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Abstract

Budget Management in Auctions: Bidding Algorithms and Equilibrium Analysis

Rachitesh Kumar

Advertising is the economic engine of the internet. It allows online platforms to fund services

that are free at the point of use, while providing businesses the opportunity to target their ads at

relevant users. The mechanism of choice for selling these advertising opportunities is real-time

auctions: whenever a user visits the platform, an auction is run among interested advertisers, and

the winner gets to display their ad to the user. The entire process runs in milliseconds and is

implemented via automated algorithms which bid on behalf of the advertisers in every auction.

These automated bidders take as input the high-level objectives of the advertiser like value-per-

click and budget, and then participate in the auctions with the goal of maximizing the utility of the

advertiser subject to budget constraints. Thus motivated, this thesis develops a theory of bidding

in auctions under budget constraints, with the goal of informing the design of automated bidding

algorithms and analyzing the market-level outcomes that emerge from their simultaneous use.

First, we take the perspective of an individual advertiser and tackle algorithm-design ques-

tions. How should one bid in repeated second-price auctions subject to a global budget constraint?

What is the optimal way to incorporate data into bidding decisions? Can data be incorporated in a

way that is robust to common forms of variability in the market? As we analyze these questions,

we go beyond the problem of bidding under budget constraints and develop algorithms for more

general online resource allocation problems. In Chapter 2, we study a non-stationary stochas-

tic model of sequential auctions, which despite immense practical importance has received little

attention, and propose a natural algorithm for it. With access to just one historical sample per

auction/distribution, we show that our algorithm attains (nearly) the same performance as that pos-

sible under full knowledge of the distributions, while also being robust to distribution shifts which



typically occur between the sampling and true distributions. Chapter 3 investigates the impact

of uncertainty about the total number of auctions on the performance of bidding algorithms. We

prove upper bounds on the best-possible performance that can be achieved in the face of such un-

certainty, and propose an algorithm that (nearly) achieves this optimal performance guarantee. We

also provide a fast method for incorporating predictions about the total number of auctions into

our algorithm. All of our proposed algorithms implement some version of FTRL/Mirror-Descent

in the dual space, making them ideal for large-scale low-latency markets like online advertising.

Next, we look at the market as a whole and analyze the equilibria which emerge from the si-

multaneous use of automated bidding algorithms. For example, we address questions like: Does

an equilibrium always exist? How does the auction format (first-price vs second-price) impact the

structure of the equilibria? Do automated bidding algorithms always efficiently converge to some

equilibrium? What are the social welfare properties of these equilibrium outcomes? We systemati-

cally examine such questions using a variety of tools, ranging from infinite-dimensional fixed-point

arguments for proving existence of structured equilibria, to computational complexity results about

finding them. In Chapter 4, we start by establishing the existence of equilibria based on pacing—a

practically-popular and theoretically-optimal budget management strategy—for all standard auc-

tions, including first-price and second-price auctions. We then leverage its structure to establish

a revenue equivalence result and bound the price of anarchy of liquid welfare. Chapter 5 looks

at the market from a computational lens and investigates the complexity of finding pacing-based

equilibria. We show that the problem is PPAD complete, which in turn implies the impossibility of

polynomial-time convergence of any pacing-based automated bidding algorithms (under standard

complexity-theoretic assumptions). Finally, in Chapter 6, we move beyond pacing-based strate-

gies and investigate throttling, which is another popular method for managing budgets in practice.

Here, we describe a simple tâtonnement-style algorithm which efficiently converges to an equi-

librium in first-price auctions, and show that no such algorithm exists for second-price auctions

(under standard complexity-theoretic assumptions). Furthermore, we prove tight bounds on the

price of anarchy for liquid welfare, and compare platform revenue under throttling and pacing.
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Chapter 1: Introduction

For millennia, auctions have been used to sell items in a variety of markets, ranging from agri-

cultural produce to government assets. They provide a natural solution to the problem of allocating

items among buyers whose valuation (willingness to pay) is unclear/unknown to the seller. And

when the internet came along, it was soon discovered that this was exactly the problem internet

platforms faced when attempting to monetize their services via advertising. In particular, plat-

forms like Google, Instagram, TikTok etc. have an abundant supply of users who routinely interact

with their platforms, and there is demand from advertisers for the attention of those users. A mar-

ket mechanism is required to match this supply and demand. Crucially, given the heterogeneity

of these opportunities (each user and webpage are different), it is very difficult to ascertain the

amount that the advertisers would be willing to pay for them. This is exactly the type of setting

where auctions shine, and thus have been widely adopted: they are the mechanism by which the

vast majority of advertising opportunities are allocated on the internet. Any time a user visits the

platform, an auction is run programmatically to determine the advertiser who will get the opportu-

nity to show their ad to the user, and the payment to be charged for it. The entire process runs in

the milliseconds that the webpage takes to load after the user query, and occurs billions of times

every day across a plethora of platforms.

These online advertising auctions are executed via a complex market ecosystem, composed

of publishers/platforms who own the webpages where ads are displayed, advertisers who wish to

show their ads to users visiting these webpages, and ad exchanges who are the market makers;

not to mention demand-side and supply-side platforms who act as intermediaries. To add to this,

advertisers routinely run ad campaigns consisting of tens of thousands of auctions, each one cor-

responding to a user with some idiosyncratic propensity for favorably interacting with the ad. This

ever-increasing complexity, speed and scale of online advertising markets has led to the rise of
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automated bidding (or simply autobidding), which is the practice of using automated data-driven

algorithms for bidding in ad auctions. These autobidding algorithms take as input the high-level

objectives and constraints of the advertiser, and then bid on their behalf in the auctions with the

goal optimizing their objective subject to the specified constraints. The demand for autobidding

has led to platforms like Google1 and Meta2 themselves offering it as a service to advertisers,

which in turn has made autobidding ubiquitous.

Budget management tools are perhaps the most prevalent autobidding tools offered by plat-

forms: the vast majority of advertisers have budgets that limit their total spend across all auctions

in the campaign, and they require tools which optimize the use of their budgets. This thesis aims

to develop a deeper understanding of budget management, with the dual goal of improving the

design of autobidding algorithms and analyzing the market-level outcomes that emerge from their

simultaneous use. On the technical front, this translates to developing data-driven algorithms for

bidding in repeated auctions under global budget constraints, and understanding the market-level

outcomes that result from these algorithms bidding against each other.

1.1 Data-Driven Algorithms for Budget Management

In the first part of the thesis, we focus on the design of data-driven algorithms for bidding in

repeated second-price auctions subject to a global budget constraint. It turns out that this problem

is closely related to online resource allocation. At its core, both problems involve the same trade-

off: spend the budget now or wait for better opportunities later. For greater generality and ease of

exposition, we develop algorithms for online resource allocation, and show how the budget man-

agement problem can be interpreted as a special case. Departing from previous works, our goal is

not to simply optimize performance and sample complexity, but to do it in a way that is robust to

the common types of variability which affect online advertising markets. The type of variability

we focus on delineates the two chapters in this part of the thesis.

1https://support.google.com/google-ads/answer/2979071?hl=en
2https://www.facebook.com/business/m/one-sheeters/facebook-bid-strategy-gui

de/
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1.1.1 Chapter 2: Robust Budget Pacing with a Single Sample

Consider an advertiser with a budget of 𝐵 dollars, which specifies the maximum amount they

are willing to spend in some fixed time period (say, a week). Assume that she will participate in 𝑇

sequential second-price auctions in that period. Her goal is to maximize total utility across all of

the auctions in that week, while keeping the cumulative spend below the budget 𝐵. How should this

advertiser pace her spending? When should she spend aggressively and when should she conserve

her budget? How should one design the autobidding algorithm that makes these decisions on her

behalf? The answer to these questions depends on the way that the auctions (i.e., advertiser’s value

and competition) change over time, and the information available to her.

If the environment is adversarial, i.e., nothing is known and the auctions can change arbitrarily

with time, then [BG19] showed that no algorithm can achieve sub-linear regret (or even a good

asymptotic competitive ratio) against the hindsight-optimal benchmark. In other words, all algo-

rithms perform poorly, and this setting provides very pessimistic guidance for algorithm design.

Due to this impossibility result, most of the past works on budget management algorithms—and

online resource allocation more generally—have focused on the setting where all auctions are

similar on average, i.e., advertiser value and competition are independently and identically dis-

tributed. Unsurprisingly, this assumption of stationary/identical distributions leads to algorithms

that attempt to evenly spend the budget across all auctions (e.g., [BG19; BLM23]). However, this

stationarity assumption is completely untenable in practice because the volume of traffic, demo-

graphic of users, rates of conversion etc. change with time [Zho+19], which in turn cause the

advertiser’s value and competition to change with time. Perhaps even more importantly, evenly

spending budget across all auctions can often be a horrible idea, e.g., most businesses do not want

to spend the same amount on advertising at 3 am as they do at 3 pm.

Thankfully, even though reality is not stationary, it is not adversarial either: user traffic and

the competition for it change with time, but they show some periodicity in their changes, e.g.

weeks look similar on average. To deal with this non-stationarity, real-world budget management

systems compute a target expenditure plan [FG; KMS22], which is a function of time that specifies

3



the recommended amount of spend at each point in time, i.e., such a plan distributes the cumulative

daily/weekly budget into smaller chunks of time, appropriately capturing the non-stationarity. A

pacing algorithm like a controller is then used to track the plan. This raises an important question:

How many historical samples are required to learn a good target expenditure plan?

To study this question, we study a model where the tuple of an advertiser’s value and that of her

highest competing bid, in each auction 𝑡, are generated from unknown independent time-varying

distributions {P𝑡}𝑇𝑡=1. This is a major departure from the stochastic budget-management/resource-

allocation literature, which for the most part assumes stationary distributions (see Section 1.3 for

a discussion). We additionally assume that we have access to data from past weeks. This data

helps us leverage the periodic nature of internet traffic/auctions. However, the periodicity is almost

never exact: weeks look similar on average, but they are not identical on average, i.e., the historical

data likely came from distributions {P̃𝑡}𝑇𝑡=1 that were different from {P𝑡}𝑇𝑡=1. This raises another

important question:

How should one design an algorithm that is robust to distribution shifts between his-

torical and true distributions?

We measure distribution shift using the total Wasserstein distance between the two sequences

of distributions {P̃𝑡}𝑇𝑡=1 and {P𝑡}𝑇𝑡=1. [JLZ20] showed that the regret of all algorithms must degrade

super-linearly with the distribution shift. This motivates us to call an algorithm robust if its regret

degrades with the distribution shift at the optimal linear rate. Surprisingly, we find that both of the

aforementioned questions simultaneously admit the most satisfactory solution: we show that just

one historical sample per distribution is sufficient to learn a good target expenditure plan, and we

give an explicit algorithm that can learn and use that plan in a way that is robust to distribution

shifts.

Our results. Our contribution is an algorithm that is robust and achieves the near optimal �̃�(
√
𝑇)

regret even when it has access to just one sample from each distribution P̃𝑡 , dramatically improving
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over the state-of-the-art requirement of𝑇 log𝑇 samples from each distribution [JLZ20]. Our results

go beyond bidding under budget constraints, and apply more broadly to any single-resource online

resource allocation problems, like single-leg revenue management and online knapsack.

Key insights. Our algorithm uses the samples to estimate the ideal amount of expenditure to

target in each auction and then uses Follow-The-Regularized-Leader in the dual space to follow

these targets by shading the advertiser’s values appropriately. The key insight driving the reduction

in sample complexity from 𝑇 log𝑇 to 1 per distribution is the following. Prior work by [JLZ20]

first learns the sampling distributions {P̃𝑡}𝑇𝑡=1 from the samples, then computes the optimal duals

on the learned distributions, and finally uses those duals to compute the target expenditures. Our

insight is that it is not necessary to learn the entire sampling distribution. Instead, it is far more

efficient to directly learn the duals from the samples and construct target expenditure based on

those duals (i.e., setting target expenditure at 𝑡 to be what the dual-based solution consumes at

𝑡). Beyond being very efficient with samples, learning the duals from the samples also guarantees

robustness to shifts between {P̃𝑡}𝑇𝑡=1 and {P𝑡}𝑇𝑡=1.

Practical implications. Consider 𝑇 representing a week’s worth of auctions. While a total of

𝑇 log𝑇 samples may be possible to obtain by looking at the past few weeks (given that each week

has about 𝑇 samples to offer), requiring 𝑇 log𝑇 samples per distribution calls for looking at many

months into the past. This is because getting a sample for a distribution, where a distribution could

correspond to say a particular hour (e.g. Monday 10 AM), entails looking at that same hour from

the past week. Asking for 𝑇 log𝑇 samples for any given hour, when 𝑇 samples is what we get for

the entire week, clearly requires looking at the numerous months into the past. Apart from posing

huge storage and operational challenges, given that traffic pattern shifts over time, even gradual

shifts would significantly degrade quality as one moves too much into the past. Our ask of one

sample per distribution requires looking at just the past week and getting one sample for each hour.

Moreover, our algorithm implements pacing, which is a popular method of budget management

that multiplicatively shades the value to determine the bid and controls the multiplier to manage
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budgets. Combined with the fact that it only requires a constant amount of computation after each

auction, our algorithm can be readily implemented in practical budget management systems.

Technical contributions. We achieve our result by developing a novel dual-iterate coupling

lemma (see Lemma 6) and leveraging it to analyze a leave-one-out thought experiment designed

to break challenging correlations which arise from working with one sample per distribution (see

Subsection 2.3.3 for details). Additionally, we also prove a novel regret decomposition for Dual

FTRL (Theorem 3), which may be of independent interest. Finally, our algorithm does not require

solving large linear programs and can be implemented efficiently (see Subsection 2.3.4), which is

critical for online advertising since each auction runs in a few milliseconds.

1.1.2 Chapter 3: Online Resource Allocation under Horizon Uncertainty

Almost all of the prior work on bidding in auctions under budget constraints, and more gener-

ally online resource allocation, assumes that advertisers know the total number of auctions 𝑇 (also

called the horizon) in advance. This assumption is vital for previous algorithms and performance

guarantees because it allows them to evenly spend the budget across all auctions. Even in the

simple setting where the auctions come from stationary distributions, prior algorithms compute a

per-period resource budget given by 𝐵/𝑇 , which crucially requires knowledge of 𝑇 , and then use

it as the target amount to spend in each auction. However, if the horizon 𝑇 is not known to the

decision maker, one can no longer compute this quantity and these previous works fail to offer any

meaningful guidance.

Juxtapose this with a world in which viral trends are becoming ever more common, causing

online advertising platforms, retailers and service providers to routinely experience traffic spikes.

These spikes inject uncertainty into the system and make it difficult to accurately predict the total

number of users that will arrive. As the amount of user traffic determines the number of auctions

an advertiser participates in, this uncertainty extends to the number of auctions. Moreover, these

spikes often present lucrative opportunities for the advertiser, which makes addressing this uncer-
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tainty even more pertinent [EKM15]. Crucially, it is usually difficult to predict these spikes, e.g. a

news story breaks about COVID-travel bans being lifted, which results in a sudden and large uptick

in the number of advertising opportunities for an airline. In fact, search-traffic spikes might be so

large that they cause websites to crash3. This uncertainty about the horizon 𝑇 raises the following

question:

How should one design algorithms that are robust to horizon uncertainty and do not

require knowledge of 𝑇?

To address this question, we take the robust-optimization approach and consider a model in

which the horizon 𝑇 is unknown and only assumed to lie in some known uncertainty window

[𝜏1, 𝜏2]. 𝜏1 and 𝜏2 parameterize the advertiser’s uncertainty about the horizon 𝑇 . We measure the

performance of algorithms using their asymptotic competitive ratio against the hindsight-optimal

solution which can be computed with full knowledge of all auctions and the horizon 𝑇 . In order

to tease out the impact of horizon uncertainty on the performance of algorithms, we focus on the

setting where the auctions are drawn from stationary distributions.

Our Results. We first show that the performance of any algorithm necessarily degrades with

horizon uncertainty. In particular, we prove that no algorithm can achieve a worst-case asymptotic

competitive ratio better than {𝑒 · ln ln(𝜏2/𝜏1)}/ln(𝜏2/𝜏1). We then propose an algorithm that is

nearly optimal and always achieves a competitive ratio greater than 1/(1 + ln(𝜏2/𝜏1)). Finally, we

also provide a method for incorporating predictions about the horizon into our algorithm, and do so

in a way that can be tuned to achieve the desired balance between worst-case performance and trust

in the prediction. Importantly, all of our results are much more general than bidding under budget

constraints, and apply to all online resource allocation problems [BLM23]. Specifically, it includes

as special cases various fundamental problems like network revenue management [TVR04], online

advertising [Meh13], online linear/convex programming [AD14; AWY14; Dev+11; Kes+14], and

assortment optimization under inventory constraints [GNR14].
3https://developers.google.com/search/blog/2012/02/preparing-your-site-for

-traffic-spike
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Key Insights. Our impossibility result shows that online resource allocation is qualitatively dif-

ferent than other online optimization problems like online convex optimization. Any algorithm for

the latter can be modified using the Doubling Trick to achieve an asymptotic competitive ratio of

1 under horizon uncertainty. In contrast, for online resource allocation, horizon uncertainty im-

poses a fundamental limit on the performance of algorithms that cannot to bypassed with standard

modifications like the Doubling Trick. Algorithms must be designed with the horizon uncertainty

in mind, which is what we do. Like Chapter 2, our algorithm first computes a target expenditure

plan, and then uses Mirror Descent in the dual space to follow these targets. We characterize the

competitive ratio of our algorithm for all target plans, and then simply optimize over all target

plans, both in the setting with and without predictions.

Practical Insights. The optimal target expenditure plan is a decreasing sequence. It advocates

for front-loading of expenditure: the advertiser should spend more aggressively early on. The

intuition being that future opportunities may or may not materialize due to horizon uncertainty,

and she should hedge against this uncertainty. Put another way, one should not conserve too much

budget in the hopes of a traffic spike, and instead front-load expenditure to lock in sufficient amount

of utility in early auctions. In practice, advertisers and platforms use machine learning models to

predict the total number of auctions. However, these models are often opaque and uninterpretable

(like neural nets). In particular, they can perform horribly in case of traffic spikes and do not

provide worst-case guarantees. Thus, one cannot blindly rely on predictions from such models and

incorporate them into bidding algorithms. Our algorithm allows the advertiser to strike a balance

between completely trusting the prediction and her desire for worst-case guarantees: we provide

a method for incorporating these potentially-inaccurate predictions in a way that optimally trades

off consistency, which refers to the performance when the predictions are accurate, and worst-case

competitive ratio.

Technical Contributions. Our algorithm is a generalization of Dual Mirror Descent [BLM23]

that can incorporate target expenditure plans which are time varying. We characterize the compet-
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itive ratio of this generalization in semi-closed form for all possible target expenditure plans. This

characterization forms the cornerstone of our positive results, and allows us to reduce the problem

of finding the optimal algorithm to that of finding the optimal target plan. The latter is much easier

than the former and we show that it can be written as an LP. But general-purpose LP solvers can

be too computationally expensive in large-scale applications like online advertising. So, we also

provide a quadratic-time algorithm for solving the LP.

1.2 Equilibria in Budget Management Systems

Chapter 2 and Chapter 3 focus on budget management from an individual advertiser’s per-

spective, and design algorithms for maximizing utility in repeated auctions subject to budget con-

straints. What happens when all advertisers simultaneously use these algorithms? This is the ques-

tion we address in the second half of the thesis, where we zoom out and analyze the entire market.

Our focus is on the strategic interactions of the advertisers, each of whom attempts to maximize

their own utilities subject to budget constraints. In particular, we analyze the equilibrium outcomes

that emerge from these interactions, both from a structural and computational viewpoint. More-

over, we also investigate the impact of the auction format on the equilibrium outcomes, with the

aim of informing the rules of advertising auction markets.

1.2.1 Chapter 4: Contextual Standard Auctions with Budgets

Consider the setting in which multiple advertisers are competing against each other for ad slots.

Each of them wants to maximize their utility subject to their budget constraint (possibly using some

autobidding algorithm). The strategic interactions between advertisers, each of whom is pursuing

their own objective, raises many new questions:

Does an equilibrium always exist? What is the structure of equilibrium bidding strate-

gies? How do the answers depend on the auction format?

We would like to analyze the equilibrium points of the market that can arise from the inter-

actions of such buyers. In particular, we are interested in Bayes-Nash Equilibria (BNE), which
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are market outcomes in which all advertisers are happy with their bidding strategy and none of

them wants to deviate unilaterally. These are the points to which individually-optimal autobidding

algorithms for budget management stabilize, assuming they do stabilize. Moreover, in this chapter,

we go beyond second-price auctions and consider all standard auctions, which is the class of all

auctions in which the highest bidders wins the item. Importantly, it includes the popular first-price

auction format as a special case and allows us to compare it with second-price auction. This raises

another important question:

How does the auction format impact the equilibrium outcomes?

Furthermore, till now, our focus has almost entirely been on the advertisers and their utility. But

an equally important aspect of these markets is the seller revenue and societal welfare. The former

is often the primary objective of the platform and the latter measures the allocative efficiency of

the market. In fact, it is often a combination of revenue and welfare, rather than advertiser utility,

that determines the mechanism used by the platform. This raises other important questions:

How does the auction format impact the revenue of the platform? How socially-

efficient are the equilibria in allocating opportunities to advertisers?

To address these questions, we study a model of standard auctions with contextual values and

average budget constraints. The contextual values allow us to incorporate the structured correlation

that arises from the same user features being used by all advertisers in determining their values.

And average budget constraints capture the impact of long-term budget constraints that are only

required to hold across thousands of auctions: if each advertiser statisfies their budget constraints

on average in each auction, then concentration arguments imply that they spend close to their

global budget across all auctions with high probability.

Our Results. We show that a structured Bayes-Nash equilibrium always exists for all standard

auctions. It composes value-pacing, which refers to multiplicatively shading down the value, with

the equilibrium strategy for the setting without budget constraints. We then leverage this structure

10



to show a revenue equivalence result: each standard auction yields the same revenue in equilibrium.

Finally, we bound the price of anarchy of these equilibria: we show that the liquid welfare (measure

of social welfare for settings with budgets) is at least half of what a clairvoyant central planner can

attain. In other words, these value-pacing-based equilibria are approximately efficient in allocating

opportunities to advertisers.

Key Insights. Our results act as a powerful black-box: they takes as input any Bayes-Nash equi-

librium for the commonly-studied i.i.d. setting without budgets, composes it with value-pacing,

and outputs a Bayes-Nash equilibrium for our model with contextual values and budgets. Sur-

prisingly, we show that, for a fixed distribution over advertisers and users, the same multiplicative

factors can be used by the advertisers to shade their values in the equilibrium strategies for all

standard auctions. In other words, these equilibrium strategies are modular: they compose value-

pacing, which addresses the budget constraints and is independent of the auction-format, with the

i.i.d. BNE strategy that is independent of budgets and captures the strategic misreporting induced

by the auction format. This modular structure immediately allows us to extend the well-known

revenue-equivalence result for the simple i.i.d. model (without budgets and contexts) to our much

more general model with contexts and budgets. The revenue equivalence results and the modu-

lar structure also allow us to prove price of anarchy bounds for liquid welfare which hold for all

standard auctions.

Practical Implications. The display advertising4 industry recently switched from second-price

auctions to first-price auctions as the method for selling advertising opportunities. Our revenue

equivalence result suggests that the transition should not result in a change in revenue for the plat-

form. This is in stark contrast to previous works on standard auctions with strict budget constraints

where revenue equivalence does not hold [CG98]. A recent paper of [Gok+22] empirically inves-

tigated the revenue impact resulting from this recent switch. [Gok+22] found that, after a brief

adjustment period, publishers’ revenues under first-price auctions returned to the same levels as

4Display advertising refers to graphic advertising through banners, text, images, video, and audio.
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they were under second-price auctions before the change. Our theory offers the first principled

justification for this empirical finding by establishing revenue equivalence in the presence of con-

textual values and average budget constraints. Finally, the modular structure of the equilibrium

strategies also provides guidance for advertisers in navigating the change in auction formats. The

pipeline used for pacing can be composed with the pipeline for bidding in non-truthful auctions,

each operating autonomously.

Technical Contributions. The primary technical challenge involved establishing the existence

of structured modular bidding strategies for potentially non-truthful auctions. These strategies have

a pacing (dual) multiplier for each buyer type, which are uncountably many in cardinality. This

leads to an infinite-dimensional equilibrium space even after moving to the simpler dual space. In

infinite dimensions, establishing even the simple prerequisites of any fixed-point theorem, namely

compactness and continuity, can be an ordeal; one which requires careful topological arguments.

While other papers have also analyzed equilibrium strategies in the dual space (see, e.g., [BBW15;

GKP12]), these consider settings with finitely-many pacing multipliers in which establishing com-

pactness is a trivial task. The main technical contribution of this chapter is twofold: (i) choosing

the right topological space for the pacing multipliers based on their monotonicity properties, (ii)

establishing compactness and continuity in this carefully chosen space. As we discuss in Subsec-

tion 4.2.3, this choice of topology is far from obvious. In fact, to the best of our knowledge, all of

the topologies used in standard fixed-point arguments for infinite-dimensional spaces (see [AB06]

for examples) prove insufficient in the setting we consider, which compels us to carefully exploit

the structural properties of pacing and work with the topological space of multivariate-functions

of bounded variation. We believe that these tools might be useful in other non-atomic games.

