual bill for both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU
tariff [224].

Assets
Flat tariff ToU tariff

Optimal ca-
pacity (kW)

Annual
bill (£)

Optimal ca-
pacity (kW)

Annual
bill (£)

Sum of individual agents opti-
mal solar PV’s

258 122557 297 129589

Community optimal solar PV 309 117092 347 123154

Table 4.3: Sum of individual agents optimal solar PV capacities, sum of individual agents
annual bills, and community optimal solar PV capacity and corresponding annual bill for
both the flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224].

Result shows that the the community-owned renewable generator provides more sav-
ings (higher benefits) compared to distributed individually-owned renewable generators.
For instance, as shown in Table 4.2, jointly-owned community wind turbine provide a
substantially lower annual bill for both the fixed tariff and ToU tariff pricing schemes as
compared to individually-owned distributed wind turbines. Similarly, community-owned
solar PV leads to greater reduction in annual electricity bill compared to individually-owned
solar PV’s as shown in Table 4.3.

4.3.2 Individual battery vs community battery

In this scenario, it is assumed that the agents invest in battery storage systems, and compare
the benefits of individual versus community batteries. The renewable generator (solar PV
or wind turbine) power rating for individuals and for the community are the optimal ratings
obtained in the previous Section 4.3.1 with renewable generators only. Similarly, it is
assumed that each agent (individuals or the community) invest in a battery of the optimal
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size, as described in Subsection 3.6.1 of Chapter 3 (for the case with single prosumer).
Furthermore, the investment costs for the battery and the optimal renewable generator are
considered. The depreciation factor of the battery is included to account for the battery
usage cost based on Eq. (3.14). Simulations are performed using the battery control
Algorithm 3.1 for one year for both the pricing schemes and with consideration of the
battery depreciation cost. Optimal rated capacity of the battery corresponds to that rated
storage capacity that achieves the minimum annual bill given by Eqs. (4.2) and (4.3).

The sum of individual agents optimal battery capacities and corresponding sum of
individual annual bills are determined. Similarly, the community optimal battery capacity
and the corresponding annual community bill are estimated. Results of the optimal battery
capacity obtained from battery integrated with the wind turbine is shown in Table 4.4, and
Table 4.5 from battery integrated with the solar PV renewable generator.

Assets
Flat tariff ToU tariff

Optimal
capacity
(kWh)

Annual
bill (£)

Optimal
capacity
(kWh)

Annual
bill (£)

Sum of individual agents op-
timal batteries

1596 63158 1723 64877

Community optimal battery 1342 57389 1690 59136

Table 4.4: Sum of individual agents optimal battery capacities, sum of individual agents
annual bills, and community battery capacity and corresponding annual bill for both the
flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224] obtained
from battery integrated with wind turbine renewable generator.

Assets
Flat tariff ToU tariff

Optimal
capacity
(kWh)

Annual
bill (£)

Optimal
capacity
(kWh)

Annual
bill (£)

Sum of individual agents op-
timal batteries

513 118488 602 122419

Community optimal battery 642 113790 620 117307

Table 4.5: Sum of individual agents optimal battery capacities, sum of individual agents
annual bills, and community battery capacity and corresponding annual bill for both the
flat tariff of 16 pence/kWh [222] and dynamic Agile Octopus ToU tariff [224] obtained
from battery integrated with solar PV renewable generator.

Similar to the renewable generator case, results show that the community battery
provides more savings (higher benefits) compared to the distributed individually-owned
batteries. As shown in Table 4.4, while using the wind power generation only, community
battery provides a substantially lower annual bill and hence the higher savings for both the
fixed tariff and ToU tariff pricing schemes as compared to distributed individually-owned
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batteries. Similarly, while using the solar PV generation only, higher benefits (lower annual
bill) is obtained from community-owned battery as shown in Table 4.5.

4.3.3 Discussion of results

The main aim of the economic study of the energy community is to determine the benefits
provided by assets (renewable generation capacity and storage) to prosumers and energy
community as a whole, subjected to physical assets degradation constraints. To achieve this,
the presented Algorithm 3.1 is implemented by considering the different pricing schemes.
A yearly energy bill savings, which is a fairly intuitive indicator, is used to compare the
economic performance of investments in individually-owned assets and community-owned
assets. Results from the techno-economic analysis (as shown in Table 4.2, 4.3, 4.4 & 4.5)
shows that the community-owned assets provide a substantially lower annual bill and
hence the higher savings (higher benefits) for both the fixed tariff and ToU tariff pricing
schemes as compared to distributed individually-owned energy assets. The advantages
from community-owned assets are multiple. First, community assets require a lower
capacity for the same services, hence potentially a lower cost. Second, community assets
achieve lower annual energy bills for both pricing schemes considered in the study.

For instance, the community wind turbine provides more savings (higher benefits)
compared to distributed individually-owned wind turbines. These results highlight multiple
advantages that can be obtained by investing in the community wind turbine. Firstly,
a community wind turbine requires a substantially lower optimal capacity for the same
services. Secondly, lower annual bill is achieved by investing in the community wind
turbine for both the flat tariff and dynamic ToU tariff. Similar to the wind power case,
results show that the community battery provides more savings (higher benefits) compared
to the distributed individually-owned batteries. Multiple advantages can be expected from
investing in a community battery. First, community battery requires a lower optimal rated
capacity while providing the same service (for the case obtained using the wind turbine
generator only). Second, a lower annual bill is achieved by investing in a community
battery in both cases of a flat and dynamic ToU tariffs. However, it is important to note that
a consequent part of the financial savings obtained from community assets are attributed to
the aggregation of the community consumption.

Furthermore, these economic results were obtained with the same unitary cost of the
assets for the community-owned as for individually-owned, which might not be the case in
real-world scenario, whereas in practice, the unitary cost of the community-owned asset
might be lower due to economies of the scale effect. Thus, more savings can be obtained
from community-owned assets by considering the economies of scale in the unitary cost of
the assets. Therefore, community-owned assets generate benefits to the community. These
results from the techno-economic analysis clearly shows the importance for determination
of fair redistribution or allocation of benefits achieved in community projects. Moreover,
although higher benefits can be achieved by investing in community assets, how to redis-
tribute these benefits among the individual households in the community still remains a
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key open question, of both research and practical interest. Hence, there is a significant
knowledge gap in how to design efficient and fair redistribution mechanisms to incentivize
energy communities to invest in joint renewable energy assets, especially when incorporat-
ing physical asset constraints or the physical degradation during use of community assets.
To address these challenges, this thesis proposes a more computationally tractable (and
hence more practically applicable) redistribution mechanism. This mechanism is based on
the marginal contribution of each agent (in this case, households) of the community. The
proposed redistribution mechanism is presented in detail in the following Section 4.4.

4.4 Mechanism design for fair redistribution of benefits
achieved from jointly-owned community assets

Results from the techno-economic analysis described in Section 4.3 show that the commu-
nity assets provide more savings (higher benefits) compared to distributed individually-
owned assets. Hence, individual agents can improve their profitability of investment by
joining forces, regrouping into communities and by co-investing in community assets. In
the case of community owned assets, the revenues generated by the community-owned
distributed generation system (renewable generator and BESS) can be distributed to the
members of the community. However, this raises the key research question of how to fairly
redistribute the energy outputs (and hence the financial benefits) from the community-
owned assets to the individual members of the community. In this section, we present the
fair redistribution scheme to fairly redistribute the benefits from the community-owned
assets. Also, in order to test the advantages of the proposed redistribution mechanism, we
present in this section the state-of-the-art redistribution methods, used in current practice
in such projects, that will be used for comparison.

4.4.1 Mechanism for a fair redistribution

Community assets lead to a reduction in the electricity bills of all the members of the
community. However, this raises the key question of how these financial benefits from the
joint assets can be fairly shared between agents (households). In this section, we propose a
new methodology for fair redistribution of cost savings from community energy assets that
utilises the marginal contribution principle, often used in cooperative game theory.

Savings of the community after one year (T = 1 year), noted as ΠC (T ), are defined by
the difference between the sum of all agents annual bills before the community assets were
installed (which corresponds to the baseline scenario shown in Table 4.1), and bC (T ) i.e.
the energy bill for the whole community after one year with community assets. Hence,
the community savings over time period T correspond to the bill reduction for the whole
community over that period, as shown below:

ΠC (T ) =
N

∑
i=1

b0
i (T )−bC (T ) (4.4)
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where b0
i (T ) is the baseline bill for prosumer i before any asset was installed, which

corresponds to the values displayed in Table 4.1. In order to compute a fair redistribution
of the community savings among the individual agents, we propose to compute the
contribution Θi(T ) of each agent to these community savings. To compute the marginal
contribution of an agent i, we remove agent i from the community of 200 agents (total
community), and recompute the community savings consisted of 199 agents (reduced
community). The marginal contribution Θi(T ) of agent i is defined as the difference
between the total community savings ΠC (T ) and the savings of the reduced community
ΠC \{i}(T ), as shown below:

Θi(T ) = ΠC (T )−ΠC \{i}(T ) ∀i ∈ C (4.5)

where C is the community of 200 households. Once the marginal contribution Θi(T ) is
computed for all the agents, we distribute community savings ΠC (T ) among the individual
agents based on the following equation:

Γi(T ) = ΠC (T )
Θi(T )

∑i∈C Θi(T )
∀i ∈ C (4.6)

where Γi(T ) is the amount of money redistributed to agent i after period T .
Hence, the new bill of agent i for the time period T , noted b∗i (T ) can be computed as

follows:
b∗i (T ) = b0

i (T )−Γi(T ) ∀i ∈ C (4.7)

Intuitively explained, the marginal contribution Θi(T ) of agent i represents the differ-
ence that an agent makes to the value of a given coalition in the community. Specifically,
the marginal contribution Θi(T ) is a metric that helps us understand how much each agent
i contributes to the reduction of the energy bill and overall community savings, leading
to an equal and fair redistribution of savings as shown by Eq. (4.7) . Existing coalitional
game theory redistribution mechanism based on solution concepts like the Shapley value
use marginal contributions at their core, but present issues of scalability as the number
of agents in a coalition increases. Particularly, computing the Shapley value is computa-
tionally challenging [40, 235], as it requires the computation of the marginal contribution
of each agent to every possible subset of a given coalition. The proposed redistribution
mechanism Γi(T ) is faster as it computes only the marginal contribution Θi(T ) of an agent
i with respect to the grand coalition, therefore it scales better as the number of agents
increases. The proposed sharing mechanism refereed as Method 1 based on marginal
contribution, is aligned with the fundamental concept of cooperative game theory that
concentrates on the division of payoffs from the community coalition, and not so much on
what agents do to achieve those payoffs.
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4.4.2 Implementation for a community with renewable generator only
without battery storage

In Section 4.4.1, a method to redistribute benefits from community-owned assets was
presented. To test the advantages of the proposed method (denoted below as Method 1),
it is further compared with other state-of-the-art methods, denoted below as Methods 2,
3 and 4. In this section, the focus is on the case where the community owns a single
renewable generator. Then, the following Section 4.4.3 addresses the case with a com-
munity renewable generator and a community battery. Energy bills of individual agents
after redistribution of community savings from a community renewable generator can be
computed by one of the methods listed below:

• Method 1: Individual bills are computed by Eq. (4.7), where redistribution is based
on the marginal contribution of each agent.

• Method 2: Individual bills are estimated after the instantaneous community renew-
able generator power gC (t) is distributed among individuals based on their instan-
taneous demand di(t). In other words, the renewable generator power allocated to
agent i at each time step is determined as:

gi(t) = gC (t)×
di(t)

∑i∈C di(t)
(4.8)

The bill of each agent i is computed by Eq. (4.2), where gi(t) replaces gwind/solar(t)
in Eqs. (3.10) and (3.13).

• Method 3: Individual bills are estimated after the instantaneous community re-
newable generator power gC (t) is distributed equally among individuals, as shown
below:

gi(t) =
gC (t)

N
(4.9)

with N the number of households in the community.

• Method 4: Individual bills are estimated after the instantaneous community renew-
able generator power gC (t) is distributed among the individuals based on their annual
energy consumption, as shown below:

gi(t) = gC (t)
E i(T )

∑i∈C E i(T )
(4.10)

where E i(T ) corresponds to the annual energy consumption of agent i, and is given
by:

E i(T ) =
T

∑
t=0

[
eb

i (t)− es
i (t)
]

(4.11)

Finally, savings are determined by comparing the sum of annual bills over the commu-
nity with the baseline total annual bill (without assets as shown in Table 4.1 ). First, we
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implement the redistribution mechanism for the community with wind turbine generator
only and then implement for the community with solar PV renewable generator only
without storage.

Redistribution from community-owned wind turbine only

In this study, a community wind turbine with an optimal capacity of 405 kW for a flat
tariff, and a 456 kW wind turbine for the case of dynamic ToU tariffs were considered.
These correspond to optimal capacities obtained from the scenario with wind turbine only
in Section 4.3.1 and shown in Table 4.2). The investment cost of the community wind
turbine was assumed to be shared equally among the agents.

The sum of individual agents annual bills and total annual savings after redistribution
based on the different methods are shown in Table 4.6 for a flat tariff, and Table 4.7 for a
dynamic ToU tariff. Savings are determined as the difference between annual bills obtained
from the considered redistribution method and the annual bills from the baseline scenario
(as shown in Table 4.1).

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 64792 134455 69663
Method 2 64792 134455 69663
Method 3 81997 134455 52458
Method 4 76907 134455 57548

Table 4.6: Sum of individual agents annual bills and annual savings obtained from various
redistribution mechanisms for flat tariff of 16 pence/kWh [222] for the scenario with
community wind turbine only without battery.

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 68448 143923 75476
Method 2 68448 143923 75476
Method 3 85924 143923 57999
Method 4 80962 143923 62961

Table 4.7: Sum of individual agents annual bills and annual savings obtained from various
redistribution mechanisms for Agile Octopus dynamic ToU tariff [224] for the scenario
with community wind turbine only without battery.

Figure 4.3 shows the individual agents annual bills after redistribution in the case of a
flat tariff pricing scheme. In this figure, on the X-axis we order the 200 agents (households)



4.4 Mechanism design for fair redistribution of benefits achieved from jointly-owned
community assets 89

0 20 40 60 80 100 120 140 160 180 200
Prosumer ordered increasingly by total yearly demand

0

500

1000

1500

2000

2500

3000

B
ill

s 
(£

)

Baseline: bill without assets
Method 1: redistribution based on marginal contribution
Method 2: community wind distributed based on instantenous power
Method 3: community wind distributed equally i.e divided by n=200
Method 4: community wind distributed based on annual consumption

Figure 4.3: Individual agents yearly bills after redistribution for a flat tariff of 16
pence/kWh [222] obtained from community wind turbine only without battery.

in our case-study community increasingly by their total annual energy consumption (over
all half-hourly periods in a year), while the Y-axis gives the annual energy bill of that agent.
This representation is useful to investigate the fairness effects. Intuitively, even in the
case when investing in community generation/storage assets is better for the community
on average, the 4 different redistribution methods may lead to savings being distributed
differently across small and larger agents.

Results for both pricing schemes are shown in Table 4.6 and 4.7. They clearly show that
Method 1 and 2 yield the lowest bill for the whole community, and thus the greatest savings
for almost every agent. Yet, Method 1 and Method 2 should undergo further comparison to
evaluate the economic fairness in the redistribution scheme. The comparison between the
two methods is illustrated using the flat tariff pricing scheme shown in Figure 4.4 .

The crossover point between the Method 1 and Method 2 curves shows that under
Method 1 redistribution scheme, 67% of the agents can achieve lower annual bill, while only
33% of the agents obtain lower annual bills under the Method 2 mechanism. These agents
(33%) correspond to households with higher annual consumption. However, according
to Figure 4.3, agents with higher annual consumption are the agents who already obtain
the highest bill reduction. Since the cost of the community wind turbine is shared equally
among agents, irrespective of their demand profiles, we argue that, overall, it would be
fairer to adopt the redistribution mechanism provided by Method 1, rather than Method 2.
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Figure 4.4: Individual agents yearly bills after redistribution based on Method 1 and
Method 2 for a flat tariff of 16 pence/kWh [222] obtained from community wind turbine
only without battery.

While it is true that the 1/3 of largest consumers would prefer Method 2, as shown in
Figure 4.4, these large consumers already make the largest bill savings from joint assets in
both methods, and in practice, having the 2/3 of the smallest households in the community
also making noticeable savings is likely to lead to greater social acceptance of the scheme
(both in financial terms and in terms of e.g. planning consent to install a wind turbine).
Furthermore, it is worth mentioning that the electricity cost per kWh is strongly influenced
by the correlation between the production gi(t) and the consumption di(t) of the agent.

Sensitivity analysis of the electricity price: the economic fairness and robustness
in the redistribution scheme is further evaluated by comparing Method 1 and Method 2
for different electricity buying prices (τb) for the flat grid import tariff, ranging from 8
pence/kWh to 24 pence/kWh as shown in Figure 4.5. The simulation results for each
electricity import price clearly show that the bills curve for Method 1 and Method 2 cross
at the exact same household number, as for the baseline tariff of 16 pence/kWh. Therefore,
irrespective of the electricity buying prices, 67% of agents can achieve lower annual bills
and thus higher annual savings under Method 1 redistribution scheme as compared to
Method 2.
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Figure 4.5: Individual agents yearly bills after redistribution based on Method 1 and
Method 2 for different electricity buying prices (τb) for the flat grid import tariff.

Finally, Figure 4.6 shows the comparison between the Method 1 and Method 2 for
the Agile Octopus dynamic ToU tariff. In Agile Octopus pricing scheme, the electricity
import price varies with an average price of 15.9 pence/kWh, from minimum price of 2.8
pence/kWh to maximum price of 35 pence/kWh depending on the wholesale market prices.
Similar to the case with flat tariff, the crossover point between Method 1 and Method 2
curves in Figure 4.6 clearly shows that more than 67% agents can achieve lower annual
bills and thus higher savings under Method 1 redistribution scheme compared to Method 2.
Therefore, the proposed redistribution scheme (Method 1) is fairer than Method 2 for all
import prices studied.
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Figure 4.6: Individual agents yearly bills after redistribution based on Method 1 and
Method 2 for the Agile Octopus dynamic ToU tariff [224] obtained from community wind
turbine only without battery.

Redistribution from community-owned solar PV only

In this study, a community solar PV with an optimal capacity of 309 kW for a flat tariff,
and a 347 kW solar PV for the case of dynamic ToU tariffs were considered. These
correspond to optimal capacities obtained from the scenario with solar PV generator only
in Section 4.3.1 and shown in Table 4.3). The investment cost of the community solar PV
was assumed to be shared equally among the agents.

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 117092 134455 17363
Method 2 117092 134455 17363
Method 3 125097 134455 9358
Method 4 123464 134455 10991

Table 4.8: Sum of individual agents annual bills and annual savings obtained from various
redistribution mechanisms for flat tariff of 16 pence/kWh [222] for the scenario with
community solar PV only without battery.

The sum of individual agents annual bills and total annual savings after redistribution
based on the different methods are shown in Table 4.8 for a flat tariff, and Table 4.9 for a
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Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 123154 143923 20770
Method 2 123154 143923 20770
Method 3 132282 143923 11642
Method 4 130471 143923 13452

Table 4.9: Sum of individual agents annual bills and annual savings obtained from various
redistribution mechanisms for Agile Octopus dynamic ToU tariff [224] for the scenario
with community solar PV only without battery.

dynamic ToU tariff. Savings are determined as the difference between annual bills obtained
from the considered redistribution method and the annual bills from the baseline scenario
(as shown in Table 4.1).
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Figure 4.7: Individual agents yearly bills after redistribution for the Agile Octopus dynamic
ToU tariff [224] obtained from community solar PV only without battery.

Figure 4.7 shows the individual agents annual bills after redistribution in the case of an
Agile Octopus dynamic ToU tariff pricing scheme. Similar to the case with community-
owned wind turbine, results from both the pricing schemes (as shown in Table 4.8 and 4.9)
shows that Method 1 and 2 yield to the lowest bill for the whole community, and thus the
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greatest savings for almost every agent. The comparison between Method 1 and Method 2
redistribution schemes that provided the lowest bill and hence the highest benefit for the
community is illustrated in Figure 4.8 for the the Agile Octopus dynamic ToU tariff [224],
and in Figure 4.9 for a flat tariff of 16 pence/kWh [222] pricing scheme.
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Figure 4.8: Individual agents yearly bills after redistribution based on Method 1 and
Method 2 for the Agile Octopus dynamic ToU tariff [224] obtained from community solar
PV only without battery.

Similar to the community wind turbine, the crossover point between Method 1 and
Method 2 ( as illustrated in Figure 4.8 & Figure 4.9) shows that the Method 1 the proposed
redistribution method based on marginal contribution yields to a greater reduction of
the annual bill for 67% of the community households compared to the Method 2 the
state-of-the-art method. Hence, under the proposed marginal redistribution method, more
households are able to decrease their annual bills than the existing state-of-art redistribution
method. Practically, having 67% of households in the community, which are mainly small
consumers, also benefiting from the proposed redistribution mechanism would lead to
greater social acceptance, and hence to more communities forming coalitions to invest in
jointly-owned renewable energy assets.
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Figure 4.9: Individual agents yearly bills after redistribution based on Method 1 and
Method 2 for a flat tariff of 16 pence/kWh [222] obtained from community solar PV only
without battery.

4.4.3 Implementation for a community with renewable generator and
battery

In this scenario, savings achieved from the community renewable generator and commu-
nity battery along with the aggregation of the community consumption are redistributed
based on the marginal contribution Method 1 only. Indeed, other methods as Method 4
cannot be implemented as they would require to assess the battery use for each prosumer
(corresponding to a percentage of gC (t)), which is not straightforward as the use of a
battery can correspond to a discharge due to the household’s consumption needs, but
also to a charge due to the lack of consumption from the household. This is another
key point that demonstrates the advantages of the proposed redistribution mechanism
based on marginal contribution. Yet, there is still a need to redistribute fairly the benefits
obtained from jointly-owned community renewable generator and storage assets. Hence,
the proposed marginal cost redistribution method based on individual agents marginal
contribution provides the equal and fair mechanism to redistribute the energy outputs (and
hence financial benefits) from both the jointly-owned community renewable generator and
battery assets.
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In this study, we have considered investment costs for both the community-owned
renewable generator and the community battery and performed an annual simulation based
on the battery control algorithm 3.1 and pricing schemes, while also integrating the battery
depreciation cost as in Eq. (3.14). Investment costs for community energy assets were
shared equally among agents. Savings ΠC(T ) from the community renewable generator and
community battery are redistributed among the agents based on their marginal contribution
Θi(T ), then the bills for individual agents are determined by Eq. (4.7). Finally, the savings
are determined by comparing the sum of these annual bills over the community with the
baseline total annual bill (without assets as shown in Table 4.1 ).

First, we implement the proposed redistribution the Method 1 based on marginal
contribution for the scenario with community-owned wind turbine integrated with the
community battery, and then implement for the scenario with community-owned solar PV
integrated with community battery.

Redistribution from community-owned battery and community wind turbine

In the analysis for a flat tariff, an optimal community wind turbine capacity of 405kW
and an optimal community battery capacity of 1342 kWh were considered. For dynamic
ToU tariffs, we assumed an optimal community wind turbine of 456kW and a community
battery of 1690 kWh (see Tables 4.2 and 4.4 obtained for the scenario with wind turbines
only).

The overall sum of individual agents annual bills and total annual savings after redistri-
bution based on Method 1 are shown in Table 4.10 for a flat tariff, and Table 4.11 for a
dynamic ToU tariff pricing schemes.

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 57389 134455 77065

Table 4.10: Sum of individual agents annual bills and annual savings obtained from Method
1 for flat tariff of 16 pence/kWh [222] for the scenario with community wind turbine and
community battery.

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 59136 143923 84787

Table 4.11: Sum of individual agents annual bills and annual savings obtained from
Method 1 for Agile Octopus dynamic ToU tariff [224] for the scenario with community
wind turbine and community battery.
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Figure 4.10: Individual agents yearly bills after redistribution based on Method 1 for a
flat tariff of 16 pence/kWh [222] obtained from community wind turbine and community
battery.

Figure 4.10 shows the individual agents annual bills after redistribution based on
Method 1 for a flat tariff. In the case of the community-owned renewable generator only,
various state-of-the-art Methods 2, 3 and 4 listed in this subsection, are available to allocate
the wind power to individual agents. But, these methods are not applicable to community-
owned batteries, as there is no clear method to split the power from the battery. Yet, there
is still a need to assure fair sharing of the jointly-owned community renewable generator
and storage resources. Hence, the proposed Method 1 based on the marginal contribution
provides an equal and fair redistribution mechanism to distribute savings from both the
community renewable generator and community battery.

Redistribution from community-owned battery and community solar PV

In this study, an optimal community solar PV capacity of 309kW and an optimal community
battery capacity of 642 kWh were considered for a flat tariff pricing scheme, and an optimal
community solar PV of 347kW and a community battery of 620 kWh was considered for a
dynamic ToU tariff (see Tables 4.3 and 4.5 obtained for the scenario with solar PV only).

Similar to the case with community wind turbine and community battery, the overall
sum of individual agents annual bills and total annual savings after redistribution based on
Method 1 are shown in Table 4.12 for a flat tariff, and Table 4.13 for a dynamic ToU tariff
pricing schemes.
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Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 113790 134455 20665

Table 4.12: Sum of individual agents annual bills and annual savings obtained from Method
1 for flat tariff of 16 pence/kWh [222] for the scenario with community solar PV and
community battery.

Redistribution
mechanism

Sum of individual
agent annual bills
after redistribution (£)

Sum of individ-
ual agent annual
bills without asset
(baseline) (£)

Sum of individ-
ual agent annual
savings (£)

Method 1 117307 143923 26616

Table 4.13: Sum of individual agents annual bills and annual savings obtained from Method
1 for Agile Octopus dynamic ToU tariff [224] for the scenario with community solar PV
and community battery.
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Figure 4.11: Individual agents yearly bills after redistribution based on Method 1 for a flat
tariff of 16 pence/kWh [222] obtained from community solar PV and community battery.
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The individual agents annual bills after redistribution based on Method 1 is shown in
Figure 4.11 for fixed tariff and Figure 4.12 for dynamic ToU tariff pricing schemes. The
proposed redistribution mechanism Method 1 which is based on the marginal contribution
of each agent (key concept from coalitional game theory) is generic in nature and can be
easily extended to incorporate other renewable generators. Hence, the sensitivity analysis
of electric prices as applied to the case with the wind turbine also equally applies to the case
with the solar PV renewable generator. As highlighted in the case with both community
wind turbine and community battery, all the available state-of-the-art Methods 2, 3 and
4 listed in section 4.4.2 are not applicable to community-owned battery as there is no
clear method to split the power from the battery. Hence, the proposed Method 1 based on
marginal contribution provides an equal and fair redistribution mechanism to distribute
savings from both the community-owned solar PV and community battery ( as shown in
Figure 4.11 & 4.12 ). This is another key point that demonstrates the advantages of the
proposed redistribution mechanism based on the marginal contribution.
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Figure 4.12: Individual agents yearly bills after redistribution based on Method 1 for
an Agile Octopus dynamic ToU tariff [224] obtained from community solar PV and
community battery.
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4.4.4 Discussion of results

In this section, a novel algorithm is proposed for the fair redistribution of benefits obtained
from community-owned assets. The algorithm demonstrates favourable redistribution and
computational advantages when compared to existing state-of-the-art methods used to
share the output of jointly-owned community energy assets. The proposed redistribution
mechanism Method 1 is compared with existing redistribution and benefit allocation
schemes for community-owned assets (state-of-the-art methods denoted as Method 2, 3
and 4).

Results from the comparison shows that, proposed method based on marginal contribu-
tion the Method 1 and the Method 2 based on instantaneous demand redistribution schemes
provided the lowest annual bill and hence the highest saving for the community (as shown
in Table 4.6, Table 4.7 & Figure 4.3 for community-owned wind generator, and Table 4.8,
Table 4.9 & Figure 4.7 for community-owned PV generator). Then, the method 1 and
method 2 were further compared to evaluate the economic fairness in the redistribution
scheme. The crossover point (as shown in Figure 4.4, 4.5, 4.6, 4.8 & 4.9) between the two
redistribution schemes shows that the proposed redistribution scheme Method 1 yields
to a greater reduction of the annual bill for 67% of the community households compared
state-of-the-art Method 2. Large consumers benefit slightly less under this scheme, but
they still obtain the highest bill reduction in value as compared to households with lower
demand profiles. Therefore, the proposed redistribution mechanism achieves a fairer redis-
tribution leading to greater social acceptance, key to incentivise more communities to form
coalitions and invest in jointly-owned renewable energy assets. Moreover, irrespective of
the electricity buying prices, more agents could achieve consistently the lower annual bills
and thus higher savings under Method 1 redistribution scheme as compared to Method 2.

