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ABSTRACT

IFNγ alters the immunopeptidome presented on HLA class I (HLA-I),
and its activity on cancer cells is known to be important for effective im-
munotherapy responses. We performed proteomic analyses of untreated
and IFNγ-treated colorectal cancer patient-derived organoids and com-
bined this with transcriptomic and HLA-I immunopeptidomics data to
dissect mechanisms that lead to remodeling of the immunopeptidome
through IFNγ. IFNγ-induced changes in the abundance of source proteins,
switching from the constitutive to the immunoproteasome, and differential
upregulation of different HLA alleles explained some, but not all, observed
peptide abundance changes. By selecting for peptides which increased or
decreased the most in abundance, but originated from proteins with lim-
ited abundance changes, we discovered that the amino acid composition
of presented peptides also influences whether a peptide is upregulated or
downregulated on HLA-I through IFNγ. The presence of proline within
the peptide core was most strongly associated with peptide downregula-

tion. This was validated in an independent dataset. Proline substitution
in relevant core positions did not influence the predicted HLA-I binding
affinity or stability, indicating that proline effects on peptide processing
may be most relevant. Understanding the multiple factors that influence
the abundance of peptides presented on HLA-I in the absence or pres-
ence of IFNγ is important to identify the best targets for antigen-specific
cancer immunotherapies such as vaccines or T-cell receptor engineered
therapeutics.

Significance: IFNγ remodels the HLA-I–presented immunopeptidome.
We showed that peptide-specific factors influence whether a peptide is
upregulated or downregulated and identified a preferential loss or downreg-
ulation of thosewith proline near the peptide center. This will help selecting
immunotherapy target antigens which are consistently presented by cancer
cells.

Introduction
The presentation of peptides on HLA class I (HLA-I) is central for the adap-
tive immune system to detect malignant cells. Presentation of immunogenic
peptides such as nonmutated cancer-associated antigens or neoantigens onma-
lignant cells facilitates their recognition and destruction by cytotoxic CD8 T
cells. IFNγ is a cytokine that is released from activated CD8 T cells and other
immune cell types. IFNγ binds to IFNγ receptors, which activate the JAK/STAT
pathway, leading to expression of interferon response factor (IRF) transcrip-
tion factors. IRFs stimulate the expression of a plethora of IFNγ-regulated
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genes leading to major changes in the cellular transcriptome and proteome
(1). Proteins involved in the processing and subsequent presentation of pep-
tide antigens on HLA-I molecules show particularly strong upregulation (2,
3), including the immunoproteasome catalytic components PSMB8, PSMB9,
and PSMB10 which facilitate an increase in overall proteasomal activity, and
also a specific increase of its chymotryptic activity (4–7). Peptidases which can
trim, but also destroy, peptides before loading onto HLAs, such as LAP3 (8),
THOP1 (9), ERAP1 (10), andERAP2 (11), and the peptide transporters TAP1 and
TAP2, which shuttle peptides into the endoplasmic reticulumwhereHLA load-
ing occurs, are also upregulated. Furthermore, IFNγ increases HLA expression
(6, 12). The combined result of increased proteasomal peptide generation, pep-
tide processing and transport, and HLA upregulation, is a strong increase
of peptide presentation by HLA-I on the cell surface. Further to this, IFNγ

exposure inhibits the cell cycle and triggers apoptosis (13).

In contrast to these antitumor effects, IFNγ also promotes the expression of
immunosuppressive molecules. These include PD-L1, the ligand of the PD1 im-
mune checkpoint, and IDO1, whose expression in cancer cells and other cells in
the tumor microenvironment suppresses T-cell activity (14–16). Immunother-
apy with PD1/PD-L1 inhibitors has been highly successful in several cancer
types (17–19). This supports a dominant role of the PD1/PD-L1 immune check-
point in restraining tumor-reactive T cells. Consistent with a central role of
IFNγ for PD-L1 expression, tumors that respond to PD1/PD-L1 inhibitors often
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show high IFNγ activity (20). Moreover, several recent studies have shown that
defective IFNγ signaling in cancer cells leads to resistance to immunotherapy
with checkpoint inhibitors (21–23).

Although intact IFNγ signaling in cancer cells is critical for checkpoint in-
hibitor efficacy, it is still unclear which specific IFNγ-induced molecular
changes are responsible for this dependency. Understanding how the im-
munopeptidome is remodeled by IFNγ in greater detail may provide insights
into this. Furthermore, novel immunotherapies such as cancer vaccines (24, 25)
and engineeredT-cell receptor (TCR)-based therapies such asTebentafusp (26),
target T cells toward specific peptide antigens presented onHLA of cancer cells.
Understanding the characteristics of antigens that are consistently presented in
the presence or absence of IFNγ, and which ones are lost or sparsely presented
in one of these conditions, hence appears highly relevant for the selection of
optimal target antigens.

Previously, we studied the immunopeptidome of five colorectal cancer patient-
derived organoids (PDO) by mass spectrometry (MS). PDO cells were grown
to large numbers followed by immunoaffinity capture of HLA-I–peptide com-
plexes, analysis by high performance liquid chromatography and tandem MS
(LC/MS-MS). This detected between 2,124 and 16,030 HLA-I peptides per
PDO (27). Treatment of PDOs with IFNγ strongly increased HLA-I expression
(mean 219.5% increase) but only had a modest effect on the number of unique
peptides presented (mean 7.1% increase). However, a much larger number of
peptides changed in abundance, and between 1,439 and 3,942 peptides were
gained, and 561 to 2,446 peptides were lost on individual PDOs through IFNγ.
Furthermore, we found that peptides generated by chymotryptic-like cleavage
activity were more likely to increase in abundance, which we attributed to the
switch of the proteasome to immunoproteasome triggered by IFNγ signaling,
yet this effect was small.