Finally, our price of anarchy bound is also novel. It does not proceed through the smoothness

framework [RST17] and instead leverages the complementary slackness condition of the budget-

constrained utility maximization problem of each buyer.
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1.2.2 Chapter 5: The Complexity of Pacing for Second-Price Auctions

When instantiated for second-price auctions, the results of Chapter 4 imply the existence of

an equilibrium in which all of the buyers pace (i.e., multiplicatively shade) their value to deter-

mine their bid. Additionally, our algorithms from Chapter 2 and Chapter 3 also pace values by a

multiplicative factor to determine bids, and then update the multiplicative factor to ensure budget

consumption in line with the target plan. The use of pacing is not unique to our work: (i) it shows

up in all algorithms for bidding in repeated auctions under budget constraints which are optimal for

stochastic environments, and (ii) pacing-based equilibria have been shown to exist in other models

of advertiser interaction in second-price auctions with budget constraints. This raises a natural

question that had long been the subject of conjecture and speculation [Con+18; Bor+07]:

Do pacing-based algorithms always converge to pacing-based equilibria? If so, do

they converge efficiently (in polynomial time)?

More generally, most of the attention in prior work had focused on either developing pacing-

based algorithms or establishing the existence of pacing-based equilibria, with very little attention

being devoted to its computational properties. Understanding the computational complexity of

finding pacing-based equilibria is vital, because if one cannot even compute them, then there is

very little hope for advertisers, each of whom runs their own algorithm on a computer, to converge

to them.

What is the computational complexity of finding pacing-based equilibria?

We initiate the study of these questions by studying the computational complexity of finding

pacing equilibria in markets with correlated values. Since a pacing equilibrium always exists,

we cannot use P vs NP to characterize the complexity of computing one; the right complexity

class is PPAD. Like the well-known complexity class NP, PPAD (Polynomial Parity Argument in

a Directed graph, introduced by [Pap94]) is a collection of computational problems. As with the

definition of NP-hardness and NP-completeness, a problem is said to be PPAD-hard if it is at least
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as hard as every problem in PPAD; a problem is said to be PPAD-complete if it is contained in

PPAD and is PPAD-hard. The analogy to NP extends further: the PPAD-hardness of a problem

can be established by providing a polynomial-time reduction from a problem already known to be

PPAD-hard. One of the quintessential PPAD-complete problems, and the one we will employ in

our reductions, is that of computing a Nash equilibrium of a bimatrix game [DGP09; CD06]. The

Nash equilibrium problem has been studied extensively for decades and yet, despite much effort,

no polynomial-time algorithm is known for it. Moreover, a recent spate of results showed that it is

hard to solve, assuming certain strong cryptographic assumptions [BPR15; GPS16; RSS17; HY17;

Cho+19]. This has motivated the conjecture that PPAD-hard problems cannot be solved efficiently.

If we can show that the problem of finding a pacing equilibrium is PPAD-hard, then it shows that

computing a pacing equilibrium is hard, unless all problems in PPAD can be solved efficiently. In

the remainder of this subsection, we will assume that PPAD-hard problems are impossible to solve.

Our Results. We prove that the problem of computing pacing equilibria is PPAD complete. In

particular, it belongs to the class PPAD—which (informally) means that it is easier than every

problem in that class—and it is PPAD-hard—which (informally) means that it is harder than every

problem in the class. In fact, we show that the simpler problem of computing even an approxi-

mate pacing equilibrium is PPAD-hard. This disproves the conjecture of [Bor+07], who proved

polynomial-time convergence of tâtonnement-based dynamics for first-price auctions and predicted

similar convergence for second-price auctions. Our hardness results shows that no dynamics al-

ways converge for second-price auctions. Moreover, we close the open question of [Con+18], who

proved the existence of pacing equilibria but left its computational complexity open.

Key Insights. One of the most important consequences of the PPAD completeness is the im-

possibility of efficient convergence. We show that no matter which pacing algorithm is employed

by the individual advertisers, it will not always converge to an equilibrium in polynomial time.

It puts a stop to the quest for pacing algorithms that can be proven to efficiently converge to an

equilibrium in all cases.
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Practical Implications. Ours is a worst-case impossibility result: it does not say that algorithms

will never converge, just that none of them will always converge. In particular, one may still

observe convergence to equilibrium in practice. It forces us to refine our expectations and invites

further investigation into the features of the market that may lead to convergence, e.g. structured

correlation, strong competition etc.

Technical Contributions. We prove the PPAD-hardness of finding approximate pacing equilib-

ria (Theorem 11) by giving a reduction from the problem of finding an 𝜖-well-supported Nash

equilibrium in win-lose bimatrix games. To prove the PPAD-membership of finding a pacing equi-

librium (Theorem 12), we reduce the problem to the algorithmic version of Sperner’s Lemma.

A direct reduction proves challenging due to the discontinuous way in which the allocation of

an item varies with pacing multipliers: In a pacing equilibrium, an item can only be assigned

to buyers whose bids are exactly equal to the highest bid. Similar issues were encountered in

PPAD-membership proofs for market equilibrium computation [VY11]. For this reason, we start

by proving the PPAD-membership of finding approximate pacing equilibria, in which items can be

allocated smoothly. Then we bootstrap this result to show the PPAD-membership of exact pacing

equilibrium.

1.2.3 Chapter 6: Throttling Equilibria in Auction Markets

Hitherto, our focus was on pacing. In Chapter 2 and Chapter 3, we develop algorithms that

implemented pacing as a method of budget management, and in Chapter 4 and Chapter 5, we

analyze pacing-based equilibria. This focus is well-motivated from (i) a theoretical standpoint:

pacing-based algorithms obtain optimal performance guarantees in a variety of environments, and

(i) a practical standpoint: it is a popular method of budget management deployed in practice [FG].

However, despite the appealing theoretical and practical properties, budget management is not

limited to pacing, and consequently neither is this thesis. In particular, we also analyze throttling,

which is another popular method of budget management used in practice.
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Unlike pacing, which controls expenditure by multiplicatively shading the value of the adver-

tiser to determine the bid, throttling controls spending by modulating the probability with which

an advertiser participates in auctions. In contrast to other budget-management methods like pac-

ing, throttling does not modify the bids of the advertisers to achieve this, which is essential for

advertisers aiming to maintain a stable cost-per-opportunity [FG]. Additionally, in practice, many

advertisers do not opt into budget-management services that modify their bids, forcing the plat-

form to satisfy their budget constraint by only controlling their participation probability, as in

throttling [KMS13]. Importantly, throttling also gives advertisers a more representative sample

of users for which they are eligible and their bid is competitive [KMS13]. This is in contrast

to budget-management approaches that modify bids, such as pacing, which biases the allocation

towards users where the advertiser has a high probability of getting a click, relative to other adver-

tisers. Many advertisers place a premium on the predictability and representative samples offered

by unmodified bids, motivating the platforms to offer throttling as a budget-management option.

Consider a market in which all of the advertisers use throttling to manage their budgets, with

each advertiser attempting to maximize their utility subject to budget constraints using throttling-

based strategies. Like pacing, this strategic interaction of advertisers brings up many natural ques-

tions:

Do throttling-based equilibria always exist? If so, are they unique? Can they be

computed in polynomial time? What is the impact of the auction format? How does

throttling compare to pacing?

We define a throttling game with budget-constrained buyers (advertisers) and stochastic good

types (user types), in which each buyer chooses the probability with which she participates in the

auction, with the goal of maximizing her expected utility while satisfying her budget constraint in

expectation. Repeated play of this throttling game captures the repeated online ad auction setting in

which each buyer employs throttling to manage their budget. Furthermore, we define the concept

of throttling equilibrium for this game, show its equivalence to pure strategy Nash equilibrium, and

analyze it with an emphasis on its structural and computational properties.
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Our Results. For first-price auctions, we show that a unique equilibrium always exists, is well-

behaved and can be computed efficiently via tâtonnement-style decentralized dynamics. In con-

trast, for second-price auctions, we prove that even though an equilibrium always exists, the prob-

lem of finding even an approximate equilibrium is PPAD-complete, there can be multiple equi-

libria, and it is NP-hard to find the revenue maximizing one. We also compare the equilibrium

outcomes of throttling to those of pacing, which is the other most popular and well-studied method

of budget management. Finally, we characterize the Price of Anarchy of these equilibria for liquid

welfare by showing that it is at most 2 for both first-price and second-price auctions, and demon-

strating that our bound is tight.

Key Insights. Our results on throttling reinforce what the analysis of pacing suggested: budget

management is computationally intractable for second-price auctions. In contrast, throttling equi-

libria in first-price auctions are extremely well-behaved, both computationally and structurally.

Intuitively, this difference stems from the locus of control for expenditure in the two auctions for-

mats: in second-price auctions, competing advertisers determine the payment, whereas the adver-

tiser’s own bid determines the payment in first-price auctions. The similarities between throttling

and pacing go beyond computational properties; both yield similar revenue in first-price auctions

and lead to the same price of anarchy bounds for liquid welfare.

Practical Implications. Given the failure of pacing-based algorithms to always converge in

second-price auctions, one might look to other methods of budget management to get such a prop-

erty. The search for such a method will have to go beyond throttling as well. In contrast, we show

that simple tâtonnement-style algorithms for throttling exhibit fast convergence to equilibrium in

first-price auctions. Thus, if advertisers use such algorithms, then one can reasonably assume that

the market is at equilibrium while performing inference and experiments.

Technical Contributions. We prove that the problem of computing approximate throttling equi-

libria is PPAD-hard for second-price auctions, even when each good has at most three bids (The-
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orem 18), by showing a reduction from the PPAD-hard problem of computing an approximate

equilibrium of a threshold game [PP21]. Furthermore, we place the problem of computing approx-

imate throttling equilibria in the class PPAD by showing a reduction to the problem of finding a

Brouwer fixed point of a Lipschitz mapping from a unit hypercube to itself (Theorem 20); the latter

is known to be in PPAD via Sperner’s lemma. We provide additional evidence of the computational

challenges that afflict throttling for second-price auctions by proving the NP-hardness of finding

a revenue-maximizing approximate throttling equilibrium (Theorem 21). We complement these

hardness results by describing a polynomial-time algorithm for computing throttling equilibria for

the special case in which there are at most two bids on each good (Algorithm 7), thereby precisely

delineating the boundary of tractability. On the other hand, for first-price auctions, we show that

payment is non-decreasing in the advertiser’s own participation probability and non-increasing in

competing advertiser’s participation probabilities. This allows us show that our algorithm, which

increases/decreases the participation probability in response to underspending/overspending, con-

verges to an approximate equilibrium in polynomial time.

1.3 Related Work

Our work lies at the intersection of many major streams of literature. Broadly, the related

literature can be categorized into two categories depending on whether their focus is on analyzing

online learning algorithms or equilibrium outcomes. Our goal here is not to provide an all-inclusive

survey, but to discuss works that are most closely related to ours.

1.3.1 Online Algorithms for Resource Allocation

[BG19] study budget pacing in repeated second-price auctions when the values and competing

bids are either i.i.d. according to some unknown distribution or adversarially selected. They pro-

pose and analyze Dual Gradient Descent with the constant target sequence, i.e., it always targets

𝐵/𝑇 for all 𝑡 ∈ [𝑇]. They show that it attains the optimal regret of𝑂(
√
𝑇) in the i.i.d. stochastic set-

ting, and the optimal parameter-dependent asymptotic competitive ratio (equal to ratio of the per-
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period budget to the maximum value) in the adversarial setting. [ZCL08] also study the adversarial

setting and provide a pacing-based algorithm that achieves a differently-parameterized competitive

ratio which scales as the logarithm of the ratio of the highest-to-lowest return-on-investment, and

show that it is optimal. [KMS22] study an episodic setting and provide a density-estimation-based

algorithm for learning the target expenditures for each episode. [Gai+22] study the performance of

the algorithm of [BG19] for the different objective of value maximization, and against the different

benchmark comprised of pacing multipliers which spend the same amount 𝐵/𝑇 at each time period;

they show that that it achieves 𝑂(𝑇3/4) regret. Moreover, when all of the buyers employ [BG19] to

bid, they show that the price of anarchy of liquid welfare is at most 2 even if the algorithms do not

converge to equilibrium. [FT23] study first-price auctions and prove price of anarchy bounds that

similarly do not require convergence to equilibrium. [Luc+23] extend the work of [Gai+22] to the

setting with bandit feedback and an additional ROI constraint. In comparison, our price of anarchy

bounds hold only at equilibrium and are independent of the algorithm being used by each of the

buyers. Recently, [Wan+23; CCK23] studied bidding in repeated first-price auctions under global

budget constraints, and developed primal-dual-style algorithms that achieve good guarantees in

stationary stochastic environments.

More generally, budget pacing in second-price auctions is a special case of online linear pack-

ing, which in turn is a special case of the online resource allocation problem. Both these problems

allow for multiple resources and have been studied extensively; we only provide a broad overview

here. For the most part, these problems have also been studied in the i.i.d. stochastic model, or

the slightly more general random arrival model (requests are selected by an adversary but arrive in

a uniformly random order). [DH09] and [Fel+10] study online linear packing under the random

arrival model, and show that learning the dual from the initial requests and then using it to make

decisions yields 𝑂(𝑇2/3) regret. [AWY14] extended these results to show that repeatedly solv-

ing for the dual at geometrically increasing intervals yields the optimal 𝑂(
√
𝑇) regret. [Dev+11],

[GM16] and [Kes+14] also achieve 𝑂(
√
𝑇) regret but with a better dependence on the constants

and the number of resources. [Dev+11] also achieve 𝑂(
√
𝑇) regret when the environment is non-
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stationary and the optimal expected reward for each distribution is known in advance. However,

this quantity cannot be computed with a single sample for non-trivial distributions, and they do

not provide guarantees for the sample-access setting. Recently, [JLZ20] initiated the study non-

stationary linear packing with access to historical samples, but require 𝑂(𝑇 log𝑇) samples per

distribution (essentially complete knowledge of the distribution) to achieve 𝑂(
√
𝑇) regret.

[AD14] study online resource allocation with concave rewards and convex constraints, and give

a dual-descent-based algorithm that achieves 𝑂(
√
𝑇) regret. [BLM23] give a Dual Mirror Descent

algorithm which attempts to spend 𝐵/𝑇 at each time step and show that it achieves 𝑂(
√
𝑇) regret

for the general online allocation problem. Their results also hold for stochastic models that are

close to i.i.d. like periodic, ergodic etc.

Another line of work develops algorithms that beat 𝑂(
√
𝑇) regret when the problem instance is

well-structured (see the recent work of [BKK22] for a discussion). With the exception of [BGV20]

and [BF20], all of these works assume complete knowledge of the distributions and/or assume that

the distributions are identical. When the number of requests of each type satisfies a concentration

property between the trace and the actual requests, [BGV20] and [BF20] show that a constant regret

can be achieved for online resource allocation using one sample per distribution. For the budget

pacing problem, a type corresponds to a value and competing bid pair. Since complex machine-

learning models are typically used to estimate advertiser values to a high precision, this translates

to an extremely large number of possible types. Far from concentrating, these large number of

types imply that one is unlikely to even observe a type more than once, making their primal-

based method ineffective for budget pacing. Moreover, neither [BGV20] nor [BF20] provide any

robustness guarantees for possible discrepancies between the sampling and true distributions, and

their algorithm requires knowledge of the competing bid. Finally, our results are meaningful when

the budget is much larger than the maximum amount one can spend on an auction/request, as is

the case for budget pacing. In contrast, the literature on prophet inequalities considers a unit-

cost variable-reward online allocation problem where the budget is only large enough to accept

one request. See [AKW14; Cor+19; RWW20; Car+22] for a sample-driven treatment of prophet
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inequalities.

There is also a line of work studying online allocation problems when requests are adversari-

ally chosen. Naturally, the fully-adversarial model subsumes our input model, in which requests

are drawn i.i.d. from an unknown distribution and the horizon is uncertain. Therefore, guarantees

for adversarial algorithms carry over to our setting. We remark, however, that it is not possible to

obtain bounded competitive ratio for the general online allocation problem (see, e.g., [Fel+09]).

Notable exceptions are online matching [KVV90], the AdWords problem [Meh+07], or personal-

ized assortment optimization [GNR14], which are linear problems in which rewards are propor-

tional to resource consumption. When rewards are not proportional to resource consumption, there

is a stream of literature studying algorithms with parametric competitive ratios. These competitive

ratios either depend on the range of rewards (see, e.g., [BQ09; MSL20]) or the ratio of budget to

resource consumption (see, e.g., [BLM23]).

Finally, a few very recent papers warrant attention, all of which allow for horizon uncertainty

but assume that the distribution of the horizon is known in advance. [Bru+19] study a generaliza-

tion of online bipartite matching which accounts for ranked preferences over the offline vertices

under a variety of input models. They show that a constant competitive ratio cannot be attained

under stationary stochastic input when the horizon is completely unknown and use it to justify

the known-horizon assumption. Our impossibility result (Theorem 6) establishes a parametrized

upper bound on the competitive ratio in terms of the uncertainty 𝜏2/𝜏1 and implies their result

as a special case when 𝜏2/𝜏1 → ∞. [Ali+20] study the multi-unit prophet-inequality problem in

which the resource is perishable, with each unit of the resource exiting the system independently

at some time whose distribution is known to the decision maker. When there is one unit of the

resource, their model captures horizon uncertainty in the prophet-inequality problem, which is a

special case of online resource allocation. Importantly, when there is more than one unit, our mod-

els are incomparable. For the single-unit special case, they prove a parameterized upper bound of

�̃�
(
ln(𝜏2/𝜏1)−1) on the competitive ratio. In contrast, our upper bound (Theorem 6) holds for the

more general regime where the initial resource endowment (number of units of the resource) scales
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linearly with the horizon and the action space is continuous. This is crucial since the performance

guarantees of algorithms for online resource allocation with known-horizon often only hold in this

regime [BLM23; Meh+07; TVR04], thereby making the single-unit upper bound inapplicable.

[Bai+22] develop a fluid approximation to the dynamic-programming solution for network

revenue management when both the distribution of the request and the horizon are completely

known. They show that the asymptotically-tight fluid approximation should attempt to respect the

resource constraint for all possible horizon values and not in expectation over the horizon. [AM22]

consider a model for network revenue management in which the distribution of the horizon is

known and each type of request follows an adversarial or random-order arrival pattern. They also

show that the fluid LP relaxation based on the expected value of the horizon can be arbitrarily bad

and develop tighter LP relaxations. We do not assume that the type of requests, the distribution of

requests or the distribution of the horizon are known ahead of time, and use the hindsight optimal

allocation as the benchmark, making our results incomparable even for the special case of network

revenue management.

1.3.2 Equilibria in Budget Management Systems

[BBW15] studied budget management in second-price auctions using a fluid mean-field model,

and showed that in this model existence is guaranteed, and closed-form solutions for equilibria are

derived for certain settings. [Bal+21] analyze several different methods for budget management

in second-price auctions, including pacing and throttling, and showed existence results for their

setting, as well as other analytical and numerical properties. [Con+18] define and study pacing

equilibria in second-price auctions. They show that it always exists and study its structural prop-

erties. [Con+19] studied the model of [Con+18], but with each auction using a first-price rule.

There, pacing equilibrium no longer constitutes best responses, but instead has a market equilib-

rium interpretation. In the first-price setting, pacing equilibria turn out to be easy to compute, due

to a direct relationship to market equilibria. Moreover, for first-price auctions, [Bor+07] describe

a simple tâtonnement-style dynamics and prove its efficient convergence to a pacing equilibrium.
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They conjectured a similar convergence for second-price auctions, which we disprove. [Bab+20]

studied non-quasi-linear agents participating in mechanisms designed for quasi-linear agents. They

studied a generalization of budget constraints where agents have a concave disutility in payment,

and showed that a Nash equilibria exists which employs multiplicative scaling.

Another direction of research considers buyers with ex-post budget constraints (also called

strict budget constraints). There, first price [Kot20], standard auctions [CG98], optimal auc-

tions [PV14], and auctions with combinatorial constraints [GML15] have been studied. In contrast

to our revenue equivalence results, [CG98] show that with strict budget constraints first-price auc-

tions yield higher revenue than second-price auctions. These models are different from our setting

which only requires budget constraints to hold in expectation at the interim stage. In-expectation

budget constraints are more appropriate for modeling repeated ad auctions, and yield simpler and

more interpretable equilibrium strategies.

Throttling has also received significant attention in other lines of research. [Aga+14] study

throttling in generalized second-price (GSP) auctions from the perspective of a single buyer, pro-

vide an algorithm which determines the participation probability based on user traffic forecasts,

and analyze its performance empirically on real data from LinkedIn. Similarly, [Xu+15] provide

and empirically evaluate practical algorithms for throttling on data from demand-side platforms.

[KMS13] use throttling (under the name Vanilla Probabilistic Throttling) as the benchmark in the

GSP auction setting to evaluate the budget management algorithm they describe on data from

Google, and find that it empirically outperforms throttling on the metrics they study. Importantly,

they do not engage in an equilibrium analysis, and their algorithm does not provide a representative

sample of the traffic to advertisers. There is also a significant body of work which proposes alter-

natives to pacing and throttling methods. [Cha+13] study regret-free budget-smoothing policies in

which the platform selects the random subset of buyers that participate in the GSP auction for each

good. They show that such policies always exist, and, under the small-bids assumption, give an

efficient algorithm for the special case of second-price auctions.
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Chapter 2: Robust Budget Pacing with a Single Sample

Based on the publication [Bal+23] co-authored with Santiago Balseiro, Vahab Mirrokni,

Balasubramanian Sivan and Di Wang.

Motivated by the online advertising industry, this chapter studies the non-stationary stochas-

tic budget management problem: an advertiser repeatedly participates in 𝑇 second-price auctions,

where her value and the highest competing bid are drawn from unknown time-varying distribu-

tions, with the goal of maximizing her total utility subject to her budget constraint. In the absence

of any information about the distributions, it is known that sub-linear regret cannot be achieved.

We assume access to historical samples, with the goal of developing algorithms that are robust to

discrepancies between the sampling distributions and the true distributions. In Section 2.2, we first

show the sufficiency of a single sample per distribution to obtain �̃�(
√
𝑇) regret. We do so via a sim-

ple "Learning the Dual and Earning with It" approach that learns a fixed dual multiplier from histor-

ical samples and then uses it to pace (multiplicatively shade) the value for bidding. However, this

algorithm turns out to be extremely brittle to distribution shifts between the sampling distributions

and the true distributions. In Section 2.3, we propose the Dual Follow-The-Regularized-Leader

(FTRL) algorithm and prove our main result: we show that Dual FTRL is robust to distribution

shifts and achieves a near-optimal �̃�(
√
𝑇)-regret with just one sample per distribution, drastically

improving over the best-known sample-complexity of 𝑇 samples per distribution. For ease of ex-

position, we prove our results for the more general single-resource online allocation problem with

linear rewards/consumptions. It is well-known that bidding in repeated second-price auctions with

budgets can be modelled as an instance of this online allocation problem (e.g., see [BLM23]); we

provide a formal reduction in Section 2.4 for completeness.
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2.1 Model

Notation. We use R+ and R++ to denote the set of non-negative real numbers and the set of

positive real numbers respectively. For 𝑛 ∈ N, we use [𝑛] = {1, . . . , 𝑛} to denote the set of positive

integers less than or equal to 𝑛. We useW(·, ·) to denote the Wasserstein distance between two

distributions under the metric with which the sample space is endowed.

Online Allocation with a Single Resource and Budget Management. For ease of exposition,

we will prove our results for the more general single-resource online allocation problem with

linear rewards/consumptions. It is well-known that bidding in repeated second-price auctions with

budgets can be modeled as an instance of this online allocation problem (e.g., see [BLM23], or

Section 2.4). It also captures the stochastic multi-secretary problem [AG19] as a special case.

Consider a decision maker with an initial budget 𝐵 ∈ R++ of a resource, whose goal is to

optimally spend it on 𝑇 sequentially arriving requests. Each request 𝛾 = ( 𝑓 , 𝑏) is comprised of a

linear reward function 𝑓 : X → R+ such that 𝑓 (𝑥) = coeff( 𝑓 ) ·𝑥, and a linear resource consumption

function 𝑏 : X → R+ such that 𝑏(𝑥) = coeff(𝑏) · 𝑥; where X ⊆ R+ is a compact set which denotes

the space of possible actions of the decision maker. We will use S to denote the set of all possible

requests and Δ(𝑆) to denote the set of distributions over S. Moreover, we endow S with the

following metric 𝑑(·, ·): For any two requests 𝛾 = ( 𝑓 , 𝑏) and �̃� = ( 𝑓 , �̃�):

𝑑(𝛾, �̃�) = sup
𝑥∈X

�� 𝑓 (𝑥) − 𝑓 (𝑥)
�� + sup

𝑥∈X

��𝑏(𝑥) − �̃�(𝑥)
�� .