Furthermore, the results based on 200 houses from the ReFLEX project [8], the
UK’s largest smart energy demonstration project shows that the proposed redistribution
mechanism is generic in nature and is easily applicable to any type of community-owned
assets, even the jointly-owned community battery storage assets; despite the apparent
difficulty to assess how each member of the community takes advantage of assets.

4.5 Concluding remarks

In this work, a model of community investment and sharing of energy assets, encompassing
renewable generation and battery storage, was thoroughly examined. The analysis was
conducted within a market pricing regime that incorporated both fixed electricity tariffs
and dynamic time of use (ToU) tariffs. An energy community model of a prosumer-based
control algorithm was presented and assessed by incorporating the latest heuristics of
battery state of health for both at an individual/prosumer level and at a community level.
The control mechanism was implemented for both fixed electricity tariffs and dynamic
ToU tariffs to compare the benefits obtained when an individual household invest in
their own energy assets versus investing jointly in a community-owned energy assets.
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To compare the economic performance of investments in community-owned assets and
individually-owned assets, we considered an energy community of two hundred prosumers,
that were all modelled by real time-series data of generation and consumption profiles
from a community in UK for a full year. We computed yearly bills resulting from the
proposed battery control algorithm and compared the reduction in yearly bills obtained by
investment in individually-owned distributed energy assets with reduction due to investment
in jointly-owned community energy assets.

Results from the techno-economic analysis show that community assets provide more
savings (higher benefits) compared to distributed, individually-owned assets. The ad-
vantages from community assets are multiple. First, community assets require a lower
capacity for the same services, hence potentially a lower cost. Second, community assets
achieve lower annual energy bills for both pricing schemes considered in the study. The
study highlighted the importance for determination of fair redistribution or allocation of
benefits achieved in community projects. In this vein, we explored a number of benefit
redistribution schemes (four methods in total, based on current practices). We proposed a
method based on the marginal contribution of each prosumer, a key concept that assures
fair distribution in coalitional game-theory. We showed that the proposed scheme achieved
better performance than other methods, while also providing the additional advantage of
being computationally tractable.





Chapter 5

Modeling energy asset ownership
schemes in a community with network
constraints

Chapter 5 presents an extension of the model developed in Chapter 4. The studies on
the techno-economic analysis of individually-owned versus community-owned assets,
and the marginal cost redistribution mechanisms proposed in the previous Chapter 4
have not considered the network constraints such as the local low-voltage (LV) grid
characteristics, voltage limits and power ratings of electric cables and transformers. In
practice however, the assets might be prevented from exporting/consuming to/from the
grid due to network constraints, thereby reducing the associated benefits. For instance,
when the grid is constrained with voltage excursions, then the exports form PV/wind
turbine and exports/imports from/to battery can be curtailed. Hence, such curtailment
events need to be accounted for in the energy community setting by including power flow
(physical network/grid constraints) in the techno-economic analysis. Moreover, most of the
existing redistribution frameworks (including the novel marginal cost redistribution method
proposed in Chapter 4) are developed without considering network constraints, in which
case the computation becomes more challenging. Thus, there is still a need to develop a
redistribution mechanism that is fair, but also provide tractable computational performance
that scales well with the increasing number of members in the energy community coalition,
while considering operational network constraints.

To address these limitations, in this Chapter 5, the application of the rule-based battery
control algorithm proposed in the previous Chapter 4 is extended by further incorporating
the influence of battery life degradation, and the resultant increase in local renewable
energy consumption within local operating constraints of the LV network. This chapter
presents a model that first studies the techno-economic benefits of community-owned
versus individually-owned energy assets considering the network/grid constraints. Then,
using the methodology and principles from cooperative game theory, the novel fair redistri-
bution mechanism introduced in our previous Chapter 4 is extended to include network
operational constraints while being computationally tractable compared to the existing
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state-of-the-art methods, and hence more practically applicable. Compared to prior work
(presented in previous Chapter 4), in this chapter, we investigate in greater detail the
complex interdependencies within the system, such as using real state-of-the art battery
control which incorporates the power flow (physical network/grid constraints), and physical
degradation of the asset into the community energy optimization models.

In this chapter, the energy community model incorporating the network constraints is
illustrated using the solar PV renewable generator integrated with battery storage assets.
However, the model is general and proposed methodologies are generic in nature and can
be applied to any renewable generator such as wind turbine. Moreover, practically the solar
PV renewable generators are the most distributed energy assets that are individually-owned
by households. In such settings, a recent emerging approach to increase the benefits from
the individually-owned assets such as solar PV is to share the joint resources and assets
by facilitating peer-to-peer (P2P) or peer-to-community (P2C) local energy markets. In
Chapter 6, the proposed community energy model is expanded to assess how peer-to-peer
(P2P) or peer-to-consumer (P2C) market mechanisms, particularly with individually-
owned assets, such as solar PVs, can enhance the benefits of the community scheme. This
extension allows for a comparative analysis of the advantages of community-owned assets
in contrast to individually-owned assets, both with and without the incorporation of P2P or
P2C market mechanisms.

Research work presented in Chapter 5 was published in a peer-reviewed scientific
paper [152].

5.1 Research contributions

A comprehensive literature review on the state-of-the-art in community energy modelling
was presented analytically in the previous Chapter 2. The physical network (the LV
distribution grid) is an essential entity that allows the exchange of energy in the settings of
the energy communities. However, an important aspect that has often been neglected in
existing research on energy community models is the relevance of the distribution grid’s
technical limits. Installation of renewable generator (solar PV/wind turbine) or batteries
in the grid changes power flows, and might create congestions, voltage excursions, or
line over-heating. In such cases, the grid operator might consider the need for an active
network management to remotely control the injection of distributed renewable generator
and storage assets. Therefore, due to this congestion/voltage excursion, assets might be
prevented from exporting/consuming to/from the grid, reducing the benefits from their
owners. For instance, when the grid is constrained with voltage excursions, then the
exports form PV/wind turbine and exports/imports from/to battery can be curtailed as it is
currently the case in Orkney Islands [236], UK. Therefore, such curtailment events need
to be accounted for in the energy community setting by including power flow (physical
network/grid constraints) in the techno-economic analysis. For example, in most of the
prior literature, the studied models of energy communities do not consider the impact
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of physical network constraints in the assessment of the techno-economic benefits of
community-owned energy assets compared to individually-owned energy assets.

Furthermore, although most prior literature sources show that community-owned
battery storage system offers higher benefits as compared to individually-owned distributed
batteries [33, 16, 34–36], these studies often do not consider battery degradation cost.
Also, although higher benefits can be achieved by investing in community assets, how to
redistribute these benefits among the individual households in the community still remains
a key open question, of both research and practical interest. Current energy communities
usually employ algorithms based on proportionality of consumption to redistribute the
benefits from the community-owned generator assets. However, such methods are not
fair, and not applicable in the case of energy storage assets, where the proportionality
of the asset usage does not apply. Hence, there is a need to design an efficient and fair
redistribution mechanisms that applies to both community-owned renewable generator and
storage assets, while incorporating the asset’s degradation, and the physical network and
operational constraints.

In the context of decentralized energy systems, coalitional game theory has been
identified as a promising solution for designing incentive mechanisms for community
energy trading and sharing. In a cooperative game, players form coalitions to maximise
a common objective for mutual benefit. Then, the benefit is distributed equally or fairly
among themselves using incentive-based solution concepts, such as the Shapley value.
Existing coalitional game theory redistribution mechanism based on concepts like the
Shapley value use marginal contributions at their core, but present issues of scalability
as the number of agents in a coalition increases [40, 235]. Moreover, most of existing
redistribution frameworks are developed without considering network constraints, in which
case the computation cost becomes even more challenging.

To address the above challenges, this Chapter 5 presents a model that first studies
the techno-economic benefits of community-owned assets versus individually-owned
energy assets considering the network/grid constraints. In order to assess the benefits
from installing various assets including a comprehensive model of battery degradation,
we propose an approach based on real time-series data of a community, and compare the
benefits provided by community-owned assets with the benefits expected from individually-
owned assets, considering operational network constraints. Then, using the methodology
and principles from cooperative game theory, the novel fair redistribution mechanism
introduced in our previous Chapter 4 is extended to include network operational constraints
while being computationally tractable compared to the existing state-of-the-art methods,
and hence more practically applicable.

More specifically, this chapter presents a methodology for real-time control of energy
community assets from an economic and technical perspective. Compared to prior work
we investigate in greater detail the complex interdependencies within the system, such
as using real state-of-the art battery control which incorporates the power flow (physical
network/grid constraints), and physical degradation of the asset into the community energy
optimization models. Moreover, the research in this study includes a full model of power
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flows in a LV distribution network describing an energy community, and – as a first
- the effect of network constraints and curtailment imposed by the system operator to
maintain LV network operational compliance is modelled. This is coupled to both the
algorithm for the smart control of the battery and generation source, but also extends to the
redistribution algorithm. This represents a significant and novel contribution to the current
state-of-the-art.

In summary, the research contributions of the work presented in Chapter 5 that progress
beyond the state of the art are:

• This chapter presents a techno-economic comparison between two configurations
of energy communities connected to a low-voltage distribution network. First, a
configuration with individually-owned distributed energy assets, such as solar PV
and residential batteries. Then, a second configuration in which distributed energy
assets are jointly owned by the community, and installed in a single location. The
proposed two configurations of energy communities are compared by studying the
economic impacts of installing various energy assets on the grid for both fixed and
dynamic time of use (ToU) tariffs.

• In this work, power flow (physical network/grid constraints), and physical battery
degradation are incorporated into community energy optimization models, including
the effect of network constraints on redistribution schemes. To achieve this objective,
a battery state of health degradation model is utilized, which relies on the battery
depth of discharge in each control cycle, while simultaneously ensuring that the bus
voltages remain within permissible limits. This represents a considerable extension
of prior work of control and sharing of assets in energy communities, which do not –
or very rarely consider physical LV network constraints in their modeling (including
the novel marginal cost redistribution method proposed in Chapter 4)

• This chapter presents a fair and computationally tractable redistribution scheme for
sharing the benefits obtained from community-owned energy assets subjected to
physical network constraints, based on principles from cooperative game [37, 40],
and its advantageous is tested and verified by comparing with the state-of-the-art
redistribution mechanisms.

• The proposed energy community model is validated using a real case study from
the ReFLEX (Responsive Flexibility) project that aims to develop a large-scale
demonstrator for community energy integration in Orkney, Scotland, UK [8].

Firstly, the power flows in an LV network that describe the energy community are
modelled in the subsequent section.
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5.2 LV Network model

Two configurations of energy communities were compared in Chapter 4. In the first
configuration, community comprised of 200 individual agents are considered, each one of
them with their own consumption and local production, but without financial nor energy
interaction between them. In such configuration, agents import electricity from the grid
when their assets cannot cover their own consumption, whereas they can export electricity
to the grid when they have production surplus. The second configuration corresponds to the
case of an energy community in which agents invest together in jointly-owned community
energy assets, such as wind or solar production, and community batteries. The demand
of agents is considered inflexible. A renewable generator (either wind turbine or a solar
PV installation), a battery energy storage system and the utility grid are the three power
sources considered for satisfying the inflexible demand at all times. A power flow diagram
of an agent or of the energy community considered as a whole was shown in Figure 4.1 in
the previous Chapter 4. As described (defined by Eq. 4.1), the overall power balance at
any given time t of an agent i or of the energy community C is given by:

pgrid
i/C (t) = di/C (t)− pbat

i/C (t)−gPV
i/C (t) (5.1)

where gPV
i/C (t) is the power generated by the solar PV generator, that can be individually

owned, or owned by the community. pgrid
i/C (t) represents the power that an agent or that

the community can buy/sell from/to the grid. pbat
i/C (t) represents the power of the storage

system (individually-owned, or centrally located and owned by the community), which
is considered negative when the battery is charging (battery considered as a load), and
positive when the battery is discharging (battery considered as a generator). di/C (t) is
the power consumed by an agent or by the community considered as a whole, i.e the
aggregated demand power of 200 agents.

However, the power flow diagram proposed in Figure 4.1 does not include physical
constraints such as electric cables thermal limits and voltage excursions. Therefore, in
energy communities with important renewable production, such as the Orkney Islands
considered in the ReFLEX project [8], agents may be prohibited from exporting power at
particular times, due to electric cables overheat. As a result, network constraints (technical
limits of the electrical grid) must also be added to the energy community model described
by Figure 4.1. To include physical constraints such as network constraints, we have
considered a 13-bus radial distribution system to connect all agents of the community. This
network model is adapted from the IEEE 13-bus network [237].

In this chapter, the primary objective is to compare two configurations of energy
communities that consider the incorporation of network constraints. First, a configuration
with individually-owned distributed generation assets, such as solar PV and residential
batteries. Households are randomly aggregated among the 13-buses, as presented in
Figure 5.1. Then, a second configuration in which distributed generation assets are owned
by the community, and installed in a single location. Figure 5.2 shows the location of assets
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Figure 5.1: Electric network used in simulations with grid constraints for individually-
owned assets.

Figure 5.2: Electric network used in simulations with grid constraints for centrally located
community-owned assets.

and households in the configuration of centrally located, community-owned generation
and storage assets.
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Community-owned assets are connected to a unique bus without load, that was chosen
to be in a central location of the grid, in order to reduce the risk of constraining the grid.
Bus 1 (slack bus) represents the main connection to the transmission grid, and its voltage
is set to reference voltage of 1 p.u with the base voltage of 236 V. Power flow in this

Figure 5.3: Power balance at a bus of the electric grid.

13 bus grid model is computed for every time interval considered in our simulations in
order to determine the voltages and power (active and reactive) flowing at every bus. The
power flow computation follows a power approach in which the apparent power balance
is stated for every bus of the grid, as shown in Figure 5.3. We define, Sn = Pn + jQn the
apparent power that is consumed or produced at bus n. Znk = Rnk + jXnk is the impedance
(admittance, Ynk = 1/Znk) of the line between bus n and bus k and Snk = Pnk +Qnk is
the apparent power flowing between bus n and bus k. The power balance equations are
summarized in Eq. 5.2.

Pn = |Vn|∑
k
|Vk| |Ynk|cos(δk −δn + γnk)

Qn = |Vn|∑
k
|Vk| |Ynk|sin(δk −δn + γnk)

(5.2)

where Ynk = Ynke jγnk is the admittance of the line connection between bus n and bus k. Pn

is the total active power produced and consumed at bus n, which is considered positive
if produced and negative if the power is consumed. Similarly, Qn is the total reactive
power produced (positive) and consumed (negative) at bus n. The voltage at bus n is
defined by Vn =Vne jδn , with δn the voltage angle. The line parameters and other related
details considered in the 13-bus radial distribution system is provided in the Appendix A
(adapted as provided in [237]). The power balance expressed in Eq. (5.2) is solved using
the Newton-Raphson method, and gives the following two fundamental outputs:

i The voltage at each bus, in amplitude and phase.

ii The power (active and reactive) flowing through each bus.

Furthermore, in order to provide a techno-economic study that enables the comparison
between the two configurations proposed (individually-owned and community-owned
assets), we have considered one year of data for load consumption [215] and solar PV
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production [221] with half-hourly time intervals, using Thames Valley Vision data for
both flat tariff [222] and Agile Octopus dynamic ToU [224] pricing schemes (as described
in Section 3.3 in Chapter 3). These 200 demand profiles are further aggregated [35] to
represent a single community demand profile. Power flows were computed for the whole
year. Also, we have linearly increased the power consumption of each household in order
to consider an energy community in which voltage profiles are already close but still
within the UK’s upper and lower admissible voltage limits of 1.1 per unit (p.u) and 0.94
p.u. respectively for the whole year. Therefore, this setting consists of a case of normal
operation with acceptable voltage and congestion profiles, while allowing us to study
the potential impacts of installing various assets on the grid. The control algorithm of
distributed generation assets, including the remote control from the Distribution System
Operator (DSO) to prevent voltage out-of-bounds excursions, is defined in the following
section.

5.3 Battery control algorithm with voltage control mecha-
nism

In this chapter, the battery control Algorithm 3.1 applied to the single prosumer model
described in Chapter 3 and energy community setting (without network constraints) de-
scribed in Chapter 4 is modified by incorporating the power flow (physical network/grid
constraints) through voltage control mechanism.

A new battery control scheme consists of operational real-time decisions to charge
or discharge the battery, based on the difference between the agent/community power
consumption and its PV production. When the PV production exceeds the power consumed,
the control scheme charges the battery if the bus voltage (V bus) is within the permissible
limits (0.94p.u ≤V bus ≤ 1.1p.u), until it reaches the full capacity. Any excess is exported
and sold to the main grid, provided the V bus is within the permissible limits. Whenever, the
demand exceeds the PV production, the battery is discharged until it reaches its maximum
allowable depth of discharge (DoD), provided the V bus is within the permissible limits. Any
remaining deficit is purchased and imported from the grid. The bus voltage is regulated
within the safe permissible limits by controlling the export from the PV generator, and
export/import from/to the battery assets.

As described in Section 3.4.1 of Chapter 3, the operation of the battery is constrained
by the state of charge (SoC) levels, and a maximum power (pbat,max) that the battery can
be charged or discharged at, which corresponds to its maximum C-rating. In this work,
Coulomb-counting method is used to estimate the SoC of the battery. The accuracy of
this method depends mainly on how the current drawn from or to the battery is measured
and on the nominal battery capacity [238]. In our study, the nominal battery capacity is
updated at regular intervals of the simulation. This approach is similar to the solutions
implemented in commercial batteries. A number of commercial battery manufacturers
such as ABB [239] propose an updated Coulomb-counting method for SoC estimation.
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At any given time t of a charging phase, the battery is charged with an efficiency (ηc)
until it reaches the maximum battery capacity (SoCmax). Charging constraints are defined
as:

SoC(t)≤ SoCmax (5.3)

pbat(t)≤ pbat,max (5.4)

Similarly, the battery can be discharged with an efficiency (ηd) until it reaches its minimum
battery capacity (SoCmin). Discharging constraints are defined as:

SoC(t)≥ SoCmin (5.5)

pbat(t)≤ pbat,max (5.6)

The minimum battery capacity corresponds to the maximum allowable DoD.
In this section, a rule-based battery control algorithm is proposed, targeting the charg-

ing of the battery during power surplus and discharging the battery during power deficits,
all while ensuring the bus voltage (V bus) remains within acceptable limits. The algorithm
can be described as follows:

If gPV(t)> d(t), there is excess of power generated from the PV generator. The control
strategy of the battery dictates the following:

I If SoC(t) ≤ SoCmax and pbat(t) ≤ pbat,max then the excess power is stored in the
battery (charging operation), provided the V bus(t) due to bus power Pbus(t) is within
the permissible limits i.e 0.94p.u ≤V bus(t)≤ 1.1p.u. Where, Pbus(t) is the total net
active and reactive power of the bus at time t given by Eq. (5.2).

II If the battery is full (SoC(t) > SoCmax) or if available power is greater than the
maximum acceptable charging power ( pbat(t)> pbat,max), then the agent/community
sells the excess power to the utility grid at a selling price equal to τs(t), provided
the V bus(t) due to bus power Pbus(t) is within the permissible limits i.e 0.94p.u ≤
V bus(t)≤ 1.1p.u.

The resulting SoC profile, power at bus Pbus(t), and the energy exported es(t) to the
grid during the identified duration of excess generation are determined as:

pbat(t) =−min(min([gPV(t)−d(t)], pbat,max),

[SoCmax −SoC(t −1)]
ηc∆t

)
(5.7)

SoC(t) = SoC(t −1)−η
c pbat(t)∆t (5.8)

Pbus(t) = gPV(t)− pbat(t) (5.9)

es(t) =
[
Pbus(t)−d(t)

]
∆t (5.10)

where ∆t corresponds to the duration of the considered time step.
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III If the excess PV power available for charging the battery or for export to grid violates
the safe voltage limit (i.e 0.94p.u ≤V bus(t)≤ 1.1p.u.), then the power export from
the PV, and power import to battery are curtailed (Pcurtailed) until the voltage is within
the permissible limits, accordingly the Pbus(t) is updated. When the generation from
the PV is curtailed due to voltage violations, the demand is satisfied by importing
energy (eb(t)) from the utility grid at a buying price equal to τb(t). Whenever the
V bus(t)> 1.1p.u, the voltage is controlled as follows.

i If the battery is fully charged, then the export from PV is curtailed and the bus
power is updated as:

Pbus(t) = Pbus(t)−Pcurtailed (5.11)

If the updated Pbus(t)> 0, then the excess energy is exported to the utility grid:

es(t) =
[
Pbus(t)−d(t)

]
∆t (5.12)

If the updated Pbus(t)< 0, then the deficit energy is imported from the utility
grid:

eb(t) =
[
d(t)−Pbus(t)

]
∆t (5.13)

ii If the battery is in the process of charging, then the power export from PV and
power import to battery are curtailed, and the bus power is updated as:

pbat(t) =−min(min([pbat(t)+Pcurtailed], pbat,max),

[SoCmax −SoC(t −1)]
ηc∆t

)
(5.14)

Pbus(t) = gPV(t)− pbat(t) (5.15)

If the updated Pbus(t)> 0, then the excess energy is exported to the utility grid:

es(t) =
[
Pbus(t)−d(t)

]
∆t (5.16)

If the updated Pbus(t)< 0, then the deficit energy is imported from the utility
grid:

eb(t) =
[
d(t)−Pbus(t)

]
∆t (5.17)

Similarly, if gPV(t)< d(t), then there is a deficit in power supplied by the PV generator.
During this time, the demand is satisfied by discharging the battery, provided the battery
capacity is above the minimum SoC and the bus voltage (V bus) is within the permissible
limits. Otherwise, the deficit power is imported from the utility grid.
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Figure 5.4 illustrates a comprehensive flowchart of the proposed control strategy,
integrating network constraints. In the presence of excess renewable generation, the
prosumer’s objective is to sell all surplus energy. However, considering the physical
network/grid limitations, such sales are restricted. Likewise, during periods of energy
deficit, the prosumer’s preference is to discharge the battery, yet network constraints
prohibit it. These crucial aspects were not addressed in the previous Chapter 3 & 4. In this
Chapter 5, these network constraints are addressed by introducing an additional voltage
control mechanism, highlighted in blue within the Flowchart depicted in Figure 5.4. This
inclusion enhances the overall effectiveness of the control strategy.

Algorithm 5.1 & 5.2 outlines this if-then rule based control strategy. Algorithm 5.1
demonstrates the proposed control strategy for battery management and voltage regulation
when there is excess generation in the renewable system. On the other hand, Algorithm 5.2
showcases the optimization of deficits in renewable generation.

Most of the time the voltage excursion is characterized predominantly by over-voltage
phenomenon (i.e high voltage violations V bus(t) > 1.1p.u). Hence, the voltage control
mechanism for the case with V bus(t) > 1.1p.u is only included in the control scheme.
However, if the bus voltage violates the lower permissible limit (V bus(t)< 0.94p.u) and
gPV(t)> d(t), then the bus voltage can be controlled by limiting the battery charging until
it is within the permissible limit. If gPV(t)< d(t), then the bus voltage can be controlled
by increasing the reactive power production from the battery.

Whenever the bus voltage (V bus) violates the permissible limits, then the gird is con-
strained, hence the exports from PV and exports/imports from/to battery are curtailed. This
reduces the financial benefits offered by the assets. The economic parameters to assess
and compare the benefits of community-owned assets with individually-owned assets is
presented in the next section.



114 Modeling energy asset ownership schemes in a community with network constraints

Inputs
gPV(t),d(t),SoCinitial,V slack bus

gPV(t)> d(t)

SoC(t)≥
SoCmax

or
pbat(t)>
pbat,max

SoC(t)≤
SoCmin

or
pbat(t)>
pbat,max

0.94p.u ≥V bus(t)≤
1.1p.u

0.94p.u ≥V bus(t)≤
1.1p.u

Sell excess
energy to the
grid at τs(t)

Reduce the
PV production

(Pcurtailed)

Charge
the battery

Reduce the
charging of
the battery
(Pcurtailed)

0.94p.u ≥V bus(t)≤
1.1p.u

Buy deficit
energy from

the grid
at τb(t)

Discharge
the battery

Reduce the
discharging

of the battery
(Pcurtailed)

Yes No

Yes No

Yes No YesNo

No Yes

Yes No

Figure 5.4: Flowchart of battery and voltage control scheme.
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Algorithm 5.1: Battery control and voltage regulation algorithm for optimizing
excess in renewable generation
1 Input: gPV(t), d(t), τb(t),τs(t),ηc, ηd , SoCinitial/max/min,pbat,max, V slack bus = 1p.u
2 for t = 1 : T do
3 ∀t ∈ [0,T ], excess of energy or deficit in energy is determined
4 if gPV(t)≥ d(t) then

5 pbat(t) =−min
(

min
([

gPV(t)−d(t)
]
, pbat,max) , [SoCmax −SoC(t −1)]

ηc∆t

)
6 When, SoC(t)≤ SoCmax and pbat(t)≤ pbat,max

7 Provided, 0.94p.u ≤V bus(t)≤ 1.1p.u
8 Charge the battery (pbat(t)< 0):
9 SoC(t) = SoC(t −1)−ηc pbat(t)∆t

10 Pbus(t) = gPV(t)− pbat(t)
11 When, SoC(t)> SoCmax or pbat(t)> pbat,max

12 Provided, 0.94p.u ≤V bus(t)≤ 1.1p.u
13 Sell excess energy to the grid at τs(t):
14 es(t) =

[
Pbus(t)−d(t)

]
∆t

15 Voltage control mechanism:
16 while V bus(t)> 1.1p.u do
17 if pbat(t)≥ pbat,max ||SoC(t)≥ SoCmax then
18 Export from PV is curtailed (production from PV is reduced):
19 Pbus(t) = Pbus(t)−Pcurtailed

20 if Pbus(t)> 0 then
21 es(t) =

[
Pbus(t)−d(t)

]
∆t

22 else
23 eb(t) =

[
d(t)−Pbus(t)

]
∆t

24 end
25 else
26 Import to battery is curtailed (charging of the battery is reduced):
27 pbat(t) =

−min
(

min
([

pbat(t)+Pcurtailed] , pbat,max) , [SoCmax −SoC(t −1)]
ηc∆t

)
28 Pbus(t) = gPV(t)− pbat(t)
29 if Pbus(t)> 0 then
30 Excess energy exported to grid at τs(t):
31 es(t) =

[
Pbus(t)−d(t)

]
∆t

32 else
33 Deficit energy imported from grid at τb(t):
34 eb(t) =

[
d(t)−Pbus(t)

]
∆t

35 end
36 end
37 end
38 else
39 Battery control and voltage regulation mechanism for optimizing the

deficit in renewable generation is outlined in Algorithm 5.2
40 end
41 end
42 Output: ∀t ∈ [0,T ], SoC(t), es(t), eb(t), Pbus(t), V bus(t)
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Algorithm 5.2: Battery control and voltage regulation algorithm for optimizing
deficits in renewable generation
1 Input: gPV(t), d(t), τb(t),τs(t),ηc, ηd , SoCinitial/max/min,pbat,max, V slack bus = 1p.u
2 for t = 1 : T do
3 ∀t ∈ [0,T ], excess of energy or deficit in energy is determined
4 if gPV(t)≥ d(t) then
5 Battery control and voltage regulation for optimizing the excess in

renewable genration is outlined in Algorithm 5.1
6 Voltage control mechanism:
7 Export from PV is curtailed (production from PV is reduced)
8 Import to battery is curtailed (charging of the battery is reduced)
9 else

10 pbat(t) = min
(
min

([
d(t)−gPV(t)

]
, pbat,max) ,ηd [SoC(t −1)−SoCmin])

11 When, SoC(t)≥ SoCmin and pbat(t)≤ pbat,max

12 Provided, 0.94p.u ≤V bus(t)≤ 1.1p.u
13 Discharge the battery (pbat(t)> 0):

14 SoC(t) = SoC(t −1)− pbat(t)
ηd ·∆t

15 Pbus(t) = gPV(t)+ pbat(t)
16 Buy deficit energy from grid at τb(t):
17 eb(t) =

[
d(t)−Pbus(t)

]
∆t

18 Voltage control mechanism:
19 while V bus(t)> 1.1p.u do
20 if pbat(t)≤ 0 ||SoC(t)≤ SoCmin then
21 When the battery is completely discharged, then any production

from the PV is curtailed or reduced:
22 Pbus(t) = max

(
0,Pbus(t)−Pcurtailed)

23 Deficit energy imported from grid at τb(t):
24 eb(t) =

[
d(t)−Pbus(t)

]
∆t

25 else
26 Export from battery is curtailed (discharging of the battery is

reduced):
27 pbat(t) =

min
(
max

(
0,
[
pbat(t)−Pcurtailed]) ,ηd [SoC(t −1)−SoCmin])

28 Pbus(t) = gPV(t)+ pbat(t)
29 Deficit energy imported from grid at τb(t):
30 eb(t) =

[
d(t)−Pbus(t)

]
∆t

31 end
32 end
33 end
34 end
35 Output: ∀t ∈ [0,T ], SoC(t),eb(t), Pbus(t), V bus(t)
36 SoC(t), input to rainflow cycle counting algorithm used to calculate the battery

depreciation factor
37 es(t) energy exported to grid at a selling price equal to τs(t)
38 eb(t) energy imported from grid at a buying price equal to τb(t)
39 Pbus(t) updated bus power
40 V bus(t) updated bus voltage
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5.4 Techno-economic indicators

The main aim of the economic study of the energy community is to determine the benefits
provided by assets (renewable generation capacity and storage) to prosumers, subjected to
network and operational constraints. To achieve this, the presented Algorithm 5.1 & 5.2 are
implemented by considering the different pricing schemes (as described in Section 3.3.4
of Chapter 3). A yearly energy bill savings, which is a fairly intuitive indicator, is used
to compare the economic performance of investments in individually-owned assets and
community-owned assets. In this section, we provide the key economic performance
indicator adopted in the proposed comparative study.