Other MS immunopeptidome analysis of breast (28), lung (29), ovarian cancer
(30), and melanoma cell lines (31) that were treated with IFNγ showed simi-
lar remodeling with a large proportion of peptides presented in only untreated
or IFNγ-treated cells. This could be explained in part by effects of IFNγ on
gene or protein expression, differences in HLA allotype upregulation, and the
switch to the immunoproteasome. Yet, a large unexplained variance remained,
highlighting a limited understanding of the molecular mechanisms and pep-
tide features that regulate peptide abundance on HLA-I in IFNγ conditions.
The aim of this work was to dissect the mechanisms that lead to upreg-
ulation/downregulation or appearance/loss of specific peptides under IFNγ

exposure. We combined global cellular proteomic analysis with our published
transcriptomics and immunopeptidomics datasets (27) to first investigate the
impact of transcript and protein abundance on immunopeptidome remod-
eling, and to subsequently analyze peptide regulatory mechanisms that are
independent of source protein abundance. The insights from this study should
ultimately lead to more accurate predictions of the immunopeptidome in cells
exposed to IFNγ, information which could be valuable for cancer vaccine or
TCR therapy designs.

Materials and Methods
Ethics
Human samples were obtained from clinical trial protocols which have been
approved by the UK National Ethics Committee (Prospect C trial approval
number: 12/LO/0914, Prospect R trial approval number: 14/LO/1812, FOrMAT

trial approval number 13/LO/1274). All individuals provided written informed
consent for sample donation and use for research.

PDO Culture and Treatment
Established PDOs were expanded to large numbers (3.85 × 107–1 × 108

cells/pellet) in DMEM/F12 media with 20% FBS, 1X Glutamax, 100 units/mL
penicillin/streptomycin, and 2% matrigel (Corning, catalog no. 356231). For
treatment, cells were changed into fresh media supplemented with DMSO or
600 ng/mL IFNγ (R&D Systems, catalog no. 285-IF/CF) and incubated for
48 hours. Cells were harvested with TrypLE express (Thermo Fisher Scien-
tific, catalog no. 12605010). PDOs were cultured identically for transcriptomic,
proteomic, and flow cytometric analysis.

RNA Sequencing
We reanalyzed our previously described RNA sequencing data (27, 32).

Tandem-mass-tag Proteomics
PDOs were cultured as described, washed twice with ice-cold PBS and snap-
frozen before further processing. Cell pellets were lysed with SDC lysis
buffer [1% sodium deoxycholate, 100 mmol/L triethylammonium bicarbonate
(TEAB), 10% glycerol, 50 mmol/L NaCl] with Halt protease and phosphatase
inhibitor cocktail (Thermo Fisher Scientific). Cell pellet samples were com-
pletely homogenized with probe sonication (EpiShear) for 15 seconds at 40%
power with 1 second on and 1 second off, heated at 90°C for 5 minutes and
then repeated the probe sonication. Proteins were quantified using Quick Start
Bradford Protein Assay (Bio-Rad).

A total of 100 μg protein was taken from each sample and lysis buffer was
added so each sample was at the same volume. Proteins were reduced with
10 mmol/L tris(2-carboxyethyl)phosphine hydrochloride solution (Sigma) at
room temperature for 10 minutes and then alkylated with 5 mmol/L iodoac-
etamide (Sigma) for 30minutes at room temperature. Protein was then purified
by 20% trichloroacetic acid precipitation. The pellet was resuspended in 100
mmol/L TEAB buffer, and digested by 3.3 μg trypsin (Pierce, MS Grade) at a
ratio of 1:30 (trypsin:protein by weight) at 37°C for 18 hours.

A total of 40 μg of protein digest were labeled with 0.5 mg TMTpro 16plex
reagents (Thermo Fisher Scientific) according to the manufacturer’s instruc-
tion. After 1 hour incubation at room temperature and 15 minutes quenching
by 4 μL of 5% hydroxylamine (Thermo Fisher Scientific), the labeled samples
were combined. Sodium deoxycholate was precipitated by adding formic acid
(FA; Honeywell Fluka). After centrifugation, the supernatant was collected and
dried in Speedvac.

The sample were resuspended in 0.1% NH4OH/100% H2O, and fractionated
on an XBridge BEH C18 column (2.1 mm i.d. × 150 mm, Waters) with an ini-
tial 5 minutes loading then linear gradient from 5% ACN/0.1% NH4OH (pH
10) to 35% CH3CN /0.1% NH4OH in 30 minutes, then to 80% CH3CN /0.1%
NH4OH in 5 minutes and stayed for another 5 minutes. The flow rate was at
200 μL/minute. Fractions were collected at every 42 seconds from retention
time at 7.8 to 50 minutes and then concatenated to 28 fractions and dried in
SpeedVac. Samples were then resuspended in 0.5% FA for LC/MS-MS analysis.
The protein abundance values in each sample were normalized by the loading
input of each sample.
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LC/MS-MS Analysis
The LC/MS-MS analysis was on the Orbitrap Fusion Lumosmass spectrometer
coupled with U3000 RSLCnano UHPLC system. All instrument and columns
used below were from Thermo Fisher Scientific.