We will assume that 0 ∈ X. This allows the decision maker to avoid spending the resource

if she so chooses and ensures feasibility. Moreover, let 𝑥 = max𝑥∈X 𝑥. We will make standard

regularity assumptions [JLZ20; BLM23]: there exist 𝑓 , �̄� ∈ R+ such that 𝑓 (𝑥) ≤ 𝑓 and 𝑏(𝑥) ≤ �̄�

for all 𝑥 ∈ X. Like [JLZ20], we will also assume that there exists 𝜅 ∈ R+ such that 𝑓 (𝑥) ≤ 𝜅 · 𝑏(𝑥)

for all 𝑥 ∈ X, i.e., the maximum rate of return from spending the resource is bounded above by 𝜅.

At time 𝑡 ∈ [𝑇], the following sequence of events takes place: (i) a request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡) arrives;

(ii) the decision maker observes 𝛾𝑡 and chooses an action 𝑥𝑡 ∈ X based on the information observed
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so far; (iii) the request consumes 𝑏𝑡(𝑥𝑡) amount of the resource and generates a reward of 𝑓𝑡(𝑥𝑡). The

decision maker aims to maximize her rewards subject to her budget constraint. A policy {𝑥𝑡(·)}𝑡

for the decision maker maps requests to actions 𝑥𝑡 : S → X based on the available information at

each time step, i.e., the action 𝑥𝑡(𝛾𝑡) at time 𝑡 ∈ [𝑇] can depend on the historical requests {𝛾𝑠}𝑡−1
𝑠=1

and the current request 𝛾𝑡 , but not the future requests {𝛾𝑠}𝑇𝑠=𝑡+1. Moreover, a policy is said to

be budget-feasible if it respects the budget constraint by ensuring
∑𝑇
𝑡=1 𝑏𝑡(𝑥𝑡(𝛾𝑡)) ≤ 𝐵 for every

sequence {𝛾𝑡}𝑡 .

The request 𝛾𝑡 at time 𝑡 is drawn from a distribution P𝑡 ∈ Δ(S) unknown to the decision

maker, independently of the requests at other time steps. We only require the requests {𝛾𝑡}𝑡 to be

independent and allow the distributions P𝑡 to vary arbitrarily across time. We will measure the

performance of a policy against the fluid-optimal benchmark, which is defined as:

FLUID({P𝑡}𝑡) B max
𝑇∑︁
𝑡=1
E[ 𝑓𝑡(𝑥𝑡(𝛾𝑡))]

s.t.
𝑇∑︁
𝑡=1
E[𝑏𝑡(𝑥𝑡(𝛾𝑡))] ≤ 𝐵

𝑥𝑡 : S → X ∀ 𝑡 ∈ [𝑇] .

Another benchmark common in the literature on online resource allocation is the expected

hindsight optimal solution, which is defined as E[OPT({𝛾𝑡}𝑡)] for

OPT({𝛾𝑡}𝑡) B max
𝑥∈X𝑇

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) s.t.
𝑇∑︁
𝑡=1

𝑏𝑡(𝑥𝑡) ≤ 𝐵 .

It is well-known that FLUID({P𝑡}) ≥ E[OPT({𝛾𝑡}𝑡)], which makes our benchmark the stronger

one (we provide a proof in Appendix A.1 for completeness). Hence, our performance guarantees

relative to the fluid-optimal benchmark also imply the same guarantees for the expected hindsight-

optimal benchmark.

More concretely, we use 𝑅(𝐴|{𝛾𝑡}𝑡) to denote the total reward of a policy 𝐴 on the request

sequence {𝛾𝑡}𝑡 , and the performance of an algorithm is measured using its expected regret against
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the fluid-optimal reward:

Regret(𝐴) B FLUID({P𝑡}𝑡) − E [𝑅(𝐴|{𝛾𝑡}𝑡)] .

Now, if the distributions {P𝑡}𝑡 are unknown and arbitrary, and no other information about {P𝑡}𝑡

is available, then the requests {𝛾𝑡}𝑡 can be adversarial. This case has been addressed in [BLM23],

where the authors showed no policy can achieve sub-linear regret. In this work, we address the

setting in which the decision maker has additional information in the form of historical samples.

In particular, we focus on the setting where the decision maker has access to one independent

sample �̃�𝑡 ∼ P̃𝑡 for each 𝑡 ∈ [𝑇]. We will assume that the {�̃�𝑡} samples are independent of the

request sequence {𝛾𝑡}𝑡 and {P̃𝑡} are not known to the decision maker. We will show that when the

sampling distributions {P̃𝑡}𝑡 are not too far from the actual distributions {P𝑡}𝑡 , which is a minimal

relaxation over the adversarial setting, it is possible to achieve sub-linear regret. We refer to the

collection of samples {�̃�𝑡}𝑡 as a trace and allow the actions of the decision-maker to depend on

it. Throughout this chapter, we will use {�̃�𝑡}𝑡 to denote the trace and {𝛾𝑡}𝑡 to denote the (random)

sequence of requests on which the decision maker wishes to maximize reward.

2.2 Warmup: Learning the Dual and Earning with It

First, let us focus on the simpler case when P̃𝑡 = P𝑡 for all 𝑡 ∈ [𝑇], i.e., the sampling distribu-

tions are the same as the request distributions. At first glance, it may appear that only having access

to one sample from each of request distributions P𝑡 yields too little information to achieve near-

optimal rewards. If one were to attempt to directly learn the optimal solution of FLUID({P𝑡}𝑡),

this initial impression would be accurate because of the high-dimensional nature of the space of all

possible solutions {𝑥𝑡(·)}𝑡 . Fortunately, we do not need to learn this high-dimensional information

and can instead leverage the structure of the problem: the dual space is just one-dimensional and

thereby amenable to learning. More precisely, the dual function 𝐷(𝜇 |{P𝑡}𝑡) of FLUID({P𝑡}𝑡) at

dual variable 𝜇 ≥ 0 is given by
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max
{𝑥𝑡 (·)}𝑡

𝑇∑︁
𝑡=1
E[ 𝑓𝑡 (𝑥𝑡 (𝛾𝑡 ))] + 𝜇

(
𝐵 −

𝑇∑︁
𝑡=1
E[𝑏𝑡 (𝑥𝑡 (𝛾𝑡 ))]

)
= 𝜇 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥𝑡 :S→X

E [ 𝑓𝑡 (𝑥𝑡 (𝛾𝑡 )) − 𝜇 · 𝑏𝑡 (𝑥𝑡 (𝛾𝑡 ))]

= 𝜇 · 𝐵 +
𝑇∑︁
𝑡=1
E

[
max
𝑥𝑡 ∈X
{ 𝑓𝑡 (𝑥𝑡 ) − 𝜇 · 𝑏𝑡 (𝑥𝑡 )}

]
.

Throughout, we assume argmax𝑥∈X { 𝑓 (𝑥) − 𝜇 · 𝑏(𝑥)} is non-empty for all requests 𝛾 ∈ S and

dual solutions 𝜇 ≥ 0. If we treat the dual variable 𝜇 as the per-unit price of the resource,

max𝑥𝑡∈X { 𝑓𝑡(𝑥𝑡) − 𝜇 · 𝑏𝑡(𝑥𝑡)} captures the profit maximization problem. The following terminol-

ogy would be helpful in working with the dual.

Definition 1. For a request 𝛾 = ( 𝑓 , 𝑏) and dual variable 𝜇 ≥ 0, let 𝑥∗(𝛾, 𝜇) be the optimal solution

of max𝑥∈X { 𝑓 (𝑥) − 𝜇 · 𝑏(𝑥)} with the largest value of 𝑓 (𝑥). If there are multiple such solutions,

pick one which minimizes 𝑏(𝑥). Moreover, let 𝑓 ∗(𝜇) B 𝑓 (𝑥∗(𝛾, 𝜇)) and 𝑏∗(𝜇) B 𝑏(𝑥∗(𝛾, 𝜇)) be the

corresponding reward and resource consumption respectively.

We denote 𝐷(𝜇 |{P𝑡}𝑡) = 𝜇 · 𝐵 + ∑𝑇
𝑡=1 E[ 𝑓 ∗𝑡 (𝜇) − 𝜇 · 𝑏∗𝑡 (𝜇)]. Throughout this chapter, we will

repeatedly leverage weak duality, which is a central property of duals. We state the property here

and refer the reader to any standard text on convex optimization (e.g., [Ber09]) for a proof.

Proposition 1 (Weak Duality). For all request distributions {P𝑡}𝑡 and dual variables 𝜇 ≥ 0, we

have 𝐷(𝜇 |{P𝑡}𝑡) ≥ FLUID({P𝑡}𝑡), i.e.,

𝑇∑︁
𝑡=1
E[ 𝑓 ∗𝑡 (𝜇)] ≥ FLUID({P𝑡 }𝑡 ) − 𝜇 ·

(
𝐵 −

𝑇∑︁
𝑡=1
E[𝑏∗𝑡 (𝜇)]

)
.

Observe that
∑𝑇
𝑡=1 E[ 𝑓 ∗𝑡 (𝜇)] is exactly the expected reward the decision maker would receive

if she had an infinite budget and she took actions which maximized profit with 𝜇 being the per-

unit price of the resource. Moreover, 𝐵 − ∑𝑇
𝑡=1 E[𝑏∗𝑡 (𝜇)] is the amount by which the decision

maker would underspend her budget in expectation if she were to take actions using 𝜇 as the price.
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Suppose we can find a dual variable 𝜇 ≥ 0 that satisfies approximate complementary slackness,

i.e., 𝜇 satisfies at least one of the following statements: (1) 𝜇 = 0 and maximizing profit with 𝜇

as the per-unit price results in total expenditure less than the budget 𝐵 (
∑𝑇
𝑡=1 𝑏

∗
𝑡 (𝜇) ≤ 𝐵) with high

probability; (2) 𝜇 > 0 and maximizing profit with 𝜇 as the per-unit price results in total expenditure

close to the budget 𝐵 (
∑𝑇
𝑡=1 𝑏

∗
𝑡 (𝜇) ≈ 𝐵) with high probability. Then, if the decision maker were to

use 𝜇 as the price and make decisions to maximize profit, she will not run out of budget too early

and the complementary slackness term 𝜇 ·
(
𝐵 −∑𝑇

𝑡=1 E[𝑏∗𝑡 (𝜇)]
)

would also be small. Therefore,

such a 𝜇 would yield rewards that are close to FLUID({P𝑡}𝑡), i.e., yield small regret, as required.

We next describe how such a 𝜇 can be learned from the sample trace {�̃�𝑡} when P̃𝑡 = P𝑡 for all

𝑡 ∈ [𝑇]. We will assume that the distributions satisfy the following mild and standard assumption

[DH09; AWY14] to exclude the degenerate case.

Assumption 1 (General Position). The request sequence {𝛾𝑡}𝑡 ∼
∏
𝑡 P𝑡 is in general position

almost surely: For any 𝜇 ≥ 0, there is at most one request with multiple profit maximizers, i.e.,

��{𝑡 ∈ [𝑇] : |argmax𝑥∈X { 𝑓𝑡(𝑥) − 𝜇 · 𝑏𝑡(𝑥)} |> 1
}�� ≤ 1 .

Moreover, the sample trace {�̃�𝑡}𝑡 ∼
∏
𝑡 P̃𝑡 is also in general position almost surely.

Assumption 1 is made without any loss of generality because, as pointed out in [DH09] and

[AWY14], adding an infinitesimally-small perturbation to the reward functions always results in

perturbed distributions that satisfy Assumption 1 with only an infinitesimal change in the value of

FLUID({P𝑡}𝑡) (see Appendix A.2 for a formal description). Assumption 1 ensures that there exists

a dual solution �̃� ≥ 0 which spends close to the budget 𝐵 on the trace {�̃�𝑡}𝑡 if it is possible to do so.

In fact, as the following lemma shows, the optimal empirical dual solution satisfies this property.

Lemma 1. Suppose the trace {�̃�}𝑡 ∼
∏
𝑡 P̃𝑡 is in general position, and consider

�̃� ∈ argmin𝜇≥0

{
𝜇 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}}
.
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Algorithm 1: Learning the Dual and Earning with It
Input: Trace {�̃�𝑡} ∼

∏
𝑡 P̃𝑡 , initial budget 𝐵1 = 𝐵.

Compute an Optimal Empirical Dual Solution:

�̃� ∈ argmin𝜇≥0

{
𝜇 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡 (𝑥) − 𝜇 · �̃�𝑡 (𝑥)

}}
(2.1)

for 𝑡 = 1, . . . , 𝑇 do
Receive request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡) ∼ P𝑡 .
Make the primal decision 𝑥𝑡 and update the remaining resources 𝐵𝑡 :

𝑥′𝑡 ∈ argmax𝑥∈X { 𝑓𝑡 (𝑥) − �̃� · 𝑏𝑡 (𝑥)} ,

𝑥𝑡 =

{
𝑥′𝑡 if 𝑏𝑡 (𝑥′𝑡 ) ≤ 𝐵𝑡

0 otherwise
,

𝐵𝑡+1 = 𝐵𝑡 − 𝑏𝑡 (𝑥𝑡 ).

end

Then, at least one of the following statements holds:

1. �̃� = 0 and
∑𝑇
𝑡=1 �̃�

∗
𝑡 (�̃�) ≤ 𝐵 + �̄�.

2.
��𝐵 −∑𝑇

𝑡=1 �̃�
∗
𝑡 (�̃�)

�� ≤ �̄�.

Recall that weak duality (Proposition 1) suggests that finding a dual solution which satis-

fies approximate complementary slackness with high probability would yield reward close to

FLUID({P𝑡}). Lemma 1 states that we can compute a dual variable �̃� which satisfies approximate

complementary slackness on the trace. To finish the argument, we require a uniform convergence

bound which shows that expenditure on the trace (or the sequence of requests) is concentrated

close to the expected expenditure for all dual variables 𝜇 ≥ 0.

Theorem 1. For 𝑟(𝑇) B 8�̄� ·
√︁
𝑇 log(𝑇) and request distributions {P̃𝑡}𝑡 , the following uniform

convergence bound holds

Pr

(
sup
𝜇≥0

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (𝜇) −
𝑇∑︁
𝑡=1
E�̂�𝑡∼P̃𝑡

[
�̂�∗𝑡 (𝜇)

] ����� ≥ 𝑟(𝑇)

)
≤ 1
𝑇2 .
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With Theorem 1 in hand, we are now ready to state and prove the regret guarantee for Algo-

rithm 1. It first learns an empirical optimal dual variable �̃� from the trace {�̃�𝑡}𝑡 , and then uses it as

the per-unit price of the resource to take profit-maximizing actions on the request sequence {𝛾𝑡}𝑡 .

Theorem 2. If P𝑡 = P̃𝑡 for all 𝑡 ∈ [𝑇], then Algorithm 1 (denoted by 𝐴) satisfies Regret(𝐴) ≤

12𝜅�̄� + 2𝜅𝑟(𝑇).

[AG19] showed that every algorithm must incur a regret of Ω(
√
𝑇), even when the request

distributions are identical (i.e., P𝑡 = P for all 𝑡 ∈ [𝑇]) and known to the decision-maker ahead of

time. Thus, Theorem 2 shows the regret of Algorithm 1 achieves a near-optimal dependence on

𝑇 with just a single sample per distribution, despite the request distributions being unknown and

time-varying. However, as the following example demonstrates, this regret bound critically relies

on the assumption that P𝑡 = P̃𝑡 for all 𝑡 ∈ [𝑇], and is fragile to even slight deviations from it. This

fact was also demonstrated in [JLZ20] in a related context which inspired the following example.

Example 1. Fix a small 𝜖 > 0, an even horizon 𝑇 and budget 𝐵 = 𝑇/2. Assume actions are

accept/reject decisions, i.e., X = {0, 1}, and the reward/resource consumption functions are linear

with coeff(𝑏) = 1 for all 𝛾 = ( 𝑓 , 𝑏) ∈ S. In this setting, a request is completely determined by

the coefficient coeff( 𝑓 ) of its reward function. We will overload notation and use 𝛾 to denote this

coefficient. Set P̃𝑡 = Unif ([1 + 𝜖, 1 + 2𝜖]) for all 𝑡 ≤ 𝑇/2 + 1 and P̃𝑡 = Unif ([1 − 𝜖, 1]) for

all 𝑡 ≥ 𝑇/2 + 2. Moreover, set P𝑡 = Unif ([1 − 𝜖, 1]) for all 𝑡 ∈ [𝑇]. Then, it is easy to see that

W(P𝑡 , P̃𝑡) ≤ 3𝜖 for all 𝑡 ∈ [𝑇]. Also, observe that any trace {�̃�𝑡}𝑡 ∼
∏
𝑡 P̃𝑡 would satisfy �̃�𝑡 ≥ 1+𝜖

for all 𝑡 ≤ 𝑇/2 + 1 and �̃�𝑡 ≤ 1 for all 𝑡 ≥ 𝑇/2 + 2. Hence, we always have �̃� ≥ 1 + 𝜖 . On the other

hand, we also always have 𝛾𝑡 ≤ 1 for all 𝑡 ∈ [𝑇]. Therefore, Algorithm 1 sets 𝑥′𝑡 = 0 for all 𝑡 ∈ [𝑇],

yielding a reward of 0. Whereas, FLUID({P𝑡}𝑡) ≥ (1− 𝜖) · (𝑇/2), thereby making the regret linear

in 𝑇 .

Since 𝜖 > 0 was arbitrary in the above example, it shows that even infinitesimally-small dif-

ferences between the sampling and request distributions can lead to linear regret for Algorithm 1.

This is antithetical to our goal of developing robust online algorithms for pacing. Formally, we
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would like to develop online algorithms that achieve regret which is small and degrades smoothly

as
∑𝑇
𝑡=1W(P𝑡 , P̃𝑡) grows large. Nonetheless, although Algorithm 1 falls short of this goal, it high-

lights the power of dual-based algorithms. Building on the intuition developed in this section,

we next describe and analyze a Dual FTRL algorithm that achieves near-optimal regret while be-

ing robust to discrepancies between the sampling distributions {P̃𝑡}𝑡 and the request distributions

{P𝑡}𝑡 .

2.3 Dual FTRL with Target Rate Estimation

In this section, we will develop an algorithm based on Dual Follow-The-Regularized-Leader

(FTRL) that achieves near-optimal regret with a single trace, and is robust to discrepancies between

the sampling distributions and request distributions. Now, if one had complete knowledge of the

sampling distributions {P̃𝑡}𝑡 , then one can solve FLUID({P̃𝑡}𝑡) to find an optimal solution and run

Dual Gradient Descent with the goal of spending the same as the optimal solution at each time step.

It is known from [JLZ20] that this approach achieves𝑂(max{
√
𝑇,

∑𝑇
𝑡=1W(P̃𝑡 ,P𝑡)}) regret, thereby

making it rate optimal and robust to discrepancies. However, with just a single sample from each

of distributions P̃𝑡 , we are far from having complete knowledge of {P̃𝑡}𝑡 . Despite this apparent

lack of data, a careful analysis of Dual FTRL will allow us to show that it achieves near-optimal

regret rate in a robust manner.

2.3.1 Dual Follow-The-Regularized-Leader

The non-stationarity of the request distributions necessitates the need for Dual FTRL that can

incorporate target resource consumptions (Algorithm 2). It takes as input a target sequence {𝜆𝑡}𝑇𝑡=1

which specifies 𝜆𝑡 ≥ 0 to be the amount of resource Dual FTRL should attempt to consume at time

𝑡. Moreover, like FTRL [SS+12; Haz+16], it also takes as input a regularizer ℎ(·), an initial dual

variable 𝜇1 and a step-size 𝜂. We will make the standard assumption that the regularizer ℎ(·) is

differentiable and is 𝜎-strongly convex in the ∥·∥1 norm.

Before stating the performance bound of Algorithm 2, we introduce some preliminaries. Given
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Algorithm 2: Dual Follow-The-Regularized-Leader
Input: Initial resource endowment 𝐵1 = 𝐵, target consumption sequence {𝜆𝑡}𝑇𝑡=1,
regularizer ℎ : R→ R and step-size 𝜂.
Set initial dual solution 𝜇1 = argmin𝜇∈[0,𝜅] ℎ(𝜇).
for 𝑡 = 1, . . . , 𝑇 do

Receive request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡) ∼ P𝑡 .
Make the primal decision 𝑥𝑡 and update the remaining resources 𝐵𝑡 :

𝑥′𝑡 ∈ argmax𝑥∈X𝑡 { 𝑓𝑡(𝑥) − 𝜇𝑡 · 𝑏𝑡(𝑥)} , (2.2)

𝑥𝑡 =

{
𝑥′𝑡 if 𝑏𝑡(𝑥′𝑡) ≤ 𝐵𝑡
0 otherwise

,

𝐵𝑡+1 = 𝐵𝑡 − 𝑏𝑡(𝑥𝑡).

Obtain a sample sub-gradient of the dual function 𝐷(𝜇 |P𝑡 , 𝜆𝑡): 𝑔𝑡 = 𝜆𝑡 − 𝑏𝑡(𝑥′𝑡).
Update the dual iterate with FTRL:

𝜇𝑡+1 = argmin𝜇∈[0,𝜅]

{
𝜂

𝑡∑︁
𝑟=1

𝑔𝑟 · 𝜇 + ℎ(𝜇)

}
, (2.3)

end

a budget of 𝛽𝑡 for period 𝑡 ∈ [𝑇], the optimal expected reward which can be collected in period 𝑡 is

captured by the following fluid optimization problem:

FLUID(P𝑡 , 𝛽𝑡) B max E[ 𝑓𝑡(𝑥𝑡(𝛾𝑡)]

s.t. E[𝑏𝑡(𝑥𝑡(𝛾𝑡))] ≤ 𝛽𝑡

𝑥𝑡 : S → X .

The dual function of FLUID(P𝑡 , 𝛽𝑡) is given by

𝐷(𝜇 |P𝑡 , 𝛽𝑡) B 𝜇 · 𝛽𝑡 + E
[
max
𝑥∈X
{ 𝑓𝑡(𝑥) − 𝜇 · 𝑏𝑡(𝑥)}

]
,

for any 𝜇 ≥ 0. Then, by weak duality, we have FLUID(P𝑡 , 𝛽𝑡) ≤ 𝐷(𝜇 |P𝑡 , 𝛽𝑡) for all 𝜇 ≥ 0.

Moreover, since dual functions are always convex (they are the suprema of linear functions), the

dual function 𝐷(·|P𝑡 , 𝛽𝑡) is convex.
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Theorem 3 states a general regret bound for Algorithm 2 with an arbitrary target sequence

{𝜆𝑡}𝑡 and against a general benchmark
∑𝑇
𝑡=1 𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡). Since FLUID(P𝑡 , 𝛽𝑡) ≤ 𝐷(𝜇 |P𝑡 , 𝛽𝑡)

by weak duality, Theorem 3 also characterizes the performance against the weaker benchmark∑𝑇
𝑡=1 FLUID(P𝑡 , 𝛽𝑡), which is simply the optimal expected reward the decision maker would collect

if she spent 𝛽𝑡 at time 𝑡.

Theorem 3. Consider Algorithm 2 with target consumption sequence {𝜆𝑡}𝑡 , regularizer ℎ(·) and

step-size 𝜂. Then, for a benchmark sequence {𝛽𝑡}𝑡 , we have

E

[{
𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡 )
}
− 𝑅(𝐴|{𝛾𝑡 }𝑡 )

]
≤ 𝑅1 + 𝑅2 + 𝑅3 ,

where

• 𝑅1 = 𝜅�̄� + 2(�̄�+�̄�)2

𝜎
· 𝜂𝑇 + 𝑑𝑅

𝜂
, for �̄� = max𝑡 𝜆𝑡 and 𝑑𝑅 = max{ℎ(0) − ℎ(𝜇1), ℎ(𝜅) − ℎ(𝜇1)}.

• 𝑅2 = 𝜅 ·
({∑𝑇

𝑡=1 𝜆𝑡
}
− 𝐵

)+,

• 𝑅3 = E
[∑𝑇

𝑡=1 𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡)
]
.

Theorem 3 decomposes the regret of Algorithm 2 into three terms, where (i) 𝑅1 is simply

the regret associated with the FTRL algorithm in the OCO setting [Haz+16]; (ii) 𝑅2 captures the

overspending error, which is large whenever the total target consumption
∑𝑇
𝑡=1 𝜆𝑡 is in excess of the

budget 𝐵; (iii) 𝑅3 captures the underestimation error, which is a weighted sum over the amounts by

which the target sequence {𝜆𝑡}𝑡 underestimates the benchmark sequence {𝛽𝑡}𝑡 , with weights equal

to the dual iterates 𝜇𝑡 . Observe that there is an inherent tension between the overspending error

𝑅2 and the underestimation error 𝑅3—𝑅2 can be made smaller by making the target consumptions

{𝜆𝑡}𝑡 smaller, but this in turn makes 𝑅3 bigger, and vice versa. To obtain the desired performance

guarantees for Algorithm 2 (see Theorem 4), we need to carefully choose the benchmark sequence

{𝛽𝑡}𝑡 and the target sequence {𝜆𝑡}𝑡 , which is what we do next (see (2.4)). We go on to show that

• Our choice of target sequence does not overspend too much. In particular, it satisfies 𝑅2 ≤

𝜅 · �̄� (see (2.5)).
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• Our choice of benchmark sequence {𝛽𝑡}𝑡 ensures

FLUID({P𝑡}𝑡) −
𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) ≤ �̃�
(
max

{
√
𝑇,

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡)

})

i.e., the benchmark in Theorem 3 is at most �̃�
(
max

{√
𝑇,

∑𝑇
𝑡=1W(P𝑡 , P̃𝑡)

})
larger than our

desired benchmark FLUID({P𝑡}𝑡) (see Lemma 2 and the discussion that follows).