The economic value of both community-owned assets and individually-owned assets
can be assessed and compared by considering the reduction of the sum of the annual
electricity bill of all the households from the energy community. The yearly bill b(T ) of an
agent/community can be expressed as the sum of the cost of the annual energy consumption
and the depreciation cost of the assets cA, minus the sum of revenues earned by exports to
the grid, as shown below:

b(T ) =
T

∑
1

eb(t)τb(t)−
T

∑
1

es(t)τs(t)+ cA(T ) (5.18)

where the energy import eb(t) at time step t is given by Eq. (5.19), with Phouse the power
imported (if positive) or exported (if negative) by the considered household.

eb(t) =
[
d(t)−Phouse(t)

]
∆t (5.19)

Similarly, the energy export es(t) at time step t is given by Eq. (5.20).

es(t) =
[
Pbus(t)−d(t)

]
∆t (5.20)

However, as many countries have reduced or removed export prices under the form of
feed-in tariffs, our analysis will not include revenues from energy export. Thus, the yearly
bill without feed-in tariff is determined as:

b(T ) =
T

∑
1

eb(t)τb(t)+ cA(T ) (5.21)

Similar to the community settings described in Chapter 4, the model inputs, battery
depreciation aspects and the economic setting of the single prosumer model described in
Chapter 3 are applied to the community setting. As outlined by Eq. (3.20), the annual bill
for agent i and the community C are defined as:

bi(T ) =
T

∑
1

eb
i (t)τ

b(t)+ cA
i (T ). (5.22)
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bC (T ) =
T

∑
1

eb
C (t)τ

b(t)+ cA
C (T ). (5.23)

where, eb
i (t)τ

b(t) is the cost of energy imports from the utility grid by agent i at time t
and cA

i (T ) is the depreciation cost of assets owned by agent i in the considered period T .
Similarly, eb

C (t)τ
b(t) is the cost of energy imported from the utility grid by the community

as a whole at time t and cA
C (T ) is the depreciation cost of jointly-owned community assets

for the considered period T .
This chapter presents an energy community model that first studies the techno-economic

benefits obtained from community-owned assets and individually-owned assets consid-
ering the network constraints, and compare it with the case without network constraints.
Then, we present the fair redistribution scheme to fairly redistribute the benefits from the
community-owned assets. Also, in order to test the advantages of the proposed redistri-
bution mechanism, we present in this chapter the state-of-the-art redistribution method,
used in current practice in such projects, that will be used for comparison. This proposed
energy community modelling approach is summarized in Figure 5.5.

Figure 5.5: Overview of the energy community modeling approach incorporating the
network constraints

Similar to the community settings (without network constraints) described in Chapter 4,
the model input, tariff structures and unitary cost of energy assets described in Section 3.3
of Chapter 3 are used for analysis. In this setting, we consider prosumer or a community
as a whole invest in a individually-owned distributed solar PV renewable generator along
with a battery energy storage system as outlined shown in Figure 5.1, or invest in a jointly-
owned community solar PV and community battery as shown in Figure 5.2. The cost
of energy assets are assumed to be 150 £/kWh for the battery [225] and 1100 £/kW for
solar PV [229] generation capacity. In this study, we chose to use an optimal size for both
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individual assets and community assets that was obtained in Chapter 4. Results of the
optimal assets sizing are shown in Table 4.3 for PV, and Table 4.5 for battery (that was
obtained from battery integrated with solar PV renewable generator). An optimal size of
PV or battery corresponds to the size that provides the minimal simple payback period.

The potential impacts of installing these various assets (with optimal capacities ) on
the grid, and the corresponding economic analysis is presented in the following section.

5.5 Comparison of yearly bills obtained from investment
in distributed individually-owned assets with jointly-
owned community energy assets with network con-
straints

As a reminder, the 13-bus grid model for the 200 households community with optimal
capacity assets (as shown in Table 4.3 & 4.5 ) is shown in Fig. 5.1 & 5.2 as described in
Section 5.2. Yearly bus voltages are computed every half-hour of the year by running power
flow simulation over the network, with the given consumption and production profiles.
Based on these voltage profiles, the impact of considering the grid on the profitability of
DERs and battery energy storage system (BESS) is studied under various scenarios. The
scenarios correspond to different assets installation schemes in the network. The yearly
bills are computed under the various scenarios considering the network constraints, and
then compared with the yearly bills computed without network constraints (as described in
Chapter 4) in order to assess how grid constraints can impact the deployment of individual
and community owned assets. Yearly bills are computed for both the fixed tariff of 16
pence/kWh using [222] and dynamic ToU Agile Octopus [224] tariff pricing schemes
under various scenarios as presented in the following subsections.

5.5.1 Scenario 1: community without local renewable generation or
battery assets (baseline scenario-no energy assets)

In this scenario, we only consider the demand of households, without any assets. This
setting defines a baseline scenario, against which the other scenarios can be compared. The
yearly bills with network constraints under this baseline scenario are computed for both
the fixed and ToU tariffs, and compared with the yearly bills computed without network
constraints. Table 5.1 shows the sum of individual agents annual bills and the community
annual bill determined without any assets.

As described in Section 5.2, in the baseline scenario without any assets, the grid is
not constrained as there is no voltage excursion nor cable overloading. Hence, the sum
of individual annual bills and community annual bill are equal for both cases with and
without network constraints. Furthermore, it can be observed that without assets, the
community annual bill is equal to the sum of individual annual bills, which is expected as



120 Modeling energy asset ownership schemes in a community with network constraints

Without assets (baseline)

With network con-
straint

Without network con-
straint

Fixed Tariff ToU Tariff Fixed Tariff ToU Tariff

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Sum of individual agents
yearly bills

134455 143923 134455 143923

Community yearly bill 134455 143923 134455 143923

Table 5.1: Economic comparison of individually-owned and community-owned assets
under baseline scenario 1 (without assets) for both the fixed tariff of 16 pence/kWh [222]
and dynamic Agile Octopus ToU tariff [224].

the community represents the aggregated demand profiles of the individual households,
and there are no local renewable generation or battery storage assets.

5.5.2 Scenario 2: community with solar PV renewable generator asset
only without battery

With only solar PV

With network con-
straint

Without network con-
straint

Fixed Tariff ToU Tariff Fixed Tariff ToU Tariff

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Sum of individual agents
yearly bills

122557 129589 122557 129589

Community yearly bill 119315 126371 117092 123154

Table 5.2: Economic comparison of individually-owned and community-owned assets
under scenario 2 (PV only without battery) for both the fixed tariff of 16 pence/kWh [222]
and dynamic Agile Octopus ToU tariff [224].

In this scenario, we consider the demand of households, with renewable generator
asset only, without battery storage (in the experiments in this Chapter 5, the renewable
generation is shared solar, but the model is general, hence this could also be a shared
community wind turbine). The yearly bills with network constraints under this scenario are
computed for both the fixed and ToU tariffs, and compared with the yearly bills computed
without network constraints. Table 5.2 shows the sum of individual agents annual bills and
community annual bill obtained under this scenario.

Figure 5.6 shows the yearly voltage distribution of the buses obtained for the network
with individually distributed optimal solar PV’s. Additionally, Figure 5.7 illustrates the
yearly voltage profile of the most adversely impacted Bus-9. Here, it can be observed
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Figure 5.6: Yearly voltage distribution of the buses for the network with individually-
owned optimal PV’s without battery.
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Figure 5.7: Yearly voltage profile of Bus-9 for the network with individually-owned
optimal PV’s without battery.

that there is a rise in voltage during the summer months due to high power production
from solar PV, whereas voltages reduces during the winter months. However, the rise
in the voltage is within the permissible limits. similarly, the voltage distribution of the
remaining buses exhibits a consistent pattern, as depicted in Figure 5.6. Furthermore, it can
be observed that the voltage distribution of Bus 1 is constantly at 1 p.u, this is expected as
Bus 1 represents the slack bus the main connection to the transmission grid, and it voltage
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is set to reference volatge of 1 p.u with the base voltage of 236 V. Hence, the exports from
individual PV’s are not curtailed. Thus, the sum of individual yearly bills computed with
network constraints and without network constraints are equal (as shown in Table 5.2).

In contrast to the scenario with individually distributed assets, Figure 5.8 presents the
yearly voltage distribution of the buses obtained for the network with centrally located
community-owned, optimally-sized solar PV systems, assuming no curtailment by the grid.
Furthermore, Figure 5.9 shows the yearly voltage profile of Bus-2, which is one of the
most affected buses in this configuration.

Figure 5.8: Yearly voltage distribution of the buses for the network with community-owned
optimal PV only without voltage control mechanism.

Upon analysing Figure 5.8 and Figure 5.9, an important observation emerges. In the
absence of control from the grid operator, it is evident that the bus voltages exceed the
highest permissible limit of 1.1 per unit (p.u) (0.94 ≤V bus ≤ 1.1 p.u). This indicates that
without grid intervention, the voltage levels at Bus-2, as well as other buses, rise beyond
the acceptable range.

In practice, the grid operator would not allow such voltage excursions, and may curtail
assets exporting too much power. In this case, the grid will curtail the community-owned
asset every-time the voltage rise above 1.1 p.u. Figure 5.10 shows the yearly voltage
distribution of the buses after implementing the voltage control mechanism by grid operator
as described in Section 5.3.

This curtailment reduces the financial benefits offered by the community-owned solar
PV. It can be observed in Table 5.2 that when the network constraints is considered the
community annual bill increases by £2223 for flat tariff and by £3217 for ToU tariff
compare to the case without network constraints. Thus, the overall saving of the energy
community is reduced when grid operations are considered.



5.5 Comparison of yearly bills obtained from investment in distributed individually-owned
assets with jointly-owned community energy assets with network constraints 123

Jan Apr Jul Oct Jan

Time 2020   

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

B
u

s 
v
o
lt

a
g
e 

(p
.u

)

V
Bus2

Figure 5.9: Yearly voltage profile of Bus-2 for the network with community-owned optimal
PV only without voltage control mechanism.

Figure 5.10: Yearly voltage distribution of the buses for the network with community-
owned optimal PV only after implementing the voltage control mechanism.
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5.5.3 Scenario 3: community with both solar PV renewable generator
and battery storage assets

In this scenario, we consider the demand of households, with both renewable generator and
the battery storage assets. The yearly bills with network constraints under this scenario are
computed for both the fixed and ToU tariffs, and compared with the yearly bills computed
without network constraints. Table 5.3 shows the sum of individual agents annual bills and
community annual bill obtained under this scenario.

With both solar PV and battery

With network con-
straint

Without network con-
straint

Fixed Tariff ToU Tariff Fixed Tariff ToU Tariff

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Annual
bill (£)

Sum of individual agents
yearly bills

118488 122419 118488 122419

Community yearly bill 115664 121326 113790 117307

Table 5.3: Economic comparison of individually-owned and community-owned assets
under scenario 3 for both the fixed tariff of 16 pence/kWh [222] and dynamic Agile
Octopus ToU tariff [224].

Figure 5.11: Yearly voltage distribution of the buses for the scenario with individually-
owned optimal PV’s and optimal batteries.

Figure 5.11 shows the yearly voltage distribution of the buses obtained for the network
with individually distributed optimal solar PV’s and optimal batteries. Additionally,
Figure 5.12 depicts the yearly voltage profile of the most adversely impacted Bus-9. Similar
to scenario 2, one can observe the rise in the bus voltages, and the seasonal effects in the
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Figure 5.12: Yearly voltage profile of Bus-9 for the network with individually-owned
optimal PV’s and optimal batteries.

voltage profiles. In this scenario also, the rise in the voltages are within the permissible
limits. As the voltages are within the thresholds, the grid is not constrained, hence the
exports from the individual PV’s and export/import from/to individual batteries are not
curtailed. Thus, the sum of individual yearly bills computed with network constraints
and without network constraints are equal as the grid is not constrained when both the
individual PV’s and batteries are installed (as shown in Table 5.3).

Figure 5.13: Yearly voltage distribution of the buses for the network with community-
owned optimal PV and optimal battery assets without voltage control mechanism.
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In the case with community-owned optimal PV and optimal battery, Figure 5.13 shows
the yearly voltage distribution of the buses obtained for the network without implementing
the voltage control mechanism. Furthermore, Figure 5.14 shows the yearly voltage profile
of Bus-2, which is one of the most buses significantly impacted by voltage excursions
caused by community-owed assets. Similar to the Scenario 2 with community PV only,
the bus voltages rise above the 1.1 p.u the highest permissible limit.
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Figure 5.14: Yearly voltage profile of Bus-2 for the network with community-owned
optimal PV and community battery without voltage control mechanism.

In such case, the grid operator will control the voltage by curtailing the export/import
from/to community-owned assets as described in Section 5.3. Figure 5.15 shows the
voltage profile of the buses after implementing the voltage control mechanism. This
curtailment reduces the overall saving of the community. This effect can be observed
in Table 5.3 , where the annual bill with network constraints is increased by £1874 for
flat tariff and £4019 for ToU tariff as compared to yearly bill computed without network
constraints.
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Figure 5.15: Yearly voltage distribution of the buses for the network with community-
owned optimal PV and optimal battery after implementing the voltage control mechanism.

5.5.4 Discussion of results

Overall, for the community with individually-owned assets, the bus voltages remains within
permissible limits. As the voltages are within the thresholds, export/import from/to the
assets are not curtailed, and the bills in the scenarios with and without network constraints
are identical.

Figure 5.8 and 5.13 show that there are voltage excursions in the grid when the
community-owned assets are installed. In such case, the grid operator may curtail assets
exporting/importing too much power. Hence, the community-owned assets gets curtailed
every-time the voltage rise above 1.1 p.u. It is important to note that the voltage at bus
2 the location of community-owned PV and battery is not controlled. As shown in the
Figure 5.2, the community-owned PV and battery are connected to bus 2 which makes the
power export being concentrated at one location, thus with the community-owned assets
the voltage rises more than in the scenario with individually-owned assets. Whenever the
voltage rises above the permissible limit then the exports from PV and exports/imports
from/to battery are curtailed until the voltage is within the threshold. In order to illustrate
this curtailment effect, the yearly generation from community-owned solar PV with and
without voltage control mechanism is shown in Figure 5.16.

Overall, we observe that, there is significant reduction in the production from community-
owned PV because of curtailment due to voltage constraints. This reduces the financial
benefits offered by the community-owned assets and limits the assets that can be further
included in the network. Hence, the study shows that when the network (grid) constraints
are incorporated then the benefits from the community assets are reduced. Therefore, when
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Figure 5.16: Yearly generation from community-owned solar PV with and without voltage
control mechanism.

considering community assets, one should pay attention to the location of the assets and
nature of the distribution grid considered. If the community assets are placed in a location
where there is no grid issue, then there is a higher benefit.

While considering the network constraints, even though the benefits from the community-
owned assets are reduced due to curtailment, still community-owned assets provide a
substantially lower annual bill for both the fixed tariff and ToU tariff pricing schemes ( as
shown in Table 5.2 & 5.3). Furthermore, these economic results were obtained with the
same unitary cost of the assets for the community-owned as for individually-owned, which
might not be the case in real-world scenario, whereas in practice, the unitary cost of the
community-owned asset might be lower due to economies of the scale effect. Thus, more
savings can be obtained from community-owned assets by considering the economies of
scale in the unitary cost of the assets. Therefore, community assets generate benefits to the
community.

A key research question that still remains is how to redistribute fairly these benefits to
the community members. There is still a considerable gap in both existing research and
practice regarding what are the optimal and fair methods to redistribute the energy outputs
(and hence financial benefits) from the jointly community-owned assets to their members,
while incorporating the asset’s degradation, and the physical network and operational
constraints. This will be addressed next, in Section 5.6.
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5.6 Fair redistribution of benefits achieved from commu-
nity shared assets

For both the cases with and without network constraints, results from the economic
analysis described in Section 5.5 show that community-owned assets lead to reduction in
the annual electricity bill compared to individually-owned assets. Hence, individual agents
can achieve more savings (higher benefits) by forming the community coalition and by
investing in jointly-owned community assets.

In the case of community owned assets, the revenues generated by the community-
owned distributed generation system (PV and battery) can be distributed to the members of
the community. However, this raises the key research question of how to fairly redistribute
the energy outputs (and hence the financial benefits) from the community-owned assets
to the individual members of the community. Moreover, most of existing redistribution
frameworks are developed without considering network constraints, in which case the
computation cost becomes even more challenging. To address this computational challenge,
we propose in this chapter a more computationally tractable (and hence more practically
applicable) redistribution mechanism based on the marginal contribution of each agent (in
our case household) of the community. We incorporate power flow (physical network/grid
constraints), and physical battery degradation into community energy optimization models,
including the effect of network constraints on redistribution schemes. To achieve this,
we employ a battery state of health degradation model based on the battery depth of
discharge in each control cycle, while maintaining the bus voltages within the permissible
limits. This represents a considerable extension of prior work on redistribution mechanism
(denoted as Method 1) to fairly redistribute the benefits from the community-owned assets
presented in Chapter 4. Furthermore, in order to test the advantages of the proposed
redistribution mechanism with network constraints, it is compared with the various state-
of-the-art redistribution methods (Method 2, 3, & 4 presented in Chapter 4). We begin by
describing the proposed marginal cost redistribution mechanism with network constraints
in the following subsections.

5.6.1 Mechanism for a fair redistribution

A redistribution method without considering the network constraints was described in
Section 4.4 of the previous Chapter 4. The proposed redistribution mechanism is based
on the marginal contribution of each agent, a key concept in cooperative game theory.
The marginal contribution Θi(T ) of an agent i for the period T represents the difference
that an agent makes to the value of a given coalition in the community. Specifically, the
marginal contribution Θi(T ) is a metric that assess how much each agent i contributes to
the reduction of the energy bill of the community as a whole.

As a reminder, a marginal cost redistribution method (presented in previous Chapter 4)
is again described in this section. Then, the proposed marginal cost redistribution method
incorporating the network constraints is described in detail. Savings of the community
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after one year (T = 1 year), noted as ΠC (T ), are defined by the difference between the sum
of all agents annual bills before the community assets were installed (which corresponds
to the baseline scenario without assets as shown in Table 4.1), and bC (T ) i.e. the energy
bill for the whole community after one year with community-owned assets. Hence, the
community savings over time period T correspond to the bill reduction for the whole
community over that period, as shown below:

ΠC (T ) =
N

∑
i=1

b0
i (T )−bC (T ) (5.24)

where b0
i (T ) is the baseline bill (bill without assets) for prosumer i before any asset was

installed. In order to compute a fair redistribution of the community savings among the
individual agents, the contribution Θi(T ) of each agent to these community savings is
computed. To compute the marginal contribution of an agent i, we remove agent i from the
community of 200 agents (total community), and recompute the community savings of
this virtual community of 199 agents (reduced community). The marginal contribution
Θi(T ) of agent i is defined as the difference between the total community savings ΠC (T )
and the savings of the reduced community ΠC \{i}(T ), as shown below:

Θi(T ) = ΠC (T )−ΠC \{i}(T ) ∀i ∈ C (5.25)

where C is the community of 200 households. Once the marginal contribution Θi(T ) is
computed for all the agents, we distribute community savings ΠC (T ) among the individual
agents based on the following equation:

Γi(T ) = ΠC (T )
Θi(T )

∑i∈C Θi(T )
∀i ∈ C (5.26)

where Γi(T ) is the amount of money redistributed to agent i after period T .
Hence, the new bill of agent i for the time period T , noted b∗i (T ) can be computed as

follows:
b∗i (T ) = b0

i (T )−Γi(T ) ∀i ∈ C (5.27)

The computation of the marginal cost redistribution method in a setup that considers
network constraints is computationally expensive as it requires to recompute the marginal
contribution of every agent, which requires power-flow computation for every time step
of the considered period (e.g. one year). Hence, for larger network, the redistribution
mechanism by marginal cost redistribution method may not be computationally tractable.

To address this computational challenge while considering the network constraints, we
propose an approximation method. First, we compute the agents i new bill b∗(¬)i (T ) for the
case without network constraints using the Eq. (5.27) as expressed in Eq. (5.28):

b∗(¬)i (T ) = b0
i (T )−Γi(T ) ∀i ∈ C (5.28)
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Then, we compute the difference between community yearly bill with network con-
straints (bNC

C (T )) and community yearly bill without network constraint (b¬C (T )). Finally,
the equal part of the computed difference in the bill is distributed equally among the agents
by adding to the new bill b∗(¬)i (T ) obtained using Eq. (5.28). Finally, the new bill of agent
i with network constraints (b∗(NC)

i (T )) is determined as expressed in Eq. (5.29).

b∗(NC)
i (T ) = b∗(¬)i (T )+

bdiff
C

N
(5.29)

where N = 200 agents (households) in our case. bdiff
C is the difference between community

yearly bill considering network constraints and community yearly bill without network
constraints as expressed in Eq. (5.30).

bdiff
C = bNC

C (T )−b¬C (T ) (5.30)

To test the advantages of the proposed marginal cost redistribution method with network
constraints, we compare its benefits with the various state-of-the-art redistribution Methods
2, 3 and 4 described in Section 4.4.2 of Chapter 4. On comparison, the proposed marginal
cost redistribution method with network constraints and the Method 2 the instantaneous
power redistribution method (with network constraints) was able to achieve lowest bill for
the whole community, and thus the greatest savings for almost every agent. Hence, the
proposed redistribution mechanism is only compared with the Method 2 the state-of-the-art
instantaneous power redistribution method [240]. In this method, an instantaneous PV
power gPV

C (t) produced by community-owned PV generator is distributed among individual
agents based on their instantaneous demand di(t). In other words, the PV power allocated
to agent i at each time step is determined as:

gPV
i (t) = gPV

C (t)× di(t)
∑i∈C di(t)

(5.31)

Then, the new bill of each agent i is computed using Eq. (5.22). First, we implement for
the case with community-owned generator only, without storage asset. Then, redistribution
of cost savings from both the community-owned generator and storage is implemented.
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5.6.2 Implementation for a community with solar PV only

The investment cost of community PV was assumed to be shared equally among the
agents, but the revenues are not equally distributed. As described in Section 5.6.1, using
Eq. (5.29) the new yearly energy bills (b∗(NC)

i (T )) of individual agents after redistribution
of community savings from a community-owned solar PV is computed by marginal cost
redistribution method with network constraints. This method is the approximated version
that is computationally tractable. The new yearly bills obtained using approximated
marginal cost redistribution method are compared with the new yearly bills obtained using
marginal cost redistribution method without approximation. The comparison between
the redistribution mechanism with approximation and without approximation is shown in
Figure 5.17 for the fixed tariff [222] and Figure 5.18 for the dynamic ToU Tariff [224].
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Figure 5.17: Comparison between the individual agents yearly bills obtained after redistri-
bution by approximated marginal cost redistribution method with redistribution mechanism
without approximation for a fixed tariff of 16 pence/kWh [222].

For fixed tariff, the individual agents yearly bills obtained after redistribution by approx-
imated marginal cost redistribution method is similar to results obtained by redistribution
mechanism without approximation, with the correlation coefficient of 99.99% (as shown by
Figure 5.17). Similarly, for dynamic ToU tariff the results are similar with the correlation
coefficient of 99.98% (as shown by Figure 5.18). Hence, while considering the network
constraints, approximated marginal cost redistribution method can be used to redistribute
the benefits from community owned assets, as it is much more computationally tractable. In
Figure 5.17 & 5.18 , on the X-axis we order the 200 agents (households) of the considered
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Figure 5.18: Comparison between the individual agents yearly bills obtained after redistri-
bution by approximated marginal cost redistribution method with redistribution mechanism
without approximation for the dynamic ToU Agile Octopus tariff [224].

community in increasing order by their total annual energy consumption. The Y-axis gives
the annual energy bill of each agent. This representation is useful to evaluate the economic
fairness in the redistribution scheme among the small and larger consumers.

In order to test the advantages of the proposed redistribution mechanism the marginal
cost redistribution method with network constraints, we compare its benefits with the
instantaneous power redistribution method that was described in Section 5.6.1 which
corresponds to the state-of-the-art redistribution mechanism (based on current practice).

Figure 5.19 shows the individual agents annual bills after redistribution by marginal
cost redistribution method and instantaneous power redistribution method in the case of
the dynamic ToU Agile Octopus [224] tariff pricing scheme.

Similar to the case with the community settings without network constraints (as pre-
sented in Chapter 4), the crossover point between the redistributed bill curves in Figure 5.19
clearly shows that, with marginal cost redistribution method 67% of the agents can achieve
lower annual bill than instantaneous power redistribution method (these are the lower total
annual bill, hence smaller consumers), while with state-of-the-art method only 33% of
the agents obtain lower annual bills (hence this scheme benefits mainly larger consumers,
with larger annual demand). Hence, under the proposed marginal cost redistribution
method with network constraints, more agents are able to decrease their annual bill than
the instantaneous power redistribution method with network constraints.
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Figure 5.19: Individual agents yearly bills after redistribution by marginal cost redistribu-
tion method and instantaneous power redistribution method, with network constraints for
the dynamic ToU Agile Octopus tariff [224].

While it is true that large consumers benefit slightly less under our scheme (because,
of course, the total community bill is equal in both cases), these agents with higher
demand profiles are the agents who already obtain the highest bill reduction as compared to
agents with lower demand profiles as illustrated in the Figure 5.20. Therefore, the proposed
redistribution mechanism achieves a fairer redistribution as compared to currently practised
redistribution scheme. Practically, having the 67% of agents in the community (including
many smaller consumers) also benefiting from the proposed redistribution mechanism
would lead to greater social acceptance, and hence more likely to join the coalition to
invest in the jointly-owned community assets.
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Figure 5.20: Individual agents yearly bills without assets (baseline), and yearly bills after
redistribution by marginal cost redistribution method and instantaneous power redistribu-
tion method, with network constraints for the dynamic ToU Agile Octopus tariff [224].

5.6.3 Implementation for a community with solar PV and battery

In this scenario, the savings (benefits) achieved from both the community-owned solar PV
and community-owned battery are redistributed by marginal cost redistribution method
with network constraints only. Investment costs for the community energy assets were
shared equally among the agents. Figure 5.21 shows the individual agents annual bills after
redistribution in the case of the dynamic ToU Agile Octopus [224] tariff pricing scheme.

In the literature, the instantaneous power redistribution method is only used for solar
power or wind, but it cannot be used for communities with batteries, as it is not easy to
determine who used more the battery assets than others. This is another key point that
demonstrates the advantages of the proposed redistribution mechanism based on marginal
contribution. Yet, there is still a need to redistribute fairly the benefits obtained from
jointly-owned community renewable generator and storage assets.

Hence, the proposed marginal cost redistribution method based on individual agents
marginal contribution provides the equal and fair mechanism to redistribute the energy
outputs (and hence financial benefits) from both the jointly-owned community solar PV
and battery assets.
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Figure 5.21: Individual agents yearly bills without assets (baseline) and yearly bills after
redistribution by marginal cost redistribution method with network constraints for the
dynamic ToU Agile Octopus tariff [224].

5.6.4 Discussion of results

In this section, we have proposed a novel algorithm to fairly redistribute among community
members the benefits obtained from community owned assets. We have proposed an effi-
cient and fair redistribution mechanisms that applies to both community-owned renewable
generator and storage assets, while incorporating the asset’s degradation, and the physical
network and operational constraints.

In this chapter, we proposed a marginal cost redistribution method with network
constraints. This method is the approximated version that is computationally tractable.
The new yearly bills obtained using approximated marginal cost redistribution method are
compared with the new yearly bills obtained using marginal cost redistribution method
without approximation. The comparative study between the redistribution mechanism
with approximation and without approximation clearly shows that the results are similar
with an correlation coefficient of 99.99% for fixed tariff and 99.98% for dynamic ToU
tariff (as shown in Figure 5.17 & 5.18). Hence, while considering the network constraints,
approximated marginal cost redistribution method can be used to redistribute the benefits
from community owned assets, as it is much more computationally tractable and more
scalable. Thus, marginal cost redistribution with network constraints is more practically
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applicable with respect to modelling the economic sharing of joint assets in community
energy systems.