Fifty percent of peptides were injected. The peptides were first loaded to a
PepMap C18 nanotrap (100 μm i.d. x 20 mm, 100 Å, 5 μm) at 10 μL/minute
with 0.1% FA/H2O, and then separated on a PepMap C18 column (75 μm i.d.
x 500 mm, 100 Å, 2 μm) at 300 nL/minute with a linear gradient of 8%–32%
ACN/0.1% FA in 90 minutes/total cycle time at 120 minutes for each fraction.
The data acquisition used standard data-dependant acquisition mode with a
cycle time at 3 seconds. The full MS scans (m/z 375–1,500) were acquired in Or-
bitrap with a resolution at 120,000 at m/z 200, and the automatic gain control
(AGC) was set at 400,000 with maximum injection time at 50 ms. The most
abundant multiply charged ions (2+ to 5+) with intensity threshold at 5,000
were isolated by quadrupole at the isolation window at 0.7 Da and then sub-
jected toMS-MS fragmentation by collision-induced dissociation in ion trap at
35% normalized collision energy (NCE). The AGC was set at 10,000 and max-
imum injection time at 35 ms. The tandem-mass-tag (TMT) report ions were
detected by further fragmentation of the fivemost abundant fragment ions pro-
duced in MS2: they were isolated by synchronous precursor selection (SPS)
method with the isolation width at 0.7 Da, and fragmented by higher energy
collisionally activated dissociation at 55% NCE, and detected in the Orbitrap
in a scan range 100–500 m/z. The resolution was set at 50,000 at m/z 200, the
AGC at 50,000 with maximum injection time at 86 ms. The dynamic exclusion
was set 40 seconds with ± 10 ppm exclusion window.

Mass Spectral Data Processing
All raw files were processed in Proteome Discoverer 2.4 (Thermo Fisher Scien-
tific) using the Sequest HT search engine to searched against reviewed Uniprot
database of Homo Sapiens (Version February 2020) and contaminate database
(from Thermo Fisher Scientific). Search parameters were: trypsin with two
maximum missed cleavage sites, mass tolerances at 10 ppm for the precursor,
and 0.5 Da for the fragment ions; dynamic modifications of Carbamidomethyl
(C), Deamidated (N, Q), TMTpro (K, peptide N-terminus) and Oxidation (M),
and Acetyl (protein N-terminus). Search result was validated by Percolator
with q-value set at 0.01 for the decoy database search, and only high confident
PSMs (Peptide Spectrum Matches) were considered. Protein FDR was set at
0.01. Only master proteins were reported. For reporter ion intensity detection,
the reporter ion quantifier node parameters were integration window tolerance
20 ppm, integration most confident centroid for peak detection. Only unique
peptides were considered for quantification. TMTpro Quan value correction
factor, provided by themanufacturer’s certificate of analysis, was applied. Coiso-
lation threshold was set at 100, reporter ions average S/N threshold at 3 and SPS
mass matches threshold 55%. Report ions intensities were normalized by total
peptide amount to correct the variation by for different protein loading in each
channel, and then scaled on all average.

MS Immunopeptidomics
MS immunopeptidomics data had been acquired as described previously (27,
30). The individual peptide intensity values in the IFNγ samples were divided
by the fold change (FC) in total peptide intensity between untreated and IFNγ-
treated conditions for each PDO. This normalized for the change in HLA-I
expression in the IFNγ-treated condition, which led to broadly increased pep-
tide intensities. This enabled comparison of relative peptide intensities between

untreated and IFNγ-treated conditions. For the analysis of the amino acid
composition of peptides that are upregulated or downregulated we further nor-
malized peptide intensities within each HLA allotype; intensity of each of the
IFNγ peptides was divided by the FC in total peptide intensity for that allo-
type between untreated and IFNγ-treated conditions. The validation dataset
was obtained from (28) and was normalized in the same way.

Prediction of MS-detected Peptide-HLA-I Affinity
with NetMHCpan
AllMS-detectedHLA-I peptides were entered intoNetMHCpan4.1b, with stan-
dard settings [strong binders defined as binding affinity (BA) rank ≤0.5% and
weak binders as 0.5%–2% BA rank] (33). Each peptide was then assigned to the
HLA allotype with the lowest rank, and this was used to subset peptides in to
HLA-I–allocated groups.

Prediction of MS-detected Peptide–HLA-I Complex
Stability with NetMHCstabpan
All MS-detected HLA-I peptides were entered into NetMHCstabpan1.0 with
standard settings (strong binders defined as rank ≤0.5% and weak binders as
0.5%–2% rank) to obtain the predicted peptide-HLA half-life.

Relative Peptide Start Position
Relative peptide start position within protein was calculated for each peptide by
dividing the peptide start position by the full protein length. The longest pro-
tein length for each protein was selected from the MS database search Fasta file
to ensure every peptide was encompassed. Relative start position was assigned
from zero indicating the first translated amino acid.

Absolute Peptide Start Position
The peptide absolute start position in the protein was derived from the
MaxQuant output.

HLA Typing
HLA typing results from the previous publication were used (27).

Surface HLA Quantification by Flow Cytometry
HLA surface expression was assessed using pan-HLA-A/B/C antibody [Clone:
W6/32, RRID: AB_314871 (BioLegend, catalog no. 311402)], anti-HLA-A03
[Clone: GAP.A3, RRID: AB_2572503 (Thermo Fisher Scientific, catalog no
11-5754-42)], and anti-HLA-B27 [Clone: HLA-ABC-m, RRID: AB_322098
(Bio-Rad, catalog no. MCA116F)]. Samples were run on a Sony SH800 cell
sorter.

Statistical Analysis
Statistical calculations and plots were performed in R (www.r-project.org) and
onGraphPad Prism v9 (GraphPad Prism, RRID:SCR_002798). Z-scores for the
amino acid enrichment analysis were calculated by subtracting each value by
themean of all the difference values, then dividing by the SDof all the difference
values.

Data Availability
RNA sequencing data were published in the Supplementary Materials and
Methods to ref. 32. Processed immunopeptide, RNA and proteome data for
each of the three PDOs are provided as Supplementary Data.
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FIGURE 1 Transcriptomic and proteomic changes with IFNγ treatment. A, Correlation of the FC in normalized mRNA read numbers against the FC in
normalized protein intensity. The Spearman rank test was used for statistical analysis. B, mRNA expression and protein intensity of selected genes in
untreated and IFNγ conditions.

The MS immunopeptidomics data were deposited to the ProteomeXchange
Consortium via the PRIDE (34) partner repository with the dataset identi-
fier PXD014017, and the global proteomics dataset with the dataset identifier
PXD031634.