• Moreover, our choice of the sequences in combination with an intricate argument, consisting

of a coupling lemma and a leave-one-out thought experiment, allows use to prove 𝑅3 =

𝑂(
√
𝑇) (see Subsection 2.3.3).

Finally in Subsection 2.3.4, we combine everything to prove the desired regret bound for Al-

gorithm 2.

2.3.2 Choosing the Target and Benchmark Sequences

We define the target and benchmark sequences using the empirical optimal dual solution com-

puted from the trace {�̃�𝑡}𝑡 :

�̃� ∈ argmin𝜇≥0

{
𝜇 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}}
.

If there are multiple minimizers, set �̃� to be the smallest one. Given the empirical optimal dual

solution �̃�, the target and benchmark sequences are defined as

𝛽𝑡 = E�̂�𝑡∼P̃𝑡
[
�̂�∗𝑡 (�̃�)

]
and 𝜆𝑡 = �̃�∗𝑡 (�̃�) , (2.4)

where �̂�𝑡 = ( 𝑓𝑡 , �̂�𝑡). In other words, the benchmark sequence is the expected consumption and the

target sequence is the empirical consumption on the trace if we were to make profit-maximizing de-

cisions using the empirical optimal dual solution �̃� as the price of the resource. Instead of learning

the empirical optimal dual �̃� and directly making decisions with it like we did in Algorithm 1, we
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use �̃� to learn the empirical consumptions {𝜆𝑡}𝑡 and use Algorithm 2 to track this target. Unlike the

former, we will show that the latter approach is robust to discrepancies between the sampling and

request distributions, while maintaining the same �̃�(
√
𝑇)-regret guarantee. Importantly, note that

the benchmark sequence {𝛽𝑡}𝑡 cannot be computed in practice because it requires full knowledge

of the request distributions. Algorithm 2 respects this limitation and does not require knowledge

of the benchmark sequence {𝛽𝑡}𝑡 ; we only use it for our analysis.

Our choice of {𝜆𝑡}𝑡 and Lemma 1 immediately imply

𝑅2 = 𝜅 ·
({

𝑇∑︁
𝑡=1
𝜆𝑡

}
− 𝐵

)+

≤ 𝜅 · �̄� . (2.5)

Next, we show that, for our choice of {𝛽𝑡}𝑡 , the benchmark
∑𝑇
𝑡=1 𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) of Theorem 3 is

not too far from the desired benchmark FLUID({P𝑡}).

Lemma 2. For any dual variable �̃� ≥ 0, dual iterates {𝜇𝑡}𝑡 ∈ [0, 𝜅]𝑇 and benchmark sequence

{𝛽}𝑡 with 𝛽𝑡 = E�̂�∼P̃𝑡 [�̂�
∗(�̃�)], we have

𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) ≥ FLUID({P𝑡}𝑡) − �̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝛽𝑡

)
− 2(1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) .

Observe that Theorem 1 implies that, with probability at least 1 − 1/𝑇2, we have����� 𝑇∑︁
𝑡=1

𝛽𝑡 −
𝑇∑︁
𝑡=1
𝜆𝑡

����� ≤ 𝑟(𝑇).

Combining this with Lemma 1 yields

�̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝛽𝑡

)
≤ �̃� ·

(
𝑟(𝑇) + 𝐵 −

𝑇∑︁
𝑡=1
𝜆𝑡

)
= �̃� · 𝑟(𝑇) + �̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1
𝜆𝑡

)
≤ �̃� ·

(
𝑟(𝑇) + �̄�

)
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≤ 𝜅 · 𝑟(𝑇) + 𝜅�̄� , (2.6)

thereby showing that the benchmark
∑𝑇
𝑡=1 𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) of Theorem 3 is not too far from the

desired benchmark FLUID({P𝑡}). In order to establish the desired regret and robustness guarantees

for Algorithm 2, all that remains to show is that 𝑅3 ≤ �̃�(
√
𝑇). However, as we demonstrate in the

next subsection, this step is rife with challenges.

2.3.3 Bounding 𝑅3

We begin with a brief discussion of the challenges involved in bounding 𝑅3. It is illuminating

to consider the slightly more permissive setting in which the decision maker has access to two

sample traces: suppose in addition to trace {�̃�𝑡}𝑡 ∼
∏
𝑡 P̃𝑡 , we had access to an additional trace

{ ˜̃𝛾𝑡}𝑡 ∼
∏
𝑡 P̃𝑡 . Then, we could compute �̃� using { ˜̃𝛾𝑡}𝑡 as follows

�̃� ∈ argmin𝜇≥0

{
𝜇 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥∈X

{
˜̃𝑓𝑡(𝑥) − 𝜇 · ˜̃𝑏𝑡(𝑥)

}}
,

making it completely independent of {�̃�𝑡}𝑡 . With this modified �̃�, we continue to define {𝛽𝑡}𝑡 , {𝛾𝑡}𝑡

as before (see (2.4)). As a consequence, we get that 𝜇𝑠 is completely determined by {𝛾𝑡}𝑠−1
𝑡=1 and

{𝜆𝑡}𝑠−1
𝑡=1 , with the latter being completely determined by �̃� and {�̃�𝑡}𝑠−1

𝑡=1 . This makes 𝜇𝑠 independent

of 𝜆𝑠 conditional on �̃�, and consequently yields

E
[
𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)| �̃�, {�̃�𝑡 , 𝛾𝑡}𝑠−1

𝑡=1
]

= 𝜇𝑠 ·
(
𝛽𝑠 − E

[
�̃�∗𝑠(�̃�)| �̃�

] )
= 0 .

Thus, we can apply the Tower Rule of conditional expectations to get

𝑅3 =
𝑇∑︁
𝑠=1
E [𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)]

=
𝑇∑︁
𝑠=1
E

[
E

[
𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)| �̃�, {�̃�𝑡 , 𝛾𝑡 }𝑠−1

𝑡=1
] ]

= 0 .
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It is straightforward to see that the bounds on 𝑅1 and 𝑅2 established in the previous subsection

continue to hold in this two-trace setting. Therefore, two traces allow us to achieve the near-optimal

�̃�(
√
𝑇)-regret while being robust to discrepancies between P̃𝑡 and P𝑡 .

Although moving from two traces to one trace might appear to be a minor change, it introduces

correlations that make the proof much more difficult. Observe that Algorithm 2 determines 𝜇𝑠

using {𝜆𝑡}𝑠−1
𝑡=1 , all of which depend on �̃�, which in turn is computed using the request �̃�𝑠. Further-

more, 𝜆𝑠 directly depends on �̃�𝑠. Thus, 𝜇𝑠 and 𝜆𝑠 are intricately correlated with each other, which

breaks the aforementioned argument for the two-trace setting. Nonetheless, 𝑅3 can still be shown

to be small, as we note in the following lemma and prove in the remainder of this subsection.

Lemma 3. For all 𝑠 ∈ [𝑇], we have

𝑅3 =
𝑇∑︁
𝑠=1
E [𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)] ≤

4𝜂�̄�2

𝜎
· 𝑇 .

We prove Lemma 3 in the remainder of this subsection. The following lemma will find repeated

use in the proof. In keeping with economic intuition, it shows that increasing the price (dual

variable) leads to smaller consumption under the profit-maximzing decision.

Lemma 4 (Monotonicity). For 𝜇 > 𝜇′, request 𝛾 = ( 𝑓 , 𝑏) ∈ S, 𝑥 ∈ argmax𝑧∈X{ 𝑓 (𝑧) − 𝜇 · 𝑏(𝑧)}

and 𝑥′ ∈ argmax𝑧∈X{ 𝑓 (𝑧) − 𝜇′ · 𝑏(𝑧)}, we have 𝑏(𝑥) ≤ 𝑏(𝑥′).

Fix an 𝑠 ∈ [𝑇]. We will get around the correlation between 𝜇𝑠 and �̃�𝑠 by conducting the

following leave-one-out thought experiment: suppose we remove the 𝑠-th sample �̃�𝑠, compute �̃�

on the remaining trace {�̃�𝑡}𝑡 ̸=𝑠, and run Algorithm 2 with the resulting target sequence. More

precisely, in this thought experiment, we set P̃𝑠 to be the distribution which always serves the

request 𝛾 = ( 𝑓 , 𝑏) with 𝑓 (𝑥) = 𝑏(𝑥) = 0 for all 𝑥 ∈ X. Thus, 𝑓𝑠(𝑥) = �̃�𝑠(𝑥) = 𝑓 ∗(𝜇) = �̃�∗(𝜇) = 0

for all 𝑥 ∈ X and 𝜇 ≥ 0. We will use the superscript (−𝑠) to denote the various variables in this

thought experiment:

• �̃�(−𝑠) ∈ argmin𝜇≥0 𝜇 · 𝐵 + ∑
𝑡 ̸=𝑠 max𝑥∈X{ 𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)}. If there are multiple minimizers,

set �̃�(−𝑠) to be the smallest one amongst them.
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• 𝜆(−𝑠)
𝑡 = �̃�∗𝑡

(
�̃�(−𝑠)) for all 𝑡 ∈ [𝑇].

• 𝜇(−𝑠)
𝑡 is the 𝑡-th iterate of Algorithm 2 with the target consumption sequence

{
𝜆

(−𝑠)
𝑡

}
𝑡
.

We begin by characterizing the impact of this change on the target consumption sequence.

Lemma 5. For every sample trace {�̃�𝑡}𝑡 , we have �̃� ≥ �̃�(−𝑠) and 𝜆𝑡 ≤ 𝜆(−𝑠)
𝑡 for all 𝑡 ̸= 𝑠. Moreover,∑𝑠−1

𝑡=1

���𝜆(−𝑠)
𝑡 − 𝜆𝑡

��� ≤ 3�̄� .

Lemma 5 shows that the target sequences {𝜆𝑡}𝑡 and {𝜆(−𝑠)
𝑡 }𝑡 are close to each other. Next, we

couple the dual iterates 𝜇𝑡 and 𝜇(−𝑠)
𝑡 generated by Algorithm 2 to show that they never stray too far

from each other whenever the target sequences are close.

Lemma 6 (Dual Iterate Coupling). Let {𝜇𝑡}𝑡 and {𝜇′𝑡}𝑡 denote the iterates generated by Algo-

rithm 2 on the request sequence {𝛾𝑡}𝑡 for the target sequences {𝜆𝑡}𝑡 and {𝜆′𝑡}𝑡 respectively. Assume

that the initial iterates are the same, i.e., 𝜇1 = 𝜇′1. Then, for all 𝑠 ∈ [𝑇], we have

��𝜇𝑠 − 𝜇′𝑠�� ≤ 𝜂

𝜎
·
{
𝑠−1∑︁
𝑡=1
|𝜆𝑡 − 𝜆′𝑡 |

}
+
𝜂

𝜎
· �̄� .

Applying Lemma 6 with 𝜆′𝑡 = 𝜆(−𝑠)
𝑡 and using Lemma 5 yields

��𝜇𝑠 − 𝜇′𝑠�� ≤ 𝜂

𝜎
·
{
3�̄�

}
+ 𝜂

𝜎
· �̄� = 4𝜂�̄�

𝜎
.

Combining this with the fact that |𝛽𝑠 − 𝜆𝑠 |≤ �̄�, we get

E [𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)] = E
[(
𝜇𝑠 − 𝜇(−𝑠)

𝑠

)
· (𝛽𝑠 − 𝜆𝑠)

]
+ E

[
𝜇

(−𝑠)
𝑠 · (𝛽𝑠 − 𝜆𝑠)

]
≤ 4𝜂�̄�

𝜎
· �̄� + E

[
𝜇

(−𝑠)
𝑠 · (𝛽𝑠 − 𝜆𝑠)

]
. (2.7)

The next lemma shows that the second term is non-positive. Its proof critically leverages

the fact that the iterate 𝜇(−𝑠)
𝑠 is independent of the 𝑠-th sample in the trace �̃�𝑠 (which is used to

determine 𝜆𝑠). This is in stark contrast to 𝜇𝑠 which depends on �̃�𝑠, and demonstrates the merit of

our leave-one-out thought experiment.

Lemma 7. E
[
𝜇

(−𝑠)
𝑠 · (𝛽𝑠 − 𝜆𝑠)

]
≤ 0 for all 𝑠 ∈ [𝑇].

Lemma 7 in combination with (2.7) yields E [𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)] ≤ 4𝜂�̄�2/𝜎. Summing over all

𝑠 ∈ [𝑇] finishes the proof of Lemma 3.
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2.3.4 Putting It All Together

We have bounded 𝑅1, 𝑅2 and 𝑅3, and related the benchmark
∑𝑇
𝑡=1 𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) from Theorem 3

to our desired benchmark FLUID({P𝑡}𝑡). Combining everything yields the following performance

guarantee for Algorithm 2.

Theorem 4. Let 𝐴 be Algorithm 2 with target sequence {𝜆𝑡}𝑡 , where 𝜆𝑡 = �̃�∗𝑡 (�̃�) (as defined in

(2.4)), regularizer ℎ(·) and step-size 𝜂 =
√
𝑑𝑅/𝑇 , where 𝑑𝑅 = max{ℎ(0) − ℎ(𝜇1), ℎ(𝜅) − ℎ(𝜇1)}.

Then,

Regret(𝐴) ≤ 𝐶1
√︁
𝑇 log(𝑇) + 𝐶2

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) .

where 𝐶1 = 12�̄�2√𝑑𝑅
𝜎

+
√
𝑑𝑅 + 12𝜅�̄� and 𝐶2 = 2(1 + 𝜅).

Observe that the regret of Dual FTRL satisfies Regret(𝐴) = �̃�(
√
𝑇) whenever

∑𝑇
𝑡=1W(P𝑡 , P̃𝑡) =

�̃�(
√
𝑇). In other words, Dual FTRL achieves near-optimal regret with a single trace as long as

the total discrepancy
∑𝑇
𝑡=1W(P𝑡 , P̃𝑡) is not too large. Finally, we would also like to note that our

algorithm is extremely efficient computationally. In particular, due to the equivalence of FTRL and

“Lazy" Online Mirror Descent (OMD) (see [Haz+16]), each dual update in (2.3) can be computed

in constant time by running Lazy OMD. Moreover, given a trace {�̃�𝑡} which is sorted in increasing

order of bang-per-buck coeff( 𝑓𝑡)/coeff(�̃�𝑡), the target sequence {𝜆𝑡}𝑡 can be computed in 𝑂(𝑇)

steps (see Appendix A.3 for details).

2.4 Application to Budget Pacing

Here, we discuss how the budget pacing problem fits as a special case of the online resource

allocation problem that we study in this chapter. Consider the setting in which a budget-constrained

advertiser repeatedly participates in 𝑇 second-price auctions. For simplicity, assume that all ties

are broken in favor of this advertiser. Let 𝑣𝑡 and 𝑑𝑡 denote her value and the highest competing bid

in the 𝑡-th auction respectively. Moreover, let 𝐵 denote her budget, which represents the maximum
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amount she is willing to spend over all 𝑇 auctions.

We will assume that the tuple (𝑣𝑡 , 𝑑𝑡) is drawn from some distribution P𝑡 , independently of

all other auctions. Now, observe that every bid of the advertiser results in one of two possible

outcomes: (i) she bids greater than or equal to 𝑑𝑡 , wins the auction, gains utility 𝑣𝑡 − 𝑑𝑡 and pays

𝑑𝑡 ; (ii) she bids strictly less than 𝑑𝑡 , loses the auction, gains zero value and pays zero. Thus,

corresponding to the tuple (𝑣𝑡 , 𝑑𝑡), we can define a corresponding request 𝛾𝑡 with linear reward

function 𝑓𝑡(𝑥) = (𝑣𝑡 − 𝑑𝑡) · 𝑥 and linear consumption function 𝑏𝑡(𝑥) = 𝑑𝑡 · 𝑥, for the action space

𝑥 ∈ {0, 1} = {lose,win}. Similarly, corresponding to the sample trace of tuples {(�̃�𝑡 , 𝑑𝑡)}𝑡 , we can

define a trace {�̃�𝑡}𝑡 for the online allocation problem. This defines a corresponding instance of

the online allocation problem. Since every bid either results in either a win or loss, the maximum

expected utility (value - payment) that the advertiser can earn subject to her budget constraint is

bounded above by FLUID({P𝑡}𝑡) for this instance. Finally, consider step 𝑡 of Algorithm 3 on this

instance. The decision 𝑥𝑡 is calculated as 𝑥𝑡 ∈ argmax𝑥∈X𝑡 { 𝑓𝑡(𝑥) − 𝜇𝑡 · 𝑏𝑡(𝑥)}. Therefore, 𝑥𝑡 = 1 if

𝑣𝑡 − 𝑑𝑡 ≥ 𝜇𝑑𝑡 , or equivalently 𝑣𝑡/(1 + 𝜇𝑡) ≥ 𝑑𝑡 , and 𝑥𝑡 = 0 otherwise. Observe that, in a second

price auction, if the advertiser bids 𝑣𝑡/(1 + 𝜇𝑡), she will win (𝑥𝑡 = 1) if 𝑣𝑡/(1 + 𝜇𝑡) ≥ 𝑑𝑡 and lose

(𝑥𝑡 = 0) otherwise. Thus, by bidding 𝑣𝑡/(1 + 𝜇𝑡), she can simulate the actions of Algorithm 3 for

the online allocation instance. Moreover, she does not require knowledge of the competing bid 𝑑𝑡

to compute her bid, which is crucial because 𝑑𝑡 is not known in practice. Once the auction is over,

the expenditure 𝑏𝑡(𝑥𝑡) = 𝑑𝑡 · 𝑥𝑡 is revealed to the advertiser. She can then use it to update the dual

iterate according to (2.3).
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Chapter 3: Online Resource Allocation under Horizon Uncertainty

Based on the publication [BKK23b] co-authored with Santiago Balseiro and Christian Kroer.

In this chapter, we relax the assumption that the total number of auctions 𝑇 (also called the

horizon) is known to the decision maker in advance, and develop algorithms for general stochastic

online resource allocation which are robust to this uncertainty. In Section 3.3.1, we show that

no online algorithm can achieve a greater than �̃�
(
ln(𝜏2/𝜏1)−1) fraction of the hindsight optimal

reward (Theorem 6). This upper bound holds even when (i) there is only 1 type of resource,

(ii) the decision maker receives the same request at each time step, (iii) this request is known

to the decision maker ahead of time, (iv) the request has a smooth concave reward function and

linear resource consumption, (v) 𝜏1 is arbitrarily large, and (vi) the initial resource endowment

𝐵 = Θ(𝜏1) scales with the horizon. In particular, unlike the known-horizon setting, vanishing regret

is impossible to achieve under horizon uncertainty, leading us to focus on developing algorithms

with a good asymptotic competitive ratio (fraction of the hindsight optimal reward).

Dual mirror descent is a natural algorithm for the known-horizon case introduced by [BLM23],

who build on a long line of primal-dual algorithms for online allocation problems [AD14; Dev+11;

GM16]. It maintains a price (i.e., dual variable) for each resource and then dynamically updates

them with the goal of consuming the per-period resource budget at each step—if the resource is

being over-consumed, increase its price; and vice-versa. As stated earlier, this approach fails if the

horizon is not known because the per-period budget cannot be computed ahead of time. A natural

approach to handle horizon uncertainty is to use dual mirror descent with some proxy horizon

𝑇∗ ∈ [𝜏1, 𝜏2] in the hopes of getting good performance for all 𝑇 ∈ [𝜏1, 𝜏2]. Unfortunately, as we

show in Section 3.1.1, this approach can be extremely sub-optimal, not just for dual mirror descent

but for any algorithm which is optimal for the known-horizon setting. Thus, the unknown-horizon

setting calls for new algorithms. Our main insight is that, even though one cannot compute the
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Figure 3.1: Plot with (i) our upper bound on the best-possible competitive ratio (Theorem 6) which
scales as �̃�

(
ln(𝜏2/𝜏1)−1) , (ii) the (asymptotic) competitive ratio of our algorithm which scales as

Ω
(
ln(𝜏2/𝜏1)−1) (Algorithm 3 with target sequence from Algorithm 4), and (iii) an upper bound

on the competitive ratio of algorithms that are optimal for the known-horizon setting when used
with some proxy horizon 𝑇∗ ∈ [𝜏1, 𝜏2] (Section 3.1.1), which scales as

(√
𝜏2/𝜏1

)−1. Even for small
values of 𝜏2/𝜏1, our algorithm significantly outperforms previous ones.

per-period resource budget and target its consumption, it is possible to compute a time-varying

sequence of target consumptions which, if consumed at those rates, perform well no matter what

the horizon turns out to be. To achieve this, we propose and analyze Variable Target Dual Mirror

Descent in Section 3.2, which takes a sequence of target consumptions as input and dynamically

updates the prices to hit those targets. One of our primary technical contributions is generalizing

the analysis of dual mirror descent to develop a fundamental bound that allows for general target

consumption sequences. We leverage this bound to show that there exists a simple time-varying

target consumption sequence which can be described in closed form and achieves a near-optimal

Ω
(
ln(𝜏2/𝜏1)−1) asymptotic competitive ratio when deployed with Algorithm 3, matching the upper

bound up to logarithmic factors.

Variable Target Dual Mirror Descent reduces the complex problem of finding an algorithm

which maximizes the competitive ratio to the much simpler problem of finding the optimal target

consumption sequence. We develop an algorithm to solve the latter efficiently (Algorithm 4),

leading to substantial gains over previous algorithms even for small values of 𝜏2/𝜏1 (see Figure 3.1).

Importantly, Algorithm 4 does not require one to solve computationally-expensive linear programs

(LPs), which can be desirable in time-sensitive applications. Finally, in Section 3.4, we use the

Algorithms-with-Predictions framework [MV20] to study incorporating (potentially inaccurate)
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predictions about the horizon with the goal of performing well if the prediction comes true, while

also ensuring a good competitive ratio no matter what the horizon turns out to be. We show

that the problem of computing the optimal target consumption sequence for the goal of optimally

incorporating predictions can also be solved efficiently using Algorithm 4. Our algorithm allows

the decision maker to account for the level of confidence she has in the predictions, and smoothly

interpolate between the known-horizon and uncertainty-window settings.

3.1 Model

Notation We use R+ to denote the set of non-negative real numbers and R++ to denote the set

of positive real numbers. We use 𝑎+ to denote max{𝑎, 0}. For a vector 𝑣 ∈ R𝑚 and a scalar

𝑎 ∈ R \ {0}, 𝑣/𝑎 denotes the scalar multiplication of 𝑣 by 1/𝑎. For vectors 𝑢, 𝑣 ∈ R𝑚 and a relation

𝑅 ∈ {≥, >, ≤, <}, we write 𝑢 𝑅 𝑣 whenever the relation holds component wise: 𝑢𝑖 𝑅 𝑣𝑖 for all

𝑖 ∈ [𝑚].

We consider a general online resource allocation problem with 𝑚 resources, in which requests

arrive sequentially. At time 𝑡, a request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡 ,X𝑡) arrives, which is composed of a reward

function 𝑓𝑡 : X𝑡 → R+, a resource consumption function 𝑏𝑡 : X𝑡 → R𝑚+ and a compact action set

X𝑡 ⊂ R𝑑+. We assume that 0 ∈ X𝑡 and 𝑏𝑡(0) = 0 for all 𝑡. This ensures that the decision maker

has the option to not spend any resources at each time step. We make no assumptions about the

convexity/concavity of either 𝑓𝑡 , 𝑏𝑡 or X𝑡 .

Let S represent the set of all possible requests. We make standard regularity assumptions: there

exist constants 𝑓 , �̄� ∈ R+ such that, for every request 𝛾 = ( 𝑓 , 𝑏,X) ∈ S, we have | 𝑓 (𝑥)|≤ 𝑓 and

∥𝑏(𝑥)∥∞≤ �̄� for all 𝑥 ∈ X. Furthermore, we assume that the requests are drawn i.i.d. from some

distribution P over S, both of which are not assumed to be known to the decision maker. The

decision maker has a known initial resource endowment (or budget) of 𝐵 = (𝐵1, . . . , 𝐵𝑚) ∈ R𝑚++,

where 𝐵𝑖 denotes the initial amount of resource 𝑖 available to the decision maker. We will assume

that 𝐵𝑖 ≥ 2�̄� for all 𝑖 ∈ [𝑚].