Moreover, to test the advantageous and to evaluate the economic fairness in the redistri-
bution scheme, the proposed marginal cost redistribution method with network constraints
is compared with the current state-of-the-art redistribution methods. Result from this
comparative study shows that proposed marginal cost redistribution method yields to
a greater reduction of the annual bill for 67% of the community households compared
state-of-the-art methods (as shown in the Figure 5.19). Large consumers benefit slightly
less under this scheme, but they still obtain the highest bill reduction in value as compared
to households with lower demand profiles ( as illustrated in the Figure 5.20). Therefore,
the proposed redistribution mechanism achieves a fairer redistribution leading to greater
social acceptance, key to incentivise more communities to form coalitions and invest in
jointly-owned renewable energy assets.

Furthermore, all the available state-of-the-art redistribution methods applicable for
jointly-owned community renewable generators only. Current energy communities usually
employ algorithms based on proportionality of consumption to redistribute the benefits
from the community-owned generator assets. However, such methods are not fair, and
not applicable in the case of jointly-owned battery energy storage assets, where the
proportionality of the asset usage does not apply as there is no clear method to split the
power from the battery. Hence, the proposed redistribution method based on marginal
contribution provides an equal and fair redistribution mechanism to distribute savings
from both the community-owned renewable generator and community storage such and
community-owned battery. This is another key point that demonstrates the advantages of
the proposed redistribution mechanism based on the marginal contribution.

5.7 Concluding remarks

In this Chapter 5, we have proposed a techno-economic modeling methodology that
couple’s battery control, battery degradation, community energy from RES with LV
network operating constraints, with a fair redistribution optimisation of benefits to jointly
owned assets. The control mechanism was implemented for both fixed electricity tariffs and
dynamic ToU tariffs to compare the benefits obtained when an individual household invest
in their own energy assets versus investing jointly in a community-owned energy assets.
To compare the economic performance of investments in community-owned assets and
individually-owned assets, we considered an energy community of two hundred prosumers,
that were all modelled by real time-series data of generation and consumption profiles from
a community in UK for a full year. We computed yearly bills resulting from the proposed
battery control algorithm and compared the yearly bills computed with and without network
constraints to assess how network/grid constraints can impact the deployment of individual
and community-owned assets.

Experimental results from our study (based on real input data from the UK) show that,
overall, the operation of individually-owned distributed assets are less impacted by grid
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constraints than the operation of community-owned assets. Indeed, when generation is
not located close enough to consumption, it might lead to local over-voltage that could
result in curtailment by the distribution system operator of export from community-owned
assets. This curtailment reduces the overall saving of the community, which illustrates the
importance of considering the physical grid constraints in the energy community schemes.
However, even with curtailment due to grid constraints, the economic comparison between
community-owned assets and individually-owned assets still shows that community-owned
assets provides better benefits to energy communities for both tariffs schemes studied.

Next, for energy communities with community-owned assets, we developed a prac-
tically applicable and computationally efficient redistribution mechanism to fairly share
the energy and associated financial benefits from community-owned assets between the
community members. This redistribution mechanism is based on the marginal contribu-
tion of each member, which is a key concept from coalitional game theory that looks at
rewarding members based on the value they provide to the community. We showed that
the proposed redistribution mechanism is applicable to any type of community-owned
assets, even storage assets; despite the apparent difficulty to assess how each member takes
advantage of assets.

A crucial aspect of a community energy models and projects is that they often involves
sharing of some joint resources and assets. One approach is to facilitate peer-to-peer (P2P)
or peer-to-community (P2C) trading in the case of individually-owned assets, whereas an-
other approach consists in creating a community energy coalition in the case of community-
owned assets, where an aggregator or community energy operator distributes the benefits
within the community (as shown in this Chapter 5 and the previous Chapter 4). In the
next Chapter 6, we extend the energy community model by exploring how P2C market
mechanisms with individually owned assets can increase the benefits of such community
energy scheme, and how such a setting compares to community-owned assets.



Chapter 6

Peer-to-Community (P2C) Energy
Trading Framework for Energy
Community

In the case of community settings with individually-owned energy assets presented in
Chapter 4 and 5, the techno-economic study was conducted without considering local
energy markets such as Peer-to-Peer (P2P) or Peer-to-Community (P2C) energy markets.
Indeed, it was shown in previous chapters that jointly owned community energy assets are
more profitable than individually owned energy assets in a "business as usual" configuration
in which individual households do not share energy. Then, we proposed a novel algorithm
to fairly distribute the benefits from these community owned assets. However, for the
sake of completeness, we should now also consider novel mechanisms such as local
energy markets that can increase the profitability from individually-owned energy assets.
As a matter of fact, community with individually-owned assets can share the resources
and benefits through local P2P or P2C energy markets. Furthermore, while considering
the network constraints, as highlighted in Chapter 5, we highlighted that in an already
constrained network, there could be a significant reduction in the production from jointly-
owned community PV generator because of curtailment due to voltage constraints. This
reduces the financial benefits offered by community-owned assets and limits the assets
that can be further included in the network. However, in the case of a community with
distributed individually-owned energy assets, the bus voltages in the same community
remained within the permissible limits. While staying within acceptable voltage thresholds,
local energy market mechanisms can provide a novel opportunity to make renewable energy
assets more profitable, and thus incentivise investments into low carbon technologies.

This Chapter 6 presents a model of energy community with local P2C market mecha-
nism in order to complete the comparison between individually-owned assets and community-
owned assets. To fully capture the potential and limitations from P2C market mechanisms,
we conducted a sensitivity study on different parameters such as the adoption rate of
renewable energy assets in the community. A non-uniform pricing scheme is proposed in
the P2C market mechanism and the outcomes are studied for three different types of P2C
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sellers simulated under different community settings and tested for various scenarios of
local generation and consumption. This chapter presents a multi-unit auction based P2C
market clearing mechanism and the techno-economic performance of the individual agents
and community as a whole is studied by determining the reduction in the yearly bill and
the final savings achieved from local P2C market. Finally, The battery control algorithm
as proposed in the previous chapters is extended to incorporate the proposed P2C market
mechanism.

6.1 Research contributions

Novel decentralised energy frameworks, such as energy communities, LEMs and SLES,
are emerging as promising solutions to coordinate generation, storage, and demand-side
flexibility in a local area. Trading of energy between large producers, utility companies
and consumers with established wholesale and retail markets is current practice; however,
local P2C or P2P energy trading and sharing between prosumers, consumers and aggre-
gators is a trending topic within the industry and research community. A comprehensive
literature review on the state-of-the-art in P2P and P2C market mechanisms was presented
analytically in the previous Chapter 2. As highlighted in the literature review, there is
still a need for establishing a consumer-centric business model such as local peer-to-peer
energy trading markets and energy coalitions to optimize the consumption and storage of
renewable energy within the local community, and the trade of energy and services locally
and outside the community. Furthermore, these emerging local markets need to provide a
fair mechanism to incentivise and engage consumer/prosumer in the energy transition.

This Chapter 6 presents a local P2C market framework based on centrally operated
mechanism, in which a community aggregator determines each trade’s characteristics (price
and quantity) by running a multi-unit auction. In a multi-unit auction market clearing
mechanism, the market operator clears the market by computing the clearing price that
maximizes the social welfare of the community. In our case, the proposed multi-unit
auction market clearing mechanism is focused on achieving the fair allocation of total
energy available for P2C market among the sellers and the buyers. There are indeed
auctions every half-hourly of the operation, but there is one multi-unit auction where
the price (pence) per unit (kWh) is averaged for each unit. In the proposed P2C market
mechanism, we assume every consumer must satisfy their energy demand (either from the
grid or the local P2C market), and averaging over the multiple units of price is the fairest
way to share the cost for that market.

In summary, the research contributions of the work presented in Chapter 6 are:

• This chapter presents a framework for a Peer-to-Community (P2C) local market
mechanism. The dynamics of the P2C market mechanism is studied for three
different type of P2C sellers (non-uniform pricing scheme) and tested for three
different types of community settings (mix of prosumers and consumers) under
different rates of renewable energy adoption.
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• A fair allocation scheme for the total energy available in the P2C market is proposed,
aimed at incentivizing households to actively participate in local energy initiatives.
An equal split ratio method is proposed to fairly distribute the energy total energy
available from P2C market among the buyers. In the case of sellers, the framework
is designed such that the cheapest seller gets the first priority to sell to the P2C local
market the excess energy available at any operation time period.

• A market clearing mechanism based on a multi-unit auction is proposed for the P2C
market. In this market clearing approach, all the bids of the prosumer sellers gets
the price they have asked if selected. Then, the prosumer buyer in the P2C market
pays a weighted average of the bids selected, starting from the cheapest P2C selling
prices (prosumer seller bids ranked from cheapest to most expensive price ranges).
Hence, P2C market clearing mechanism is designed such that, at excess times, the
proposed market clears at a price lower than grid price (if prosumers bids are bellow
the grid price). However, at deficit times, market may clear at grid import price (grid
offering infinite quantity of energy, all the energy will be sold at the grid price).

• A techno-economic comparison is presented, analyzing the investment in individually-
owned assets both with and without the P2C market mechanism, in contrast to
jointly-owned community assets. The profitability of the proposed P2C market
mechanism is tested for different settings of the community, and further tested to
explore and assess the suitability of P2C frameworks in terms of import/export
from/to the grid and local P2C market using the minutely real-time simulation versus
half-hourly P2C market clearing time interval simulation.

• Finally, the proposed energy community model with local P2C market mechanism is
validated using a real case study from the ReFLEX (Responsive Flexibility) project
that consists in a large-scale demonstrator for community energy integration in
Orkney, Scotland, UK [8].

6.2 Community setting

Similar to the community settings presented in Chapter 4 and 5, the model inputs (demand
and generation data), tariff pricing schemes and the unitary cost of the energy assets
presented in Section 3.3 of Chapter 3 are applied to the community settings. In this
Chapter 6, we propose a P2C market mechanism for a community to trade and share
resources and benefits with the prosumers with individually-owned energy assets. We
consider that all prosumers invest in a distributed solar PV renewable generator and
a battery storage energy assets. In this study, we chose to use an optimal size for both
individually-owned solar PV’s and batteries assets that was obtained in Chapter 4 (as shown
in Table 4.3 for PV, and Table 4.5 for battery (that was obtained from battery integrated
with solar PV renewable generator)). An optimal size of PV or battery corresponds to the
size that provides the minimal simple payback period.
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For this community with P2C market model, the study mainly focusses on exploring
the suitable characteristics that makes the community with P2C local markets profitable
as compared to the previous setting of the community with jointly-owned assets. To
understand the dynamics of P2C market mechanisms, we have considered different settings
of the community based on the percentage of distributed assets owned by the individual
households/agents as follows:

• Community setting 1: all 200 households-prosumers with individually-owned
optimally-sized PV’s and optimal batteries (same setting as the community model
presented in Chapter 4 and 5)

• Community setting 2: 100 households-prosumers with individually-owned optimally-
sized PV’s and optimal batteries, and 100 households-consumers without assets

• Community setting 3: 67 households-prosumers with individually-owned optimally-
sized PV’s and optimally-sized batteries, 33 households-prosumers with individually-
owned PV’s only, and 100 households-consumers without assets

The three presented setting of the community consist of mixture of prosumers with both
PV’s and batteries, prosumer with PV’s only and finally the consumers without any assets.
Therefore, this setting consists in a realistic scenario to better understand the dynamics of
P2C market mechanisms, while allowing us to study the techno-economic comparison of
individually-owned assets with and without P2C market mechanism versus jointly-owned
community assets.

In this community settings, during the period of deficit energy, the households/agents
can satisfy their energy demand by importing either from the P2C market or from the
utility grid. However, during the period of excess generation, agents can export through
P2C market only, as we have not considered an export tariff to the grid. Hence, the selling
price of the P2C market is crucial in generating an healthy competition among the sellers,
where agents offer their excess generation at different selling prices. One of the possible
strategy of P2C sellers can be to set a higher per-unit price (close to 100% the default
grid import price), and get paid more if the demand is very high, but risk sometimes to
not sell the excess energy if the demand is low. Another strategy can be to set a lower
per-unit price, and get paid less per unit, but this low-cost seller will have priority in
selling, even when demand is lower or medium. Hence, it is better to have different types
of P2C sellers, so that various parameters can be measured to explore the profitability of
P2C market mechanism for different sellers under various scenarios of local generation
and consumption. In order to understand the true dynamics of P2C market mechanisms
with different selling prices, we have identified three different categories of P2C sellers as
follows:

• Low price sellers: randomly (uniformly distributed) generated selling price from
10% of grid import price to 30% of grid import price

• Medium price sellers: randomly (uniformly distributed) generated selling price
from 31% of grid import price to 70% of grid import price
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• High price sellers: randomly (uniformly distributed) generated selling price from
71% of grid import price to 100% of grid import price

The grid import tariff sets the baseline (highest price boundary) for the import pricing
schemes in P2C market, as otherwise rational prosumers would prefer to buy from the grid
(i.e. utility company), rather than from other prosumers in the community. As discussed
above, the selling prices for the different categories of the P2C sellers are randomly
distributed based on the percentage of grid import price. In this P2C market, the grid is
also a bidder and mostly set-up as a last option as compared to the local agents with excess
generation. Price dynamics of this community setting is such that, at deficit times, the P2C
market clears at grid import price (utility grid offering infinite quantity of energy all the
times), and at excess times, the P2C market clear a price lower than the grid import price.

Furthermore, for the three identified different community settings consisting of three
different sellers distribution, the profitability of P2C market mechanism is studied by
determining the yearly bills with and without P2C market mechanism for different ratios
of PV adoption within the community. These ratio range from 0 to 1, where 1 corresponds
to the situation where the community is fully autonomous from annual energy point of
view. The ratio of PV adoption is given by:

PV Ratio =
Total community yearly PV generation

Total community yearly Demand
(6.1)

When the PV Ratio is equal to one, this means that the community annual energy demand
is equal to the community PV generation (same setting as the community model presented
in Chapter 4 and 5). The amount of generation is changed to determine the profitability
for different types of P2C sellers. For instance, if the renewable generation is higher than
demand, in this case, low-price sellers will always sell the energy, and high price sellers
will very rarely sell the energy. On the other hand, if the amount of renewable energy
is low, then it would be a better strategy for the seller to set high selling price which is
much closer to grid import price. Hence, by changing the PV generation, the profitability
of the P2C market mechanism is studied at different constraint settings in terms of total
generation versus total demand (as defined by Eq. (6.1)).

In order to assess the impact of each P2C market configuration, we will consider
indicators such as the yearly energy bill savings, which is a fairly intuitive indicator to
compare the techno-economic performance of the community with jointly-owned assets
versus individually-owned assets with and without P2C market mechanisms. First, the
individual households/agents optimize their own self-consumption from their energy assets
and then trade the energy locally through P2C markets. Figure 6.1 shows the general
setting of the proposed P2C energy trading model which is implemented to study the
profitability of the three categories of P2C sellers for different ratios of PV generation to
demand. The P2C model consist of mainly two stages:

i Stage 1: Individual prosumer battery control optimization.

ii Stage 2: P2C market mechanism.
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Figure 6.1: Overview of P2C modelling approach

Next, the various stages of the proposed P2C model depicted in Figure 6.1 are described.
The explanation commences with a detailed account of "Stage 1," presented in Section 6.3.

6.3 Individual prosumer battery control optimization

Similar to the community settings presented in Chapter 4 and 5), the battery control
Algorithm 3.1 applied to the single prosumer model described in Chapter 3 is extended by
incorporating the P2C market mechanism. As described in Section 3.4.1 of Chapter 3, the
operation of the battery is constrained by the state of charge (SoC) levels, and a maximum
power (pbat,max) that the battery can be charged or discharged at, which corresponds to its
maximum C-rating.

At any given time t of a charging phase, the battery is charged with an efficiency (ηc)
until it reaches the maximum battery capacity (SoCmax). Charging constraints are defined
as:

SoC(t)≤ SoCmax (6.2)

pbat(t)≤ pbat,max (6.3)
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Similarly, the battery can be discharged with an efficiency (ηd) until it reaches its minimum
battery capacity (SoCmin). Discharging constraints are defined as:

SoC(t)≥ SoCmin (6.4)

pbat(t)≤ pbat,max (6.5)

The minimum battery capacity corresponds to the maximum allowable DoD. In this chapter,
a rule-based battery control algorithm is implemented. The battery control scheme consists
of operational real-time decisions to charge or discharge the battery, based on the difference
between the prosumer power consumption and its own PV production. The control strategy
is similar to the case with the single prosumer presented in Chapter 3 and community
setting in Chapter 4 & 5. In this community model with P2C market mechanism, for
every operational time period ∆t (half-hourly in our case), each individual prosumer
optimizes control of its own battery, then the following parameters are determined for all
the prosumers:

1. Excess power (Pexcess(t)): prosumer sells (seller) at excess time period. The algo-
rithm can be described as follows:

If gPV(t)> d(t), there is excess of power generated from the renewable generator.
The control strategy of the battery dictates the following:

i Excess power is stored in the battery (charging operation).

ii If the battery is full or if available power is greater than the maximum acceptable
charging power, the prosumer sells the excess power Pexcess(t) to the local P2C
market.

The resulting SoC profile and the excess power exported Pexcess(t) to the local P2C
market during the identified duration of excess generation are determined as:

pbat
i (t) =−min

(
min

([
gPV(t)−d(t)

]
, pbat,max

)
,
[SoCmax −SoC(t −1)]

ηc∆t

)
(6.6)

SoCi(t) = SoC(t −1)−η
c pbat(t)∆t (6.7)

Pexcess
i (t) =

[
gPV(t)−d(t)− pbat(t)

]
∆t (6.8)

where ∆t corresponds to the duration of the considered time step.

2. Deficit power (Pdeficit(t)): prosumer buys (buyer) at deficit time period. Similarly,
the algorithm can be described as follows:

if gPV(t)< d(t), then there is a deficit in power supplied by the intermittent source
and the battery will operate as follows:

i Discharge the battery to meet the demand.
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ii If the battery energy or power are not enough to compensate the power deficit
at this time step, the prosumer buys the remaining deficit power Pdeficit(t) from
the local P2C market. Finally, if the deficit demand is not met from P2C market,
then the prosumer buys from the utility grid.

Hence, the SoC profile and deficit power imported Pdeficit(t) from the local P2C
market or utility grid during the identified duration of deficit in power are determined
as:

pbat
i (t) = min

(
min

([
d(t)−gPV(t)

]
, pbat,max

)
,ηd

[
SoC(t −1)−SoCmin

])
(6.9)

SoCi(t) = SoC(t −1)− pbat(t)
ηd ·∆t (6.10)

Pdeficit
i (t) =

[
d(t)−gPV(t)+ pbat(t)

]
∆t. (6.11)
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Figure 6.2: Flowchart of an individual prosumer battery control strategy.

Next, for every operational time period ∆t (half-hourly in our case), the excess and
deficit energy for all the households/agents of the community is determined. Specifically,
for an agent i with i = 1..N and N = 200 in our case, at time t ∈ [0,T ], Pexcess

i (t) represents
the excess power and Pdeficit

i (t) the deficit power. As expressed in the community settings
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in Chapter 4 and 5, the community C , i.e. the set of all agents i, is formally defined as
C = {Ai | i ∈ [1,N]} where N = 200 agents. Accordingly, Pexcess

C (t) and Pdeficit
C (t) represent

the excess and deficit power of the community C at operational time t. At every operational
time period, both Pexcess

C (t) and Pdeficit
C (t) cannot be greater than zero in the same time (in

absolute value). Either one has to be zero if the other one is not zero.
Then, the excess power is exported in the local P2C market, and deficit power is either

imported from local P2C market or from the utility grid (mostly preferred as the last option).
The variables Pexcess

C (t) and Pdeficit
C (t) of the community at that particular operational time

period are the essential inputs to the P2C market the stage 2 (detail description presented
in the next Section 6.4) of the proposed P2C model. A flowchart of the proposed battery
control strategy is shown in Figure 6.2. Algorithm 6.1 outlines this if-then rule based
control strategy incorporating the P2C market mechanism.

Algorithm 6.1: Individual prosumer battery control algorithm
1 Input 1 : generation gPV(t), demand d(t), and grid import price: τb(t)
2 Input 2 : battery specifications: ηc, ηd , SoCinitial, SoCmax, SoCmin, pbat,max, rated

capacity of the battery as variable input
3 Input 3 : bids from P2C sellers: low, medium and high price
4 for t = 1 : T do
5 ∀t ∈ [0,T ], excess of energy or deficit in energy is determined
6 if gPV(t)≥ d(t) then

7 pbat(t) =−min
(

min
([

gPV(t)−d(t)
]
, pbat,max) , [SoCmax −SoC(t −1)]

ηc∆t

)
8 SoC(t) = SoC(t −1)−ηc pbat(t)∆t
9 Pexcess(t) =

[
gPV(t)−d(t)− pbat(t)

]
∆t

10 else
11 pbat(t) = min

(
min

([
d(t)−gPV(t)

]
, pbat,max) ,ηd [SoC(t −1)−SoCmin])

12 SoC(t) = SoC(t −1)− pbat(t)
ηd ·∆t

13 Pdeficit(t) =
[
d(t)−gPV(t)+ pbat(t)

]
∆t

14 end
15 end
16 Output 1 : ∀t ∈ [0,T ], SoC(t) :- input to rainflow cycle counting algorithm used

to calculate the battery depreciation factor
17 Output 2 : ∀t ∈ [0,T ], Pexcess(t) :- input to P2C market mechanism
18 Output 3 : ∀t ∈ [0,T ], Pdeficit(t) :- input to P2C market mechanism

In this setting, the excess power of each agent is sold to P2C market only and export
to the grid is not considered in the current model. On the other hand, the deficit power is
bought from both the P2C market and grid. First, the deficit power is bought from the local
P2C market and any other remaining deficit power is satisfied by importing from the grid
which offers infinite power.

Similar to the community settings described in Chapter 4 and 5, the model inputs,
battery depreciation aspects and the economic setting of the single prosumer model
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described in Chapter 3 are applied to the this community setting with the P2C market
mechanism. Next, the pricing schemes, the fair allocation of energy among P2C sellers
and buyers, and the multi-unit auction P2C market clearing mechanisms are described in
the following Section 6.4.

6.4 Peer-to-Community (P2C) market mechanisms

Smart local energy system (SLES) have emerged as a solution to allow prosumers ( i.e
households/agents with micro renewable generation and/or storage) to generate extra
revenues by selling production surpluses, and provide consumers (agents without energy
assets) access to electricity at a lower cost than the standard grid tariff. In SLES, local
energy markets can either allow consumers to buy electricity directly from a producer/pro-
sumer (Peer-to-peer (P2P)), or from an aggregator (Peer-to-community (P2C)). In this
chapter, we provide a community-based market mechanism in which peers (consumer
and prosumer/producer) buy or sell energy from/to community. The local P2C market is
based on centrally operated mechanism, in which a community aggregator determines each
trade’s characteristics (price and quantity) by running a multi-unit auction. The community
aggregator can be either a Distribution System Operator (DSO) or a dedicated market
operator.

As described in Section 6.3, for every operational time period, prosumer who are the
agents with energy production assets are considered seller during the periods with excess
generation, and the same prosumer is considered buyer during the periods of deficit in
local generation. Consumer who are the agents without any assets are considered buyers
for all the times. The utility grid is also considered as the bidder where the grid import
tariff sets the baseline for the P2C market seller bids. A multi-unit auction market clearing
mechanism is proposed, in which the market operator clears the market by computing
the clearing price that maximizes the social welfare of the community. In our case, the
proposed multi-unit auction market clearing mechanism is focused on achieving a fair
allocation of total energy available for P2C market among the sellers and the buyers. There
are indeed auctions every half-hourly of the operation, but there is one multi-unit auction
where the price (pence) per unit (kWh) is averaged for each unit. In the proposed P2C
market mechanism, we assume every consumer must satisfy their energy demands (either
from the grid or the local P2C market), and averaging over the multiple units of price is
the fairest way to share the cost for that market.

In this community model with P2C market mechanism, a fixed grid import tariff of
16pence/kWh [222] is considered.The P2C market dynamics is studied for three different
categories of P2C sellers simulated for various settings of the community. Essentially,
there are five mechanisms that constitute the proposed P2C market, and these mechanisms
are explained in detail in the following sections.
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6.4.1 Non-uniform P2C pricing scheme

In this community setting with local P2C market mechanism, a non-uniform pricing
scheme is proposed where all the sellers in P2C local market have non-uniform selling
prices. Similar to the community setting presented in Chapter 4 and 5, in our analysis
the power export to gird is not considered. Hence, the dynamics of the P2C market will
hugely depend on the pricing strategy of the P2C sellers. The non-uniform pricing schemes
enables us to study the profitability of P2C market mechanism for different sellers under
various scenarios of local generation and demand. In this non-uniform pricing scheme,
the sellers in the P2C local market have different selling prices. This different selling
prices are generated as a percentage of the grid import price (τb) and the P2C sellers are
categorized into three different categories as follows:

• Low price sellers: randomly generated the selling price from 10% of grid import
price to 30% of grid import price (τb). The selling prices for this category of low
price sellers are defined by a range of 10% to 30% of τb as shown in Eq. (6.12).

τ
LowPrice = [0.1 : 0.3]τb(£/kWh) (6.12)

• Medium price sellers: randomly generated the selling price from 31% of grid
import price to 70% of grid import price (τb). The selling prices for this category of
low price sellers are defined by a range of 31% to 70% of τb as shown in Eq. (6.13).

τ
MediumPrice = [0.31 : 0.7]τb(£/kWh) (6.13)

• High price sellers: randomly generated the selling price from 71% of grid import
price to 100% of grid import price (τb). The selling prices for this category of low
price sellers are defined by a range of 71% to 100% of τb as shown in Eq. (6.14).

τ
HighPrice = [0.71 : 1]τb(£/kWh) (6.14)

In this non-uniform pricing scheme, the selling prices in the P2C market consists of the set
of these low, medium and high selling prices, noted as τP2C =

{
τLowPrice,τMediumPrice,τHighPrice},

pence/kWh. Then, the households/agents are randomly allocated into different categories
of P2C sellers. For instance, the distribution of selling prices (pence/kWh) for the com-
munity of 200 agents is shown in Eq. (6.15).

τ
P2C
C =

{
τ

LowPrice
1 .....τLowPrice

67 ,τMediumPrice
1 .....τMediumPrice

67 ,τ
HighPrice
1 .....τ

HighPrice
66

}
(6.15)

According to Eq. (6.15), the 200 households are randomly allocated into different categories
of P2C sellers as follows:

• 67 households: Low price sellers

• 67 households: Medium price sellers
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• 66 households: High price sellers

At specific operational times, the P2C sellers have random selling prices which is
within the boundaries of the low, medium or high categories. Next, the determination of
total energy available for import/export from/to P2C market and the utility grid is presented
in the following subsection.

6.4.2 Determination of total energy available from P2C market

As described in Section 6.3, first individual households/agents optimize their own self-
consumption for every operational time period ∆t (half-hourly in our case). After applying
the battery control Algorithm 6.1, the excess and deficit power for all the agents of the
community is determined. Specifically, for an agent i with i = 1..N and N = 200 in our
case, at time t ∈ [0,T ], Pexcess

i (t) represents the excess power and Pdeficit
i (t) the deficit

power. Using this individual parameters, we determine the total excess power (Pexcess
Total (t))

and total deficit power (Pdeficit
Total (t)) for all the agents of the community as follows:

Pexcess
Total (t) =

N

∑
i=1

[Pexcess
i (t)]∆t (6.16)

Pdeficit
Total (t) =

N

∑
i=1

[Pdeficit
i (t)]∆t (6.17)

where ∆t corresponds to the duration of the considered operational time step. Next, we
determine PP2C

Total(t) the total power available for trade in the P2C market as follows:
If Pdeficit

Total (t) > Pexcess
Total (t), the PP2C

Total(t) is determined as:

PP2C
Total(t) = Pexcess

Total (t) (6.18)

At this operational time period, there is deficit in local generation. The total power available
from the P2C market (PP2C

Total(t)) is not able to meet the total demand of the community.
Hence, the community imports the remaining power from the grid. Eq. (6.19) shows the
total power imported from the utility grid.

PGrid Import
Total (t) = Pdeficit

Total (t)−PP2C
Total(t) (6.19)

Similarly, if Pdeficit
Total (t)≥ Pexcess

Total (t), the PP2C
Total(t) is determined as:

PP2C
Total(t) = Pdeficit

Total (t) (6.20)

At this operational time period, there is an excess of power generated from the solar PV
generator. Community is able to meet the total deficit demand from the P2C market, and
any excess power is exported to the grid. Eq. (6.21) shows the total power imported from
the utility grid.