Ethics
Human samples were obtained from clinical trial protocols which have been
approved by the UK National Ethics Committee (Prospect C trial approval
number: 12/LO/0914, Prospect R trial approval number: 14/LO/1812, FOrMAT
trial approval number 13/LO/1274). All individuals provided written informed
consent for sample donation and use for research.

Results
The aim of this study was to elucidate the molecular mechanisms through
which IFNγ alters HLA-I peptide presentation by comparing the immunopep-
tidome of untreated and 48-hour IFNγ-treated colorectal cancer PDOs

(CRC-01, CRC-04, CRC-05). This was achieved by combining previously gen-
erated transcriptomics and immunopeptidomics data (27) with new global
proteomics data, obtained by TMT-MS. A total of 7,408 proteins were detected
by TMT-MS across the three PDOs. IFNγ-induced FC of transcript and pro-
tein abundance (Fig. 1A) showed a significant positive correlation (Spearman
r = 0.34–0.69, P < 2.2 × 10−16 for all three PDOs). IFNγ increased the ex-
pression of a large number of transcripts/proteins whereas downregulation was
only apparent in a smaller number of transcripts/proteins and was of limited
magnitude.

We next assessed whether transcripts/proteins that were previously described
as IFNγ-regulated, and have roles in antigen processing and presentation or im-
mune evasion, undergo the expected changes. IFNγ treatment increased RNA
expression ofmost proteasome components, including constitutive proteasome
catalytic subunits (PSMB5–7), and immunoproteasome catalytic components
(PSMB8–10; Fig. 1B). In contrast, proteome data showed a strong decrease of
the constitutive catalytic subunits. This disparity between RNA and protein
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abundance can be explained by the fact that immunoproteasome assembly is
four times faster than that of the constitutive proteasome (35), so the excess
unbound constitutive catalytic subunits will be degraded (4). This switch from
constitutive to immunoproteasome alters the cleavage specificity toward an in-
creased chymotryptic activity, as we observed in our previous study (27). The
regulatory caps of the proteasome also change with IFNγ treatment; in the ab-
sence of IFNγ, the 26S proteasome forms by addition of the 19S cap to each end
of the 20S proteasome core. The 19S cap is responsible for binding polyubiqui-
tinated proteins and actively transporting them in to the 20S proteasome core.
IFNγ increases the expression of the 11S cap subunits which facilitate ubiquitin-
independent proteasomal degradation of proteins and enhance proteasomal
throughput (36, 37). PSME4 is another proteasome cap subunit, recently shown
to impede the production of HLA-I compatible peptides (38). The decrease
in PSME4 protein abundance through IFNγ may further increase peptide
production.

Among cytosolic peptidases, LAP3 (with a cleavage specificity toward hy-
drophobic N-terminal amino acids, primarily leucine) increased in protein
abundance (Fig. 1B), and most other cytosolic peptidases showed a small
decrease. Both endoplasmic reticulum N-terminal aminopeptidases ERAP1
and ERAP2, which help to shape the immunopeptidome by final trimming
on HLA-I (10, 11), increased. TAP transporters and peptide loading complex
components increased in RNA expression and protein abundance. Further
to this, NLCR5, the master transcription factor for HLA-I expression, and
consequently HLA-A, -B, and -C increased strongly.

We also assessed whether genes and proteins that are known to inhibit the ac-
tivity of immune cells were upregulated by IFNγ. Most immune evasion genes
increased in expression, with IDO1 and CD274/PD-L1 showing the strongest
increase at the protein level. Thus, IFNγ triggered expected changes in known
IFNγ-regulated genes across all three organoid lines.

We next assessed to what extent a change in abundance of source proteins in-
fluenced the presentation of their derived peptides on HLA-I. Normalization
of the immunopeptidome data was performed similar to the normalization
approach used for RNA and protein expression data: peptide intensity values
were normalized so that the total intensity in untreated and IFNγ-treated con-
ditions was identical within each PDO (schematic of normalization: Fig. 2A).
This allowed us to investigate peptide abundance changes beyond those driven
by the absolute increase in HLA-I expression with IFNγ. We subsequently
plotted the FC in protein abundance between untreated and IFNγ-treated con-
ditions against normalized FC of all HLA-I presented peptides (Fig. 2B). This
analysis revealed two distinct components in each PDO: one group of upreg-
ulated or downregulated peptides which showed concordant changes in the
source protein abundance through IFNγ, and a second group of upregulated
or downregulated peptides derived from proteins with no or limited change
in abundance (log2 −1 to 1 FC). This shows that an increase in source protein
abundance, which increases availability for proteasomal breakdown, is one im-
portant driver of peptidome remodeling, but also that the surface presentation
of an even larger number of peptides is controlled by additional mechanisms.

Our next aim was to understand how this second group of peptides is regulated
in these PDOs. We first hypothesized that IFNγ upregulates different HLA al-
leles by different levels, and that this may affect the diversity or abundance of
their corresponding peptide repertoires. Plotting the number of unique pep-
tides predicted to bind each HLA allele by NetMHCpan4.1 (33), showed only a
small change in the number of unique peptides presented on each HLA allele

after IFNγ treatment (Fig. 2C). Next, we plotted the total peptide intensity per
HLA allele as a surrogate measure of the total abundance of peptides presented
on each HLA. When treated with IFNγ, the relative intensity of peptides pre-
sented on HLA-B increased, whereas those on three of five HLA-A decreased
(Fig. 2D). Therefore, while absolute numbers of HLA-A, -B, and -C proteins
and presented peptides increased based on the proteomics and non-normalized
ligand data, our results showed that under IFNγ exposure the proportion of
the entire peptidome expressed on HLA-A decreased, and that on HLA-B
increased.