Let 𝑇 denote the total number of requests that will arrive (also called the horizon). We will use
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𝜌𝑇 = 𝐵/𝑇 to denote the per-period resource endowment that is available to the decision maker. In

contrast to previous work, we do not assume that 𝑇 (or its distribution) is known to the decision

maker. Looking ahead, this uncertainty is what makes our problem much harder than vanilla online

resource allocation where the horizon is known, as evidenced by the fact that no algorithm can at-

tain even a positive competitive ratio when nothing is known about the horizon 𝑇 (see Theorem 6),

which is a far-cry from the no-regret property exhibited by algorithms for the known-horizon set-

ting.

At each time step 𝑡 ≤ 𝑇 , the following sequence of events take place: (i) A request 𝛾𝑡 =

( 𝑓𝑡 , 𝑏𝑡 ,X𝑡) arrives and is observed by the decision maker; (ii) The decision maker selects an action

𝑥𝑡 ∈ X𝑡 from the action set based on the information seen so far; (iii) The decision maker receives a

reward of 𝑓𝑡(𝑥𝑡) and the request consumes 𝑏𝑡(𝑥𝑡) resources. The goal of the decision maker is to take

actions that maximize her total reward while keeping the total consumption of resources below the

initial resource endowment. More concretely, an online algorithm (for the decision maker) chooses

an action 𝑥𝑡 ∈ X𝑡 at each time step 𝑡 ≤ 𝑇 based on the current request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡 ,X𝑡) and the history

observed so far {𝛾𝑠, 𝑥𝑠}𝑡𝑠=1 such that the resource constraints
∑𝑇
𝑡=1 𝑏𝑡(𝑥𝑡) ≤ 𝐵 are satisfied almost

surely w.r.t. ®𝛾 ∼ P𝑇 . Our results continue to hold even if the actions {𝑥𝑡}𝑡 are randomized, but

we work with deterministic actions for ease of exposition. Since we assume that 𝑇 is not known

to the decision maker, the actions of the online algorithm cannot depend on 𝑇 . The total reward of

algorithm 𝐴 on a sequence of requests ®𝛾 = (𝛾1, . . . , 𝛾𝑇 ) is denoted by 𝑅(𝐴|𝑇, ®𝛾) = ∑𝑇
𝑡=1 𝑓𝑡(𝑥𝑡).

We measure the performance of an algorithm for the decision maker by comparing it to the

hindsight optimal solution computed with access to all the requests and the value of 𝑇 . More

concretely, for a horizon 𝑇 and a sequence of requests ®𝛾 = (𝛾1, . . . , 𝛾𝑇 ), the hindsight-optimal

reward OPT(𝑇, ®𝛾) is defined as the optimal value of the following hindsight optimization problem:

OPT(𝑇, ®𝛾) B max
𝑥∈∏𝑡 X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) subject to
𝑇∑︁
𝑡=1

𝑏𝑡(𝑥𝑡) ≤ 𝐵 . (3.1)
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We define the performance ratio of an algorithm 𝐴 for horizon 𝑇 and request distribution P as

𝑐(𝐴|𝑇,P) B
E®𝛾∼P𝑇 [𝑅(𝐴|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] .

Throughout this paper, we will assume that the horizon 𝑇 belongs to an uncertainty window

[𝜏1, 𝜏2] which is known to the decision maker. This assumption is necessary because it is im-

possible to attain non-trivial performance guarantees in the absence of an upper bound on the

horizon (see Theorem 6). Moreover, we will assume that there exists a constant 𝜅 > 0 such that

E[OPT(𝑇, ®𝛾)] ≥ 𝜅 · 𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2]. The assumption that E[OPT(𝑇, ®𝛾)] = Ω(𝑇) is common

in the literature on online resource allocation with bandit feedback (see [Sli+19] for a survey). A

mild sufficient condition for this assumption to hold is the existence of some mapping from request

to actions which achieves positive expected reward: ∃ 𝑥 : S → X such that E𝛾∼P[ 𝑓 (𝑥(𝛾))] > 0.1

Next, we describe the models of horizon uncertainty we consider in this chapter.

Uncertainty Window. Here, we assume that the decision maker is not aware of the exact

value of 𝑇 and it can lie anywhere in the known uncertainty window [𝜏1, 𝜏2]. This approach is

motivated by the literature on robust optimization, where it is often assumed that the exact value of

the parameter is unknown but it is constrained to belong to some known uncertainty set [BTN02].

Our goal here is to capture settings with large horizon uncertainty where it is difficult to predict

the total number of requests with high accuracy. In such settings, it is often easier to generate

confidence intervals than precise estimates. For this model of horizon uncertainty, we measure the

performance of an algorithm 𝐴 by its competitive ratio 𝑐(𝐴), which we define as

𝑐(𝐴) B inf
P

min
𝑇∈[𝜏1,𝜏2]

𝑐(𝐴|𝑇,P) .

1To see how this, define 𝜓 B E𝛾∼P[ 𝑓 (𝑥(𝛾))] > 0 and set 𝑥𝑡 = 𝑥(𝛾𝑡 ) starting from 𝑡 = 1 till some resource runs out.
Since ∥𝑏(𝑥)∥∞≤ �̄�, resource 𝑗 will last at least ⌊𝐵 𝑗/�̄�⌋ time steps, which in combination with 𝐵 ≥ 2�̄� implies

E ®𝛾[OPT(𝑇, ®𝛾)] ≥ min
𝑗∈[𝑚]
⌊𝐵 𝑗/�̄�⌋ · E𝛾∼P[ 𝑓 (𝑥(𝛾))] ≥ min

𝑗∈[𝑚]

(
𝐵 𝑗

�̄�
− 1

)
𝜓 ≥ min

𝑗∈[𝑚]

𝐵 𝑗𝜓

2�̄�
= min

𝑗∈[𝑚]

𝜌𝑇, 𝑗𝜓

2�̄�
· 𝑇 .

Since 𝜌𝑇 ≥ 𝜌𝜏2 for all 𝑇 ≤ 𝜏2, setting 𝜅 = min 𝑗 𝜌𝜏2 , 𝑗𝜓/2�̄� yields E[OPT(𝑇, ®𝛾)] ≥ 𝜅 · 𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2].
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We also say that an algorithm 𝐴 is 𝑐(𝐴)-competitive if it has a competitive ratio of 𝑐(𝐴). The com-

petitive ratio of our algorithm degrades at a near-optimal logarithmic rate as 𝜏2/𝜏1 grows large, and

consequently yields good performance even for conservative estimates of the uncertainty window.

Algorithms with Predictions. We also consider a model of horizon uncertainty, inspired by

the Algorithms-with-Predictions framework, which interpolates between the previously studied

known-horizon model and the uncertainty-window model described above. This framework as-

sumes that the decision maker has access to a prediction 𝑇𝑃 ∈ [𝜏1, 𝜏2] about the horizon but no

assumptions are made about the accuracy of this prediction. In particular, the goal is to develop al-

gorithms that perform well when the prediction is accurate (consistency) while maintaining worst-

case guarantees (competitiveness). For this setting, our algorithm allows the decision maker to

smoothly trade-off consistency and competitiveness depending on her preferences.

3.1.1 Why do we need a new algorithm?

As discussed in Section 1.3, online resource allocation and its special cases have been ex-

tensively studied in the literature. Perhaps one of the algorithms from the literature continues

to perform well under horizon uncertainty? We show below that previously-studied algorithms

can be exponentially worse than our algorithm. Consider an uncertainty window [𝜏1, 𝜏2], where

𝜏1, 𝜏2 ∈ Z+. Consider an online algorithm 𝐴 which takes as input the horizon and is optimal (de-

fined precisely later) for stochastic online resource allocation when the horizon is known. Suppose

we pick some horizon 𝑇∗ ∈ [𝜏1, 𝜏2] before the first request arrives and run algorithm 𝐴 with 𝑇∗ in

the hope of getting good performance for all horizons 𝑇 ∈ [𝜏1, 𝜏2]. As we show next, this approach

performs much worse than our algorithm even when there is only one resource (𝑚 = 1), the same

request arrives at all time steps, and the decision-maker knows this to be the case.

Let 𝐵 be the initial resource endowment, X𝑡 = [0,max{1, 𝐵/𝜏1}] be the action set for all 𝑡 ∈

[𝜏2], and P𝑟 be the deterministic distribution that always serves the request ( 𝑓 , 𝑏) where 𝑓 (𝑥) = 𝑥𝑟

for a fixed 𝑟 ∈ (0, 1) and 𝑏(𝑥) = 𝑥. Observe that all the requests are the same, the decision-maker

knows this fact, and she takes her first action after observing the request. In particular, the decision
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maker completely knows the deterministic request after the first request arrives and before she

takes her first action. Moreover, if she employs an algorithm for the known-horizon setting with

horizon 𝑇∗ as the input and we have 𝑇 = 𝑇∗, then the algorithm has as much information (about

the request and the horizon) available before making its first decision as it would in hindsight.

This motivates us to call an algorithm optimal for the known-horizon setting if it takes the same

actions as the hindsight optimal OPT(𝑇∗, ®𝛾) on this instance when 𝑇 = 𝑇∗ and it is given horizon 𝑇∗

as the input. The dual-descent algorithm of [BLM23] (when appropriately initialized), and all of

the primal methods based on solving the fluid approximation (e.g., [JK12; AWY14] and [BBP21])

satisfy this definition of optimality. Let 𝐴 be such an optimal algorithm.

Consequently, if {𝑥𝑡}𝑡 are the actions of algorithm 𝐴, then {𝑥𝑡}𝑡 is an optimal solution to the

hindsight-optimization problem OPT(𝑇∗, ®𝛾) (see equation (3.1)). In Lemma 9, we will show that

the concavity of 𝑓 implies that 𝑥∗𝑡 = 𝐵/𝑇∗ for all 𝑡 ≤ 𝑇∗ and 𝑥∗𝑡 = 0 for 𝑡 > 𝑇∗ is the unique

hindsight optimal solution of OPT(𝑇∗, ®𝛾), which implies that 𝑥𝑡 = 𝑥∗𝑡 for all 𝑡 ≥ 1. Now, recall that

algorithm 𝐴 does not know the horizon 𝑇 and is non-anticipating. Consequently, it will take the

actions {𝑥𝑡}𝑡 no matter what 𝑇 turns out to be. This is because, if 𝑇 ≤ 𝑇∗, then it does not know

that 𝑇 is different from 𝑇∗, and if 𝑇 > 𝑇∗, then it has run out of budget by time step 𝑇∗.

The performance ratio of algorithm 𝐴 for 𝑇 = 𝜏1 is given by

𝑐(𝐴|𝜏1,P𝑟) =
E®𝛾∼P𝜏1

𝑟
[𝑅(𝐴|𝜏1, ®𝛾)]

E®𝛾∼P𝜏1
𝑟
[OPT(𝜏1, ®𝛾)] =

(𝐵/𝑇∗)𝑟 · 𝜏1
(𝐵/𝜏1)𝑟 · 𝜏1

=
( 𝜏1
𝑇∗

)𝑟
and for 𝑇 = 𝜏2 is given by

𝑐(𝐴|𝜏2,P𝑟) =
E®𝛾∼P𝜏2

𝑟
[𝑅(𝐴|𝜏2, ®𝛾)]

E®𝛾∼P𝜏2
𝑟
[OPT(𝜏2, ®𝛾)] =

(𝐵/𝑇∗)𝑟 · 𝑇∗
(𝐵/𝜏2)𝑟 · 𝜏2

=
(
𝑇∗

𝜏2

)1−𝑟
.

Finally, observe that:

• If 𝑇∗ >
√
𝜏1𝜏2, then inf𝑟∈(0,1) 𝑐(𝐴|𝜏1,P𝑟) = lim𝑟→1 𝑐(𝐴|𝜏1,P𝑟) = 𝜏1/𝑇

∗ ≤
(√
𝜏2/𝜏1

)−1.

• If 𝑇∗ ≤ √𝜏1𝜏2, then inf𝑟∈(0,1) 𝑐(𝐴|𝜏2,P𝑟) = lim𝑟→0 𝑐(𝐴|𝜏2,P𝑟) = 𝑇∗/𝜏2 ≤
(√
𝜏2/𝜏1

)−1.
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Therefore, we get that the competitive ratio of algorithm 𝐴 is bounded above by (
√
𝜏2/𝜏1)−1 for

all values of {𝜏1, 𝜏2}. In stark contrast, if 𝜏1 is large and 𝐵 = Θ(𝜏1), we will show that our online

algorithm achieves a competitive ratio greater than (1 + ln(𝜏2/𝜏1))−1, which is exponentially better

than algorithm 𝐴. Even for small values of 𝜏2/𝜏1, our algorithm significantly outperforms previous

algorithms (see Figure 3.1).

We have shown that a proxy horizon does not allow us to use algorithms which are optimal

for the known-horizon setting to obtain good performance in the face of horizon uncertainty. Per-

haps one can use the Doubling Trick instead? The Doubling Trick involves running an algorithm

designed for the known-horizon setting repeatedly on time-intervals of increasing lengths. More

precisely, given an optimal (or low-regret) algorithm 𝐴 for the known horizon setting, run it sep-

arately on the intervals [1, 𝑇∗], [𝑇∗, 2𝑇∗], . . . , [2𝑘𝑇∗, 2𝑘+1𝑇∗] for some 𝑇∗ ≥ 1. Unfortunately, as

we alluded to in the Introduction, the Doubling Trick does not work for online resource allocation.

This is because, unlike online convex optimization [Haz+16; SS+12] where the problem decouples

and the regret from the different intervals is simply added together to get total regret, the online

resource allocation problem has global resource constraints and does not decouple.

In particular, if we were to run an algorithm 𝐴 with low-regret in the known-horizon setting

on the interval [1, 𝑇∗], it will attempt to deplete all of the available resources by time 𝑇∗ (because

unused resources have no value to 𝐴 after 𝑇∗), which in turn implies that we will not have suf-

ficient resource capacity to even run algorithm 𝐴 on latter intervals [𝑇∗, 2𝑇∗], . . . , [2𝑘𝑇∗, 2𝑘+1𝑇∗].

The crux of the problem is that the Doubling Trick does not take the resources capacities into

account: since we only have a finite amount of resources, one cannot repeatedly run algorithm 𝐴

because it will consume the entire resource capacity on every run (if possible). Additionally, note

that the benchmark in online resource allocation is the optimal solution in hindsight considering

all requests till time 𝑇 , which is very different from the sum of the benchmark optimal solutions

in the intervals [1, 𝑇∗], [𝑇∗, 2𝑇∗], . . . , [2𝑘𝑇∗, 2𝑘+1𝑇∗]. One can potentially come up with sophisti-

cated versions of the Doubling Trick that allocate the resource endowment between the intervals

in non-trivial ways. But the aforementioned lack of decomposability of the benchmark across in-
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tervals means that analyzing such heuristics would be far from straightforward. In fact, one of our

primary contributions is a general performance guarantee for dual mirror descent with arbitrary

allocation of the resource endowment across time steps (Theorem 5), which allows one to analyze

such heuristics. Finally, in online convex optimization, the Doubling Trick allows one to convert

an algorithm for the known-horizon setting into one for the unknown-horizon setting while main-

taining the same asymptotic competitive ratio of 1. However, as we will show in Theorem 6, it

is impossible to achieve the same competitive ratio in the known-horizon and unknown-horizon

settings for the online resource allocation problem. Thus, the simple Doubling Trick cannot be

applied to online resource allocation, necessitating the need for novel techniques beyond the ones

developed for online convex optimization.

3.2 The Algorithm

In this section, we describe our dual-mirror-descent-based master algorithm. As the name

suggests, this algorithm maintains and updates dual variables, using them to compute the action 𝑥𝑡

at time 𝑡. Moreover, the algorithm is parameterized by a target consumption sequence.

Definition 2. We call a sequence ®𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑡 , . . . , 𝜆𝜏2) a target consumption sequence if

𝜆𝑡 ∈ R𝑚+ for all 𝑡 ≤ 𝜏2, 𝜆1 > 0 and
∑𝜏2
𝑡=1 𝜆𝑡 ≤ 𝐵.

Here, 𝜆𝑡 ∈ R𝑚+ denotes the target amount of resources that one wants to consume in the 𝑡-th

time period.
∑𝜏2
𝑡=1 𝜆𝑡 ≤ 𝐵 ensures that the budget never runs out if one is able to hit these target

consumptions. Given a target consumption sequence ®𝜆, we use �̄� = max𝑡, 𝑗 𝜆𝑡, 𝑗 to denote the largest

target consumption of any resource at any time step.

We will be showing performance guarantees for our algorithms in terms of the target consump-

tion sequence, and then provide algorithms for computing the optimal target sequence in later

sections.
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3.2.1 The Dual Problem

The Lagrangian dual problem to the hindsight optimization problem (3.1) is obtained by mov-

ing the resource constraints to the objective using multipliers 𝜇 = (𝜇1, . . . , 𝜇𝑚) ∈ R𝑚+ . Intuitively,

the dual variable 𝜇 𝑗 acts as the price of resource 𝑗 and accounts for the opportunity cost of consum-

ing resource 𝑗 . This allows us to define the objective function of the dual optimization problem:

𝐷(𝜇 |𝑇, ®𝛾) B sup
𝑥∈∏𝑡 X𝑡

{
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡) + 𝜇⊤
(
𝐵 −

𝑇∑︁
𝑡=1

𝑏𝑡(𝑥𝑡)

)}
=

𝑇∑︁
𝑡=1

sup
𝑥𝑡∈X𝑡

{
𝑓𝑡(𝑥𝑡) + 𝜇⊤(𝜌𝑇 − 𝑏𝑡(𝑥𝑡))

}
=

𝑇∑︁
𝑡=1

(
𝑓 ∗𝑡 (𝜇) + 𝜇⊤𝜌𝑇

)
,

where the second equation follows because the objective is separable and 𝜌𝑇 = 𝐵/𝑇 , and the last by

defining the opportunity-cost-adjusted reward to be 𝑓 ∗𝑡 (𝜇) B sup𝑥∈X𝑡 { 𝑓𝑡(𝑥) − 𝜇⊤𝑏𝑡(𝑥)}. The dual

problem is simply min𝜇∈R+ 𝐷(𝜇 |𝑇, ®𝛾). Importantly, we get weak duality: OPT(𝑇, ®𝛾) ≤ 𝐷(𝜇 |𝑇, ®𝛾)

for all dual solutions 𝜇 (we provide a proof in Proposition 11 of Appendix B.1).

Recall that, in our definition of competitive ratio (3.4), we are interested in the expectation of

OPT(𝑇, ®𝛾) when ®𝛾 ∼ P𝑇 . Weak duality allows us to bound this quantity from above as

E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] ≤ E®𝛾∼P𝑇 [𝐷(𝜇 |𝑇, ®𝛾)] =
𝑇∑︁
𝑡=1

(
E𝛾∼P

[
𝑓 ∗𝑡 (𝜇)

]
+ 𝜌⊤𝑇 𝜇

)
. (3.2)

This motivates us to define the following single-period dual function with target consumption 𝜆 ∈

R𝑚+ as D(𝜇 |𝜆,P) B E𝛾∼P [ 𝑓 ∗(𝜇)] + 𝜆⊤𝜇. The following lemma notes some important properties

of the single-period dual objective.

Lemma 8. D(𝜇 |𝜆,P) is convex in 𝜇 ∈ R𝑚+ for every 𝜆 ∈ R𝑚+ . Moreover, for every 𝜇 ∈ R+ and

𝑇 ≥ 1, the following properties hold:

(a) Separability: E®𝛾∼P𝑇 [𝐷(𝜇 |𝑇, ®𝛾)] = 𝑇 · D(𝜇 |𝜌𝑇 ,P)
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Algorithm 3: Variable Target Dual Mirror Descent Algorithm
Input: Initial dual solution 𝜇1, initial resource endowment 𝐵1 = 𝐵, target consumption
sequence ®𝜆, reference function ℎ : R𝑚 → R, and step-size 𝜂.
for 𝑡 = 1, . . . , 𝑇 do

Receive request ( 𝑓𝑡 , 𝑏𝑡 ,X𝑡) ∼ P.
Make the primal decision 𝑥𝑡 and update the remaining resources 𝐵𝑡 :

𝑥𝑡 ∈ argmax𝑥∈X𝑡
{
𝑓𝑡(𝑥) − 𝜇⊤𝑡 𝑏𝑡(𝑥)

}
, (3.3)

𝑥𝑡 =

{
𝑥𝑡 if 𝑏𝑡(𝑥𝑡) ≤ 𝐵𝑡
0 otherwise

,

𝐵𝑡+1 = 𝐵𝑡 − 𝑏𝑡(𝑥𝑡).

Obtain a sub-gradient of the dual function: 𝑔𝑡 = 𝜆𝑡 − 𝑏𝑡(𝑥𝑡).
Update the dual variable by mirror descent: 𝜇𝑡+1 = arg min𝜇∈R𝑚+ 𝑔

⊤
𝑡 𝜇 + 1

𝜂
𝑉ℎ(𝜇, 𝜇𝑡),

where 𝑉ℎ(𝑥, 𝑦) = ℎ(𝑥) − ℎ(𝑦) − ∇ℎ(𝑦)⊤(𝑥 − 𝑦) is the Bregman divergence.
end

(b) Sub-homogeneity: For 𝑎 ∈ [0, 1], 𝑎 · D(𝜇 |𝜆,P) ≤ D(𝜇 |𝑎 · 𝜆,P).

(c) Monotonicity: If 𝜆 ≤ 𝜅, then D(𝜇 |𝜆,P) ≤ D(𝜇 |𝜅,P).

3.2.2 Variable Target Dual Mirror Descent

Algorithm 3 is a highly-flexible stochastic dual descent algorithm that allows the decision

maker to specify the target consumption sequence ®𝜆, in addition to the initial dual variable 𝜇1,

the reference function ℎ(·) and the step-size 𝜂 needed to specify the mirror-descent procedure.

This flexibility allows us to seamlessly analyze a variety of different algorithms using the same

framework. As is standard in the literature on mirror descent [SS+12; Haz+16], we require the ref-

erence function ℎ(·) to be either differentiable or essentially smooth [BBC01], and be 𝜎-strongly

convex in the ∥·∥1 norm. Moreover, Algorithm 3 is efficient when an optimal solution for the

per-period optimization problem in equation (3.3) can be computed efficiently. This is possible for

many applications, see [BLM23] for details.

The algorithm maintains a dual variable 𝜇𝑡 at each time step, which acts as the price of the

resources and accounts for the opportunity cost of spending them at time 𝑡. Then, for a request
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𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡 ,X𝑡) at time 𝑡, it chooses the action 𝑥𝑡 that maximizes the opportunity-cost-adjusted

reward 𝑥𝑡 ∈ argmax𝑥∈X𝑡
{
𝑓𝑡(𝑥) − 𝜇⊤𝑡 𝑏𝑡(𝑥)

}
. As our goal here is to build intuition, we ignore the

minor difference between 𝑥𝑡 and 𝑥𝑡 which ensures that we never overspend resources. The dual

variable is updated using mirror descent with reference function ℎ(·), step-size 𝜂, and using 𝑔𝑡 =

𝜆𝑡 − 𝑏𝑡(𝑥𝑡) as a subgradient. Intuitively, mirror descent seeks to make the subgradients as small as

possible, which in our settings translates to making the expected resource consumption in period 𝑡

as close as possible to the target consumption 𝜆𝑡 . As a result, the target consumption sequence can

be interpreted as the ideal expected consumption per period, and the algorithm seeks to track these

rates of consumption.

We conclude by discussing some common choices for the reference function. If the refer-

ence function is the squared-Euclidean norm, i.e., ℎ(𝜇) = ∥𝜇∥22, then the update rule is 𝜇𝑡+1 =

max {𝜇𝑡 − 𝜂𝑔𝑡 , 0} and the algorithm implements subgradient descent. If the reference function is

the negative entropy, i.e., ℎ(𝜇) = ∑𝑚
𝑗=1 𝜇 𝑗 log(𝜇 𝑗 ), then the update rule is 𝜇𝑡+1, 𝑗 = 𝜇𝑡, 𝑗 exp

(
−𝜂𝑔𝑡, 𝑗

)
and the algorithm implements multiplicative weights.

3.2.3 Performance Guarantees

In this section, we provide worst-case performance guarantees of our algorithm for arbitrary

target consumption sequences. Before stating our result, we provide further intuition about our

algorithm. Consider the single-period dual function with target consumption 𝜆, given by

D(𝜇 |𝜆,P) = E𝛾∼P [ 𝑓 ∗(𝜇)] + 𝜆⊤𝜇 = E𝛾∼P
[
sup
𝑠∈X

{
𝑓 (𝑥) − 𝜇⊤𝑏(𝑥)

}]
+ 𝜆⊤𝜇 .