PGrid Export
Total (t) = Pexcess

Total (t)−PP2C
Total(t) (6.21)
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However, in this community setting we have only considered the import tariff of the grid
and export tariff is not considered in the techno-economic analysis. One of the most
important aspect that need to be considered is the fair allocation of PP2C

Total(t) the total
energy available from P2C market among the sellers and the buyers. The proposed fair
allocation schemes are explained in the following subsection. We begin by describing the
fair allocation of total energy available from P2C market among the P2C sellers.

6.4.3 Fair distribution of total energy available for P2C market among
the P2C sellers

At every operational time period, the P2C sellers (excess energy) are sorted and ranked
from the cheapest to most expensive price sellers. Then, PP2C

Total(t) the total energy available
for the P2C market is distributed such that the cheapest seller gets the first priority to
sell the excess energy available at that operational time period to P2C local market. The
non-uniform pricing scheme and the allocation of P2C sellers into three different categories
of P2C sellers is defined by Eq. (6.15). For this pricing scheme, the K represents the set
of indices of the cheapest to most expensive ranked sellers allocated in τP2C

C , such that
K ∈ R, R = x|1 < x < N, and N = 200 in our case. Then, the proceeding step-wise process
involved in the fair distribution of total energy available for P2C market among the sellers
is present as follows:

Step 1: At every specific operational time period, the cheapest P2C seller gets the
first priority to sell the excess power through P2C market. Specifically, for the agent i
ranked Kth based on the τP2C

C , the total power exported through P2C market is determined
as shown below:

PP2C Export
i (t) = min

(
Pexcess

i (t,K),Pdeficit
Total (t)

)
(6.22)

Step 2: However, if the total deficit power for the whole community at that operational
time is not met from the first cheapest seller, then the second cheapest seller is chosen to
sell the excess power to the P2C market, and the total remaining total deficit energy is
updated as follows:

Pdeficit
remaining(t) = Pdeficit

Total (t)−PP2C Export(t) (6.23)

Then, the total power exported through P2C market is updated as:

PP2C Export
i (t) = min

(
Pexcess

i (t,K),Pdeficit
remaining(t)

)
(6.24)

Step 3: If the total deficit power is not satisfied and still there are agents with excess
power to sell for P2C market, then the Eq. (6.23) is updated and the next cheapest seller is
chosen by updating the Eq. (6.24). These steps are repeated until the total deficit power is
fully satisfied or the excess energy are fully sold for the P2C market.

The excess power not sold through P2C market can be sold to the utility grid, but in
our case grid export tariff is not considered so it is not sold to grid. For the agent i, the
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power exported to the grid is computed as shown below:

PGrid Export
i (t) = Pexcess

i (t,K)−PP2C Export
i (t) (6.25)

The fair distribution of total power available form the P2C market among the P2C buyers
is described in the next subsection.

6.4.4 Fair distribution of total energy available from P2C market
among the P2C buyers

At every operational time period, the total energy available for P2C market is distributed
equally among the P2C buyers (deficit energy). For fair redistribution of the energy
available from P2C market, first, the buyers are sorted and ranked from the smallest to
largest deficit energy required at that operational time period. Then, the total energy
available from P2C market is distributed equally among the buyers by equal split ratio.
If there is any surplus energy in the equal distribution, then this surplus energy is further
distributed among the buyers with larger deficit energy. In some of the proposed peer-to-
peer trading schemes, the energy available form the P2C market is distributed among buyers
by the proportional to the size of the demand of each buyer. However, this distribution
scheme benefits only to the large consumers (higher annual consumption) and smaller
consumers do not benefit from the local P2C market. Since the import tariff from the local
P2C market are cheaper than the standard grid tariff, irrespective of agents/households
demand profiles, we argue that, overall there should be a much fairer mechanisms to
distribute the total energy available from P2C market among the potential buyers.

To implement the proposed equal split ratio distribution method, for every operational
time period, the P2C buyers are sorted and ranked from the smallest to largest deficit
energy required based on the computation defined in Pdeficit

C (t). For this deficit energy
required, the L represents the set of indices of the smallest to largest demand ranked buyers
as computed in Pdeficit

C (t), such that L ∈ R, R = x|1 < x < N, and N = 200 in our case.
Initially, the total number of P2C buyers (NBuyers) is determined for that operational time
period. Then, the proceeding step-wise process involved in the fair distribution of total
energy available for P2C market among the buyers is present as follows:

Step 1: PP2C
Total(t) the total energy available from P2C market is distributed equally

among the buyers by the ratio of PP2C
Total(t) to NBuyers at operational time t. Specifically, for

the agent i ranked Lth based on the Pdeficit
C (t), the total power that will be granted (imported)

from P2C market from P2C market is determined as shown below:

PP2C Import
i (t) = min

(
Pdeficit

i (t,L),
PP2C

Total(t)
NBuyers

)
(6.26)

Step 2: However, for an agent, if the total deficit energy required at that operational time
period is less than the equal split that was allocated to the buyer, than the difference between
the agent’s required power and the equally distributed power is further allocated among the
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other buyers with higher consumption demands by keeping track of the remaining excess
power (Premaining excess

i (t)). Hence, Eq. (6.26) is modified as shown below:

PP2C Import
i (t) = min

(
Pdeficit

i (t,L),
(Premaining excess

i (t)+PP2C
Total(t))

NBuyers

)
(6.27)

The remaining excess power is updated as:

Premaining excess
i (t) = Premaining excess

i (t)+max(0,
PP2C

Total(t)
NBuyers

−PP2C Import
i (t)) (6.28)

Step 3: The surpluses are regrouped and distributed equally among the remaining
buyers with higher deficit demand. These steps are repeated until the total energy available
for the P2C market are distributed equally among the P2C buyers. These step-wise process
of the proposed equal split ratio distribution method is illustrated in Figure 6.3.
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Figure 6.3: Illustration of step-wise equal split ratio method for equal distribution of the
total energy available for P2C market among the buyers.

The proposed distribution method based on an equal split ratio achieves a greater
degree of fairness in the allocation of cheaper energy from the P2C market, since it allows
to distribute the energy available from P2C market equally among all the buyers initially
(irrespective of the demand profiles) and then any surpluses are redistributed to those buyers
who consume more. Any deficit power that are not met from the P2C market is fulfilled by
importing from the utility grid. For the agent i, who has not met his demand after this P2C
energy/power distribution scheme, the power imported from grid is computed as shown
below:

PGrid Import
i (t) = Pdeficit

i (t,L)−PP2C Import
i (t) (6.29)

Then, a P2C market clearing price is determined after the distribution of total energy
available for P2C market among the sellers and buyers. A multi-unit auction market
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clearing mechanism is proposed, in which the market operator clears the market by
computing the clearing price that maximizes the social welfare of the community. The
proposed multi-unit auction P2C market clearing mechanism is presented in the next
subsection.

6.4.5 A multi-unit auction P2C market clearing mechanism

For every operational time period, prosumers are agents with energy assets. They are
considered as seller during the periods with excess generation, and the same prosumer is
considered as buyer during the periods of deficit in local generation. Consumer are agents
without any energy assets. They are considered as buyers for all the times. The utility
grid is also considered as a bidder where the grid import tariff sets the baseline for the
P2C market seller bids. P2C market clearing mechanism is designed for half-hourly time
period. In this thesis, a multi-unit auction market clearing mechanism is proposed. In this
market clearing approach, all the bids of the prosumer sellers get the price they have asked
if selected. Then, buyers in the P2C market pay a weighted average of the bids selected,
starting from the cheapest P2C selling prices (prosumer seller bids ranked from cheapest to
expensive price ranges as defined in Eq. (6.15)). Hence, P2C market clearing mechanism
is deigned such that, at energy (or power) excess times, market clears at a price lower than
grid price. However, at deficit times, market may clear at grid import price depending on
the proportion of energy/power that is supplied by the grid (utility grid offering infinite
quantity of energy).

At any given time t of the operational time period (half-hourly in our case), if
Pdeficit

Total (t) < PP2C
Total(t), at this period the total requested power/energy for all the agents

of the community is less than the total power/energy available for the P2C market. The
total cost of energy exported to the P2C market is computed Using Eq. (6.22):

eP2C
Total(t) =

N

∑
i=1

PP2C Export
i (t)τP2C

i (6.30)

where τP2C
i is the selling price of the agent i (as defined in Eq. (6.15)) of the non-uniform

pricing scheme of the local P2C market. The selling prices are sorted and ranked from
the cheapest to most expensive prices. Then, the P2C market clearing price per unit is
determined as:

τ
P2C
clearing price(t) =

eP2C
Total(t)

Pdeficit
Total (t)

(6.31)

Hence, Eq. (6.31) represents the price per unit, computed from the weighted average of
the P2C sellers bids selected, starting from the cheapest P2C selling prices.

If Pdeficit
Total (t)> PP2C

Total(t), at this operational time period, the total energy available from
the P2C market is not sufficient to meet the total deficit demands of the community. Any
deficit energy that are not met from the P2C market is fulfilled by importing from the
utility grid. The total cost of importing the remaining energy from the grid is computed
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using Eq. (6.29):

eGrid
Total(t) =

N

∑
i=1

PGrid Import
i (t)τb (6.32)

where τb is the grid import tariff and is same for all the agents of the community. In this
scenario, both the bids from the P2C sellers and the gird are considered, and the P2C
market clearing price per unit is determined as:

τ
P2C
clearing price(t) =

[
eP2C

Total(t)+ eGrid
Total(t)

]
Pdeficit

Total (t)
(6.33)

Hence, Eq. (6.33) represents the weighted average of the P2C sellers bids selected (if the
price is below the grid import price, starting from the cheapest P2C selling prices), and the
grid’s bid (grid offering infinity quantity of energy ). At certain operation time period if
the there is no power available from the P2C market (PP2C

Total(t) = 0), then the P2C market
clears at the grid import price of τb.

The P2C buyers pay the P2C market clearing price per unit τP2C
clearing price(t) ( as shown

by Eq. (6.31) and Eq. (6.33)) which is the weighted average of the P2C sellers bids selected.
Algorithm 6.2 outlines the proposed P2C market mechanism described in subsection 6.4.1
to 6.4.5.

Next, with this pricing scheme the P2C market dynamics of three different categories
of low, medium and high P2C sellers is studied by determining the yearly bills with and
without P2C market for the different ratios of the total yearly community PV generation as
defined in Eq (6.1). Therefore, the yearly energy bill savings, which is a fairly intuitive
indicator, is used to compare the economic performance of investments in individually-
owned assets with and without local P2C market. The yearly bill bi(T ) of an agent i can
be expressed as the sum of the cost of the annual energy import from P2C market, sum of
cost of import from the grid and the depreciation cost of the assets cA, minus the sum of
revenues earned by exports to the local P2C market, as shown below:

bi(T ) =
T

∑
1

PP2C Import
i (t)τP2C

clearing price(t)+
T

∑
1

PGrid Import
i (t)τb

−
T

∑
1

PP2C Export
i (t)τP2C

clearing price(t)+ cA(T )

(6.34)

where, at time step t, the energy import PP2C Import
i (t) from P2C market is given by

Eq. (6.27), the energy import PGrid Import
i (t) from grid is given by Eq. (6.29), and the

energy export PP2C Export
i (t) to P2C market at time step t is given by Eq. (6.22). Similar to

the settings described in Chapter 3, 4 and 5, in Eq. (6.34) the cA represents the depreciation
cost which is due to the usage of the asset within the considered period. For example,
for a considered period T equal to one year in which the asset is used following the
manufacturer’s recommendations, cA(T ) corresponds to the annualized cost of the asset,
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Algorithm 6.2: Local peer-to-community (P2C) market mechanisms
1 Input 1 : prosumer excess power Pexcess

C (t), prosumer/consumer deficit power
Pdeficit

C (t)
2 Input 2 : grid import price: τb(t), bids from P2C sellers:τP2C

C
3 for t = 1 : T do
4 ∀t ∈ [0,T ], total energy available for P2C market is determined
5 Pexcess

Total (t) = ∑
N
i=1[P

excess
i (t)]∆t

6 Pdeficit
Total (t) = ∑

N
i=1[P

deficit
i (t)]∆t

7 if Pdeficit
Total (t)≥ Pexcess

Total (t) then
8 PP2C

Total(t) = Pexcess
Total (t)

9 PGrid Import
Total (t) = Pdeficit

Total (t)−PP2C
Total(t)

10 else
11 PP2C

Total(t) = Pdeficit
Total (t)

12 PGrid Export
Total (t) = Pexcess

Total (t)−PP2C
Total(t)

13 end
14 Allocation of total energy available for P2C market among the P2C sellers:

15 K =
{

τP2C
cheapest : τP2C

expensive

}
represents the set of indices of the cheapest to most

expensive ranked sellers allocated in τP2C
C

16 for K =
{

τP2C
cheapest : τP2C

expensive

}
do

17 PP2C Export
i (t) = min

(
Pexcess

i (t,K),Pdeficit
Total (t)

)
18 Pdeficit

remaining(t) = Pdeficit
Total (t)−PP2C Export(t)

19 PP2C Export
i (t) = min

(
Pexcess

i (t,K),Pdeficit
remaining(t)

)
20 PGrid Export

i (t) = Pexcess
i (t,K)−PP2C Export

i (t)
21 end
22 Allocation of total power available from P2C market among the P2C

buyers:
23 L =

{
Pdeficit

smallest : Pdeficit
largest

}
represents the set of indices of the smallest to largest

demand buyers as computed in Pdeficit
C (t)

24 for L =
{

Pdeficit
smallest : Pdeficit

largest

}
do

25 PP2C Import
i (t) = min

(
Pdeficit

i (t,L), (P
remaining excess
i (t)+PP2C

Total(t))
NBuyers

)
26 Premaining excess

i (t) = Premaining excess
i (t)+max(0, PP2C

Total(t)
NBuyers

−PP2C Import
i (t))

27 PGrid Import
i (t) = Pdeficit

i (t,L)−PP2C Import
i (t)

28 end
29 P2C market clearing mechanism:
30 if Pdeficit

Total (t)< PP2C
Total(t) then

31 eP2C
Total(t) = ∑

N
i=1 PP2C Export

i (t)τP2C
i

32 τP2C
clearing price(t) =

eP2C
Total(t)

Pdeficit
Total (t)

33 else
34 eGrid

Total(t) = ∑
N
i=1 PGrid Import

i (t)τb

35 τP2C
clearing price(t) =

[eP2C
Total(t)+eGrid

Total(t)]
Pdeficit

Total (t)

36 end
37 end
38 Outputs: ∑

T
1 PP2C Import

i (t),∑T
1 PGrid Import

i (t),∑T
1 PP2C Export

i (t)
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given as follows:

cA(T ) =
Asset cost

Life time (in years)
(6.35)

In this chapter, a detailed Lithium-ion battery degradation model presented in Chapter 3
is used to determine the battery depreciation factor (DF) to estimate the battery useful
lifetime. Taking into consideration the depreciation resulting from the battery operation
and Algorithm 6.1, the computation of the depreciation cost cA in Eq. (6.34) is updated as
follows:

cA(T ) = max
(

1
DF

,
Asset cost

Life time (in years)

)
(6.36)

Techno-economic comparison of individually-owned assets with and without P2C
market mechanism versus jointly-owned community assets is presented in the following
Section 6.5. In the same section, a sensitivity study is presented to understand the true
dynamics of the proposed P2C market mechanism, and to determine the characteristics of
the community settings that make local P2C market schemes profitable to the households
and the community as a whole.

6.5 Economic study of communities with individually-
owned assets with P2C market

In this community setting with local P2C market mechanism, we consider the individual
households invest in an individually-owned distributed solar PV renewable generator
along with a battery energy storage system. Similar to the community settings described in
Chapter 4 and 5, the model input, tariff structures and unitary cost of energy assets described
in Section 3.3 of Chapter 3 are used for analysis. The cost of energy assets are assumed to
be 150 £/kWh for the battery [225] and 1100 £/kW for solar PV [229] generation capacity.
The economic performance of investment in this individually-owned energy assets is
compared with the investment in jointly-owned community energy assets (centrally-shared
community assets as described in Chapter 5 considering network constraints). In this
study, we chose to use an optimal size for both individual assets and community assets
that was obtained in Chapter 4. Results of the optimal assets sizing are shown in Table 4.3
for PV, and Table 4.5 for battery (that was obtained from battery integrated with solar
PV renewable generator). An optimal size of PV or battery corresponds to the size that
provides the minimal simple payback period.

In this community model with P2C market mechanism, a fixed grid import tariff of
16pence/kWh [222] is considered. The P2C market dynamics is studied for three different
categories of P2C sellers simulated for various settings of the community as shown below:

• Community setting 1: all 200 households-prosumers with individually-owned
optimal PV’s and optimal batteries (same setting as the community model presented
in Chapter 4 and 5). In this setting, the 200 prosumers are randomly allocated into
different categories of P2C sellers (non-uniform pricing scheme) as follows:
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i Low price sellers: 67 households

ii Medium price sellers: 67 households

iii High price sellers: 66 households

• Community setting 2: 100 households-prosumers with individually-owned optimal
PV’s and optimal batteries, and 100 households-consumers without assets. In this
setting, the 100 prosumers are randomly allocated into different categories of P2C
sellers (non-uniform pricing scheme) as follows:

i Low price sellers: 34 households

ii Medium price sellers: 33 households

iii High price sellers: 33 households

• Community setting 3: 67 households-prosumers with individually-owned optimal
PV’s and optimal batteries, 33 households-prosumers with individually-owned PV’s
only, and 100 households-consumers without assets. In this setting, the 67 prosumers
(both PV & battery) and 33 prosumers (Pv only) are randomly allocated into different
categories of P2C sellers (non-uniform pricing scheme) as follows:

i Low price sellers (prosumer with PV & battery): 23 households

ii Medium price sellers (prosumer with PV & battery): 22 households

iii High price sellers (prosumer with PV & battery): 22 households

iv Low price sellers (prosumer with PV only): 11 households

v Medium price sellers (prosumer with PV only): 11 households

vi High price sellers (prosumer with PV only): 11 households

The main aim of the techno-economic study of the energy community is to determine
the profitability of the local P2C market mechanism for the different settings of the commu-
nity. However, only Community setting 1 is used for the techno-economic comparison of
the investment in jointly-owned community energy assets versus individually-owned assets
with and without P2C market mechanism. This choice was made because community
settings 1 is the only scenario with the same settings as the community with jointly-owned
energy assets presented in Chapter 4 and 5. This comparison of economic performance in
the investment of community assets versus individually-owned assets with P2C market
mechanism for different PV ratios is presented in the following subsection. The comparison
between P2C market in community setting 1 and community with jointly-owned energy
assets is presented in Section 6.5.1. The comparison between all the community settings,
all with P2C market mechanism is presented in Section 6.5.2.
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6.5.1 Communities with P2C markets versus jointly-owned energy
assets

To provide a comprehensive comparison study between both community types (with
individual assets and P2C market vs jointly owned assets), we will compare the benefits
of P2C for different amount of PV installed. The demand of the community is kept
constant but the generation from renewable generator PV is increased or decreased to
obtain different PV Ratio as defined by Eq. (6.1). The profitability of the local P2C market
mechanism, and the dynamics of the non-uniform pricing schemes are studied for the
different PV ratios. If the PV Ratio is equal to one, this means that the community demand
is equal to community PV generation (same setting as the community model presented in
Chapter 4 and 5). If the PV Ratio = 2 means that the total community yearly generation is
twice the total community yearly demand. Similarly, If the PV Ratio = 0.5 means that the
total community yearly PV generation is half the total community yearly demand. The
different PV ratios are chosen to study the real pricing dynamics among the three different
low, medium and high P2C sellers in the local P2C market. The optimal capacities of
individually-owned and community-owned energy assets (solar PV and battery) obtained
for various PV ratios are shown in Table 6.1 & 6.2.

Assets
Community
assets size

Sum of individual agents assets’ capacities

Ratio = 0.37 Ratio = 0.25 Ratio = 0.4 Ratio = 0.5 Ratio = 1

PV (kW) 309 209 335 419 838

Battery (kWh) 642 513 513 513 513

Table 6.1: Comparison of jointly-owned community asset capacity and individually-owned
assets’ capacities for PV ratio = 0.25, 0.4, 0.5 & 1.

Assets
Community
assets size

Sum of individual agents assets’ capacities

Ratio = 0.37 Ratio = 1.5 Ratio = 2 Ratio = 2.5 Ratio = 3

PV (kW) 309 1256 1675 2094 2513

Battery (kWh) 642 513 513 513 513

Table 6.2: Comparison of jointly-owned community asset capacity and individually-owned
assets’ capacities for PV ratio = 1.5, 2, 2.5 & 3

The yearly bills of the individual agents are computed under various PV ratios with P2C
market mechanism, and then compared with the yearly bills computed using the jointly-
owned community assets. Yearly bill for the individual with P2C market mechanism is
defined by Eq. (6.34). The yearly bills of community with jointly-owned assets corresponds
to the yearly bills obtained by considering the network constraints as defined by Eq. (5.23)
in Chapter 5. Yearly bills with P2C market mechanism is also obtained by considering
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the grid constraints, but as specified in Chapter 5, there is no over-voltage. Similar to the
community settings in Chapter 4 and 5, the baseline yearly bills corresponds to the yearly
bills computed for individual agents and community without generation or storage energy
assets. Table 4.1 shows the baseline bills for both the flat tariff of 16 pence/kWh [222]
and dynamic Agile Octopus ToU tariff [224]. However, in this chapter with P2C market
mechanism we will be referring to the fixed tariff pricing scheme only.

The community annual bill obtained from jointly-owned assets and the sum of indi-
vidual households bills computed with and without P2C market mechanism are shown in
Table 6.3 for PV ratio equal to 0.4, 0.5 & 1, and Table 6.4 for PV ratio equal to 1.5, 2 &
2.5.

Community
yearly
bill
(£)

Sum of individual agents yearly bills (£)

Assets Ratio = 0.37 Ratio = 0.4 Ratio = 0.5 Ratio = 1

Adop-
tion

With P2C No
P2C

With P2C No
P2C

With P2C No
P2C

PV Only 119315 117156 123006 118074 124316 130619 137231

PV & Battery 115664 115926 116977 115584 116801 124797 126271

Table 6.3: Economic comparison of jointly-owned community assets and individually-
owned assets with and without P2C market for PV ratio equal to 0.4, 0.5 & 1

Community
yearly
bill
(£)

Sum of individual agents yearly bills (£)

Assets Ratio = 0.37 Ratio = 1.5 Ratio = 2 Ratio = 2.5

Adop-
tion

With P2C No
P2C

With P2C No
P2C

With P2C No
P2C

PV Only 119315 148371 154769 168149 174214 188924 194659

PV & Battery 115664 140904 142423 159523 161030 179397 180888

Table 6.4: Economic comparison of jointly-owned community assets and individually-
owned assets with and without P2C market for PV ratio equal to 1.5, 2 & 2.5

As shown in Table 6.3, the community yearly bill obtained from jointly-owned com-
munity PV only is £119315. The minimum sum of individual agents yearly bills obtained
with P2C market mechanism is £117156. This is obtained at the PV ratio equal to 0.4.
Otherwise the community assets provides greater benefit. For the case without P2C the sum
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of individual agents yearly bills obtained are much higher for all the ratios as compared to
the community yearly bill.

Similarly, the community yearly bill obtained from jointly-owned community PV and
battery is £115664. The minimum sum of individual agents yearly bills obtained with
P2C market mechanism is £115584. This shows that individually-owned assets with P2C
market mechanism offer slightly more benefit when the PV ratio is equal to 0.5. Otherwise,
the community-owned assets offer more benefits as compared to individually-owned assets
with and without P2C market mechanism.

For the PV ratio equal to 1.5 and above, the sum of individual agents yearly bills
obtained are higher than the bills obtained without any assets as shown in Table 6.4. This
clearly shows that at higher PV ratios, there is an increasing cost, but there is no further
increase in the benefits. The reason for this is solar PV does not produce at the right
times, and the control algorithm of the battery does not allow to sell electricity outside
the production times. Agents/prosumers produce more electricity than needed, but agents
cannot sell it, so there is no increase in the overall benefits.

Next, we present the the comparison of the profitability of the P2C market mechanism
for all the community settings.

6.5.2 Impacts of the community’s characteristics on the P2C scheme
profitability

When the ratio of total yearly PV generation is increased then the PV capacity also increases
and correspondingly the yearly bills also increased, which can prevent us from accurately
study the impact of the community configuration. Hence, the cost of the assets are not
considered while determining the yearly bills for different ratios of PV in the sensitivity
study presented in this section. This is to allow us to study the real pricing dynamics
among the three different low, medium and high P2C sellers. Here, the cost of the assets i.e
yearly cost of battery and PV is not included in the yearly bills determined. For different
ratios of PV generation, the yearly bills for three categories of P2C sellers are computed
for the three different community settings 1 , 2 & 3. First, the results obtained for the
community setting 1 is presented.

Community setting 1: all 200 households-prosumers with individually-owned optimal
PV’s and optimal batteries

The Figure 6.4 and Table 6.5 show the total yearly bills of Low, Medium & High Price
P2C Sellers obtained with and without P2C market mechanism for different PV ratios. The
total baseline bills obtained without assets for the Low, Medium & High Price P2C Sellers
are included in Table 6.5 for comparison and analysis.

There is a significant reduction in the bills with the increase in the PV Ratio i.e PV
generation is more than the demand as as shown in Figure 6.4 and Table 6.5. In this
community setting 1, study shows that the High Price P2C Sellers are able to reduce more
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Figure 6.4: Comparison of total yearly bills for community setting 1.

Sum of individual agents
yearly bills (£)

Prosumers PV Ratios
No Assets(Sellers) 0.25 0.5 1 1.5 2 2.5

Low
Price_P2C

35263 30000 25321 22952 21440 20356 45356

Low Price
_No P2C

35488 30435 25893 23566 22065 20987 45356

Medium
Price_P2C

34475 29442 24943 22666 21206 20159 43991

Medium
Price_No
P2C

34638 29780 25355 23088 21620 20561 43991

High
Price_P2C

34692 29262 24620 22339 20897 19869 45109

High Price
_No P2C

34934 29707 25110 22823 21365 20326 45109

Table 6.5: Comparison of total yearly bills for community setting 1.

bills compare to Low & Medium Price P2C sellers, and Medium Price P2C Sellers are able
to reduce the bills the least for all the different PV ratios (constrained scenarios-low to high
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PV generation as compared to demand) as shown in Table 6.5. The reduction in the bills
is computed comparing the bill obtained for different P2C sellers with the baseline (bills
obtained without assets) bills. However, when we compare the cases with and without P2C
market mechanism, there is no significant reduction due to P2C market mechanism for all
the three low, medium and high P2C Sellers for all the PV ratios.

The reduction in the bill is mainly because each individual agent already have larger
capacity PV (as the ratio increases) and optimal batteries that are used for maximizing
the self-consumption. Hence, in this Community Setting 1 the study shows that the P2C
market mechanism does not offer economic or financial benefits to the community if all
the households invest in energy assets.

Community Setting 2: 100 households-prosumers with individually-owned optimal
PV’s and optimal batteries, and 100 households-consumers without assets

The Figure 6.5 and Table 6.6 show the total yearly bills of Low, Medium & High Price P2C
Sellers, and consumers obtained with and without P2C market mechanism for different PV
ratios. The total baseline bills obtained without assets for the Low, Medium & High Price
P2C Sellers, and consumers are included in Table 6.6 for comparison and analysis.

Low Price Selle
r W

ith
 P2C

Low Price Selle
r W

ith
out P

2C

M
edium Price Selle

r W
ith

 P2C

M
edium Price Selle

r W
ith

out P
2C

High Price Selle
r W

ith
 P2C

High Price Selle
r W

ith
out P

2C

Consu
mer W

ith
 P2C

Consu
mer W

ith
out P

2C

Agents (Low Price Seller:34 Nos, Medium Price Seller:33 Nos, High Price Seller:33 Nos, Consumer: 100 Nos)

0

1

2

3

4

5

6

7

8

T
o
ta

l 
Y

ea
rl

y
 B

il
ls

10
4 Yearly Bills with & without P2C market without cost of the assets

Ratio=0.25 (Total PV generation = 0.25xTotal Demand)

Ratio=0.5 (Total PV generation = 0.5xTotal Demand)

Ratio=1 (Total PV generation = Total Demand)

Ratio=1.5 (Total PV generation = 1.5xTotal Demand)

Ratio=2 (Total PV generation = 2xTotal Demand)

Ratio=2.5 (Total PV generation = 2.5xTotal Demand)

Ratio=3 (Total PV generation = 3xTotal Demand)

Figure 6.5: Comparison of total yearly bills for community setting 2.