To validate these findings, we performed flow cytometry staining for totalHLA-
I and for twoHLA allotypes (HLA-A03 andHLA-B27), for which specificmAbs
were available. Pan-HLA-I antibody staining on CRC-01 showed a 2.91-fold up-
regulation of total HLA, whereas staining for HLA-B27 showed an 8.21-fold
increase (Fig. 2E), 2.82-fold more than the total HLA. Further to this, CRC-
04 showed a 2.85-fold upregulation of total HLA and 2.29-fold upregulation of
HLA-A03, which is 0.8-fold that of the total HLA upregulation (Fig. 2E). This
validated the results from the peptide analysis and is consistent with both his-
torical transcriptional studies (39, 40), and more recent peptidomics studies
(30, 41, 42), which showed a stronger upregulation of HLA-B compared with
HLA-A molecules with IFNγ.

We next assessed whether binding affinities of peptides to their cognate HLA
allotype may influence their upregulation or downregulation. We focused on
9-mer peptides that originated from source proteins with modest abundance
changes (defined again as log2 −1 to 1 FC), yet changed strongly in intensity.
We defined a strong change in intensity as the top and bottom 10th percentile of
the peptidomics FC data [most increasing peptides (MIP) andmost decreasing
peptides (MDP)] in each of the three PDOs; MIPs highlighted with a red box,
and MDPs with a blue box (Fig. 2B). Plotting the NetMHCpan4.1-predicted
affinities of MIPs and MDPs for their HLA (Fig. 2F) revealed a similar data
distribution between the two groups, and no significant difference betweenme-
dians (P = 0.9708, Mann–Whitney test). Thus, peptide BA did not noticeably
impact whether a peptide was upregulated or downregulated by IFNγ.

Our next hypothesis was that other peptide-specific factors determine up-
regulation or downregulation, independently of protein and HLA abundance
changes. To assess this, we first focused on large proteins that each contributed
multiple MS-detected peptides in individual PDOs. A single protein can un-
dergo a specific change in abundance and turnover with IFNγ treatment and
this should affect all peptides that originate from that protein similarly. We
therefore reasoned that the detection of upregulation and downregulation of
peptides from the same protein with IFNγ treatment would indicate that
peptide-specific characteristics influence these abundance changes. One lim-
itation of this approach is that it does not control for differences in protein
isoforms, which may be relevant for some peptides. Analysis of DYNC1H1,
the protein that contributed the largest number of peptides across each of our
PDOs, (Fig. 2G), showed that some peptides originating from the same pro-
tein increased, whereas others decreased with IFNγ treatment. This appeared
independent of the cognate HLA allotype, and is hence not the consequence
of differential HLA-A and -B upregulation. Analysis of nine additional large
proteins, showed similar results (Supplementary Fig. S1A–S1I). Thus, peptide-
specific factors play a major role in determining whether a peptide is up or
downregulated through IFNγ.

Some publications identified an overrepresentation of peptides derived from
the N-terminus of a protein due to premature termination of translation or
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FIGURE 2 Influence of protein abundance and HLA expression changes on immunopeptidome remodeling. A, Schematic demonstrating the
principle of the peptidomics normalization process with sampled data from CRC-05 which only has three HLA-I alleles: the total peptide intensities of
untreated and IFNγ-treated sample pairs were normalized to be equal. This allowed comparison of how IFNγ treatment changes the abundance of
individual peptides within the entire HLA-I–presented peptide population. Black line: mean peptide intensity for each HLA allotype, dotted red line:
mean peptide intensity across all peptides per condition. B, Correlation of protein FC between untreated and (Continued on the following page.)
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(Continued) IFNγ conditions, against normalized immunopeptidomics FC. Regression lines for all peptides are displayed as a solid black line, regression
lines for peptides from proteins with FC <0.5 or >2 as a dotted line. The Spearman rank test was used for significance testing. MIPs (top 10th
percentile peptide FC) and MDPs (bottom 10th percentile peptide FC) derived from low FC proteins (0.5–2× FC) are highlighted with red and blue
boxes, respectively. C, Percentage of all peptides per PDO that were attributed to each HLA by NetMHCpan4.1 in untreated versus IFNγ-treated
conditions. D, Percentage of the total peptide intensity per PDO represented on each HLA (attributed by NetMHCpan4.1) in untreated versus
IFNγ-treated conditions. E, Expression of total surface HLA-I and single HLA-I allotypes in organoid lines CRC-01 (HLA-B27) and CRC-04 (HLA-A03),
measured by flow cytometry. F, log2 NetMHCpan4.1-predicted BA ranks for MIPs versus MDPs. The median is marked with a dotted line. G, log2 change
in peptide intensity between untreated and IFNγ-treated conditions for peptides derived from the protein DYNC1H1, plotted against the relative
position of the peptide in the protein. Peptides are color coded by their NetMHCpan4.1-predicted source HLA, with the NetMHCpan4.1-predicted BA
rank annotated above. The FC of the DYNC1H1 protein in each PDO is noted at the bottom.

nonsense-mediated decay, but whether this effect increases or decreases with
IFNγ treatment is unknown (43, 44). In the analysis of 10 long proteins, cluster-
ing of upregulated peptides close to theN-terminuswas observed forDYNC1H1
in CRC-05, but no systematic increase or decrease in the abundance of pep-
tides located closer to the N-terminus was apparent with other PDOs/proteins
(Fig. 2G; Supplementary Fig. S1A–S1I).

To assess amuch larger number of datapoints, we plotted the frequency ofMIPs
andMDPs against their absolute location in the source protein (Supplementary
Fig. S1J). This showed only modest differences, suggesting that location within
the protein had little effect on peptide production between untreated and IFNγ

conditions, which agrees with another immunopeptidomics study (45).