Then, by Danskin’s Theorem, its subgradient is given by E𝛾∼P[𝜆−𝑏(𝑥𝛾(𝜇))] ∈ 𝜕𝜇D(𝜇 |𝜆,P) where

𝑥𝛾(𝜇) ∈ argmax𝑥∈X { 𝑓 (𝑥) − 𝜇⊤𝑏(𝑥)} is an optimal decision when the request is 𝛾 = ( 𝑓 , 𝑏,X) and

the dual variable is 𝜇. Therefore, 𝑔𝑡 = 𝜆𝑡 − 𝑏𝑡(𝑥𝑡) is a random unbiased sample of the subgradient

of D(𝜇 |𝜆,P). Now, if we wanted to minimize the dual objective E[𝐷(𝜇 |𝑇, ®𝛾)] = ∑𝑇
𝑡=1D(𝜇 |𝜌𝑇 ,P)

for some known 𝑇 , we can run mirror descent on the function D(𝜇 |𝜌𝑇 ,P) by setting 𝜆𝑡 = 𝜌𝑇 for

53



all 𝑡 ≤ 𝑇 . This is exactly the approach taken by [BLM23]. Unfortunately, this method does not

extend to our setting because the horizon 𝑇 is unknown.

Observe that, since mirror descent guarantees vanishing regret even against adversarially gen-

erated losses, it continues to give vanishing regret in the dual space even when the single-period

dualsD(𝜇 |𝜆𝑡 ,P) vary with time due to the changing target consumptions. However, when 𝜆𝑡 ̸= 𝜌𝑇

for some 𝑡 ≤ 𝑇 , it is no longer the case that
∑𝑇
𝑡=1D(𝜇 |𝜆𝑡 ,P) provides an upper bound on the hind-

sight optimization problem. The crux of the following result involves overcoming this difficulty

and comparing the time-varying single-period duals with the hindsight optimal solution for all 𝑇

simultaneously, leading to a performance guarantee for Algorithm 3.

Theorem 5. Consider Algorithm 3 with initial dual solution 𝜇1, initial resource endowment 𝐵1 =

𝐵, a target consumption sequence ®𝜆, reference function ℎ(·) : R𝑚 → R, and step-size 𝜂. For any

𝑇 ≥ 1, if we set

𝑐(®𝜆, 𝑇) B
1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
, (3.4)

then it holds that

E®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) − 𝑅(𝐴|𝑇, ®𝛾)

]
≤ 𝐶(𝑇)

1 + 𝐶2𝜂𝑇 +
𝐶

(𝑇)
3
𝜂

. (3.5)

where 𝐶(𝑇)
1 = 𝑓 �̄�

𝜌
𝑇

, 𝐶2 = (�̄�+�̄�)2

2𝜎 , 𝐶(𝑇)
3 = max

{
𝑉ℎ(𝜇, 𝜇1) : 𝜇 ∈ {0, ( 𝑓 /𝜌

𝑇
)𝑒1, . . . , ( 𝑓 /𝜌

𝑇
)𝑒𝑚}

}
. Here,

𝑒 𝑗 ∈ R𝑚 is the 𝑗-th unit vector and 𝜌
𝑇

= min 𝑗 𝜌𝑇, 𝑗 .

The proof proceeds in multiple steps. First, we write the rewards collected by Algorithm 3 as a

sum of per-period duals and complementary-slackness terms. Next, we use weak duality to upper

bound the expected value of the hindsight optimal reward E[OPT(𝑇, ®𝛾)] in terms of the expected

hindsight dual. These two steps are common to all primal-dual analyses, but past techniques offer

no guidance beyond this point. The core difficulty is that the expected hindsight dual is equal to the

sum of per-period duals with target consumption 𝜌𝑇 , whereas the lower bound on the performance
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of our algorithm is in terms of per-period duals with target consumptions 𝜆𝑡 . Importantly, this

difficulty does not arise in past works because the target consumptions 𝜆𝑡 = 𝜌𝑇 , which makes the

two terms directly comparable. Our main technical insight lies in using Lemma 8 to manipulate

the per-period duals and then carefully choosing the right dual solution in order to compare the

two terms. Moreover, one also needs to take into account the fact that the resources may run out

before the horizon 𝑇 is reached, and Algorithm 3 does not accumulate rewards after this point.

Since the point at which the budget runs out depends on the target consumption sequence, we also

establish a bound on the loss from depleting the resources too early which applies to variable target

sequences. We believe that Algorithm 3 and our proof techniques distill the core tradeoffs of the

problem and can be used more broadly. The full proof is in Appendix B.1.

Theorem 5 is the bedrock of our positive results. It allows us to drastically simplify the design

of algorithms: instead of searching for the optimal algorithm, we can focus on the much simpler

problem of selecting the optimal target consumption sequence. The following result provides a key

step in this direction by showing that 𝑐(®𝜆, 𝑇) is the asymptotic performance ratio of Algorithm 3

with target sequence ®𝜆.

Proposition 2. Let 𝐴 be Algorithm 3 with initial dual solution 𝜇1, initial resource endowment

𝐵1 = 𝐵, a target consumption sequence ®𝜆, reference function ℎ(·) : R𝑚 → R, and step-size 𝜂.

Set 𝐶′1 = max𝑇∈[𝜏1,𝜏2]𝐶
(𝑇)
1 and 𝐶′3 = max𝑇∈[𝜏1,𝜏2]𝐶

(𝑇)
3 . Then, with step size 𝜂 =

√︃
𝐶′3/{𝐶2𝜏2}, the

following statement holds for all 𝑇 ∈ [𝜏1, 𝜏2]:

inf
P
𝑐(𝐴|𝑇,P) = inf

P

E®𝛾∼P𝑇 [𝑅(𝐴|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] ≥ 𝑐(

®𝜆, 𝑇) − 𝜖 ,

where

𝜖 =
𝐶′1
𝜅𝜏1

+ 2 ·
√︁

(𝜏2/𝜏1)𝐶2𝐶
′
3

𝜅
√
𝜏1

.

Remark 1. To convert the guarantee in Proposition 2 to an asymptotic guarantee, one needs to

consider the regime where the initial resources scale with the horizon as 𝐵 = Ω(𝜏2), which ensures
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that 𝜌𝜏2 = Ω(1) and the constants 𝐶′1 and 𝐶′2 remain bounded. In which case, if we let 𝜏1 grow

large while ensuring 𝜏2 = 𝑂(𝜏1), we can make 𝜖 arbitrarily small. In particular, 𝜖 = 𝑂(𝜏−1/2
1 ). The

assumption that the initial resources scales linearly with the number of requests is pervasive in the

literature and well-motivated in applications such as internet advertising [Meh13] and revenue

management [TVR04]. Moreover, an error of 𝜖 = Ω(𝜏−1/2
1 ) is unavoidable even for the case when

the horizon is known, i.e., 𝜏1 = 𝜏2 (see [AG19]).

Remark 2. In applications where it might be difficult to estimate the constants 𝐶2 and 𝐶′3, one can

use the step size 𝜂 = 1/√𝜏2 to get

𝜖 =
𝐶′1
𝜅𝜏1

+
√

(𝜏2/𝜏1) · (𝐶2 + 𝐶′3)
𝜅
√
𝜏1

,

which yields similar asymptotic rates.

Having characterized the performance of Algorithm 3 in terms of the target sequence, we next

optimize it for the models of horizon uncertainty discussed in Section 3.1. Although we will only

discuss two models of uncertainty, we would like to note that Theorem 5 and Proposition 2 are

very general tools that can be applied more broadly. In particular, observe that

𝑐(®𝜆, 𝑇) =
1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
is a concave function of ®𝜆 for all 𝑇 ≥ 1. This is because each term in the sum is a minimum of a

finite collection of linear functions of ®𝜆. Consequently, any performance measure of Algorithm 3

which is a concave non-decreasing function of the performance ratios {𝑐(𝐴|𝑇,P)}𝑇 is a concave

function of the target sequence ®𝜆 in light of Proposition 2. We pause to emphasize this important

transition we have made in this section: we reduced the extremely complex problem of designing

an algorithm for online resource allocation under horizon uncertainty to a concave optimization

problem with the power to handle a variety of constraints and objectives. In the next section,

we show that this reduction is without much loss in the uncertainty-window setting—picking the
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optimal target consumption sequence leads to a near-optimal competitive ratio in the uncertainty-

window model.

3.3 Uncertainty Window

Motivated by robust optimization, in this section, we take the uncertainty-set approach to mod-

eling horizon uncertainty. In particular, we assume that the decision maker is not aware of the

exact value of 𝑇 but knows it can lie anywhere in the known uncertainty window [𝜏1, 𝜏2]. Recall

that we measure the performance of an algorithm 𝐴 in this model by its competitive ratio 𝑐(𝐴),

which is defined as

𝑐(𝐴) B min
P

min
𝑇∈[𝜏1,𝜏2]

𝑐(𝐴|𝑇,P) = inf
𝑇∈[𝜏1,𝜏2]

E®𝛾∼P𝑇 [𝑅(𝐴|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] .

3.3.1 Upper Bound on Competitive Ratio

We begin by showing that no online algorithm can attain a competitive ratio of 𝑐(𝐴) = 1

whenever 𝜏2/𝜏1 > 1 and, moreover, when 𝜏2/𝜏1 is large the competitive ratio degrades at a rate of

𝑒 · ln ln(𝜏2/𝜏1)/ln(𝜏2/𝜏1). In other words, the competitive ratio of every algorithm degrades to 0 as

𝜏2/𝜏1 grows large. In fact, we prove that this upper bound on the best-possible competitive ratio

holds even when (i) there is only 1 resource, (ii) the decision maker receives the same request at

each time step, (iii) this request is known to the decision maker ahead of time, and (iv) the request

has a smooth concave reward function and linear resource consumption.

For the purposes of this subsection, set the number of resources to 𝑚 = 1. Consider an arbitrary

initial resource endowment 𝐵 ∈ R𝑚++. For every 𝑟 ∈ (0, 1), define the singleton request space

S𝑟 = {( 𝑓𝑟 , 𝐼,X)}, where X = [0,max{1, 𝐵/𝜏1}], and 𝑓𝑟(𝑥) = 𝑥𝑟 , 𝐼(𝑥) = 𝑥 for all 𝑥 ∈ X. Note

that 𝑓𝑟 is concave for all 𝑟 ∈ (0, 1). Let P𝑟 be the canonical distribution on S𝑟 that serves the

request ( 𝑓𝑟 , 𝐼,X) with probability one. Since all requests are identical, we abuse notation and use

OPT(𝑇, 𝑟) (similarly 𝑅(𝐴|𝑇, 𝑟)) to denote the hindsight-optimal reward OPT(𝑇, ®𝛾) (total reward

𝑅(𝐴|𝑇, ®𝛾) of algorithm 𝐴) when ®𝛾 ∼ P𝑇𝑟 , i.e., 𝛾𝑡 = ( 𝑓𝑟 , 𝐼,X) for all 𝑡 ≤ 𝑇 .
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Before stating the upper bound, we would like to note that randomization only makes the

performance of any online algorithm worse. To see this consider any non-deterministic online

algorithm 𝐴 and let 𝑥(𝐴)𝑡 denote the random variable which captures the action taken by 𝐴 at

time 𝑡. Define 𝐴′ to be the online algorithm which takes the action 𝑥(𝐴′)𝑡 = E[𝑥(𝐴)𝑡] at time 𝑡.

Then, due to the strict concavity of 𝑓𝑟 , we have 𝑓𝑟(𝑥(𝐴′)𝑡) > E[ 𝑓𝑟(𝑥(𝐴)𝑡)], and from the linearity of

expectation, we have
∑𝜏2
𝑡=1 𝑥(𝐴′)𝑡 = E[∑𝜏2

𝑡=1 𝑥(𝐴)𝑡] ≤ 𝐵. Therefore, the deterministic algorithm 𝐴′

attains strictly greater reward. Consequently, we will focus only on deterministic online algorithms

for the remainder of this subsection. We are now ready to state the main result of this section.

Theorem 6. For all 𝑟 ∈ (0, 1) and 1 ≤ 𝜏1 ≤ 𝜏2, every online algorithm 𝐴 satisfies

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

≤ 1(
1 + (1 − 𝑟)1/𝑟 · ln(𝜏2/𝜏1) + ln

(
𝜏1
𝜏1+1

))𝑟 .
In particular, when 𝑟 = 1 − {1/ln ln(𝜏2/𝜏1)} and 𝜏2/𝜏1 > 𝑒

𝑒, every online algorithm 𝐴 satisfies

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

≤ 𝑒 · ln ln(𝜏2/𝜏1)
ln(𝜏2/𝜏1)

.

The above bounds hold even for online algorithms that have prior knowledge of P𝑟 before time

𝑡 = 1.

Remark 3. Note that the upper bound on the competitive ratio established in Theorem 6 degrades

to zero as 𝜏2/𝜏1 grows large. In particular, a positive competitive ratio cannot be obtained if no

upper-bound on the horizon 𝑇 is known, thereby necessitating the need for a known uncertainty

window.

Figure 3.1 plots the value of the upper bound on the competitive ratio as a function of 𝜏2/𝜏1 for

𝜏2/𝜏1 ∈ [1, 20].

We now discuss the main ideas behind the proof of Theorem 6. It suffices to prove the stronger

statement in the theorem that holds for online algorithms with prior knowledge of (𝑟,P𝑟) before

time 𝑡 = 1. Consequently, we assume that online algorithms have this prior knowledge in the

58



remainder of this section. Any algorithm without this knowledge can only do worse. We begin by

utilizing the concavity of 𝑓𝑟 to evaluate the optimal reward, which we note in the following lemma.

Lemma 9. For 𝑟 ∈ (0, 1) and 𝑇 ∈ [𝜏1, 𝜏2], we have OPT(𝑇, 𝑟) = 𝑇 · (𝐵/𝑇)𝑟 = 𝐵𝑟 · 𝑇1−𝑟 . Moreover,

𝑥𝑡 = 𝐵/𝑇 is the unique hindsight optimal solution.

Because the reward function 𝑓𝑟 is concave, it is optimal to spread resources uniformly over time

and the optimal action with the benefit of hindsight is 𝑥𝑡 = 𝐵/𝑇 . Next, we provide an alternative

characterization of the competitive ratio that is more tractable.

Lemma 10. For 𝑟 ∈ (0, 1)and 1 ≤ 𝜏1 ≤ 𝜏2, we have

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

= max

{
𝑐 ∈ [0, 1]

���� 𝜏1 · 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝜏2∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) ≤ 𝐵

}
,

where ΔOPT(𝑡, 𝑟) = OPT(𝑡, 𝑟) − OPT(𝑡 − 1, 𝑟) and the sup is taken over all online algorithms.

We present a proof sketch of Lemma 10 here. The main step in the proof involves showing

that, for a given competitive ratio 𝑐, the minimum amount of resources that any online algorithm

𝐴 needs to be spend in order to satisfy min𝑇∈[𝜏1,𝜏2] 𝑅(𝐴|𝑇, 𝑟)/OPT(𝑇, 𝑟) ≥ 𝑐 is given by

𝜏1 · 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝜏2∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) .

This is because 𝑓𝑟 is concave for all 𝑟 ∈ (0, 1) and the resource consumption function 𝐼 is linear,

which together imply that the marginal bang-per-buck 𝑓 ′𝑟 (𝑥) (amount of reward per marginal unit

of resource spent) decreases with 𝑥. As a consequence, an online algorithm that does not have

any knowledge of 𝑇 (other than 𝑇 ∈ [𝜏1, 𝜏2]) and needs to satisfy 𝑅(𝐴|𝑇, 𝑟) ≥ 𝑐 · OPT(𝑇, 𝑟)

for all 𝑇 ∈ [𝜏1, 𝜏2] would spend the minimum amount of resources in doing so if (i) it attains a

reward of 𝑐 · OPT(𝜏1, 𝑟) by evenly spending resources in the first 𝜏1 steps, and (ii) it spends just

enough resources to attain a reward of 𝑐 · ΔOPT(𝑡, 𝑟) at each time step 𝑡 ≥ 𝜏1 + 1. Proving (ii)

requires showing that ΔOPT(𝑡, 𝑟) decreases with an increase in 𝑡, which follows from Lemma 9.

In particular, this ensures that obtaining all of ΔOPT(𝑡, 𝑟) at time 𝑡 is cheaper than obtaining some
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of that reward at an earlier time 𝑡′ < 𝑡. However, the proof requires a sophisticated water-filling

argument to show that the aforementioned greedy strategy of minimizing the amount of resources

at each time step leads to globally-minimal spending. Finally, combining Lemma 10 and Lemma 9

yields

𝜏1 ·
(
𝑐∗ ·

𝐵𝑟𝜏1−𝑟
1
𝜏1

)1/𝑟

+
𝜏2∑︁

𝑡=𝜏1+1

(
𝑐∗ · [𝐵𝑟 𝑡1−𝑟 − 𝐵𝑟(𝑡 − 1)1−𝑟]

)1/𝑟
≤ 𝐵

for 𝑐∗ = sup𝐴 min𝑇∈[𝜏1,𝜏2] 𝑅(𝐴|𝑇, 𝑟)/OPT(𝑇, 𝑟). The above equation specifies an upper bound on

𝑐∗, which upon simplification leads to Theorem 6.

We conclude by noting that the upper bound of Theorem 6 can be extended to the popu-

lar setting of online resource allocation with random linear rewards and consumptions (see Ap-

pendix B.2.4 for details). Moreover, the upper bound of Theorem 6 holds even when the horizon 𝑇

is drawn from a distribution T supported on [𝜏1, 𝜏2] and this distribution is known to the decision

maker. A proof based on strong duality can be found in Appendix B.2.5.

3.3.2 Optimizing the Target Sequence

Having shown that no algorithm can attain a competitive ratio better than �̃�(1/ln(𝜏2/𝜏1)), we

now show that Algorithm 3 with an appropriately chosen target consumption sequence ®𝜆 can

achieve a competitive ratio of Ω(1/ln(𝜏2/𝜏1)) for sufficiently large 𝜏1 and 𝐵. In light of Propo-

sition 2, we can optimize the competitive ratio of Algorithm 3 by finding the target consumption

sequence which maximizes min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇), i.e., we need to solve the following maximin prob-

lem:

max
®𝜆

min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇) = max
®𝜆

min
𝑇∈[𝜏1,𝜏2]

1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
.

The following proposition restates the above maximin problem as an LP.
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Figure 3.2: The optimal target consumption sequence for various possible uncertainty windows
centered on 𝑇 = 50. Here, number of resources 𝑚 = 1 and initial resource endowment 𝐵 = 50.

Proposition 3. For budget 𝐵 and uncertainty window [𝜏1, 𝜏2], we have

max
®𝜆

min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇) = max
𝑧,𝑦,𝜆

𝑧

s.t. 𝑧 ≤ 1
𝑇

𝑇∑︁
𝑡=1

𝑦𝑇,𝑡 ∀𝑇 ∈ [𝜏1, 𝜏2]

𝑦𝑇,𝑡 ≤
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
∀ 𝑗 ∈ [𝑚], 𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]

𝑦𝑇,𝑡 ≤ 1 ∀𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]
𝜏2∑︁
𝑡=1
𝜆𝑡 ≤ 𝐵

𝜆 ≥ 0

Proposition 3 states that we can efficiently compute the optimal target consumption sequence

by solving an LP. Figure 3.2 plots the optimal target sequences from Proposition 3 for different

uncertainty windows. The optimal target consumption sequences are decreasing as the algorithm

consumes resources more aggressively early on to prevent having too many leftover resources if

the horizon ends being short. Moreover, as the uncertainty window becomes more narrow, the

consumption sequence becomes less variable.

To see that Algorithm 3 with the optimal target consumption sequence from the above LP

has an asymptotic competitive ratio of Ω(1/ln(𝜏2/𝜏1)), consider the following target consumption
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Figure 3.3: A simple target consumption sequence that achieves a competitive ratio of 1/(1 +
ln(𝜏2/𝜏1)). The height of the bars represents 𝜆𝑡 .

sequence (depicted in Figure 3.3):

𝜆𝑡 B


1

1+ln(𝜏2/𝜏1) ·
𝐵
𝜏1

= 1
1+ln(𝜏2/𝜏1) · 𝜌𝜏1 if 𝑡 ≤ 𝜏1 ,

1
1+ln(𝜏2/𝜏1) ·

𝐵
𝑡

= 1
1+ln(𝜏2/𝜏1) · 𝜌𝑡 if 𝜏1 + 1 ≤ 𝑡 ≤ 𝜏2 .

(3.6)

It is easy to see that it satisfies the budget constraint:

𝜏2∑︁
𝑡=1
𝜆𝑡 =

𝐵

1 + ln(𝜏2/𝜏1)
·
(
𝜏1 ·

1
𝜏1

+
𝜏2∑︁

𝑡=𝜏1+1

1
𝑡

)
≤ 𝐵

1 + ln(𝜏2/𝜏1)
·
(
1 + ln

(
𝜏2
𝜏1

))
= 𝐵 .

Moreover, since 𝜌𝑡 ≥ 𝜌𝑇 for all 𝑡 ≤ 𝑇 and 𝑇 ∈ [𝜏1, 𝜏2], we get

1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
≥ 1
𝑇

𝑇∑︁
𝑡=1

1
1 + ln(𝜏2/𝜏1)

=
1

1 + ln(𝜏2/𝜏1)
,

where the inequality follows from the fact that 𝜌𝑇 ≤ 𝜌𝑡 for all 𝑡 ∈ [𝜏1, 𝑇] and the definition of 𝜆 as

given in (3.6).

Since ®𝜆 from (3.6) is just one possible choice of the target consumption sequence, we have

max
®𝜆

min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇) ≥ 1
1 + ln(𝜏2/𝜏1)

.

Therefore, we get that Algorithm 3 in combination with the target consumption sequence re-

turned by the LP in Proposition 3 achieves a degradation of 1/(1 + ln(𝜏2/𝜏1)) in the competitive

ratio as a function of the multiplicative uncertainty 𝜏2/𝜏1, which is optimal up to constants and
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Figure 3.4: The competitive ratios achieved using the target consumption sequence from the LP in
Proposition 3, and the simple one defined in (3.6) that yields a competitive ratio of 1/(1+ln(𝜏2/𝜏1)).

a ln ln(𝜏2/𝜏1) factor. In fact, as Figure 3.4 shows, the target consumption sequence from the LP

performs much better than 1/(1 + ln 𝜏2/𝜏1), even for small values of 𝜏2/𝜏1. In Section 3.5, we will

give a faster algorithm which leverages the structure of the problem to optimize the target sequence

and does not require solving an LP.

We conclude with a discussion on the structural similarity of the results of this subsection

with those of [BS14], who studied the dynamic pricing problem (special case of online resource

allocation) under demand shifts. They worked under the assumption that the request distribution is

perfectly known, and showed that the optimal dynamic programming solution has a non-increasing

resource consumption sequence when the horizon is uncertain. The target consumption sequences

described in this section are also non-increasing, leading to a similar structural insight for the more

general online resource allocation problem with unknown request distribution.

3.4 Incorporating Predictions about the Horizon

In the previous section, we did not assume that we had any information about the horizon 𝑇

other than the fact that it belonged to the uncertainty window [𝜏1, 𝜏2]. This may be too pessimistic

in settings where the environment is well behaved and machine learning algorithms can be de-

ployed to make predictions about the horizon. In this section, we show that our Variable Target

Dual Descent algorithm allows us to easily incorporate predictions by optimizing the target se-
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quences. We formulate an LP to optimize the target sequence which allows the decision-maker

to smoothly interpolate between the uncertainty-window setting and the known-horizon setting,

thereby catering to different levels of confidence in the prediction.

First, we define the performance metrics we will use to measure the performance of an online

algorithm capable of incorporating predictions. These metrics are pervasive in the Algorithms-

with-Predictions literature (see [MV20] for an excellent survey) and are aimed at capturing the

performance of the algorithm both when the prediction is accurate and in the worst case when the

instance bears no resemblance to the prediction. To this end, in addition to the competitive-ratio

metric defined in Section 3.1, which captures the worst-case performance, we introduce the notion

of consistency to capture the performance of the algorithm when the prediction is accurate. Let

𝑇𝑃 ∈ [𝜏1, 𝜏2] denote the predicted value of the horizon and let 𝐴(𝑇𝑃) denote algorithm 𝐴 when

provided with the prediction 𝑇𝑃. We say that an algorithm 𝐴 is 𝛽-consistent on prediction 𝑇𝑃 and

𝛾-competitive if it satisfies

𝑐(𝐴(𝑇𝑃)|𝑇𝑃,P) =
E®𝛾∼P𝑇 [𝑅(𝐴(𝑇𝑃)|𝑇𝑃, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇𝑃, ®𝛾)] ≥ 𝛽 ,

and

inf
𝑇∈[𝜏1,𝜏2]

𝑐(𝐴(𝑇𝑃)|𝑇,P) = inf
𝑇∈[𝜏1,𝜏2]

E®𝛾∼P𝑇 [𝑅(𝐴(𝑇𝑃)|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] ≥ 𝛾 ,

for all request distributions P. In other words, an algorithm which is 𝛽-consistent on prediction 𝑇𝑃

and 𝛾-competitive is guaranteed to get a 𝛽 fraction of the hindsight optimal reward in expectation

if the prediction comes true and it is guaranteed to attain a 𝛾 fraction of the hindsight optimal

reward for every horizon 𝑇 ∈ [𝜏1, 𝜏2] (whether or not it conforms to the prediction). Consistency

and competitiveness are conflicting objectives and different decision makers might have different

preferences over them. In particular, increasing consistency usually leads to lower competitiveness.