Comparing to community setting 1, in this community setting 2, there is a significant
reduction in the bills of low, medium and high price P2C sellers and consumer with P2C
mechanism as compared to the case without P2C market mechanism as shown in Figure 6.5
and Table 6.6. In this community setting 2, study shows that the Low Price P2C Sellers
are able to reduce more bills compare to Medium & High Price P2C sellers. This is due
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Prosumers
(Sellers)

Sum of individual
agents yearly bills (£)

and PV Ratios

Consumers 0.25 0.5 1 1.5 2 2.5 Baseline

Low Price _P2C 13889 10347 7374 5944 5083 4513 22981

Low Price _No P2C 15324 13069 11152 10209 9640 9260 22981

Medium Price_P2C 11987 9767 8101 7298 6833 6550 19279

Medium Price_No P2C 12806 10859 9211 8390 7889 7552 19279

High Price_P2C 11919 9628 7909 7109 6654 6378 19837

High Price_No P2C 12612 10541 8845 8023 7538 7215 19837

Consumer_P2C 69184 64265 58689 55447 53168 51458 72358

Consumer_No P2C 72358 72358 72358 72358 72358 72358 72358

Table 6.6: Comparison of total yearly bills for community setting 2.

to the market mechanism. indeed, lower prices are chosen before. However, it could be
that higher price make greater profit per unit and that at low PV ratio , they get energy
to sell, so make more savings. In this setting also Medium Price P2C Sellers are able to
reduce the bills the least for all the different PV ratios (constrained scenarios-low to high
PV generation as compared to demand) as shown in Table 6.6. The study shows that there
is an optimal price strategy depending on the community setting, or depending on the
amount of PV generation (PV ratio).

Furthermore, the consumers are able to reduce bills more at the higher PV ratios, which
is evident as the consumers are able to buy more energy from P2C market at higher PV
ratios i.e more PV generation are available for P2C market.

Community Setting 3: 67 households-prosumers with individually-owned optimal
PV’s and optimal batteries, 33 households-prosumers with individually-owned opti-
mal PV’s only, and 100 households-consumers without assets

The Figure 6.6 and Table 6.7 show the total yearly bills of Low, Medium & High Price P2C
Sellers, and consumers obtained with and without P2C market mechanism for different PV
ratios.

Similar to community setting 2, in this community setting 3, there is also a significant
reduction in the bills of low, medium and high price P2C sellers and consumer with P2C
mechanism as compared to the case without P2C market mechanism as shown in Figure 6.6
and Table 6.7.

In this setting also, the low price P2C sellers are able to reduce more bills for all the
PV ratios than all other sellers. This is due to the market mechanism. indeed, lower prices
are chosen before. However, it could be that higher price make greater profit per unit
and that at low PV ratio , they get energy to sell, so make more savings. Furthermore,
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Figure 6.6: Comparison of total yearly bills for community setting 3.

Prosumers (sellers) Sum of individual agents yearly bills (£)

and PV Ratios

Consumers 0.25 0.5 1 1.5 2 2.5 No
As-
sets

Low (PV & Battery)_P2C 8975 6427 4391 3488 2949 2596 15501

Low (PV & Battery)_No P2C 9956 8377 7066 6431 6052 5802 15501

Medium (PV & Battery)_P2C 8674 7161 6026 5477 5156 4956 13666

Medium (PV & Battery)_No P2C 9200 7846 6697 6125 5777 5542 13666

High (PV & Battery)_P2C 7649 6200 5113 4610 4320 4142 12696

High (PV & Battery)_No P2C 8051 6713 5618 5088 4774 4566 12696

Low (PV)_P2C 4916 4036 3232 2802 2552 2387 7479

Low (PV)_No P2C 5928 5402 4900 4639 4468 4347 7479

Medium (PV)_P2C 3309 2720 2324 2165 2097 2069 5613

Medium (PV)_No P2C 4151 3698 3284 3075 2944 2851 5613

High (PV)_P2C 4292 3598 3131 2955 2888 2855 7141

High (PV)_No P2C 5226 4669 4190 3951 3799 3692 7141

Consumer_P2C 68727 63644 57992 54721 52459 50789 72358

Consumer_No P2C 72358 72358 72358 72358 72358 72358 72358

Table 6.7: Comparison of total yearly bills for community setting 3.
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the consumers are able to reduce more bills in this settings as compared to community
setting 2 for all the PV ratios. This reduction could be because in this setting there are
less prosumers with battery assets, so more energy are available in the P2C market for the
consumers.

6.5.3 Discussion of results

In this section, we present the overall findings of the study on comparison between the
community with P2C market versus jointly-owned assets, and the comparison of all the
community settings with all P2C market mechanism. In Figure 6.5 & 6.6, consumers are
also shown along with the P2C sellers (prosumers) to indicate the benefits obtained by
consumers from P2C market compared the case without P2C market mechanism. The P2C
local market mechanism is designed such that at the end of the P2C market, if there is
energy import from grid, then it is ensured that there is no energy export to grid and vice-
versa. Furthermore, the proposed P2C market does not provide any service/improvement
to network/grid as demand response is not considered for the community. This is validated
by ensuring that at every operation time period, the difference between the total deficit
energy to buy and total excess energy to sell are always equal to the difference between the
total imported energy from grid and total energy exported to grid as shown by Eq. (6.37).

Pdeficit
Total (t)−Pexcess

Total (t) = PGrid Import
Total (t)−PGrid Export

Total (t) (6.37)

On comparison of total yearly bills with and without P2C Market mechanism, the study
shows that there is no significant reduction in the bills due to P2C market mechanism for
all the three Low, Medium and P2C sellers for all the PV Ratios. In the Community Setting
1, it is found that the energy traded within P2C local market is extremely low as compared
to the grid imports resulting in the same yearly bills with and without P2C local market.
This is mostly because each prosumer (household/agent) has already a larger capacity
optimal battery and optimal solar PV for maximizing self-consumption. Furthermore, with
the current rule-based battery control algorithm, it is unlikely that the users owning solar
PV and battery will have surpluses to sell while there is no demand response or change in
their usage of the battery depending on the market needs. Therefore, the profitability of
the P2C market scheme was minimum for the Community Setting 1. It clearly shows that
P2C scheme is not profitable if all the households/agents own energy assets such as PV
and battery.

Hence, sensitivity study on the Community Setting 2 & 3 was conducted to under-
stand the right community settings that make the P2C market scheme profitable for the
community. Community Setting 2 & 3 show a more realistic community with diversity
of assets (mixture of prosumers and consumers). The study shows that the reduction
in the bills due to P2C market mechanism compared to the bills obtained without P2C
market scheme is indeed greater for the Community Setting 2 & 3. Results shows that
the Low Price P2C Sellers are able to reduce more bills compare to Medium & High
Price P2C sellers for all the PV ratios for both the community settings 2 & 3. This can be
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explained by the fact that in this specific market setting, priority is given to the low price
sellers. Therefore, little energy quantity is awarded to higher price sellers, and despite
their unitary price, the overall benefits are lower for sellers with higher prices. In the same
time, consumers (agents without assets) are able reduce their yearly bills for all the PV
ratios as compared to the case without P2C market mechanism for both the community
settings 2 & 3. This shows that the right setting of the community is paramount to make
local Peer-to-Community market schemes profitable to the community. Furthermore, study
clearly shows that P2C scheme is less profitable if there is no demand response strategy in
the community settings.

Next, we propose to study the difference between a real time vision and a half-hourly
vision in terms of real imports/exports, and impacts on the grid. The sensitivity study
on the energy community settings with local P2C market mechanism is further extended
to explore and assess what kind of market that is determined in terms of import/export
from the grid and local P2C market using the minutely real-time simulation versus half-
hourly P2C market clearing time interval simulation. This comparison of P2C market
with minutely real-time simulation versus half-hourly P2C market clearing time interval
simulation in the following Section 6.6.

6.6 Economic study and comparison of P2C market with
minutely real-time simulation versus half-hourly mar-
ket clearing simulation

In this thesis, the community settings are operated based on the assumption of perfect
knowledge of the future consumption and generation. However, in practice the future
consumption and generation are forecasted on a half-hourly basis. While considering the
half-hourly market clearing mechanism, the local P2C market makes us believe that the
community will self-consume most of the electricity, and there is no need for the import
from the grid. However, while looking closer (at a minute time frame), the community
might not be self-sufficient at all as it actually does not always produce at the same time
as it consumes. At this half-hourly clearing time, if the community imports from the grid
then this rises the question around settlements in the energy market. When a half-hourly
LEM states that the community is balanced, is it truly balanced when looking at a minutely
time interval? Particularly, how much the grid services are used, and what kind of fees
and payment to be settled for the grid services. In this section, to address this question, an
economic study and comparison of P2C market with minutely real-time simulation versus
half-hourly market clearing simulation is presented.

In this study, a recent demand profile and solar PV generation of 55 households with
one minute resolution from the ReFLEX (Responsive Flexibility) project [8] is considered.
The minutely resolution demand and generation data allows us to compare the households
import/export from/to grid of P2C market with minutely real-time simulation versus half-
hourly market clearing simulation. Furthermore, the one-minute resolution data was
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preferred over half-hourly resolution demand data in order to determine the power flow
accurately as the half-hourly demand represents the energy not the power. Similar to the
community settings described in Chapter 4 and 5, we choose to use an optimal size for
both solar PV generator and the battery storage corresponding to the minutely resolution
demand and generation data. Every individual agent/prosumer owns his optimal PV size
and optimal battery capacity. A summary of the model parameters is shown in Table 6.8.
This model corresponds to the Community Setting 1 as presented in Section 6.2.

Parameters P2C Model

Sum of individual agent monthly demand (kWm) 4177175
Sum of optimal individual PV’s (kW) 62
Sum of optimal individual battery (kWh) 2053
Fixed tariff (pence/kWh) 16
Unitary cost of battery (£/kWh) 150
Unitary cost of PV generation (£/kW) 1100

Table 6.8: Optimal PV and optimal battery capacities, and other parameters of the P2C
model simulated for 55 households

Here, we have assessed the difference in the import/export from/to the grid & P2C
market using the minutely real-time simulation versus half-hourly P2C market clearing
time interval simulation to understand the evolution of local markets. As described in
previous Section 6.3, initially using the Algorithm 6.1, individual agents optimizes their
own consumption. Then, during the excess generation, the excess power is exported to
local P2C market, and during the deficit period, the remaining power is imported either
from the P2C market or utility grid. Finally, using Algorithm 6.2, the same detail Peer-to-
Community (P2C) market mechanisms described in Section 6.4 is used for the study of
three different P2C sellers in an non-uniform pricing scheme of the local P2C market (as
presented in Section 6.4.1). This model corresponds to the Community Setting 1, all 55
households-prosumers with individually-owned optimal PV’s and optimal batteries. In this
setting, the 55 prosumers are randomly allocated into different categories of P2C sellers
(non-uniform pricing scheme) as follows:

i Low price sellers: 18 households

ii Medium price sellers: 18 households

iii High price sellers: 19 households

For a half-hourly market clearing simulation, the minutely demand and generation data
is aggregated into half-hourly basis to determine the parameters such as import/export
from/to grid, and import/export from/to P2C market. For a minutely real-time simulation,
parameters such as import/export from/to grid, and import/export from/to P2C market are
computed using the real-time minutely data. The final computed parameters are aggregated
into half-hourly basis to compare with the parameters obtained from half-hourly market
clearing simulation.
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The study is mainly focussed on the comparison of energy imports from grid computed
using half-hourly market clearing simulation with the imports from grid computed using
minutely real-time simulation. Figure 6.7 shows the energy imported from grid using
minutely real-time and half-hourly market clearing time period simulated for low-price
seller of non-uniform pricing scheme. It can be observed that the imports from the grid
not exactly the same. But very close for both the case with real-time minutely simulation
and with half-hourly market clearing simulation. Similar result results are obtained for the
high and medium price sellers.

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29

Time Period 2021   

0

2000

4000

6000

8000

10000

12000

14000

Im
p

o
rt

 f
ro

m
 G

ri
d

As seen by the P2C market, using 30 minutes aggregration

As seen by real-time operation P2C market (minutely resolution)

Minutely Real-time Without P2C Market

Figure 6.7: Import from grid computed using minutely real-time and half-hourly market
clearing simulation.

6.6.1 Discussion of results

In this study, the comparison was made on the import from the grid as seen by the
P2C market. The analysis involved using 30-minute aggregation and real-time minutely
operation with and without P2C local market operation. The primary objective was to
assess the self-sufficiency of the community in terms of energy consumption. The results
from the study show that most of the time the imports from the grid are same in all the
three scenarios(half-hourly clearing mechanism, minutely real-time with P2C market, and
minutely real-time without P2C market) studied.
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6.7 Concluding remarks

In this chapter, a local Peer-to-Community (P2C) market mechanism is proposed for a com-
munity. The main goal is to enable individual households to equitably share the resources
and benefits derived from their investments in individually-owned energy assets. The
proposed P2C model consists of mainly two stages. First, the individual households/agents
optimizes their own self-consumption from energy assets and then trade the energy locally
through P2C markets. The battery control mechanism is implemented to optimize their
own consumption and production, and then the deficit and excess power are computed
and proposed to be traded in the P2C market. The dynamics of the proposed P2C market
mechanism is studied for three different types of P2C sellers (non-uniform pricing scheme)
and tested for three different types of community settings (mix of prosumers and con-
sumers) under different ratios of PV generation. We computed yearly bills resulting from
the proposed algorithm of multi-unit auction P2C market clearing mechanism. The yearly
bills were used for the techno-economic comparison of investment in individually-owned
assets with and without P2C market mechanism versus jointly-owned community assets.
The profitability of the proposed P2C market mechanism is tested for different settings of
the community under different rates of renewable energy adoption.

Experimental results (based on the real input data from the UK) show that, the profitabil-
ity of the P2C market scheme was minimum for the Community Setting 1 (all prosumers).
It clearly shows that P2C scheme is not profitable if all the households/agents own energy
assets such as PV and battery. On the other hand, the study shows that the reduction in the
bills due to P2C market mechanism compared to the bills obtained without P2C market
scheme is more for the Community Setting 2 & 3 (mixture of prosumers and consumers).
Results show that the Low Price P2C Sellers are able to reduce more bills compare to
Medium & High Price P2C sellers for all the PV ratios for both the community settings
2 & 3. Meanwhile, consumers (agents without assets) are able reduce their yearly bills
for all the PV ratios as compared to the case without P2C market mechanism for both
the community settings 2 & 3. The study show that the local P2C market mechanism
can be profitable to the community only if it is integrated with suitable demand response
strategies, and should possess the capability to change the usage of the battery depending
on the market needs. Furthermore, the benefit of the P2C market mechanism is limited if
there is no option to export to utility grid, and most importantly the profitability depends
on the right settings of the community. Otherwise, the jointly-owned community energy
assets provide higher benefits to the community.

Hence, the study shows that in a realistic community with diversity of assets, P2C local
market mechanism are a tangible solution to provide a lower cost energy access, and thus
setting of right pricing mechanisms and inclusion of demand response schemes are crucial
in realizing the full benefit of smart local energy system integrating P2C markets. The
results from the study also highlights the need for smart local energy system planning and
simulation tools.
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Finally, the results from the comparative study of P2C market with minutely real-time
simulation versus half-hourly market clearing simulation shows that the import from the
grid is same for all the three scenarios studied. This result helps us to validate that during
half-hourly market clearing period, the community is self-sufficient from the local P2C
market, and there is almost no import from the grid. Otherwise, there should be a balancing
mechanism to pay for the energy and services provided by the grid. This would require an
appropriate settlement mechanism in local energy markets.





Chapter 7

Conclusions and Future Work

7.1 Overview of results of the thesis

Energy communities formed by prosumers are increasingly becoming a promising solution
to delivering sustainable energy systems that promote renewable integration and active
participation of end-users. Energy community projects often involve jointly owned energy
assets such as community-owned wind turbines, solar PVs and/or shared battery storage.
Energy communities are a promising concept, that can enable better use of locally generated
renewable energy. However, given that not all members have the same size, energy needs
or demand profiles, a key challenges are how these assets can be efficiently controlled
in real time, how the useful lifetime of the asset can be modelled and enhanced using
AI, and how the energy outputs from jointly-owned community energy assets should
be shared fairly among community members. Crucially, such real-time control and fair
sharing of energy must also consider the technical constraints of the community, such as
physical network/grid characteristics, voltage limits and electrical cable thermal limits.
Energy community models and local energy solutions face numerous challenges to achieve
successful rollout and adoption. Most importantly, these new business models need to
be accepted by end-users and need to promote sustainable behaviour, value creation and
active engagement. In this thesis, we argue that there are several key objectives that need
to be met to achieve these goals.

In this thesis, a techno-economic modelling methodology is proposed that couples
battery control, battery degradation, community energy from renewable energy sources
(RES) with LV network operating constraints, and a fair redistribution optimization of
benefits to jointly owned assets. The control mechanism was implemented for both
fixed electricity tariffs and dynamic ToU tariffs to compare the benefits obtained when
an individual household invest in their own energy assets versus investing jointly in a
community-owned energy assets. To compare the economic performance of investments
in community-owned assets and individually-owned assets, we considered an energy
community of two hundred prosumers, that were all modelled by real time-series data
of generation and consumption profiles from a community in UK for a full year. We
computed yearly bills resulting from the proposed battery control algorithm and compared
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the yearly bills computed with and without network constraints to assess how network/grid
constraints can impact the deployment of individual and community-owned assets.

Next, in the context of energy communities with community-owned assets, a practically
applicable and computationally efficient redistribution mechanism was developed. The
primary aim was to ensure a fair distribution of energy and the associated financial benefits
among the community members who own the assets. This redistribution mechanism
is based on the marginal contribution of each member, which is a key concept from
coalitional game theory that looks at rewarding members based on the value they provide
to the community. It was demonstrated that the proposed redistribution mechanism is
applicable to all types of community-owned assets, including storage assets. This was
achieved despite the apparent challenge of accurately assessing how each community
member benefits from these assets.

Finally, a framework of peer-to-community (P2C) local market mechanism is proposed
as an alternative to investment in jointly-owned community energy assets in the case when
the integration of the community assets are limited due to physical network/grid constraints.
The local P2C market mechanism enable households to share and trade energy by investing
in the distributed individually-owned energy assets. The profitability of the P2C market
mechanism is studied for different constraint settings in terms of total generation versus
total demand, and investigated how much each type of generator produced energy, how
much they could sell locally (P2C) and produce profit. In summary, in this thesis we
investigated a model of a community investment and sharing of energy assets, including
renewable generation and battery storage in a market pricing regime of fixed electricity
tariffs and dynamic time of use (ToU) tariffs. The main research works and key findings of
this thesis is presented in the next section.

7.2 Summary of research work and key findings

The first part of the research work undertaken studied a model of a prosumer-based control
algorithm was presented and assessed by incorporating the latest heuristics of battery
state of health for both at an individual/prosumer level and at a community level. The
control algorithm was implemented for different economic parameters that were altered
in order to investigate and realize a sensitivity study on the profitability of batteries at the
level of individual prosumers. Results from this work display a good performance of the
heuristic-based scheduling when electricity import prices are relatively higher than export
prices. The simulation analysis (based on real demand profiles, generation data, physical
asset profiles and import prices in the United Kingdom at the time of writing) shows that
investment in batteries can be an economical feasible proposition, but this result depends
on economic parameters such as the cost of the battery, the export prices of electricity,
but also the type of services for which the battery can get revenues. This output based on
a large-scale study of 200 households is relevant for industrials and investors to confirm
business models around battery use.
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Next, the research work in this thesis studied the principled model of community
investment and sharing of energy assets, such as renewable generation and battery storage
for both fixed and dynamic time of use (ToU) tariffs. Specifically, the research work studied
the techno-economic analysis of investment in distributed individually-owned energy assets
versus investment in jointly-owned community energy assets. Results from the techno-
economic analysis show that community assets provide more savings (higher benefits)
compared to distributed, individually-owned assets. The advantages from community
assets are multiple. First, community assets require a lower capacity for the same services,
hence potentially a lower cost. Second, community assets achieve lower annual energy bills
for both pricing schemes considered in the study. The study highlighted the importance
for determination of fair redistribution or allocation of benefits achieved in community
projects.

In this vein, various benefit redistribution schemes (four methods in total, based on
current practices) were explored. Work in this thesis proposed a method based on the
marginal contribution of each prosumer, a key concept that assures fair distribution in
coalitional game-theory. It was demonstrated that the proposed scheme achieved better
performance than other methods, while also providing the additional advantage of being
computationally tractable. Hence, the proposed marginal cost redistribution method is
fair, scalable, and more practically applicable. Results (based on real large-scale case
study of 200 households) shows that the proposed redistribution method yields to a greater
reduction of the annual bill for almost 67% of the community households compared state-
of-the-art methods. This 67% fraction of the prosumer agents corresponds to households
with lower annual consumption (small demand profiles). Although large consumers benefit
slightly less under this proposed redistribution scheme, they still obtain the highest bill
reduction in value as compared to households with lower demand profiles. Therefore, the
proposed redistribution mechanism achieves a fairer redistribution leading to greater social
acceptance, key to incentivising more communities to form coalitions and invest in jointly-
owned renewable energy assets. Furthermore, current energy communities usually employ
algorithms based on proportionality of consumption to redistribute the benefits from the
community assets. However, such methods are not fair, and not applicable in the case of
energy storage assets, especially community-owned batteries as it is not easy to determine
who used more the battery assets than others. This is another key point that demonstrates
the advantages of the proposed redistribution mechanism based on marginal contribution.
Hence, the redistribution method proposed in this thesis fills a key knowledge gap by
providing a fair redistribution method that applies to both community-owned renewable
generator and storage assets.

The physical network (the LV distribution grid) is an essential entity that allows the
exchange of energy in the settings of the energy communities. However, an important
aspect that has often been neglected in existing research on energy community models
is the relevance of the distribution grid’s technical limits. In this thesis, a comprehensive
model is provided to study the effect of such physical network and operational constraints
in the energy community setting by including the power flow (network/grid constraints) in
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techno-economic analysis of investment in distributed individually-owned energy assets
versus jointly-owned community assets. Experimental results from our study show that,
overall, the operation of individually-owned distributed assets are less impacted by grid
constraints than the operation of community-owned assets. Indeed, when generation is
not located close enough to consumption, it might lead to local over-voltage that could
result in curtailment by the distribution system operator of export from community-owned
assets. This curtailment reduces the overall saving of the community, which illustrates the
importance of considering the physical grid constraints in the energy community schemes.
However, even with curtailment due to grid constraints, the economic comparison between
community-owned assets and individually-owned assets still shows that community-owned
assets provides better benefits to energy communities for both tariffs schemes studied.
Hence, this thesis work further studied the effect of physical network constraints on the
redistribution schemes.

Subsequently, an approximated marginal cost redistribution method was developed
to address the computational challenge while considering the network/grid constraints.
The results showed that the individual agents yearly bills obtained after redistribution
by approximated marginal cost redistribution method is similar to results obtained by
redistribution mechanism without approximation, with the correlation coefficient of 99.99%
for both the fixed and dynamic tariffs. Hence, while considering the network constraints,
approximated marginal cost redistribution method can be used to redistribute the benefits
from community owned assets, as it is much more computationally tractable particularly
while considering the large realistically-sized community settings. This represents a
significant contribution to the state-of-the-art of sharing resources in energy communities.

The last part of this thesis was devoted to the study of the profitability of the local
peer-to-community (P2C) market mechanism for the households with individually-owned
energy assets. The framework for the P2C market mechanism includes the method for
achieving fairness and equity in the distribution pf total energy available for the local P2C
market among the P2C buyers and sellers. A single market clearing price is obtained by
running the multi-unit auction, where the price per unit is averaged for each unit. In the
proposed P2C market mechanism, we assume every consumer must satisfy their energy
demands (either from the grid or the local P2C market), and averaging over the multiple
units of price is the fairest way to share the cost for that market. The study shows that in a
realistic community with diversity of assets, P2C local market mechanism are a tangible
solution to provide a lower cost energy access, and thus setting of right pricing mechanisms
and inclusion of demand response schemes are crucial in realizing the full benefit of smart
local energy system such as P2C markets. The results from the study also highlights
the need for smart local energy system planning and simulation tools. Furthermore, this
thesis studied the comparison of P2C market with minutely real-time simulation versus
half-hourly market clearing simulation to validate if the community is self-sufficient
during the aggregated half-hourly market clearing periods. To achieve this, the total
energy import/export from/to grid during a minutely real-time simulation is compared with
the total energy import/export from/to grid obtained during half-hourly market clearing
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simulation. The results from the comparative study shows that the import/export from/to
the grid is same for both the minutely real-time simulations and half-hourly clearing
simulation. This result helps us to validate that during half-hourly market clearing period,
the community is self-sufficient from the local P2C market, and there is no import from the
grid. Otherwise, there should be a balancing mechanism to pay for the energy and services
provided by the grid. This would require an appropriate settlement mechanism in local
energy markets.

Finally, the proposed energy community model is implemented and validated using
a real case study from the UK based large-scale smart energy demonstration project. To
our best knowledge, this thesis models the control of energy community assets from an
economic and technical perspective with an unprecedented level of detail. This includes
for example, incorporating real state-of-the-art battery control and degradation functions,
using real commercially-available, dynamic tariffs from the UK market, as well as a
whole year of high-granularity demand and renewable generation data. Although, while
the experiments and validation are based on the UK project, the proposed community
energy methods are general in scope, and can apply to any country where such community
energy schemes are undertaken. The concept of energy communities is equally important -
arguably even more so - in developing countries, the proposed energy community models
in this thesis can be more relevant to such developing countries, because energy users in
such communities often have limited or no access to electricity from a central power grid,
and hence rely on the community energy project for their power needs.

Overall, this thesis presented a model of the community investment in energy assets for
both the fixed and dynamic tariffs. The work proposed a data-driven analysis to quantify
the savings of community-owned versus individually-owned energy assets incorporating
the physical assets degradation and network/grid constraints. Then, inspired by coalitional
game theory methods, this thesis provides a novel algorithm to fairly redistribute among
community members the benefits from community owned assets, which is shown to
have desirable redistribution and computational benefits, compared to existing state-of-
the-art methods for sharing output of community energy assets. This work is one of
the first, to our knowledge, to integrate a battery depreciation model and power flow
(network/grid constraints) into community energy optimization modelling. Data-driven
monitoring of energy assets state of health is crucial for economically viable integration of
local renewable generation, and the community energy model provides a very attractive
application. Moreover, for researchers interested in cooperative game theory application in
energy (which is a growing research area), the proposed model is one of the first to use
such concepts in a community energy setting. Specifically, we propose a redistribution
model for benefits in a community based on marginal value, a key concept in cooperative
game theory. Next, the future directions of the research work identified for this thesis is
presented in the following section.
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7.3 Future work

The following directions are identified for future work consideration with regards to the
work presented in this thesis:

• Consideration of hybrid energy assets and further analysis of the proposed
methodologies

In the existing energy community model, the focus is primarily on two main con-
figurations: a solar PV generator combined with battery storage or a wind turbine
along with battery storage. However, with the increasing involvement of prosumers
and communities in sustainable energy solutions, there is an opportunity to explore
and invest in hybrid renewable generators integrated with battery storage. These
hybrid systems combine PV solar panels, wind turbines, and battery storage to create
a more efficient and versatile energy solution. Therefore, in future endeavours, our
aim is to enhance the energy community model by incorporating these hybrid energy
assets. By expanding the scope to include hybrid renewable setups, we envision
a more comprehensive and adaptable energy community model. Furthermore, in
future work, the plan is to enhance the current community model and the proposed
methodologies, specifically:

i. Conduct sensitivity analysis of the location of the jointly-owned community
energy assets in the LV distribution grid. In the current model, it is assumed
that the jointly-owned community energy assets either PV or a battery storage
is assumed to be located at the centre of the network. However, there is still a
need to determine the optimal location of the community assets.

ii. Accurately quantify the error made by using the lesser battery life models,
especially in terms of difference between using calendar or Ah (ampere-hour)
metrics and assuming one cycle per day at the given DoD (Depth of Discharge).

iii. Accurately quantify the scaling of the proposed redistribution method

iv. Identify the effect of correlation between generation and consumption on the
proposed redistribution schemes.

v. Conduct further analysis to asses the overall attractiveness and acceptability of
the proposed redistribution method based on marginal contribution to different
agents within the community, including those with higher decision-making
power due to their wealth. This evaluation will consider various factors, such
as economic considerations, decision-making power, and potential incentives
that may influence stakeholders’ perspectives. By quantifying these aspects,
we aim to provide a comprehensive understanding of the method’s viability
and its alignment with diverse stakeholder interests.