We next investigated whether the amino acid composition of MIPs or MDPs
influenced the IFNγ-induced changes in peptide abundance. To reveal peptide
characteristics which are not simply a consequence of the differential upregula-
tion of distinct HLA allotypes, peptides were first separated into those binding
each specific HLA allotype based on NetMHCpan4.1 prediction. The peptide
intensities for each allotype were then normalized so that the total intensity
in untreated and IFNγ-treated conditions was identical for each allotype. Next,
MIPs andMDPs (again defined as the top and bottom 10th percentile of the im-
munopeptidomics FC values) were selected individually for each HLA, and all
upregulated peptides were then combined as the MIPs and all downregulated
peptides as MDPs. Thus, the same number of upregulated and downregulated
peptides were identified from each HLA. This approach of selecting within
HLAallotypes can identify differences in the characteristics ofMIP versusMDP
peptides that are independent of the specific HLA and their peptide binding
motifs. We then analyzed the frequency of all amino acids at each position of
the 9-mers, and values for MDPs were subtracted from MIP values (Fig. 3A).
The amino acid composition of the N-terminal and the C-terminal extensions
adjacent to the presented peptide may also influence peptide processing (46),
for example through the presence of specific cleavable amino acids or motifs
for proteasome or peptidase processing. Therefore, we also assessed the 9aa N-
and C-terminal extensions.

Most differences in amino acid abundance at each position of the 27aa sequence
were small, but Z-score analysis identified 12 amino acids in specific positions
where their difference in abundance was 2.5 times larger than the SD of all
difference values (dotted outlines in Fig. 3A).

There was an overrepresentation of lysine, a basic amino acid, in position N1 of
the N-terminal extension, with a Z-score of 3.4. Notable in this context was also
the lessmarked overrepresentation of arginine, another basic amino acid, in po-
sition N1 (which fell below the Z-score cutoff, with a score of 2.4)—similar to
findings which showed activity of immunoproteasomes is higher against basic

residues in position N1 (7). Although the increase in basic residues in position
N1may suggest an increase in tryptic cleavage activity with IFNγ, we also iden-
tified an overrepresentation of lysine (Z-score of 5.6) in position 1 ofMIPs. This
cannot be explained by tryptic activity, as tryptic-like activity cleaves to the C-
terminus of a basic residue, not the N-terminus. The small amino acids glycine
and serine were underrepresented in position 1 of the MIPs (Z-scores of −3.0
and −2.6, respectively). This may be caused by the exchange of PSMB5, whose
binding pocket has a preference for small amino acids, for PSMB8 in the im-
munoproteasome, which has a preference for chymotryptic-like substrates (5).
However, some of these changes may also be due to activity of peptidases, as
peptidases commonly cleave away additional amino acids from the N-terminus
of a longer precursor peptide (46).

We also assessed whether the previously described increase in intensity of
peptides with a chymotrypsin-like cleavage site at the C-terminus, which we
attributed to the immunoproteasome switch (27), was apparent among MIPs.
Three of the seven (42.3%) amino acids (A, F, I, L, M, V, or Y in position 9)
which are preferentially cleaved by chymotrypsin increased in representation
in MIPs, whereas only two out of 13 (15.4%) of the remaining amino acids at
position 9, increased. The net increase of these seven amino acids after which
chymotrypsin-like activity occurs was 1.8%. Peptides with trypsin-like cleavage
sites (K or R in position 9) showed a net decrease of 2.8% which is consistent
with a lower activity of the constitutive proteasome.

The only positions in the C-terminal extension highlighted by the Z-score anal-
ysis were positions C2 andC3, in which leucine was underrepresented (Z-score:
−3.2 in both positions). The widely accepted view is that the C-terminus of the
peptide is directly generated by the proteasome (30, 47), as no carboxypep-
tidases have been identified in antigen processing. Therefore, one possible
explanation for our observations is that the leucines in C2 and C3 influence
pepide generation by the immunoproteasome.

The amino acid with the largest difference within the 9-mer peptides was pro-
line. This was underrepresented in positions 4 and 5 of MIPs with Z-scores
of −6.3 and -4.2, respectively (Fig. 3A). Underrepresentation continued in the
consecutive positions 6–8, but these did not cross the Z-score threshold (−1.9,
−1.2, and −1.0, respectively). We next plotted the proline abundance in MIPs
andMDPs for each position of the peptide and its N- and C-terminal extension
and applied statistical testing. This showed significant differences for positions
4–6 and 8 (Fig. 3B). We furthermore analyzed all 10-mer MIP and MDP pep-
tides identically to the 9-mers to ascertain whether these observations could
be reproduced. This confirmed a similar underrepresentation in MIPs in posi-
tions 4–7, crossing the Z-score threshold in positions 4 and 5 (Supplementary
Fig. S2A). To assess whether the depletion of proline in MIPs was detectable
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FIGURE 3 Amino acid composition of MIPs versus MDPs and UEPs versus IEPs. A, Heat map of the amino acid composition changes between 9-mer
MIPs and MDPs, alongside N- and C extensions. Percentage of peptides with highlighted amino acid in each position were calculated for each group,
then the percentage values for the MDPs (N = 1,052) were subtracted from the MIPs (N = 1,075). B, Percentage of peptides with proline in each
position for MIPs (N = 1,075) and MDPs (N = 1,052). Fisher exact test was used for statistical analysis of the proline abundance values, with significant
results are indicated in green. C, Heat map of the amino acid composition changes between (IEPs) and (UEPs). Percentage of peptides with each
amino acid in highlighted position were calculated for each group, then the percentage values for the UEPs (N = 1,195) were subtracted from the IEPs
(N = 1,909). D, Percentage of peptides with proline in each position in IEPs and UEPs. Z-score analysis was used for the heat maps, and changes with a
Z-score ≤2.5 or >2.5 were highlighted with a thick dotted line. Fisher exact test was used for statistical analysis of the proline abundance values, with
significant results are indicated in green.
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across PDOs and different HLA allotypes, we furthermore analyzed the proline
abundance in each position of 9-mer peptides separately for each PDO and
HLA allotype. This showed consistent proline underrepresentation in MIPs,
most strongly in positions 4 and 5 (Supplementary Fig. S2B). Thus, peptides
with proline in positions 4–5 were more likely to be downregulated through
IFNγ treatment and this was neither a PDO, nor an HLA-specific effect. Pro-
lines in position 6–8 appeared to have a similar, but less pronounced effect. The
heat maps further demonstrated that as proline decreased in abundance, there
was no corresponding increase in another amino acid, but small increases dis-
persed among several amino acids. This suggests that the decrease of proline is
a specific effect of IFNγ.