Consequently, our goal is to find an algorithm which can trade off the two quantities, allowing us

to interpolate between the known-horizon and the uncertainty-window settings.
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Once again, the versatility of Algorithm 3 and its ability to reduce the problem of finding the

optimal algorithm to that of finding the optimal target consumption sequence comes to the fore.

In particular, Proposition 2 implies that Algorithm 3 with target consumption sequence ®𝜆(𝑇𝑃) for

prediction 𝑇𝑃 ∈ [𝜏1, 𝜏2] is 𝛽′-consistent for prediction 𝑇𝑃 and 𝛾′-competitive with

𝛽′ = 𝑐(®𝜆(𝑇𝑃), 𝑇𝑃) − 𝜖 and 𝛾′ = inf
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆(𝑇𝑃), 𝑇) − 𝜖 .

Therefore, given a prediction 𝑇𝑃 and a required level of competitiveness 𝛾′ = 𝛾 − 𝜖 , we need

to solve the following optimization problem in order to maximize consistency while achieving

𝛾′-competitiveness:

max
®𝜆
𝑐(®𝜆, 𝑇𝑃) s.t. inf

𝑇∈[𝜏1,𝜏2]
𝑐(®𝜆, 𝑇) ≥ 𝛾 .

As in the uncertainty-window setting, we can rewrite this as an LP.

Proposition 4. For budget 𝐵, uncertainty window [𝜏1, 𝜏2], predicted horizon 𝑇𝑃 ∈ [𝜏1, 𝜏2] and

required level of competitiveness 𝛾′ = 𝛾 − 𝜖 , we have

max
®𝜆

𝑐(®𝜆, 𝑇𝑃) = max
𝜆,𝑦

1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

𝑦𝑇𝑃 ,𝑡

s.t. min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇) ≥ 𝛾 s.t. 𝛾 ≤ 1
𝑇

𝑇∑︁
𝑡=1

𝑦𝑇,𝑡 ∀𝑇 ∈ [𝜏1, 𝜏2]

𝑦𝑇,𝑡 ≤
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
∀ 𝑗 ∈ [𝑚], 𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]

𝑦𝑇,𝑡 ≤ 1 ∀𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]
𝜏2∑︁
𝑡=1
𝜆𝑡 ≤ 𝐵

𝜆 ≥ 0

Remark 4. Our framework can also accommodate distributional predictions about the horizon,

leading to a similar LP with the only difference being an additional expectation over the predicted
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Figure 3.5: The optimal target consumption sequence for various values of required levels of
competitiveness 𝛾. Here, 𝑚 = 1, 𝜏1 = 10, 𝜏2 = 100, 𝐵 = 50 and 𝑇𝑃 = 55. Moreover, 0.54 is
the competitive ratio of the optimal target sequence, i.e., 0.54 is the optimal value of the LP in
Proposition 3. The sequences lose consistency and gain competitiveness from left to right.
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Figure 3.6: The consistency-competitiveness curves for the LP from Proposition 4 and the simple
target sequence from (3.7), with predicted horizon 𝑇𝑃 ∈ {20, 55, 90}. Here, 𝑚 = 1, 𝜏1 = 10, 𝜏2 =
100 and 𝐵 = 50. Consistency 𝛽 = 1 corresponds to the known-horizon setting and competitiveness
𝛾 = 0.54 corresponds to the largest possible competitiveness which can be obtained by optimizing
the target sequence (Proposition 3).
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Figure 3.7: Average performance ratio (over 100 runs) of Algorithm 3, with target sequence from
the LP in Proposition 4 for different values of 𝛾, on the uniform multi-secretary problem.

horizon 𝑇𝑃 in the objective.

Observe that, when 𝛾 = 0 and the decision maker does not desire robustness, the LP in Propo-

sition 4 would output ®𝜆 with 𝜆𝑡 = 𝜌𝑇𝑃 for 𝑡 ≤ 𝑇𝑃 and 𝜆𝑡 = 0 otherwise. Algorithm 3 with this
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target consumption sequence is exactly the algorithm of [BLM23], which yields a consistency of

𝛽 = 1. On the other extreme is 𝛾 being equal to the output of the LP in Proposition 3, in which

case the LP in Proposition 4 would output a target sequence ®𝜆 which maximizes the competitive

ratio min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇). For values of 𝛾 in between the two extremes, the LP in Proposition 4

outputs a target consumption sequence which attempts to balance the two objectives, as can be

seen in Figure 3.5. This allows the decision maker to interpolate between the known-horizon and

the uncertainty-window settings (see Figure 3.6).

Now, suppose the required level of competitiveness 𝛾′ = 𝛾−𝜖 is such that 𝛾 = 𝛼·(1+ln(𝜏2/𝜏1))−1

for some 𝛼 ∈ [0, 1]. Then, for predicted horizon 𝑇𝑃 ∈ [𝜏1, 𝜏2], consider the following simple target

consumption sequence

𝜆𝑡 B



𝛼
1+ln(𝜏2/𝜏1) ·

𝐵
𝜏1

+ (1 − 𝛼) · 𝐵
𝑇𝑃

= 𝛼
1+ln(𝜏2/𝜏1) · 𝜌𝜏1 + (1 − 𝛼) · 𝜌𝑇𝑃 if 𝑡 ≤ 𝜏1 ,

𝛼
1+ln(𝜏2/𝜏1) ·

𝐵
𝑡

+ (1 − 𝛼) · 𝐵
𝑇𝑃

= 𝛼
1+ln(𝜏2/𝜏1) · 𝜌𝑡 + (1 − 𝛼) · 𝜌𝑇𝑃 if 𝜏1 + 1 ≤ 𝑡 ≤ 𝑇𝑃 ,

𝛼
1+ln(𝜏2/𝜏1) ·

𝐵
𝑡

= 𝛼
1+ln(𝜏2/𝜏1) · 𝜌𝑡 if 𝑇𝑃 + 1 ≤ 𝑡 ≤ 𝜏2 .

(3.7)

The target sequence ®𝜆 is simply a sum of two target sequences: (i) The first part is an 𝛼-

scaled-down version of the simple target sequence from (3.6), which ensures 𝛼 · (1 + ln(𝜏2/𝜏1)−1)

competitiveness; (ii) The second is a (1 − 𝛼)-scaled-down version of the target sequence which

spends 𝜌𝑇𝑃 = 𝐵/𝑇𝑃 evenly and is optimal when the prediction were true. ®𝜆, as defined in (3.7), is

a feasible solution to the optimization of Proposition 4, which allows us to establish the following

closed-form guarantee.

Proposition 5. Let 𝜖 be as in Proposition 2. Consider a target level of competitiveness 𝛾 − 𝜖 ,

where 𝛾 = 𝛼 · (1 + ln(𝜏2/𝜏1))−1 for some 𝛼 ∈ [0, 1]. Let ®𝜆(𝑇𝑃) be an optimal solution of the LP in

Proposition 4 and let 𝐴(𝑇𝑃) denote Algorithm 3 with the target sequence ®𝜆(𝑇𝑃). Then, for every

request distribution P and predicted horizon 𝑇𝑃 ∈ [𝜏1, 𝜏2], we have

𝑐(𝐴(𝑇𝑃)|𝑇𝑃,P) ≥
(
1 − 𝛼 +

𝛼

1 + ln(𝜏2/𝜏1)

)
− 𝜖 and inf

𝑇,𝑇𝑃
𝑐(𝐴(𝑇𝑃)|𝑇,P) ≥ 𝛼

1 + ln(𝜏2/𝜏1)
− 𝜖 .
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Note that the target sequence in (3.7) is just one particular target sequence and the LP in Propo-

sition 4 computes the optimal target sequence, and consequently the latter always performs better.

This domination in performance is depicted in Figure 3.6, where the consistency-competitiveness

curve the simple sequence (in orange) lies entirely below the curve from Proposition 4 (blue curve).

Numerical Experiment. We evaluated our algorithm (Algorithm 3 with target sequence from

Proposition 4) on the multi-secretary problem with uniform rewards and the results are summarized

in Figure 3.7. In this experiment, the request distribution captures the uniform multi-secretary

problem: each request 𝛾 = ( 𝑓 , 𝑏,X) has reward 𝑓 (𝑥) = 𝑟 · 𝑥 for 𝑟 ∼ Unif([0, 1]), consumption

𝑏(𝑥) = 𝑥 and an accept/reject action space X = {0, 1}. Moreover, 𝜏1 = 400, 𝜏2 = 1600, 𝐵 = 500,

𝜂 = 0.03, 𝜇1 = 0.5 and ℎ(·) = ∥·∥2. As expected, smaller values of 𝛾 lead to better performance

when the true horizon 𝑇 is close to the prediction 𝑇𝑃, but this comes at the expense of lower worst-

case reward (minimum competitive ratio over all possible values of the horizon𝑇 ∈ [𝜏1, 𝜏2]). Recall

that 𝛾 = 0 represents the algorithm of [BLM23] with horizon 𝑇𝑃. Our experiment demonstrates

its fragility to traffic spikes: if the number of requests turns out to be 3 times the predicted traffic

of 𝑇𝑃 = 400, the algorithm of [BLM23] achieves a drastically lower performance ratio than our

algorithm with 𝛾 = 0.6.

3.5 Bypassing the LP: A Faster Algorithm

Even though the LPs of Proposition 3 and Proposition 4 compute the optimal target consump-

tion sequence in polynomial time, they do not exploit the structure of the problem and are not

desirable in large-scale domains like internet advertising where speed is of the essence. To remedy

this, we next develop a faster algorithm to compute the optimal target consumption sequence; this

algorithm more directly exploits the structure of the problem. The algorithm (Algorithm 4) will

rely on the following observation about 𝑐(®𝜆, 𝑇):

𝑐(®𝜆, 𝑇) =
1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
≤ min

1≤ 𝑗≤𝑚

1
𝑇

𝑇∑︁
𝑡=1

min
{
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
= min

1≤ 𝑗≤𝑚

1
𝐵 𝑗

𝑇∑︁
𝑡=1

min
{
𝜆𝑡, 𝑗 , 𝜌𝑇, 𝑗

}
(3.8)
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Algorithm 4: Optimal Target Consumption Sequence
Input: Budget 𝐵 ∈ R𝑚++, uncertainty window [𝜏1, 𝜏2], prediction 𝑇𝑃, required level of
consistency 𝛽 ∈ [0, 1] and required level of competitiveness 𝛾 ∈ [0, 𝛽].
Initialize: 𝜆𝑡, 𝑗 ← 0 ∀𝑡 ∈ [𝜏2], 𝑗 ∈ [𝑚]
for 𝑇 = 𝜏2 to 𝜏1 do

for 𝑡 = 1 to 𝑇 do

𝜆𝑡, 𝑗 ←
{
𝜆𝑡, 𝑗 + min

{
𝜌𝑇, 𝑗 − 𝜆𝑡, 𝑗 , 𝛽 · 𝐵 𝑗 −

∑𝑇
𝑠=1 𝜆𝑠, 𝑗

}+ if 𝑇 = 𝑇𝑃,
𝜆𝑡, 𝑗 + min

{
𝜌𝑇, 𝑗 − 𝜆𝑡, 𝑗 , 𝛾 · 𝐵 𝑗 −

∑𝑇
𝑠=1 𝜆𝑠, 𝑗

}+ if 𝑇 ̸= 𝑇𝑃
(3.9)

end
end
Return: TRUE if

∑𝜏2
𝑡=1 𝜆𝑡 ≤ 𝐵 𝑗 ; else FALSE.

where the last equality follows from multiplying and diving by 𝜌𝑇, 𝑗 = 𝐵 𝑗/𝑇 . Moreover, note that

the above inequality is tight when 𝜆𝑡 , 𝑗
𝜌𝑇, 𝑗

= 𝜆𝑡 ,𝑘
𝜌𝑇,𝑘

for all 𝑗 , 𝑘 ∈ [𝑚], 𝑡 ∈ [𝑇] .

Therefore, any target sequence ®𝜆 which is 𝛽-consistent for prediction 𝑇𝑃, i.e., 𝑐(®𝜆, 𝑇𝑃) ≥ 𝛽, and

𝛾-competitive, i.e. min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇) ≥ 𝛾, satisfies the following inequalities for all 𝑗 ∈ [𝑚]:

𝑇𝑃∑︁
𝑡=1

min{𝜆𝑡, 𝑗/𝜌𝑇𝑃 , 𝑗 } ≥ 𝛽 · 𝐵 𝑗 and
𝑇∑︁
𝑡=1

min{𝜆𝑡, 𝑗/𝜌𝑇, 𝑗 } ≥ 𝛾 · 𝐵 𝑗 ∀ 𝑇 ∈ [𝜏1, 𝜏2] .

Algorithm 4 minimizes
∑𝜏2
𝑡=1 𝜆𝑡, 𝑗 while maintaining the above property. And as a consequence,

we can show that 𝛽 consistency on 𝑇𝑃 and 𝛾 competitiveness are attainable if and only if Algo-

rithm 4 returns TRUE. Given this property, it is a straightforward exercise to use binary search

in conjunction with Algorithm 4 to compute the optimal solution to the LPs in Proposition 3 and

Proposition 4 up to arbitrary precision (For completeness, we provide details in Appendix B.5).

Theorem 7. Given budget 𝐵 ∈ R𝑚++, uncertainty window [𝜏1, 𝜏2], prediction 𝑇𝑃, required level

of consistency 𝛽 ∈ [0, 1] and required level of competitiveness 𝛾 ∈ [0, 𝛽] as input, let ®𝜆∗ be the

sequence computed by Algorithm 4. Then,

1. 𝑐(®𝜆∗, 𝑇𝑃) ≥ 𝛽 and min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆∗, 𝑇) ≥ 𝛾

2.
∑𝜏2
𝑡=1 𝜆

∗
𝑡 ≤ 𝐵 if and only if there exists a target consumption sequence ®𝜆′ (with

∑𝜏2
𝑡=1 𝜆

′
𝑡 ≤ 𝐵)

which satisfies 𝑐(®𝜆′, 𝑇𝑃) ≥ 𝛽 and min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆′, 𝑇) ≥ 𝛾 .
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Figure 3.8: A comparison of the running times of the LP from Proposition 3 solved using Gurobi
Optimizer version 9.1.2 build v9.1.2rc0 (mac64) and Algorithm 4 run on Python 3.7.6 without the
use of any advanced libraries. The minimum runtime from 10 runs was selected for GUROBI and
the maximum runtime from 10 runs was selected for Algortihm 4. Both algorithms were limited
to a single thread to ensure parity of computational resources. Here, 𝜏2 = 3 · 𝜏1 and 𝐵 = 1.5 · 𝜏1 for
all values of 𝜏1. For 𝜏1 ≥ 300, GUROBI did not terminate with a solution even after 10 min, while
Algorithm 4 consistently did so under 10 seconds.

Observe that there can be at most 𝜏2
2 updates of the target sequence ®𝜆 (as given in (3.9)) during

the run of Algorithm 4. One can maintain and iteratively update
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 after the completion of

each iteration of the inner and outer For loops to perform the update in constant time. Therefore,

the runtime complexity of Algorithm 4 is𝑂(𝑚 ·𝜏2
2 ), which is faster than any known general-purpose

LP solver applied to the LP in Proposition 3 or Proposition 4. We also empirically observed this

difference in running times between the LP of Proposition 3 and Algorithm 4 (see Figure 3.8).

3.6 Conclusion

We develop and analyze a generalized version of dual descent which can incorporate variable

target consumption sequences (Algorithm 3), thereby reducing the complicated problem of finding

an algorithm for online resource allocation under horizon uncertainty to the much simpler (and

convex) problem of optimizing the target sequence. We then demonstrate the power of this re-

duction by showing that, with the optimal target sequence, Algorithm 3 achieves a near-optimal

competitive ratio when only upper and lower bounds on the horizon are known. We also pro-

vide a way to smoothly interpolate between the previously-studied known-horizon setting and the

uncertainty-window setting through the Algorithms-with-Predictions framework, thereby provid-
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ing a robust approach to online allocation which allows the decision-maker to tailor the degree to

robustness to their requirements. Our algorithms have the added advantage of simplicity and speed

because they do not require the decision-maker to solve any large linear programs.

We leave open the problem of closing the gap between our lower and upper bounds on the

competitive ratio by accounting for the 𝑒 · ln ln(𝜏2/𝜏1) discrepancy. Although this gap is not large

asymptotically, closing it will likely result in a deeper understanding of the problem. It would

also be interesting to explore whether algorithms which operate in the primal space can similarly

benefit from employing a variable target consumption sequence. Finally, when both the distribution

of requests and the distribution of the horizon are known in advance, it is worth studying if it is

possible to achieve a constant/logarithmic regret against an appropriately defined benchmark (see

for example [BW20; VB19] for similar results when the horizon is known).

71



Chapter 4: Contextual Standard Auctions with Budgets

Based on the publication [BKK23a] co-authored with Santiago Balseiro and Christian Kroer.

This chapter marks a change in perspective. Till now, we have focused on the budget manage-

ment problem faced by an individual advertiser. Now, we will take a broader look at the market as a

whole, and analyze the market-level outcomes that emerge from the strategic interactions of adver-

tisers who are all simultaneously attempting to maximize their utility subject to budget constraints.

The current chapter focuses on investiagting the equilibria that emerge in such markets.

In Section 4.2, we establish the existence of a well-structured Bayes-Nash equilibrium for all

standard auction. The equilibrium bidding strategy paces (i.e., multiplcatively shades) the value

and composes it with the equilibrium strategy for the setting without budget constraints. Then,

in Section 4.3, we leverage this modular structure to prove a revenue equivalence results, which

states that the average revenue to the platform is the same under all standard auction formats,

even in the presence of budgets. Finally, we prove a price of anarchy bound for liquid welfare in

Section 4.4 and conclude with some structural properties (Section 4.5) and numerical experiments

(Section 4.6).

4.1 Model

We consider the setting in which a seller (i.e., the advertising platform) plans to sell an indi-

visible item to one of 𝑛 buyers (i.e., the advertisers) using an auction. We adopt a feature-based

valuation model for the buyer. More precisely, the item type is represented using a vector 𝛼 be-

longing to the set 𝐴 ⊂ R𝑑 , where each component of 𝛼 can be interpreted as a feature. We also

refer to 𝛼 as the context. Each buyer type is represented using a vector (𝑤, 𝐵) belonging to the set

Θ ⊂ R𝑑+1 of possible buyer types, where the last component 𝐵 denotes her budget and the first

𝑑 components 𝑤 capture the weights she assigns to each of the 𝑑 features. The value (maximum
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willingness to pay) that buyer type (𝑤, 𝐵) has for item 𝛼 is given by the inner product 𝑤𝑇𝛼. For

simplicity of notation and ease of exposition, we will state our results under this linear relationship

between values and the features, but our model and results can be extended to accommodate non-

linear response functions (such as the logistic function) that are commonly used in practice (see

Appendix C.7 for a more detailed discussion). We will use 𝜔 = max(𝑤,𝐵)∈Θ,𝛼∈𝐴 𝑤𝑇𝛼 to denote the

maximum value that a buyer can have for an item.

We assume that the context of the item to be auctioned is drawn from some distribution 𝐹 over

the set of possible items types 𝐴. Furthermore, the type for every buyer is drawn according to

some distribution 𝐺 over the set of possible buyer types Θ, independently of the other buyers and

the choice of the item. Note that, by virtue of our context-based valuation model, the values of

the 𝑛 buyers for the item need not be independent. In line with standard models used for Bayesian

analysis of auctions, we will assume that both 𝐺 and 𝐹 are common knowledge, while maintaining

that the realized type vector (𝑤, 𝐵) associated with a buyer is her private information. Our model

allows budgets to be random and correlated with the buyers’ weight vector. In addition, we will

assume that buyers are unaware of the type of their competing buyers—this implies budgets are

private.

To fix ideas, we first consider the case of a first-price auction with reserve prices and then

discuss how our results extend to standard auctions in Section 4.3. In a first-price auction, the

seller allocates the item to the highest bidder whenever her bid is above the reserve price and the

winning bidder pays her bid. We assume the seller discloses the item type 𝛼 to the 𝑛 buyers before

bids are solicited from them. As a result, the bid of a buyer on item 𝛼 can depend on 𝛼. We use

𝑟 : 𝐴→ R to specify the publicly known context-dependent reserve prices, where 𝑟(𝛼) denotes the

reserve price on item type 𝛼.

The budget of a buyer represents an upper bound on the amount she would like to pay in the

auction. We only require that each buyer satisfy her budget constraint in expectation over the

item type and competing buyer types. Similar assumptions have been made in the literature (see,

e.g., [GKP12; AH13; BBW15; Bal+21; Con+18]). The motivation behind this modeling choice
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is that budget constraints are often enforced on average by advertising platforms. For example,

Google Ads allows daily budgets to be exceeded by a factor of two in any given day, but, over the

course of month, the total expenditure never exceeds the daily budget times the days in the month.1

In-expectation budget constraints are also motivated by the fact that, in practice, buyers typically

participate in a large number of auctions and many buyers use stationary bidding strategies. Thus,

by the law of large numbers, our model can be interpreted as collapsing multiple, repeated auctions

in which item types are drawn i.i.d. from 𝐹 into a single one-shot auction with in-expectation

constraints.

Notation. We will use R+ and R≥0 to denote the set of strictly positive and non-negative real

numbers, respectively. We will use 𝐺𝑤 to denote the marginal distribution of 𝑤 when (𝑤, 𝐵) ∼ 𝐺,

i.e., 𝐺𝑤(𝐾) B 𝐺({(𝑤, 𝐵) ∈ Θ | 𝑤 ∈ 𝐾}) for all Borel sets 𝐾 ⊂ 𝑆. In a similar vein, we will use

Θ𝑤 to denote the set of 𝑤 ∈ R𝑑 such that (𝑤, 𝐵) ∈ Θ for some 𝐵 ∈ R. (Here we abuse notation by

using 𝑤 both as a weight vector variable and as a subscript to denote the projection of a buyer type

onto the first 𝑑 dimensions). Unless specified otherwise, ∥·∥ denotes the Euclidean norm.

Assumptions. We will assume that there exist 𝑈, 𝐵min > 0 such that the set of possible buyer

types Θ is given by Θ = (0,𝑈)𝑑 × (𝐵min,𝑈). In a similar vein, we also assume that the set of

possible item types 𝐴 is a subset of the positive orthant R𝑑+. We will restrict our attention to

𝑑 ≥ 2, which is the regime in which our feature-vector based valuation model yields interesting

insights. To completely specify the aforementioned probability spaces, we endow 𝐴, Θ and Θ𝑤

with the Lebesgue 𝜎−algebra. Moreover, we will assume that the distributions 𝐹 and 𝐺 have

density functions. Note that the distribution 𝐺 can be any distribution on Θ, including one with

probability zero on some regions of Θ. Thus we can address any buyer distribution, so long as it

has a density and is supported on a bounded subset of the strictly-positive orthant with a positive

lower bound on the possible budgets. Similarly, 𝐹 can capture a wide variety of item distributions.

1Google Ads Help page defines “Average Daily Budget": https://support.google.com/google-ads
/answer/6312?hl=en
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It is worth noting that any distribution that lacks a density can be approximated arbitrarily well by

a distribution with a density, thereby extending the reach of our results to arbitrary distributions.

4.1.1 Equilibrium Concept

Consider the decision problem faced by a buyer type (𝑤, 𝐵) ∈ Θ if we fix the bidding strategies

of all competing buyers on all possible item types: She wishes to bid on the items in a way that

maximizes her expected utility while satisfying her budget constraint in expectation (where the ex-

pectation is taken over items and competing buyers’ types). As is true in the well-studied standard

budget-free i.i.d. setting ([Kri09]), her optimal strategy depends on the strategies used by the other

buyer types. In the standard setting, the symmetric Bayes-Nash equilibrium is an appealing solu-

tion concept for the game formed by these interdependent decision problems faced by the buyers.

We adopt a similar approach and define the symmetric Bayes-Nash equilibrium for our model. A

strategy 𝛽∗ : Θ × 𝐴 → R≥0 (a mapping that specifies what each buyer type should bid on every

item) is a Symmetric First-Price Equilibrium if, almost surely over all buyer types, using 𝛽∗ is an

optimal solution to a buyer type’s decision problem when all other buyer types also use it.

Definition 3. A strategy 𝛽∗ : Θ × 𝐴→ R≥0 is called a Symmetric First-Price Equilibrium (SFPE)

if 𝛽∗(𝑤, 𝐵, 𝛼) (as a function of 𝛼) is an optimal solution to the following optimization problem

almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺:

max
𝑏:𝐴→R≥0

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1

[
(𝑤𝑇𝛼 − 𝑏(𝛼)) 1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽∗(𝜃𝑖, 𝛼)}𝑖

)}]
s. t. E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[
𝑏(𝛼) 1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽∗(𝜃𝑖, 𝛼)}𝑖

)}]
≤ 𝐵.