• Consideration of new revenue streams for energy assets

In the current heuristic-battery control algorithm, we have not considered the demand
response or grid services to change the usage of battery depending on the market
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needs. In future work, our study can be extended to consider new revenue flows
though participation in energy and ancillary service markets, such as providing
demand-side flexibility services to the distribution system operator. Local flexibility
markets are identified as a promising low-cost solution to address the ever-increasing
grid issues as an alternative option to expensive grid reinforcement and unnecessary
curtailment of loads and renewable generation. Energy communities can leverage
the controllable assets such as batteries to provide reliable flexibility for the energy
and ancillary services markets.

• Consideration of consumer preferences and needs

Future work will also consider to integrate consumer preferences and needs in the
community optimization model to achieve realistic local-tailored solutions aligned to
end-user needs. Energy is often treated as a homogeneous product; however, research
indicates that end-consumers may experience preferences related to the energy source
or destination, they may prefer several RES technologies over others or may prefer
trading energy with peers from their community. Sustainable behaviour is influenced
by end-user values, such as caring for convenience, individual interest or caring
for others or the environment. These are normally referred as "side constraints" or
"preference constraints" to the efficient market in efficient mechanism design [241].
In future work, it will be more interesting and practically important to compare what
happens if such constraints are integrated with the local P2C or P2P market clearing
mechanisms.

• Consideration of uncertainty in the generation and demand

In this thesis, the community settings are operated based on the assumption of perfect
knowledge of the future consumption and generation. However, in practice the
future consumption and generation are forecasted, and there may be a great degree of
uncertainty associated with these forecasted generation and demand profiles. Another
potential future work is to extend the community energy models by considering the
uncertainty in the generation and demand, particularly focussing on the accurate
forecasting of at local level by taking into account the uncertainty in the renewable
resources and demand side. Considering battery energy management systems, this
translates into reasoning about the definitions of optimal decisions while also looking
at forecast uncertainty to check the robustness of a proposed methods.

• Model extension for multi energy vectors

Another potential future work is to consider extensions of our model that take into
account other energy vectors and assets - such as transport and community-shared
hydrogen fuel cells. In this context, green hydrogen is increasingly being explored
as a promising energy storage solution, for renewable communities with excess
renewable generation.

• Development of other redistribution schemes
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While this thesis focuses on the key topic of marginal cost redistribution mechanism,
there are many other fairness concepts that could be explored in energy applications,
and it would be relevant to compare their outcome to proposed marginal cost re-
distribution method. Specifically, the promising solution concepts such as Shapley
Values [242], least-core or the nucleolus based on coalitional game theory, have
been explored less in energy applications. The application and adaptation of such
fairness concepts in energy could be a fruitful area, for both research and practice,
providing energy communities with the computational tools to make best use of
shared energy assets. Furthermore, another promising avenues of future research is to
encode such redistribution mechanisms into smart contracts executed on blockchain
systems [131, 42].

• Modelling other use cases

Finally, one direction of work we plan to pursue is exploring the use of our commu-
nity energy control and redistribution methods for remote communities, or communi-
ties in developing countries or regions, such as those in sub-Saharan Africa or parts
of Asia. In such settings, energy consumers often do not have access to a central
power grid, or power grid supply is unreliable, hence community energy projects
often provide the only way to access electricity [129, 243, 244]. The methods pro-
posed in this thesis could also be very relevant for these settings, and we plan to
explore their application to remote and developing regions communities in future
work.
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Appendix A

The Appendix provides additional information and sample codes for the simulation analysis
of the research work presented in this thesis.

A.1 Simulation analysis presented in Chapter 3 & 4

Listing A.1: Sample code for simulation analysis in Section 3.4.2: battery degrdation
model

1 %Battery Parameters & Specifications

2 MBCRange = Optimal_Battery_Capacity;% Optimal battery capacity in kWh

3 BatteryLifeTime = 20; %battery life time in years

4 Ec = 0.85;% Battery charging efficiency (Ec)

5 Ed = 0.85;% Battery discharging eficiency (Ed)

6 MaxBcap = MBCRange;% Maximum battery capcity in WHr [Variable

Parameter]

7 MinBcap = MaxBcap*0.2;% Minimum battery capacity at 80% DoD (20%SoC)

8 IBC = MaxBcap; % Initial Battery Capacity (IBC)100% SoC

9 MaxPower = MaxBcap/2;%Battery Power Limit i.e 50% of maximum capacity

10 % battery SoC determined after applying battery control algorithm

11 % Ensuring the Starting SoC of battery is initial battery capacity (

IBC)

12 SoC = [IBC,SoC']';

13 % Computing battery Depth of Discharge (DOD) based on State of Charge

(SoC)

14 % Computing Battery Remaining Useful Life(RUL)

15 % rainflow(SoC);%Rainflow function used to count the cycles of the

battery

16 [c] = rainflow(SoC);

17 TT = array2table(c,'VariableNames',{'Count','Range','Mean','Start','

End'});

18 A = table2array(TT(:,[1,4,5]));% Converting table to array

19 Cyclecount = A(:,1); % Number of cycles counted

20 AStartSoC = SoC(A(:,2));% Actual Starting SoC
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21 AEndSoC = SoC(A(:,3));%Actual Ending SoC

22 MaxSoC = MaxBcap;

23 %Starting DoD of a Cycle

24 StartDoD = round((100.=((AStartSoC./MaxSoC).*100))+0.5);

25 I = StartDoD>100;

26 StartDoD(I) = 100;

27 % End DoD of a Cycle

28 EndDoD = round((100.=((AEndSoC./MaxSoC).*100))+0.5);

29 J = EndDoD>100;

30 EndDoD(J) = 100;

31 load Battery_DoD_Vs_NCycles;

32 % Actual charging & discharging cycle of a battery at specific DoD's

33 ncycles = zeros(length(StartDoD),1);

34 %DF=Depreciation Factor for each Regular & Irregular Cycles.

35 DF = zeros(length(StartDoD),1);

36 for j = 1:1:length(StartDoD)

37 if StartDoD(j)== 1

38 ncycles(j) = Cyclecount(j);

39 DF(j) = ncycles(j)/FinalBNcyles(EndDoD(j));

40 else

41 ncycles(j) = Cyclecount(j);

42 DF(j) = (ncycles(j)* abs(1/FinalBNcyles(StartDoD(j))=1/

FinalBNcyles(EndDoD(j))));

43 end

44 end

45 % Computation of final battery depreciation factor

46 DepreciationFactor = max(sum(DF),1/BatteryLifeTime); % Final Battery

DF

Listing A.2: Sample code for simulation analysis in Section 3.4.1 & 3.5 of Chapter 3, and
Section 4.3 & 4.3.2 of Chapter 4: battery control algorithm and techno-economic analysis

1 close all

2 % Battery Parameters & Specifications

3 CostofBattery = 150;% cost of the battery per kWh

4 BatteryLifeTime = 20; %battery life time in years

5 Ec = 0.85;% Battery charging efficiency (Ec)

6 Ed = 0.85;% Battery discharging eficiency (Ed)

7 % Final Wind Power and Demand at Half Hourly Basis

8 T = 2; %Power and Demand data time. Currently in half hour basis

9 load D1_to_D200; % Demand Input in Wh of 200 households/agents

10 %Price Scheme of Energy Buying from Grid at Agile Octopus Grid Buying

Price
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11 load AgileOctopusBP; %Input of Daily Agile Octopus Buying Price (p/

kWH)

12 BP = AgileOctopusBP/10000; % Agile Octopus Buying Price (p/Wh)

13 %Zero export tariff

14 SP = 0; % Selling Price (SP) No Export Tariff

15 load Kirkwall_3kWhSolarEnergy; % Input of Solar PV energy in Wh

16 load PowerRatio; % Individual Optimal PV power ratio

17 load OptimalBattery; % Individual Optimal Battery

18 variablesInCurrentWorkspace = who('=file','D1_to_D200');

19 numVariables = length(variablesInCurrentWorkspace);

20 D_data1 = [];

21 D_head = {};

22 for d =1:1:length(variablesInCurrentWorkspace)

23 D_name = variablesInCurrentWorkspace{d};

24 D_vals = eval(variablesInCurrentWorkspace{d});%individual demand

25 D_head{d,1} = D_name;

26 P = Kirkwall_3kWhSolarEnergy./PowerRatio(d);%Individual Optimal

PV

27 MBCRange = OptimalBattery(d);

28 MaxBcap = MBCRange;% Maximum battery capcity in WHr

29 MinBcap = MaxBcap*0.2;% Minimum battery capacity at 80% DoD (20%

SoC)

30 IBC = MaxBcap; % Initial Battery Capacity (IBC)of 100%MacBcap

31 MaxPower = MaxBcap/2;%Battery Power Limit i.e 50% of maximum

capacity

32 SoC = zeros(length(P),1);

33 Energysold = zeros(length(P),1);

34 Energybought = zeros(length(P),1);

35 EbatMax = zeros(length(P),1);

36 EBat = zeros(length(P),1);

37 SoC(1) = IBC;

38 for i = 1:1:length(P)

39 if P(i)>= D_vals(i)

40 if i == 1

41 EbatMax(i) = 1/T*min((P(i)=D_vals(i))*T, MaxPower);

42 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC(1));

43 SoC(i) = SoC(1) + EBat(i);

44 Energysold(i,:) = (P(i)=D_vals(i)=EBat(i)/Ec)*SP;

45 else

46 EbatMax(i) = 1/T*min((P(i)=D_vals(i))*T, MaxPower);

47 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC(i=1));

48 SoC(i) = SoC(i=1) + EBat(i);
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49 Energysold(i,:) = (P(i)=D_vals(i)=EBat(i)/Ec)*SP;

50 end

51 else

52 if i==1

53 EbatMax(i) = 1/T*min(abs((P(i)=D_vals(i))*T),

MaxPower);

54 EBat(i) = min(EbatMax(i)/Ed, SoC(1)=MinBcap);

55 SoC(i) = SoC(1) = EBat(i);

56 Energybought(i,:) = (D_vals(i)=P(i)=EBat(i)*Ed)*BP(i)

;

57 else

58 EbatMax(i) = 1/T*min(abs((P(i)=D_vals(i))*T),

MaxPower);

59 EBat(i) = min(EbatMax(i)/Ed, SoC(i=1)=MinBcap);

60 SoC(i) = SoC(i=1) = EBat(i);

61 Energybought(i,:) = (D_vals(i)=P(i)=EBat(i)*Ed)*BP(i)

;

62 end

63 end

64 end

65 %% Computation of Battery Depreciation Factor (DF)

66 SoC = [IBC,SoC']'; % Ensuring the Starting SoC of battery is IBC

67 % Computing battery Depth of Discharge (DOD) based on State of Charge

(SoC)

68 % Computing Battery Remaining Life(BRLife)

69 % rainflow(SoC);%Rainflow function used to count the cycles of the

battery

70 [c] = rainflow(SoC);

71 TT = array2table(c,'VariableNames',{'Count','Range','Mean','Start','

End'});

72 A = table2array(TT(:,[1,4,5]));% Converting table to array

73 Cyclecount = A(:,1); % Number of cycles counted

74 AStartSoC = SoC(A(:,2));% Actual Starting SoC

75 AEndSoC = SoC(A(:,3));%Actual Ending SoC

76 MaxSoC = MaxBcap;

77 %Starting DoD of a Cycle

78 StartDoD = round((100.=((AStartSoC./MaxSoC).*100))+0.5);

79 I = StartDoD>100;

80 StartDoD(I) = 100;

81 % End DoD of a Cycle

82 EndDoD = round((100.=((AEndSoC./MaxSoC).*100))+0.5);

83 J = EndDoD>100;
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84 EndDoD(J) = 100;

85 load Battery_DoD_Vs_NCycles;

86 % Actual charging & discharging cycle of a battery at specific DoD's

87 ncycles = zeros(length(StartDoD),1);

88 %DF=Depreciation Factor for each Regular & Irregular Cycles.

89 DF = zeros(length(StartDoD),1);

90 for j = 1:1:length(StartDoD)

91 if StartDoD(j)== 1

92 ncycles(j) = Cyclecount(j);

93 DF(j) = ncycles(j)/FinalBNcyles(EndDoD(j));

94 else

95 ncycles(j) = Cyclecount(j);

96 DF(j) = (ncycles(j)* abs(1/FinalBNcyles(StartDoD(j))=1/

FinalBNcyles(EndDoD(j))));

97 end

98 end

99 % Final Battery Depreciation Factor

100 DepreciationFactor = max(sum(DF),1/BatteryLifeTime);

101 %% Economic Analysis

102 %Computation of the Bill

103 % YEARLY total sum in pounds: cost of energy imported from grid

104 TotalCost_EnergyBought = sum(Energybought);

105 % YEARLY total sum in pounds: revenue from exporting energy into grid

106 TotalRevenue_EnergySold = sum(Energysold);

107 %Cost of 1kWh Battery assumed to be 150pounds per kWh

108 CostofNewBattery = CostofBattery*(MaxBcap/1000);

109 % Yearly Bill without battery cost and DF

110 BillWihtoutBCostandDF = TotalCost_EnergyBought =

TotalRevenue_EnergySold;

111 %Yearly cost of battery

112 Yearlybatterycost = CostofNewBattery*DepreciationFactor;

113 %Yearly Bill considering the battery cost and DF

114 BillWithBCostandDF = BillWihtoutBCostandDF+Yearlybatterycost;

115 %Incuding the cost of Solar PV

116 CostofPV = 1100;% Total Overnight Cost of Solar PV = 2500 pounds per

kW

117 YearlyPVCost = (CostofPV*(max(P)/1000))*2/20;

118 %Final annaul bill icluding the cost of battery, cost of PV and

battery DF

119 YearlyBill = BillWithBCostandDF + YearlyPVCost;

120 %Data Exporting to Excel

121 YearlyDemand = sum(D_vals);
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122 data1 = [YearlyDemand YearlyBill];

123 D_data1 = [D_data1; data1];

124 col_header={'Yearly Demand','Yearly Bill'};

125 xlswrite('Output1',D_data1,'Sheet1','B2');

126 xlswrite('Output1', D_head,'Sheet1','A2');

127 xlswrite('Output1', col_header,'Sheet1','B1');

128
129 end

A.2 Simulation analysis presented in Chapter 5

Listing A.3: Sample code for simulation analysis in Section 5.3: battery control algorithm
with voltage control mechanism

1 %% Net Power from battery control algorithm

2 %Community Battery Capacity

3 Ec = 0.85;% Battery charging efficiency (Ec)

4 Ed = 0.85;% Battery discharging eficiency (Ed)

5 T = 2; %Power and Demand data time. Currently in half hour basis

6 Nbus = 14; %Number of buses

7 NslackBus = 1; %number of the slack bus

8 NVcontrolledBus = [1]; %Number of the busses that are voltage

controlled

9 V = 1; %reference Bus Voltage

10 Sbase = 10000;%358716/3;

11 Vbase = 410/sqrt(3);

12 Zbase = Vbase^2/Sbase;

13 %Data Input: Demands, Solar PV

14 load Datetime2020; %Date and time reference

15 load Demands200; %Demands of 200 agents

16 % For setting the frequecy of simulation (weekly,monthly,yearly)

17 Yearlydate = Datetime2020;

18 Yearlydemands = Demands200; %200 Agents individual demands, Yearly

19 %Final Admittance Matrix

20 Y = Ybus;

21 %% Defining load and generator buses

22 % Setting the order of the Buses

23 BN = [650;%Bus1

24 671;%Bus2

25 634;%Bus3

26 645;%Bus4

27 646;%Bus5
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28 692;%Bus6

29 675;%Bus7

30 611;%Bus8

31 652;%Bus9

32 670;%Bus10

33 633;%Bus11

34 632;%Bus12

35 680;%Bus13

36 684];%Bus14

37 Load_Buses = [634;%Bus3

38 645;%Bus4

39 646;%Bus5

40 692;%Bus6

41 675;%Bus7

42 611;%Bus8

43 652];%Bus9

44 Generation_Buses = [675;

45 692;652]; %Bus7,%Bus6,%Bus9

46 %Existing bus load

47 factor = 0; % factor used to scale the loads that are due to

households not bargaining. the goal is to have a grid close enough

to break.

48 P671 = [385;220]*factor; %Load kW ; kVAR %Bus2

49 P634 = [ 160 ; 110 ]*factor; %Load kW ; kVAR %Bus3

50 P645 = [ 170 ; 125 ]*factor; %Load kW ; kVAR %Bus4

51 P646 = [ 230 ; 132 ]*factor; %Load kW ; kVAR %Bus5

52 P692 = [ 170 ; 151 ]*factor; %Load kW ; kVAR %Bus6

53 P675 = [ 485 ; 190 ]*factor; %Load kW ; kVAR %Bus7

54 P611 = [ 170 ; 80 ]*factor; %Load kW ; kVAR %Bus8

55 P652 = [ 128 ; 86 ]*factor;%[ 128 ; 86 ]*factor; %Load kW ; kVAR %

Bus9

56 %% Definition of the initialization Voltage Vector

57 X = [zeros(size(Yearlydemands,1),Nbus) V*ones(size(Yearlydemands,1),

Nbus)];

58 %% Computation of Voltages using Newton Raphson Algorithm

59 load D1toD200_Total;% Community Aggregated Demand input

60 % Scaled community demand in Wh at half hourly basis

61 D = factor1*D1toD200Total;

62 load Kirkwall_3kWhSolarEnergy; % Input of Individual Solar PV Energy

in Wh

63 % Optimal Community Solar PV (309kW)[0.0099=optimal power ratio]

64 P = Kirkwall_3kWhSolarEnergy./0.0099;
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65 MBCRange = 642000;% Optimal Community Battery of 642kWh

66 MaxBcap = MBCRange;% Maximum battery capcity in WHr [Variable

Parameter]

67 MinBcap = MaxBcap*0.2;% Minimum battery capacity at 80% DoD (20%SoC)

68 IBC = MaxBcap; % Initial Battery Capacity (IBC)100% SoC

69 %Battery Power Limit i.e 50% of maximum battery capacity

70 MaxPower = MaxBcap/2;

71 SoC = zeros(length(P),1);

72 Pbus = zeros(length(P),1);

73 EbatMax = zeros(length(P),1);

74 EBat = zeros(length(P),1);

75 SoC(1) = IBC;

76 pf = 0.95; % Definition of a constant power factor for the loads

77
78 for i = 1:1:17520

79 if P(i)>= D(i)

80 if i == 1

81 EbatMax(i) = 1/T*min((P(i)=D(i))*T, MaxPower);

82 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC(1));

83 SoC(i) = SoC(1) + EBat(i);

84 Pbus(i,:) = P(i)=EBat(i)/Ec;

85 else

86 EbatMax(i) = 1/T*min((P(i)=D(i))*T, MaxPower);

87 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC(i=1));

88 SoC(i) = SoC(i=1) + EBat(i);

89 Pbus(i,:) = P(i)=EBat(i)/Ec;

90 end

91 Pgenbus = Pbus(i); % Take this as Pgen for the identified bus

92 %% Power Flow with Community Battery

93 % 13 Bus Parameters

94 % Definition of loads

95 %Active power consumption definition

96 Ploads = zeros(1,Nbus);

97 for idx_PF = 1:size(Yearlydemands,2)

98 switch mod(idx_PF,7)

99 case 0

100 Ploads(3)=P634(1)+ Yearlydemands(i,

idx_PF);

101 case 1

102 Ploads(4)=P645(1)+ Yearlydemands(i,

idx_PF);

103 case 2
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104 Ploads(5)=P646(1)+ Yearlydemands(i,

idx_PF);

105 case 3

106 Ploads(6)=P692(1)+ Yearlydemands(i,

idx_PF);

107 case 4

108 Ploads(7)=P675(1)+ Yearlydemands(i,

idx_PF);

109 case 5

110 Ploads(8)=P611(1)+ Yearlydemands(i,

idx_PF);

111 case 6

112 Ploads(9)=P652(1)+ Yearlydemands(i,

idx_PF);

113 end

114 end

115
116 Ploads(3)= factor1*Ploads(3);

117 Ploads(4)= factor1*Ploads(4);

118 Ploads(5)= factor1*Ploads(5);

119 Ploads(6)= factor1*Ploads(6);

120 Ploads(7)= factor1*Ploads(7);

121 Ploads(8)= factor1*Ploads(8);

122 Ploads(9)= factor1*Ploads(9);

123 %converting to per unit

124 Ploads = Ploads/Sbase; %pu

125 %Reactive power consumption definition

126 Qloads = zeros(1,Nbus);

127 Qloads(3) = tan(acos(pf))*Ploads(3);

128 Qloads(4) = tan(acos(pf))*Ploads(4);

129 Qloads(5) = tan(acos(pf))*Ploads(5);

130 Qloads(6) = tan(acos(pf))*Ploads(6);

131 Qloads(7) = tan(acos(pf))*Ploads(7);

132 Qloads(8) = tan(acos(pf))*Ploads(8);

133 Qloads(9) = tan(acos(pf))*Ploads(9);

134 %converting to per unit

135 Qloads = Qloads/Sbase;%pu

136 %% Definition of Generators

137 Pgen = zeros(1,Nbus);

138 Pgen(2)= Pgenbus;%Net Power Generation after

Community Battery Control Algorithm at

Identified Bus
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139 %Generator Reactive Power Defination

140 Qgen = zeros(1,Nbus);

141 %converting to per unit

142 Pgen = Pgen/Sbase;%pu

143 Qgen =Qgen/Sbase;%pu

144 %% Computation of the Voltages

145 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

146 X0 = zeros(size(X1));

147 number_iteration = 0;

148 while max(abs(X1=X0))>0.001 && number_iteration

<200

149 X0 = X1;

150 X1 = iteration(Nbus, Ploads, Qloads, Pgen,

Qgen, NslackBus, NVcontrolledBus, Y, X0, V

);

151 number_iteration = number_iteration +1;

152 end

153 number_iteration;

154 %% Compute the final Power from each elements

155 X0 = X1;

156 yp = zeros(Nbus,1);

157 yq = zeros(Nbus,1);

158 for idx_PF = 1:Nbus

159 for k = 1:Nbus

160 yp(idx_PF) = yp(idx_PF) = X0(Nbus+idx_PF)

*X0(Nbus+k)*abs(Y(idx_PF,k))*cos(angle

(Y(idx_PF,k))+X0(k)=X0(idx_PF));

161 yq(idx_PF) = yq(idx_PF) + X0(Nbus+idx_PF)

*X0(Nbus+k)*abs(Y(idx_PF,k))*sin(angle

(Y(idx_PF,k))+X0(k)=X0(idx_PF));

162 %yp(i) = yp(i) + X0(Nbus+i)*X0(Nbus+k)*(

real(Y(i,k))*cos(X0(i)=X0(k))+imag(Y(i

,k))*sin(X0(i)=X0(k)));

163 %yq(i) = yq(i) + X0(Nbus+i)*X0(Nbus+k)*(

real(Y(i,k))*sin(X0(i)=X0(k))=imag(Y(i

,k))*cos(X0(i)=X0(k)));

164 end

165 end

166
167 %F = [yp ; yq]*Sbase;%actual P and Q

168 F = [yp ; yq]*Sbase;%actual P and Q
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169 %Power650632(j,:) = abs(1/z650632 *(complex(X1

(15)*cos(X1(1)),X1(15)*sin(X1(1))) =complex(X1

(24)*cos(X1(12)),X1(24)*sin(X1(12)))))/1000;

170 X(i,:) = X1;%bus voltages in pu

171
172 %% Regulation of Battery control so the voltage

is maintained at the contractual limits, here

voltage should be <1.1V

173 while max(X(i,15:28)) >1.1 &&i==1%if there is

too much export, although the battery is

charging

174
175 if EbatMax(i)>= MaxPower =0.1 || SoC(i) >=

MaxBcap =0.1 % if the battery is already

charged

176 Pbus(i,:) = Pbus(i,:)=Step_Control; %we

limit the PV export

177 else

178 EbatMax(i) = min(EbatMax(i)+Step_Control,

MaxPower);

179 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC

(1));

180 SoC(i) = SoC(1) + EBat(i);

181 Pbus(i,:) = P(i)=EBat(i)/Ec;

182 end

183 Pgenbus = Pbus(i); % Take this as Pgen for

the identified bus

184
185 %% Definition of Generators

186 Pgen = zeros(1,Nbus);

187 Pgen(2)= Pgenbus;%Identified Bus

188 Qgen = zeros(1,Nbus);

189 %converting to per unit

190 Pgen = Pgen/Sbase;%pu

191 Qgen =Qgen/Sbase;%pu

192 %% Computation of the Voltages

193 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

194 X0 = zeros(size(X1));

195 number_iteration = 0;

196 while max(abs(X1=X0))>0.001 &&

number_iteration<200

197 X0 = X1;
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198 X1 = iteration(Nbus, Ploads,

Qloads, Pgen, Qgen, NslackBus,

NVcontrolledBus, Y, X0, V);

199 number_iteration =

number_iteration +1;

200 end

201 number_iteration;

202 X(i,:) = X1;%bus voltages in pu

203 end

204 %% Regulation of Battery control so the voltage

is maintained at the contractual limits, here

voltage should be <1.1V

205 while max(X(i,15:28)) >1.1 &&i>1%if there is too

much export, although the battery is charging

206
207 if EbatMax(i)>= MaxPower =0.1 || SoC(i) >=

MaxBcap =0.1 % if the battery is already

charged

208 Pbus(i,:) = Pbus(i,:)=Step_Control; %we

limit the PV export

209 else

210 EbatMax(i) = min(EbatMax(i)+Step_Control,

MaxPower);

211 EBat(i) = min(EbatMax(i)*Ec, MaxBcap=SoC(

i=1));

212 SoC(i) = SoC(i=1) + EBat(i);

213 Pbus(i,:) = P(i)=EBat(i)/Ec;

214 end

215 Pgenbus = Pbus(i); % Take this as Pgen for

the identified bus

216
217 %% Definition of Generators

218 Pgen = zeros(1,Nbus);

219 Pgen(2)= Pgenbus;%Identified Bus

220 Qgen = zeros(1,Nbus);

221 %converting to per unit

222 Pgen = Pgen/Sbase;%pu

223 Qgen =Qgen/Sbase;%pu

224 %% Computation of the Voltages

225 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

226 X0 = zeros(size(X1));

227 number_iteration = 0;
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228 while max(abs(X1=X0))>0.001 &&

number_iteration<200

229 X0 = X1;

230 X1 = iteration(Nbus, Ploads,

Qloads, Pgen, Qgen, NslackBus,

NVcontrolledBus, Y, X0, V);

231 number_iteration =

number_iteration +1;

232 end

233 number_iteration;

234 X(i,:) = X1;%bus voltages in pu

235 end

236
237
238 else

239 if i==1

240 EbatMax(i) = 1/T*min(abs((P(i)=D(i))*T), MaxPower);

241 EBat(i) = min(EbatMax(i)/Ed, SoC(1)=MinBcap);

242 SoC(i) = SoC(1) = EBat(i);

243 Pbus(i,:) = P(i)+EBat(i)*Ed;

244 else

245 EbatMax(i) = 1/T*min(abs((P(i)=D(i))*T), MaxPower);

246 EBat(i) = min(EbatMax(i)/Ed, SoC(i=1)=MinBcap);

247 SoC(i) = SoC(i=1) = EBat(i);

248 Pbus(i,:) = P(i)+EBat(i)*Ed;

249 end

250 Pgenbus = Pbus(i); % Take this as Pgen for the identified bus

251 %% Power Flow with Community Battery

252 % 13 Bus Parameters

253 % Definition of loads

254 %Active power consumption definition

255 Ploads = zeros(1,Nbus);

256 for idx_PF = 1:size(Yearlydemands,2)

257 switch mod(idx_PF,7)

258 case 0

259 Ploads(3)=P634(1)+ Yearlydemands(i,

idx_PF);

260 case 1

261 Ploads(4)=P645(1)+ Yearlydemands(i,

idx_PF);

262 case 2
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263 Ploads(5)=P646(1)+ Yearlydemands(i,

idx_PF);

264 case 3

265 Ploads(6)=P692(1)+ Yearlydemands(i,

idx_PF);

266 case 4

267 Ploads(7)=P675(1)+ Yearlydemands(i,

idx_PF);

268 case 5

269 Ploads(8)=P611(1)+ Yearlydemands(i,

idx_PF);

270 case 6

271 Ploads(9)=P652(1)+ Yearlydemands(i,

idx_PF);