We also detected other larger changes in Z-score within the peptide:−3.5,−2.7,
and 2.8 for tyrosine, phenylalanine, and lysine in P3; and −2.7 for glycine in
P8. However, these findings were not reproduced in the original positions, or
original positions ±1 in the analysis of 10-mers (Supplementary Fig. S2A).

We next assessed whether peptides that were only detected in untreated PDOs
(untreated-exclusive peptides—UEP) or only detected with IFNγ treatment
(IFNγ-exclusive peptides—IEP), and derived from proteins with a low FC (log2
−1 to 1 FC), showed the same signal. Proline was again underrepresented at
positions 4–7 in IEPs compared against the UEPs (Fig. 3C). The difference in
proline abundance between UEPs and IEPs was significant in positions 4, 6,
and 7 (Fig. 3D). Of note, we also observed changes in the peptide anchor po-
sitions 2 and 9 that had not been apparent in the MIP versus MDP analysis.
This can be explained by the relative overrepresentation of peptides presented
by HLA-B among IEPs and by HLA-A in UEPs, which is a consequence of the
different levels of upregulation with IFNγ we described above. To control for
this, we also separated the condition-exclusive peptide groups by their source
HLA (Supplementary Fig. S2C). Because of the lower peptide numbers there is
more variation in the data, but the IFNγ-exclusive peptides showed a decrease
in proline abundance in position 4 across different HLA allotypes.

Taken together, our approach to scrutinize the changes in the peptidome
showed that IFNγ treatment results in an increased production of peptides with
lysine, and a decreased production of peptides with small amino acids, at the
N-terminal position 1. Further to this, we found a decrease of peptides with
proline in the peptide core, mainly positions 4 and 5, a pattern that was present
across all three PDOs and different HLAs, strongly suggesting that this effect is
conserved across biological models.

We next sought to validate our results in an independent dataset. The im-
munopeptidomics and proteomics datasets from the breast cancer cell line
MDA-MB-231 (28) were appropriate for comparison as these are cancer cells
that had also been treated with IFNγ for 48 hours (Fig. 4A). We applied the
same MIP versus MDP analysis method to 9-mers. This confirmed the under-
representation of proline at positions 4–6 and 8 of MIPs, and also showed un-
derrepresentation in positions 2 and 3 (Fig. 4B). Plotting the proline abundance
between MIPs and MDPs, and statistical analysis with the Fisher exact test,
showed statistically significant differences in position s1–6 and 8–9 (Fig. 4C).
We again observed a modest overrepresentation of lysine and arginine in
position 1 of MIPs; however, this did not reach the Z-score threshold (Fig. 4B).

When the UEP versus IEP analysis was applied, it showed an underrepresen-
tation of proline in positions 1–9 in IEPs (Fig. 4D), but with only position
4–6 crossing the Z-score threshold with scores of −5, −3, and −3.8 respec-
tively. This could be due to the small sample number of 96 UEPs compared

with 10,699 IEPs. Overall, the validation of an underrepresentation of proline
inMIPs strongly supports that peptides harboring proline residues in positions
4, 5, and possibly also 6–8, are specifically downregulated through IFNγ.

Proline has a unique impact on peptide secondary structures; its cyclic side
chain gives the amino acid conformational rigidity, inducing a “kink” of the
amino acid sequence away from the proline residue which destabilizes sec-
ondary structures like alpha helices and beta-pleated sheets (48, 49). We
therefore investigated whether proline substitution impacts peptide affinity to,
or stability with, its associated HLA.

We first assessed whether proline in position 4–8 influences the
NetMHCpan4.1-predicted BA to HLAs or the NetMHCstabpan1.0-predicted
binding stability. Although BA and stability are linked, they can differ, and
stability may be more important for recognition by TCRs (50). We sequentially
replaced every amino acid in turn with proline, in a sample of 200 randomly
selected 9-mer MS-detected peptides from our PDOs, to investigate the
impact proline inclusion has on the NetMHCpan4.1-predicted affinity and
NetMHCstabpan1.0-predicted stability (Fig. 5A and B). Replacing amino acids
with proline was disadvantageous for peptide-HLA BA and stability in the
anchor residue positions P1–3 and P9. One exception was in the peptides
which bind HLA-B35.08 in P2, where proline acts as an anchor residue, which
saw increased affinity and stability. Substituting amino acids in P4–8 with
proline had no strong effect on predicted BA or stability, suggesting there is
low specificity in these positions for peptide-HLA binding. To scrutinize this
further, we selected all peptides containing a single proline and replaced it
with either alanine or leucine (Fig. 5C-F). Alanine was selected as it eliminates
side chain interactions and does not distort the confirmation of the main
chain like proline. Leucine has similar properties to alanine, but it is a larger
amino acid, so it is used where maintaining amino acid size may be important.
Proline was infrequently detected in P1, 3, and 9 as it is less well tolerated in
anchor positions for most HLA-I. The exception was again HLA-B35.08, which
provides 98% of the detected peptides with proline in P2, due to its preference
for proline as the anchor residue, for which replacement of proline in P2 led to
a large decrease in BA and stability. Only small changes in peptide-HLA BA
and stability are seen in when replacing proline with alanine or leucine in P4–8;
suggesting that proline in these positions does not cause any notable structural
changes, and does not influence the affinity or stability of the peptides for their
predicted HLA.