272 end

273 end

274
275 Ploads(3)= factor1*Ploads(3);%Scaled Individual

Agents' Demand

276 Ploads(4)= factor1*Ploads(4);

277 Ploads(5)= factor1*Ploads(5);

278 Ploads(6)= factor1*Ploads(6);

279 Ploads(7)= factor1*Ploads(7);

280 Ploads(8)= factor1*Ploads(8);

281 Ploads(9)= factor1*Ploads(9);

282 %converting to per unit

283 Ploads = Ploads/Sbase; %pu

284 %Reactive power consumption definition

285 Qloads = zeros(1,Nbus);

286 Qloads(3) = tan(acos(pf))*Ploads(3);

287 Qloads(4) = tan(acos(pf))*Ploads(4);

288 Qloads(5) = tan(acos(pf))*Ploads(5);

289 Qloads(6) = tan(acos(pf))*Ploads(6);

290 Qloads(7) = tan(acos(pf))*Ploads(7);

291 Qloads(8) = tan(acos(pf))*Ploads(8);

292 Qloads(9) = tan(acos(pf))*Ploads(9);

293 %converting to per unit

294 Qloads = Qloads/Sbase;%pu

295 %% Definition of Generators

296 Pgen = zeros(1,Nbus);

297 Pgen(2)= Pgenbus;%Identified Bus

298 %Generator reactive power
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299 Qgen = zeros(1,Nbus);

300 %converting to per unit

301 Pgen = Pgen/Sbase;%pu

302 Qgen =Qgen/Sbase;%pu

303 %% Computation of the Voltages

304 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

305 X0 = zeros(size(X1));

306 number_iteration = 0;

307 while max(abs(X1=X0))>0.001 && number_iteration

<200

308 X0 = X1;

309 X1 = iteration(Nbus, Ploads, Qloads, Pgen,

Qgen, NslackBus, NVcontrolledBus, Y, X0, V

);

310 number_iteration = number_iteration +1;

311 end

312 number_iteration;

313 %% Compute the final Power from each elements

314 X0 = X1;

315 yp = zeros(Nbus,1);

316 yq = zeros(Nbus,1);

317 for idx_PF = 1:Nbus

318 for k = 1:Nbus

319 yp(idx_PF) = yp(idx_PF) = X0(Nbus+idx_PF)

*X0(Nbus+k)*abs(Y(idx_PF,k))*cos(angle

(Y(idx_PF,k))+X0(k)=X0(idx_PF));

320 yq(idx_PF) = yq(idx_PF) + X0(Nbus+idx_PF)

*X0(Nbus+k)*abs(Y(idx_PF,k))*sin(angle

(Y(idx_PF,k))+X0(k)=X0(idx_PF));

321 %yp(i) = yp(i) + X0(Nbus+i)*X0(Nbus+k)*(

real(Y(i,k))*cos(X0(i)=X0(k))+imag(Y(i

,k))*sin(X0(i)=X0(k)));

322 %yq(i) = yq(i) + X0(Nbus+i)*X0(Nbus+k)*(

real(Y(i,k))*sin(X0(i)=X0(k))=imag(Y(i

,k))*cos(X0(i)=X0(k)));

323 end

324 end

325
326 %F = [yp ; yq]*Sbase;%actual P and Q

327 F = [yp ; yq]*Sbase;%actual P and Q
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328 %Power650632(j,:) = abs(1/z650632 *(complex(X1

(15)*cos(X1(1)),X1(15)*sin(X1(1))) =complex(X1

(24)*cos(X1(12)),X1(24)*sin(X1(12)))))/1000;

329 X(i,:) = X1;%bus voltages in pu

330
331 %% Regulation of Battery control so the voltage

is maintained at the contractual limits, here

voltage should be <1.1V

332 while max(X(i,15:28)) >1.1 &&i==1 %if there is

too much export, although the battery is

charging

333 if EbatMax(i)<= 0+0.1 || SoC(i) <= MinBcap

+0.1 % if the battery is already

discharged

334 Pbus(i,:) = max(0,Pbus(i,:)=Step_Control

); %we limit the PV export

335 else

336 EbatMax(i) = max(0,EbatMax(i)=

Step_Control);%reduce the discharge

from battery

337 EBat(i) = min(EbatMax(i)/Ed, SoC(1)=

MinBcap);

338 SoC(i) = SoC(1) = EBat(i);

339 %Energybought(i,:) = (P(i)=D(i)+ EBat(i)*

Ed);

340 %Edeficit(i,:) = (P(i)=EBat(i)/Ec);%PV

production=Ebat

341 Pbus(i,:) = P(i)+EBat(i)*Ed;

342 end

343 Pgenbus = Pbus(i); % Take this as Pgen for

the identified bus

344
345 %% Definition of Generators

346 Pgen = zeros(1,Nbus);

347 Pgen(2)= Pgenbus;%Identified Bus

348 Qgen = zeros(1,Nbus);

349 %converting to per unit

350 Pgen = Pgen/Sbase;%pu

351 Qgen =Qgen/Sbase;%pu

352 %% Computation of the Voltages

353 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

354 X0 = zeros(size(X1));
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355 number_iteration = 0;

356 while max(abs(X1=X0))>0.001 &&

number_iteration<200

357 X0 = X1;

358 X1 = iteration(Nbus, Ploads,

Qloads, Pgen, Qgen, NslackBus,

NVcontrolledBus, Y, X0, V);

359 number_iteration =

number_iteration +1;

360 end

361 number_iteration;

362 X(i,:) = X1;%bus voltages in pu

363 end

364
365 %% Regulation of Battery control so the voltage

is maintained at the contractual limits, here

voltage should be <1.1V

366 while max(X(i,15:28)) >1.1 &&i>1 %if there is too

much export, although the battery is charging

367 if EbatMax(i)<= 0+0.1 || SoC(i) <= MinBcap

+0.1 % if the battery is already

discharged

368 Pbus(i,:) = max(0,Pbus(i,:)=Step_Control

); %we limit the PV export

369 else

370 EbatMax(i) = max(0,EbatMax(i)=

Step_Control);%reduce the dicharge

from battery

371 EBat(i) = min(EbatMax(i)/Ed, SoC(i=1)=

MinBcap);

372 SoC(i) = SoC(i=1) = EBat(i);

373 %Energybought(i,:) = (P(i)=D(i)+ EBat(i)*

Ed);

374 %Edeficit(i,:) = (P(i)=EBat(i)/Ec);%PV

production=Ebat

375 Pbus(i,:) = P(i)+EBat(i)*Ed;

376 end

377 Pgenbus = Pbus(i); % Take this as Pgen for

the identified bus

378
379 %% Definition of Generators

380 Pgen = zeros(1,Nbus);
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381 Pgen(2)= Pgenbus;%Identified Bus

382 Qgen = zeros(1,Nbus);

383 %converting to per unit

384 Pgen = Pgen/Sbase;%pu

385 Qgen =Qgen/Sbase;%pu

386 %% Computation of the Voltages

387 X1 = [zeros(1,Nbus) V*ones(1,Nbus)] ;

388 X0 = zeros(size(X1));

389 number_iteration = 0;

390 while max(abs(X1=X0))>0.001 &&

number_iteration<200

391 X0 = X1;

392 X1 = iteration(Nbus, Ploads,

Qloads, Pgen, Qgen, NslackBus,

NVcontrolledBus, Y, X0, V);

393 number_iteration =

number_iteration +1;

394 end

395 number_iteration;

396 X(i,:) = X1;%bus voltages in pu

397 end

398
399 end

400
401 if mod(i,50) ==0

402 i

403 end

404 end

405 %% Bus voltages

406 figureV = figure('Name','Voltage Profiles','Color',[1 1 1]);

407 % Create axes

408 axes1 = axes('Parent',figureV);

409 hold(axes1,'on');

410 % Create multiple lines using matrix input to plot

411 plot1 = plot(Yearlydate,X(:,15),Yearlydate,X(:,16)*1.001,Yearlydate,X

(:,17),Yearlydate,X(:,18),Yearlydate,X(:,19),Yearlydate,X(:,20),

Yearlydate,X(:,21),Yearlydate,X(:,22),Yearlydate,X(:,23),

Yearlydate,X(:,24),Yearlydate,X(:,25),Yearlydate,X(:,26),

Yearlydate,X(:,27),Yearlydate,X(:,28),'Parent',axes1,'LineWidth'

,2);

412 set(plot1(1),'DisplayName','V_{Bus1}');

413 set(plot1(2),'DisplayName','V_{Bus2}');
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414 set(plot1(3),'DisplayName','V_{Bus3}');

415 set(plot1(4),'DisplayName','V_{Bus4}');

416 set(plot1(5),'DisplayName','V_{Bus5}');

417 set(plot1(6),'DisplayName','V_{Bus6}');

418 set(plot1(7),'DisplayName','V_{Bus7}');

419 set(plot1(8),'DisplayName','V_{Bus8}');

420 set(plot1(9),'DisplayName','V_{Bus9}');

421 set(plot1(10),'DisplayName','V_{Bus10}');

422 set(plot1(11),'DisplayName','V_{Bus11}');

423 set(plot1(12),'DisplayName','V_{Bus12}');

424 set(plot1(13),'DisplayName','V_{Bus13}');

425 set(plot1(14),'DisplayName','V_{Bus14}');

426 % Create ylabel

427 ylabel('Bus voltage (p.u)','FontWeight','bold');

428 % Create xlabel

429 xlabel('Time','FontWeight','bold');

430 box(axes1,'on');

431 % Set the remaining axes properties

432 set(axes1,'FontSize',12,'FontWeight','bold','GridAlpha',0.1,'

GridLineStyle',':','LineWidth',1.5,'XGrid','on','YGrid','on');

433 % Create legend

434 legend(axes1,'show');

A.3 Simulation analysis presented in Chapter 6

Listing A.4: Sample code for simulation analysis in Section 6.3 & 6.4: battery control
algorithm with local peer-to-community (P2C) market mechanism, and techno-economic
analysis

1 %% Dtermining Excess and Defecit energy after each individual agents'

optimization

2 %% Total agents and time slots

3 Total_Agents = 200;%Total agents (households) of the community

4 Total_HalfHour = 17520;%Total half hour in one year

5 %% Net Energy after the battery control Algorithm

6 Edeficit = EnergyDificit;

7 Eexcess = EnergyExcess;

8 data1 = [Edeficit];

9 D_data1 = [D_data1, data1];

10 data2 = [Eexcess];

11 D_data2 = [D_data2, data2];

12 %Total Yearly cost: Cost of PV, Cost of Battery=including the DF
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13 data3 = [YearlyCost_Assets];

14 D_data3 = [D_data3, data3];

15 %% Individual Agents Parameters

16 AAA_TotalDemand(d) = sum(D_vals)/1000; %Agents Total Yearly Demand (

kWh)

17 AAA_TotalPower(d) = sum(P)/1000; %Agents Total Yearly PV Generation (

kWh)

18 AAA_Battery(d) = MBCRange/1000; %Agents Total Installed Battery (kWh

)

19 AAA_PV_Power_Installed(d) = (max(P)/1000)*2; % Agents PV installed

Capacity (kW)

20 %% Individual agent's Excess Energy to SELL or Defecit Energy to BUY

after the battery control algorithm

21 DeficitENERGYtoBUY = D_data1;%Excess Energy to sell (half=hourly)

22 ExcessENERGYtoSELL = D_data2;%Dificit Eenrgy to buy (half=hourly)

23 % Total number of prosumers with Deficit Energy

24 Total_Number_of_Prosumers_withDeficitEnergy = sum(DeficitENERGYtoBUY

>0, 2);

25 % Total Yearly Cost: Cost of PV, Cost of Battery=including the DF

26 Yearly_Cost_Assets = D_data3;% Yearly assets cost(PV cost & Battery

cost including the depreciation cost)

27 %% P2C Pricing Mechanism Design

28 % Pricing Scheme:Only Import Tarriff for buying energy from Grid

considered (Export tarriff considered zero)

29 BuyingPrice_From_Grid = 16/100000; % 16Pence/kWh or O.16Pounds/kWh or

0.00016Pounds/Wh (fixed tariff)

30 %% Price Setting=1: Low Selling Price Ranges (10% to 30% of Grid

Import price)

31 rng('default')

32 a = 0.1; % Minimum prosumer Low Selling Price as percentage of Buying

Price From Grid

33 b = 0.3; % Maximum prosumer Low Selling Price as percentage of Buying

Price From Grid

34 r = a+(b=a).*rand(1, 67);%randomly generated Low selling price of

prosumers as percentage of Buying Price From Grid

35 Low_Selling_Price_Ranges = r.*BuyingPrice_From_Grid;%Prosumer Low

Selling Price of the Excess Energy generated as percentage of

BuyingPrice_From_Grid

36 %% Price Setting=2: Medium Selling Price Ranges (31% to 70% of Grid

Import price)

37 a = 0.31; % Minimum prosumer Medium Selling Price as percentage of

Buying Price From Grid
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38 b = 0.7; % Maximum prosumer Medium Selling Price as percentage of

Buying Price From Grid

39 r = a+(b=a).*rand(1, 67);%randomly generated Medium selling price of

prosumers as percentage of Buying Price From Grid

40 Medium_Selling_Price_Ranges = r.*BuyingPrice_From_Grid;%Prosumer

Medium Selling Price of the Excess Energy generated as percentage

of BuyingPrice_From_Grid

41 %% Price Setting=3: High Selling Price Ranges (71% to 100% of Grid

Import price)

42 a = 0.71; % Minimum prosumer High Selling Price as percentage of

Buying Price From Grid

43 b = 1; % Maximum prosumer High Selling Price as percentage of Buying

Price From Grid

44 r = a+(b=a).*rand(1, 66);%randomly generated High selling price of

prosumers as percentage of Buying Price From Grid

45 High_Selling_Price_Ranges = r.*BuyingPrice_From_Grid;%Prosumer High

Selling Price of the Excess Energy generated as percentage of

BuyingPrice_From_Grid

46 %% Final Prosumer Selling Prices as percentage of Grid Buying Price

47 Prosumer_Selling_Price = [Low_Selling_Price_Ranges

Medium_Selling_Price_Ranges High_Selling_Price_Ranges ];

48 %% Sorting the Cheapest Seller

49 [h, sortedCheapestSellerIndices] = sort(Prosumer_Selling_Price,'

ascend');%Seller sorted from cheapest price to expensive price

50 %% Peer=to=Community (P2C) Trading Scheme

51 EnergyExported_Through_P2Pmarket = zeros(Total_HalfHour,Total_Agents)

;

52 EnergyExported_to_Grid = zeros(Total_HalfHour,Total_Agents);

53 ReminingEnergyImported_From_Grid = zeros(Total_HalfHour,1);

54 Net_DificitENERGYtoBUY = zeros(Total_HalfHour,1);

55 EnergyImported_From_P2Pmarket = zeros(Total_HalfHour,Total_Agents);

56 EnergyImported_From_Grid = zeros(Total_HalfHour,Total_Agents);

57 TotalP2P = zeros(Total_HalfHour,1);

58
59 for i = 1:Total_HalfHour

60 %Total Deficit and Excess energy at every half hour of 200 agents

61 Total_DificitENERGYtoBUY = sum(DeficitENERGYtoBUY(i,:)); %Total

Deficit Energy at every half hour of 200 agents

62 Total_ExcessENERGYtoSELL = sum(ExcessENERGYtoSELL(i,:)); %Total

Excess Energy at every half hour for 200 agents

63 Net_DificitENERGYtoBUY(i,:) = sum(DeficitENERGYtoBUY(i,:));

64 TOTAL_DificitENERGYtoBUY = Total_DificitENERGYtoBUY;
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65 % To determine the total Energy avaialble for P2P market(export&

import)at every half hour of 200 agents

66 if(Total_DificitENERGYtoBUY > Total_ExcessENERGYtoSELL)

67 TotalEnergy_AvaialbleFor_P2P = Total_ExcessENERGYtoSELL;

68 elseif(Total_DificitENERGYtoBUY <= Total_ExcessENERGYtoSELL)

69 TotalEnergy_AvaialbleFor_P2P = Total_DificitENERGYtoBUY;

70 end

71 TotalP2P(i) = TotalEnergy_AvaialbleFor_P2P;

72
73 %% Exported Energy: Sold through P2C trading to Buyers(prosumers

with deficit energy) or sold to Grid

74 %Sellers for P2C trading are selected based on the cheapest

selling price offered

75 for j = sortedCheapestSellerIndices %sorted cheapest seller

76 EnergySold_Through_P2Pmarket = min(ExcessENERGYtoSELL(i,j),

Total_DificitENERGYtoBUY);

77 Total_DificitENERGYtoBUY = Total_DificitENERGYtoBUY =

EnergySold_Through_P2Pmarket;

78 EnergySold_To_Grid = ExcessENERGYtoSELL(i,j)=

EnergySold_Through_P2Pmarket;

79 % Individul agents Exported Energy

80 EnergyExported_Through_P2Pmarket(i,j) =

EnergySold_Through_P2Pmarket; %Excess Energy Sold Through

P2P Market to Buyers (prosumer with deficit energy)

81 EnergyExported_to_Grid(i,j) = EnergySold_To_Grid; %Excess

Energy Exported to Grid

82 ReminingEnergyImported_From_Grid(i,:) =

Total_DificitENERGYtoBUY;%Deficit Energy not met from P2P

market is exported from Grid (Grid=Seller)

83 end

84 %% Imported Energy: Bought from P2C trading Sellers(prosumers

with excess energy) or energy bought from Grid

85 %Buyers for P2C market: Energy available from P2P market is

distributed equally among the buyers (prosumers with defecit

energy)

86 %% Deficit Energy to Buy Sorted Smallest Amount to Largest Amount

87 [SortedDeficitENERGYtoBuy, SortedDeficitENERGYtoBuyIndices] =

sort(DeficitENERGYtoBUY(i,:),'ascend');%Deficit Energy to Buy

Sorted

88 %

*********************************************************************************************************************************
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89 remaining_buyers = size(SortedDeficitENERGYtoBuyIndices,2);

90 for j = SortedDeficitENERGYtoBuyIndices

91 EnergyImported_From_P2Pmarket(i,j) = min(DeficitENERGYtoBUY(i

,j), TotalEnergy_AvaialbleFor_P2P/remaining_buyers);

92 TotalEnergy_AvaialbleFor_P2P = TotalEnergy_AvaialbleFor_P2P =

EnergyImported_From_P2Pmarket(i,j);

93 remaining_buyers = remaining_buyers = 1;

94 EnergyImported_From_Grid(i,j) = DeficitENERGYtoBUY(i,j) =

EnergyImported_From_P2Pmarket(i,j) ;

95 end

96 if TotalEnergy_AvaialbleFor_P2P>0.1

97 temp=1;

98 end

99 end

100
101 %% Determining the P2C market CLEARING PRICE: Weighted average of

selcted P2C seller bids and Grid bid

102 P2P_Seller_Cost = EnergyExported_Through_P2Pmarket.*

Prosumer_Selling_Price;%Energy and selected Seller bid

103 Grid_Seller_Cost = ReminingEnergyImported_From_Grid.*

BuyingPrice_From_Grid;% Energy and Grid bid

104 %

*********************************************************************************************************************************************************************************

105 P2P_Clearing_PricePerUnit = zeros(Total_HalfHour,1);

106 for i = 1:Total_HalfHour

107 TOTAL_DificitEnergytoBUY = sum(DeficitENERGYtoBUY(i,:)); %Total

Deficit Energy at every half hour of 200 agents

108 Total_P2Pseller_GridSeller_Cost = sum(P2P_Seller_Cost(i,:))+

Grid_Seller_Cost(i);

109 if TOTAL_DificitEnergytoBUY > 0

110 Clearing_PricePerUnit = Total_P2Pseller_GridSeller_Cost ./

TOTAL_DificitEnergytoBUY;% P2P per unit clearing price:

Seller and Buyer price per unit of energy

111 else

112 Clearing_PricePerUnit = 0;

113 end

114 P2P_Clearing_PricePerUnit(i,:) = Clearing_PricePerUnit;

115 end

116 %% Revenue from selling the excess energy through P2P market
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117 Revenue_From_SellingEnergy_To_P2Pmarket =

EnergyExported_Through_P2Pmarket.*P2P_Clearing_PricePerUnit;%

Revenue earned from selling excess energy in P2P market

118 Yearly_Revenue_From_SellingEnergy_To_P2Pmarket = sum(

Revenue_From_SellingEnergy_To_P2Pmarket);%Yearly revenue earned

from selling excess energy in P2P market

119 %% Cost of buying energy from P2P market and Grid

120 Cost_of_BuyingEnergy_From_P2Pmarket = EnergyImported_From_P2Pmarket.*

P2P_Clearing_PricePerUnit;%Cost incurred for buying deficit energy

from P2P market

121 Cost_of_BuyingEnergy_From_Grid = EnergyImported_From_Grid.*

BuyingPrice_From_Grid;%Cost incurred for buying deficit energy

from Grid

122 Yearly_Cost_of_BuyingEnergy_From_P2Pmarket = sum(

Cost_of_BuyingEnergy_From_P2Pmarket);%Yearly cost incurred for

buying deficit energy from P2P market

123 Yearly_Cost_of_BuyingEnergy_From_Grid = sum(

Cost_of_BuyingEnergy_From_Grid);% Yearly cost incurred for buying

deficit energy from Grid

124 %% Yearly Bills of 200 Agents including the cost of solar PV &

battery assets

125 Yearly_Bill = Yearly_Cost_Assets +

Yearly_Cost_of_BuyingEnergy_From_Grid +

Yearly_Cost_of_BuyingEnergy_From_P2Pmarket =

Yearly_Revenue_From_SellingEnergy_To_P2Pmarket;

126 Final_Yearly_Bill_P2P = Yearly_Bill';

127 %% Yearly Bills Without P2P

128 Cost_of_Buying_from_Grid_WithoutP2P = DeficitENERGYtoBUY.*

BuyingPrice_From_Grid;%Cost incurred for buying deficit energy

from Grid

129 Yearly_Cost_of_Buying_from_Grid_WithoutP2P = sum(

Cost_of_Buying_from_Grid_WithoutP2P);% Yearly cost incurred for

buying deficit energy from Grid

130 % Yearly Bills of 200 Agents including the cost of solar PV & battery

assets

131 Yearly_Bill_WithoutP2C = Yearly_Cost_Assets +

Yearly_Cost_of_Buying_from_Grid_WithoutP2P ;

132 Final_Yearly_Bill_WithoutP2C = Yearly_Bill_WithoutP2C';

133 %% Parmeters for checking there is no import while exporting and vice

=versa



A.3 Simulation analysis presented in Chapter 6 223

134 %% Parameters: Difference of Total Deficit & Excess, Difference of

Total Import & Export from Grid, Difference of Total Import &

Export from P2P

135 A_Difference_Total_DeficitExcess = sum(sum(DeficitENERGYtoBUY,2)) =

sum(sum(ExcessENERGYtoSELL,2));

136 A_Difference_Total_GridImportExport = sum(sum(

EnergyImported_From_Grid,2)) = sum(sum(EnergyExported_to_Grid,2));

137 A_Difference_Total_P2PImportExport = sum(sum(

EnergyImported_From_P2Pmarket,2)) = sum(sum(

EnergyExported_Through_P2Pmarket,2));

138
139 %% Comparison of Yearly Bills With and Without P2C

140 figure1= figure('Name','Timeseries','Color',[1 1 1]);

141 axes1 = axes('Parent',figure1);

142 hold(axes1,'on');

143 x = 1:200;

144 y1 = Final_Yearly_Bill_P2P;

145 plot(x,y1,'g','linewidth',2)

146 y2 = Final_Yearly_Bill_WithoutP2C;

147 plot(x,y2,'r','linewidth',2)

148 hold(axes1,'off');

149 xlabel('Time Period')

150 ylabel('Yearly Bills')

151 legend('Bills With P2P', 'Bills Without P2P');

152 box(axes1,'on');

153 box(axes1,'on');
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A.4 IEEE 13 bus test feeder data

The following details of the IEEE 13 Bus Test Feeder is given below (as provided
in [237]):

• Impedances

• Overhead line configuration data

• Underground line configuration data

• Line segment data

• Transformer data

• Capacitor data

• Regulator data

• Spot load data

• Distributed load data



 

 The Institute of Electrical and Electronics Engineers,  Inc. 

Overhead Line Configuration Data: 

 
Config. Phasing Phase  Neutral  Spacing 

  ACSR ACSR ID 

601 B A C N 556,500 26/7 4/0 6/1 500 

602 C A B N 4/0 6/1 4/0 6/1 500 

603 C B N 1/0 1/0 505 

604 A C N 1/0 1/0 505 

605 C N 1/0 1/0 510 

 

Underground Line Configuration Data: 

 
Config. Phasing Cable Neutral  Space 

ID 

606 A B C N 250,000 AA, CN None 515 

607     A N 1/0 AA, TS 1/0 Cu 520 

 

Line Segment Data: 

 
Node A Node B Length(ft.) Config. 

632 645 500 603 

632 633 500 602 

633 634 0 XFM-1 

645 646 300 603 

650 632 2000 601 

684 652 800 607 

632 671 2000 601 

671 684 300 604 

671 680 1000 601 

671 692 0 Switch 

684 611 300 605 

692 675 500 606 

 

Transformer Data: 

 
 kVA kV-high kV-low R - 

% 
X - % 

Substation: 5,000 115 - D 4.16 Gr. Y 1 8 

XFM -1 500 4.16 – Gr.W 0.48 – Gr.W 1.1 2 

 

Capacitor Data: 

 
Node Ph-A Ph-B Ph-C 

 kVAr kVAr kVAr 

675 200 200 200 

611   100 

Total 200 200 300 

 



 

 The Institute of Electrical and Electronics Engineers,  Inc. 

 

Regulator Data: 

 
Regulator ID: 1   

Line Segment: 650 - 632   

Location: 50   

Phases: A - B -C   

Connection: 3-Ph,LG   

Monitoring Phase: A-B-C   

Bandwidth: 2.0 volts   

PT Ratio: 20   

Primary CT Rating: 700   

Compensator Settings: Ph-A Ph-B Ph-C 

R - Setting: 3 3 3 

X - Setting: 9 9 9 

Volltage Level: 122 122 122 

 

Spot Load Data: 

 
Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

 Model kW kVAr kW kVAr kW kVAr 

634 Y-PQ 160 110 120 90 120 90 

645 Y-PQ 0 0 170 125 0 0 

646 D-Z 0 0 230 132 0 0 

652 Y-Z 128 86 0 0 0 0 

671 D-PQ 385 220 385 220 385 220 

675 Y-PQ 485 190 68 60 290 212 

692 D-I 0 0 0 0 170 151 

611 Y-I 0 0 0 0 170 80 

 TOTAL 1158 606 973 627 1135 753 

 

Distributed Load Data: 

 
Node A Node B Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

  Model kW kVAr kW kVAr kW kVAr 

632 671 Y-PQ 17 10 66 38 117 68 

 

 



 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 13 NODE TEST FEEDER 

Impedances 

 
Configuration 601: 

 
           Z (R +jX) in ohms per mile 

 0.3465  1.0179   0.1560  0.5017   0.1580  0.4236 

                  0.3375  1.0478   0.1535  0.3849 

                                   0.3414  1.0348 

          B in micro Siemens per mile 

            6.2998   -1.9958   -1.2595 

                      5.9597   -0.7417 

                                5.6386 

 

Configuration 602: 
 

          Z (R +jX) in ohms per mile 

0.7526  1.1814   0.1580  0.4236   0.1560  0.5017 

                 0.7475  1.1983   0.1535  0.3849 

                                  0.7436  1.2112 

         B in micro Siemens per mile 

           5.6990   -1.0817   -1.6905 

                     5.1795   -0.6588 

                               5.4246 

 

Configuration 603: 
 

           Z (R +jX) in ohms per mile 

 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                  1.3294  1.3471   0.2066  0.4591 

                                   1.3238  1.3569 

          B in micro Siemens per mile 

            0.0000    0.0000    0.0000 

                      4.7097   -0.8999 

                                4.6658 

 

Configuration 604: 
 

           Z (R +jX) in ohms per mile 

 1.3238  1.3569   0.0000  0.0000   0.2066  0.4591 

                  0.0000  0.0000   0.0000  0.0000 

                                   1.3294  1.3471 

          B in micro Siemens per mile 

            4.6658    0.0000   -0.8999 

                      0.0000    0.0000 

                                4.7097 



 

 The Institute of Electrical and Electronics Engineers,  Inc. 

Configuration 605: 
 

           Z (R +jX) in ohms per mile 

 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                  0.0000  0.0000   0.0000  0.0000 

                                   1.3292  1.3475 

          B in micro Siemens per mile 

            0.0000    0.0000    0.0000 

                      0.0000    0.0000 

                                4.5193 

 

Configuration 606: 
 

          Z (R +jX) in ohms per mile 

0.7982  0.4463   0.3192  0.0328   0.2849 -0.0143 

                 0.7891  0.4041   0.3192  0.0328 

                                  0.7982  0.4463 

         B in micro Siemens per mile 

          96.8897    0.0000    0.0000 

                    96.8897    0.0000 

                              96.8897 

 

Configuration 607: 
 

           Z (R +jX) in ohms per mile 

 1.3425  0.5124   0.0000  0.0000   0.0000  0.0000 

                  0.0000  0.0000   0.0000  0.0000 

                                   0.0000  0.0000 

          B in micro Siemens per mile 

           88.9912    0.0000    0.0000 

                      0.0000    0.0000 

                                0.0000 
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