Discussion
This study shows that peptide remodeling through IFNγ is complex and in-
fluenced by multiple distinct mechanisms. Upregulation or downregulation
of proteins by IFNγ largely showed concordant abundance changes of corre-
sponding peptides. However, an even larger fraction of peptides changed in
cell surface abundance despite rather stable protein abundance. We and oth-
ers have previously shown that this can be attributed, in part, to the increased
chymotryptic activity of the immunoproteasome (27, 30). Furthermore, IFNγ

signaling disproportionally increased HLA-B compared with HLA-A surface
expressionwhich led to an increase in peptides presented onHLA-B.Moreover,
demonstrating that even peptides originating from the same protein can show
a mix of upregulation and downregulation, and that this is neither dependent
on their HLA binding affinities, nor their location within the source protein,
allowed us to isolate peptide-specific characteristics that affect their abundance
in IFNγ conditions.
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FIGURE 4 Validation of amino acid differences in the datasets from Goncalves and colleagues. A, Correlation of proteomics FC between untreated
and IFNγ conditions, against normalized immunopeptidomics FC. Regression line for all peptides marked by a solid black line, regression line for
peptides derived from proteins with FC > 2 and < 0.5 marked with a dotted line. Spearman rank analysis used to investigate correlation. Low FC
proteins (0.5–2× FC) were marked out with red dotted lines. B, Heat map of the amino acid composition changes between 9-mer MIPs and MDPs,
alongside N- and C-terminal extensions. Peptides were grouped by their NetMHCpan4.1-predicted HLA-I allotype, then from each group the top 10th
percentile peptide FC (MIPs) and bottom 10th percentile peptide FC (MDPs) were selected. Detailed peptide numbers provided in Supplementary
Table S1. Percentage of peptides with highlighted amino acid in each position was calculated for each group, then the percentage values for the MDPs
were subtracted from the MIPs. C, A graph depicting the percentage of peptides with proline in each position for the MIPs and MDPs. D, Heat map of
the 9-mer peptide amino acid constituent changes between (IEPs) and (UEPs). Peptides were selected from “low FC” proteins (0.5–2× FC).
Percentage of peptides with highlighted amino acid in each position were calculated for each group, then the percentage values for the UEPs were
subtracted from the IEPs. Detailed peptide numbers provided in Supplementary Table S2. Z-score analysis was used for the heat maps, and changes
with a Z-score ≤2.5 or >2.5 were highlighted with a thick dotted line. Fisher exact test was used for statistical analysis of the proline abundance values,
with significant results are indicated in green.

The most notable novel finding was the underrepresentation of proline in the
core of MIPs and IEPs. It has previously been shown that proline in the core
of the peptide sequence protects peptides from internal cleavage by endopep-
tidases and the proteasome (46, 51). Known proline endopeptidases are DPP9,
PREP, DPP8, DPP3, but these were not upregulated by IFNγ in our data. How-
ever, it is possible that the activity of such peptidases increases. An alternative
theory is that the protective effect of proline is more relevant in the absence
of IFNγ. Studies have shown that up to 99% of all proteasome-generated pep-
tides are degraded by peptidases (52). In the untreated condition, abundance
and activity of the antigen processing and presentation machinery, alongside
expression and supply of peptide-receptive HLA are the limiting factors in sur-

face HLA presentation (41). The result is that peptides may spend more time in
the cytoplasm and endosplasmic reticulum before being shuttled to the cell sur-
face, giving any single peptide more exposure to peptidases and hence, a higher
probability of internal cleavage. Acceleration of peptide generation, processing,
and rapid loading onto HLA-I through IFNγ may allow peptides without pro-
line to escape degradation. This would then dilute proline-containing peptides
within the peptide pool and explain their relative decrease or drop out.

Our insights into determinants of peptide abundance changes with IFNγ ex-
posure could be useful to improve the design of cancer vaccines or TCR
engineered therapies as it could enable the more accurate selection of peptides
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FIGURE 5 Simulating the impact of amino acid replacements on peptide affinity and binding stability to their cognate HLAs. A, Median log2 FC
value from each HLA-A and -B from each PDO, demonstrating the impact of individually exchanging every single amino acid from detected peptides in
positions 1–9 with proline, on NetMHCpan4.1-predicted BA rank (N = 200 peptides per HLA). B, Median log2 FC value from each HLA-A and -B from
each PDO, demonstrating the impact of individually exchanging every single amino acid from detected peptides in positions 1–9 with proline, on
NetMHCStabpan1.0-predicted (N = 200 peptides per HLA). C, Median log2 FC value of each HLA-A and -B from each PDO, demonstrating the impact
of exchanging proline, in detected peptides with a single proline, with alanine, on NetMHCpan4.1-predicted BA rank (inidividual sample numbers
annontated on the plots). D, Median log2 FC value of each HLA-A and -B from each PDO, demonstrating the impact of exchanging proline, in detected
peptides with a single proline, with alanine, on on NetMHCStabpan1.0-predicted half life (inidividual sample numbers annontated on the plots). E,
Median log2 FC value of each HLA-A and -B from each PDO, demonstrating the impact of exchanging proline, in detected peptides with a single
proline, with leucine (inidividual sample numbers annontated on the plots), on NetMHCpan4.1-predicted BA rank. F, Median log2 FC value of each
HLA-A and -B from each PDO, demonstrating the impact of exchanging proline, in detected peptides with a single proline, with leucine (inidividual
sample numbers annontated on the plots), on NetMHCStabpan1.0-predicted.

likely to be presented on patient tumors. For example, peptides presented on
HLA-B, which are likely to increase in intensity when T cells release IFNγ,
may be preferable targets over those presented by HLA-A. Peptides with pro-
line in positions 4 and 5, which favors peptide downregulation or even makes
them undetectable in cancer cells exposed to IFNγ, can be avoided. Whether
the overall increase in HLA surface expression, or the remodeling of the im-
munopeptidome is more relevant for the critical role of IFNγ signaling for
immunotherapy responses needs to be further investigated.
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