In the buyer’s optimization problem the buyer wins whenever her bid 𝑏(𝛼) is higher than the

reserve price 𝑟(𝛼) and all competiting bids 𝛽∗(𝜃𝑖, 𝛼) for 𝑖 = 1, . . . , 𝑛 − 1. Because of the first-price

auction payment rule, each bidder pays her bid whenever she wins. For convenience, in the above

definition, we are using an infeasible tie-breaking rule which allocates the entire good to every
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highest bidder. This is inconsequential, and can be replaced by any arbitrary tie-breaking rule,

because we will later show (see part (d) of Lemma 34) that ties are a zero-probability event under

our value-pacing-based equilibria.

In our solution concept, it is sufficient that advertisers have Bayesian priors over the maximum

competing bid max𝑖{𝛽∗(𝜃𝑖, 𝛼)} to determine a best response. This is aligned with practice as

many advertising platforms provide bidders with historical bidding landscapes, which advertisers

can use to optimize their bidding strategies [Goo].2 Additionally, we require that budgets are

satisfied in expectation over the contexts and buyer types. Connecting back to our repeated auctions

interpretation, one can assume competitors’ types to be fixed throughout the horizon while contexts

are drawn i.i.d. in each auction. In this case, our solution concept would be appropriate if buyers

cannot observe the types of competitors and, in turn, employ stationary strategies that do not react

to the market dynamics. Such stationary strategies are appealing because they deplete budgets

smoothly over time and are simple to implement. Moreover, it has been previously established that

stationary policies approximate well the performance of dynamic policies in non-strategic settings

when the number of auctions is large and the maximum value of each auction is small relative to

the budget (see, e.g., [TVR06]).

When the types of bidders is fixed throughout the horizon, a bidder who employs a dynamic

strategy could, in principle, profitably deviate by inferring the competitors’ types and using this

information to optimally shade her bids. Implementing such strategies in practice is challenging

because many platforms do not disclose the identity of the winner nor the bids of competitors in

real-time (as we discussed above, they mostly provide historical information that is aggregated

over many auctions). Moreover, when the number of bidders is large and each bidder competes

with a random subset of bidders, such deviations can be shown to not be profitable using mean-

field techniques (see, e.g., [IJS14; BBW15]) in our contextual value model as long as values are

independent across time. Therefore, our model can be alternatively interpreted as one in which

there is a large population of active buyers and each buyer competes with a random subset of

2See, for example, https://www.blog.google/products/admanager/rolling-out-first-p
rice-auctions-google-ad-manager-partners/.
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buyers. This assumption is well motivated in the context of internet advertising markets because

the number of advertisers actively bidding is typically large and, because of sophisticated targeting

technologies, advertisers often participate only in a fraction of all auctions.

4.1.2 Ties and the Role of Contexts

Before moving onto the proof of existence of SFPE, we would like to shed some light on the

role played by contexts in our model and results. The assumption that the feature vectors 𝛼 are

drawn from a distribution 𝐹 which has a density is necessary for our results to hold. In fact, if

there was only one deterministic context, an SFPE may fail to exist: we provide an example in

Appendix C.1. The root cause behind the absence of a well-behaved equilibrium in this exam-

ple is the tension between the proclivity of budgets to cause ties with positive probability (as we

demonstrate in Section 4.5) and the potential lack of equilibria for first-price auctions under value

distributions that cause ties with a positive probability. Our example in Appendix C.1 does admit

a symmetric equilibrium for second-price auction, thereby demonstrating the added complexity of

dealing with first-price auctions.

Issues of tie-breaking have previously come up in a line of related work on pacing-based equi-

libria in second-price auctions [Bor+07; BBW15; Con+18; Bab+20], where they were addressed

by methods that are some version of randomly perturbing the value of each buyer and enforcing the

budget constraint on average over these perturbations. This causes ties to become zero-probability

events. It is possible to prove our existence and revenue equivalence results for the case of one

deterministic context with value perturbations. However, unlike second-price auctions where bid-

ding truthfully is a dominant strategy, value perturbation is not well-suited for first-price auctions

because, even in the absence of budgets, the first-price auction equilibrium strategy would depend

on the perturbations. Moreover, our structural results (Proposition 8 and Proposition 9) may not

hold for arbitrary perturbations and would require an unjustifiably-strong assumption that carefully

coordinates the perturbations across buyer types. That being said, if one is willing to ignore ties,

our results continue to hold for a single deterministic context and the reader can safely continue

77



with that setting in mind.

4.2 Existence of Symmetric First-Price Equilibrium

In this section, we study the existence of SFPE, and show that this existence is achieved by a

compelling solution which is interpretable. We do so in several steps. First, we define a natural

parameterized class of value-pacing-based strategies. Then, assuming that the buyer types are

using a strategy from this class, we establish strong duality for the optimization problem faced by

each buyer type and characterize the primal optimum in terms of the dual optimum. This leads to

a substantial simplification of the analysis because it allows us to work in the much simpler dual

space. Finally, we establish the existence of a value-pacing-based SFPE by a fixed-point argument

over the space of dual-multipliers.

4.2.1 Value-Pacing-Based Strategies

In this dissertation, pacing refers to multiplicatively scaling down a quantity.3 Consider a

function 𝜇 : Θ → R≥0, which we will refer to as the pacing function. We define the paced

weight vector of a buyer with type (𝑤, 𝐵) to be 𝑤/(1 + 𝜇(𝑤, 𝐵)), which is simply the true weight

vector 𝑤 scaled down by the factor 1/(1 + 𝜇(𝑤, 𝐵)). Similarly, we define the paced value of a

buyer type (𝑤, 𝐵) for item 𝛼 as 𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵)). We will use pacing to ensure that the budget

constraints of all buyer types are satisfied, and at the same time, maintain the best response property

at equilibrium. The motivation for using pacing as a budget management strategy will become clear

in the next section, where we show that the best response of a buyer to other buyers using a value-

pacing-based strategy is to also use a value-pacing-based strategy. Before defining the strategy, we

set up some preliminaries.

Consider a pacing function 𝜇 : Θ → R≥0 and an item 𝛼 ∈ 𝐴. Let 𝜆𝜇𝛼 denote the distribution

of paced values 𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵)) for item 𝛼 when (𝑤, 𝐵) ∼ 𝐺. Let 𝐻𝜇
𝛼 denote the distribution

of the highest value 𝑌 := max{𝑋1, . . . , 𝑋𝑛−1} among 𝑛 − 1 buyers, when each 𝑋𝑖 ∼ 𝜆𝜇𝛼 is drawn
3We use the term value-pacing-based strategies to differentiate it from bid-pacing/bid-shading, which has previ-

ously been studied in the context of truthful auctions [Bor+07; BBW15; Bal+21; Con+18; Con+19].

78



independently for 𝑖 ∈ {1, . . . , 𝑛 − 1}. Observe that 𝐻𝜇
𝛼((−∞, 𝑥]) = 𝜆

𝜇
𝛼((−∞, 𝑥])𝑛−1 for all 𝛼 ∈ 𝐴

because the random variables are i.i.d.

For a given item 𝛼 ∈ 𝐴, when 𝑥 ≥ 𝑟(𝛼), define the following bidding function,

𝜎
𝜇
𝛼 (𝑥) B 𝑥 −

∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)

𝐻
𝜇
𝛼(𝑥)

𝑑𝑠,

where we interpret 𝜎𝜇𝛼 (𝑥) to be 0 if 𝐻𝜇
𝛼(𝑥) = 0. Moreover, when 𝑥 < 𝑟(𝛼), define 𝜎𝜇𝛼 (𝑥) B 𝑥 (we

make this choice to ensure that no value below the reserve price gets mapped to a bid above the

reserve price, while maintaining continuity). Note that 𝜎𝜇𝛼 (𝑥) = E [max(𝑌, 𝑟) | 𝑌 < 𝑥]. If 𝜆𝜇𝛼 has

a density, then 𝜎𝜇𝛼 is the same as the single-auction equilibrium strategy for a standard first-price

auction without budgets, when the buyer values are drawn i.i.d. from 𝜆
𝜇
𝛼 and the item has a reserve

price of 𝑟(𝛼) (see, e.g., section 2.5 of [Kri09]). Our value-pacing-based strategy uses 𝜎𝜇𝛼 (𝑥) as a

building block, by composing it with value-pacing:

Definition 4. The value-pacing-based strategy 𝛽𝜇 : Θ×𝐴→ R≥0 for pacing function 𝜇 : Θ→ R≥0

is given by

𝛽𝜇(𝑤, 𝐵, 𝛼) B 𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
∀ (𝑤, 𝐵) ∈ Θ, 𝛼 ∈ 𝐴

The bid 𝛽𝜇(𝑤, 𝐵, 𝛼) is the amount that a non-budget-constrained buyer with type (𝑤, 𝐵) would

bid on item 𝛼 if she acted as if her paced value was her true value (this is captured by the use of

the paced value as the argument for 𝜎𝜇𝛼 ), and believed that the rest of the buyers were also acting

in this way (this is captured by the use of 𝜎𝜇𝛼 ). Therefore, our strategy has a simple interpretation:

bidders pace their values and then bid as in a first-price auction in which competitors’ values

are also paced. Consequently, under our strategy bidders are shading their values twice: first

when determining their paced values 𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵)) to account for budget constraints and then

again when adopting the bidding function 𝜎𝜇𝛼 for the first-price auction. The bidding strategy 𝜎𝜇𝛼

optimally trades off two effects: on the one hand, bidding too close to their paced values leaves no

utility to buyers because they pay their bid in case of winning and, on the other hand, bidding too

79



low decreases payments at the expense of also decreasing the chance of winning.

Observe that value-pacing-based strategies greatly reduce the degrees of freedom in the system.

Instead of specifying a bidding strategy, which is a function, for each buyer type, we only need

to specify a scalar, 𝜇(𝑤, 𝐵) for each buyer type. In addition, our dual characterization allow us to

optimize over the space of all bidding strategies without imposing any restriction on the class of

admissible functions. Having defined value-pacing-based strategies, we are now ready to state our

main existence result.

Theorem 8. There exists a pacing function 𝜇 : Θ→ R≥0 such that the value-pacing-based strategy

𝛽𝜇 : Θ × 𝐴→ R≥0 is a Symmetric First-Price Equilibrium (SFPE).

Before proceeding with the proof of Theorem 8, we note some of its practical prescriptions: (i)

It recommends that buyers should pace their value to manage their budgets. As we will later show,

the equilibrium pacing functions for first-price auctions are identical to the ones for second-price

auctions. This suggests that pacing-based-budget-management techniques developed for second-

price auctions (like [BG19]) can be used for first-price auctions to compute the paced valued.

(ii) Advertising platforms typically provide bidding landscapes to the buyers which allow them to

compute the optimal bid for a given value. Given a context 𝛼, if P𝜇𝛼 represents the equilibrium

bidding landscape (distribution of highest competing bids), then we have

𝜎
𝜇
𝛼 (𝑥) ∈ argmax𝑏 (𝑥 − 𝑏) P

𝜇
𝛼(𝑏)

Thus, the paced value can be combined with the landscape to compute the optimal bid 𝛽𝜇(𝑤, 𝐵, 𝛼).

We provide the proof of Theorem 8 in the remaining subsections. First, in Subsection 4.2.2,

we show that, if all of the competing buyers are assumed to employ a value-pacing-based strategy,

then strong duality holds for the budget-constrained utility maximization problem faced by each

buyer type. This allows us to drastically simplify the equilibrium strategy space of each buyer type

from a function (mapping contexts to bids) to a single scalar (the dual variable 𝜇(𝑤, 𝐵)). Next, in

Subsection 4.2.3, we prove the existence of a value-pacing-based equilibrium strategy by proving
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a fixed-point theorem in the dual space of pacing functions. Despite our simplifying move to the

dual space, establishing a fixed point is by no means a straightforward task because we are still left

with a dual variable for each buyer type and there are (uncountable) infinitely many of those. This

leads to an infinite-dimensional fixed-point problem which requires careful topological analysis.

We find that the commonly-employed general-purpose topologies fail for our problem, and this

motivates us to carefully exploit the structure of pacing to select the right topology.

4.2.2 Strong Duality and Best Response Characterization

We start by considering the optimization problem faced by an individual buyer with type (𝑤, 𝐵)

when all competing buyers use the value-pacing-based strategy with pacing function 𝜇 : Θ→ R≥0.

Denoting by 𝑄𝜇(𝑤, 𝐵) the optimal expected utility of such a buyer, we have

𝑄𝜇(𝑤, 𝐵) = max
𝑏:𝐴→R≥0

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1

[
(𝑤𝑇𝛼 − 𝑏(𝛼)) 1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖

)}]
s.t. E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[
𝑏(𝛼) 1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖

)}]
≤ 𝐵.

Our goal in this section is to show that the value-pacing-based strategy put forward in Definition 4

is a best response when competitors are pacing their bids according to a pacing function 𝜇.

Remark 5. Compare 𝑄𝜇(𝑤, 𝐵) to the definition of a SFPE (Definition 3), and observe that, if we

were able to show that there exists 𝜇 : Θ → R≥0 such that 𝛽𝜇(𝑤, 𝐵, ·) is an optimal solution to

𝑄𝜇(𝑤, 𝐵) almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺, then 𝛽𝜇 would be an SFPE.

For 𝜇 : Θ→ R≥0 and (𝑤, 𝐵) ∈ Θ, consider the Lagrangian optimization problem of 𝑄𝜇(𝑤, 𝐵)

in which we move the budget constraint to the objective using the Lagrange multiplier 𝑡 ≥ 0. We

use 𝑡 to denote the multiplier of one buyer in isolation to distinguish from 𝜇, which is a function

giving a multiplier for every buyer type. Denoting by 𝑞𝜇(𝑤, 𝐵, 𝑡) the dual function, we have that

𝑞𝜇(𝑤, 𝐵, 𝑡) = max
𝑏(·)
E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[
(𝑤𝑇𝛼 − (1 + 𝑡)𝑏(𝛼)) 1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖

)}]
+ 𝑡𝐵
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= (1 + 𝑡) max
𝑏(·)
E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[(
𝑤𝑇𝛼

1 + 𝑡
− 𝑏(𝛼)

)
1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖

)}]
+ 𝑡𝐵.

The dual problem of 𝑄𝜇(𝑤, 𝐵) is given by min𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡).

The next lemma states that the optimal solution to the Lagrangian optimization problem is a

value-pacing-based strategy. More specifically, for every pacing function 𝜇 : Θ → R≥0, buyer

type (𝑤, 𝐵) and dual multiplier 𝑡, the value pacing based strategy 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝑡)

)
is an optimal

solution to the Langrangian relaxation of 𝑄𝜇(𝑤, 𝐵) corresponding to multiplier 𝑡. Note that, in

general, 𝑡 need not be equal to 𝜇(𝑤, 𝐵).

Lemma 11. For pacing function 𝜇 : Θ→ R≥0, buyer type (𝑤, 𝐵) ∈ Θ and dual multiplier 𝑡 ≥ 0,

𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
∈ argmax𝑏(·) E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[(
𝑤𝑇𝛼

1 + 𝑡
− 𝑏(𝛼)

)
1

{
𝑏(𝛼) ≥ max

(
𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖

)}]
.

In the proof of Lemma 11, we actually show something stronger than the statement of Lemma

11: the value-pacing-based strategy is optimal point-wise for each 𝛼 and not just in expectation

over 𝛼. This follows from the observation that once we fix an item 𝛼, we are solving the best

response optimization problem faced by a buyer with value 𝑤𝑇𝛼/(1 + 𝑡) in the standard i.i.d. set-

ting [Kri09] with competing buyer values being drawn from 𝜆
𝜇
𝛼 and under the assumption that the

competing buyers use the strategy 𝜎𝜇𝛼 . If 𝜆𝜇𝛼 had a strictly positive density, then the optimality

of 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝑡)

)
would be a direct consequence of the definition of a symmetric BNE in the

standard i.i.d. setting. Even though the standard results cannot be used directly because of the

potential absence of a density in the situation outlined above, we show that it is possible to adapt

the techniques used in the proof of Proposition 2.2 of [Kri09] to show Lemma 11.

Using Lemma 11, we can simplify the expression for the dual function 𝑞𝜇(𝑤, 𝐵, 𝑡). First, note

that because 𝜎𝜇𝛼 is non-decreasing the highest competing bid can be written as

max
𝑖=1,...,𝑛−1

{𝛽𝜇(𝜃𝑖, 𝛼)} = max
𝑖=1,...,𝑛−1

{
𝜎
𝜇
𝛼

(
𝑤𝑇
𝑖
𝛼

1 + 𝜇(𝜃𝑖)

)}
= 𝜎𝜇𝛼 (𝑌 ) ,
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where 𝑌 ∼ 𝐻𝜇
𝛼 is the maximum of 𝑛− 1 paced values. Therefore, using that 𝜎𝜇𝛼

(
𝑤𝑇𝛼/(1 + 𝑡)

)
is an

optimal bidding strategy we get that

𝑞𝜇(𝑤, 𝐵, 𝑡) = (1 + 𝑡) E𝛼E𝑌∼𝐻𝜇
𝛼

[(
𝑤𝑇𝛼

1 + 𝑡
− 𝜎𝜇𝛼

(
𝑤𝑇𝛼

1 + 𝑡

))
1

{
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
≥ max

(
𝑟(𝛼), 𝜎𝜇𝛼 (𝑌 )

)}]
+ 𝑡𝐵

= (1 + 𝑡) E𝛼E𝑌∼𝐻𝜇
𝛼

[(
𝑤𝑇𝛼

1 + 𝑡
− 𝜎𝜇𝛼

(
𝑤𝑇𝛼

1 + 𝑡

))
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ max (𝑟(𝛼), 𝑌 )

}]
+ 𝑡𝐵

= (1 + 𝑡) E𝛼
[(
𝑤𝑇𝛼

1 + 𝑡
− 𝜎𝜇𝛼

(
𝑤𝑇𝛼

1 + 𝑡

))
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

}]
+ 𝑡𝐵

= (1 + 𝑡) E𝛼

[
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

]
+ 𝑡𝐵 ,

where the second equation follows from part (c) of Lemma 34, the third from taking expectations

with respect to 𝑌 , and the last from our formula for 𝜎𝜇𝛼 .

We now present the main result of this subsection, which characterizes the optimal solution of

𝑄𝜇(𝑤, 𝐵) in terms of the optimal solution of the dual problem. The idea of using value-pacing-

based strategies as candidates for the equilibrium strategy owes its motivation to Proposition 6. It

establishes that if all the other buyers are using a value-pacing-based strategy, with some pacing

function 𝜇 : Θ → R≥0, then a value-pacing-based strategy is a best response for a given buyer

(𝑤, 𝐵).

Proposition 6. There exists Θ′ ⊂ Θ such that 𝐺(Θ′) = 1 and for all pacing functions 𝜇 : Θ →

R≥0 and buyer types (𝑤, 𝐵) ∈ Θ′, if 𝑡∗ is an optimal solution to the dual problem, i.e., if 𝑡∗ ∈

argmin𝑡∗≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡), then 𝜎𝜇𝛼

(
𝑤𝑇𝛼/(1 + 𝑡∗)

)
is an optimal solution for the optimization problem

𝑄𝜇(𝑤, 𝐵).

In Proposition 6, the pacing parameter 𝑡∗ used for pacing in the best response can, in general,

be different from 𝜇(𝑤, 𝐵). This caveat requires a fixed-point argument to resolve, which will be

the subject matter of the next subsection.

Remark 6. Restricting to the measure-one set Θ′ is without loss. Recall that according to Defi-

nition 3, a strategy constitutes a SFPE if, almost surely over (𝑤, 𝐵) ∼ 𝐺, using 𝛽∗ is an optimal

solution to their optimization problem when all other buyer types also use it. As a consequence
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of this definition, we will show that it suffices to show strong duality for a subset of buyer types

Θ′ ⊂ Θ such that 𝐺(Θ′) = 1. In the absence of reserve prices 𝑟(𝛼) for the items, Proposition 6

holds for all (𝑤, 𝐵) ∈ Θ. Reserve prices introduce some discontinuities in the utility and payment

term. The subset Θ′ ⊂ Θ captures a collection of buyer types for which these discontinuities are

inconsequential, while maintaining 𝐺(Θ′) = 1.

Observe that 𝑄𝜇(𝑤, 𝐵) is not a convex optimization problem, so in order to prove the above

theorem, we cannot appeal to the well-known strong duality results established for convex opti-

mization. Instead, we will use Theorem 5.1.5 of [BHM98], which states that, to prove optimality

of 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝑡∗)

)
for𝑄𝜇(𝑤, 𝐵), it suffices to show primal feasibility of 𝜎𝜇𝛼

(
𝑤𝑇𝛼/(1 + 𝑡∗)

)
, dual

feasibility of 𝑡∗, Lagrange optimality of 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝑡∗)

)
for multiplier 𝑡∗, and complementary

slackness. Our approach will be to show these required properties by combining the differentia-

bility of the dual function with first order optimality conditions for one dimensional optimization

problems. The key observation here is that the derivative of the dual function is equal to the differ-

ence between the budget of the buyer and her expected expenditure. Therefore, at optimality, the

first-order conditions of the dual problem imply feasibility of the value-based pacing strategy. To

prove differentiability we leverage that in our game the distribution of competing bids is absolutely

continuous, which is critical for our results to hold.

For 𝑡∗ ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡), if we apply the first-order optimality conditions for an optimiza-

tion problem with a differentiable objective function over the domain [0,∞), we get

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

≥ 0, 𝑡∗ ≥ 0, 𝑡∗ · 𝜕𝑞
𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

= 0 .

The first condition can be shown to imply primal feasibility, the second implies dual feasibility,

and the third implies complementary slackness. Combining this with Lemma 11, which establishes

Lagrange optimality, and applying Theorem 5.1.5 of [BHM98] yields Proposition 6. The complete

proof of Proposition 6 can be found in Appendix C.2.
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4.2.3 Fixed Point Argument

In light of Proposition 6, the proof of Theorem 8 (the existence of a value-pacing-based

SFPE) boils down to showing that there exists a pacing function 𝜇 : Θ → R≥0 such that, al-

most surely w.r.t. (𝑤, 𝐵) ∼ 𝐺, 𝜇(𝑤, 𝐵) is an optimal solution to the dual optimization problem

min𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡). In other words, given that everybody else acts according to 𝜇, a buyer (𝑤, 𝐵)

that wishes to minimize the dual function is best off acting according to 𝜇. More specifically, in

Proposition 6 we showed that, starting from a pacing function 𝜇 : Θ → R≥0, if 𝜇∗(𝑤, 𝐵) consti-

tutes an optimal solution to the dual problem min𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡) almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺,

then 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝜇∗(𝑤, 𝐵))

)
is an optimal solution for the optimization problem 𝑄𝜇(𝑤, 𝐵) al-

most surely w.r.t. (𝑤, 𝐵) ∼ 𝐺. In other words, bidding according to 𝜎𝜇𝛼 while pacing according

to 𝜇∗ : Θ → R≥0 is a utility-maximizing strategy for buyer (𝑤, 𝐵) ∼ 𝐺 almost surely, given that

other buyers bid according to 𝜎𝜇𝛼 with paced values obtained from 𝜇. The following theorem es-

tablishes the existence of a pacing function 𝜇 : Θ → R≥0 for which 𝜇 itself fills the role of 𝜇∗ in

the previous statement, thereby implying the optimality of 𝜎𝜇𝛼
(
𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵))

)
almost surely

w.r.t. (𝑤, 𝐵) ∼ 𝐺.

Proposition 7. There exists 𝜇 : Θ→ R≥0 such that 𝜇(𝑤, 𝐵) ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡) almost surely

w.r.t. (𝑤, 𝐵) ∼ 𝐺.

We prove the above statement using an infinite-dimensional fixed-point argument on the space

of pacing functions with a carefully chosen topology. Informally, we need to show that the corre-

spondence that maps a pacing function 𝜇 : Θ → R≥0 to the set of dual-optimal pacing functions,

𝜇∗ : Θ → R≥0 which satisfy 𝜇∗(𝑤, 𝐵) ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡), has a fixed point. However, unlike

finite-dimensional fixed-point arguments, establishing the sufficient conditions of convexity and

compactness needed to apply infinite-dimensional fixed point theorems requires a careful topolog-

ical argument.

Lemma 36 in the appendix shows that all dual optimal functions 𝜇∗ : Θ→ R≥0 map to a range

that is a subset of [0, 𝜔/𝐵min]. Therefore, any pacing function 𝜇 : Θ → R≥0 that is a fixed point,
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i.e., satisfies 𝜇(𝑤, 𝐵) ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡) almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺, must also satisfy

range(𝜇) ⊂ [0, 𝜔/𝐵min]. Hence, it suffices to restrict our attention to pacing functions of the form

𝜇 : Θ→ [0, 𝜔/𝐵min].

Consider the set of all potential pacing functions

X = {𝜇 ∈ 𝐿1 (Θ) | 𝜇(𝑤, 𝐵) ∈ [0, 𝜔/𝐵min] ∀ (𝑤, 𝐵) ∈ Θ},

where 𝐿1 (Θ) is the space of functions 𝑓 : Θ→ Rwith finite 𝐿1 norm w.r.t. the Lebesgue measure.

Here, by 𝐿1 norm of 𝑓 w.r.t. the Lebesgue measure, we mean ∥ 𝑓 ∥𝐿1=
∫
Θ
| 𝑓 (𝜃)|𝑑𝜃. Our goal is to

find a 𝜇 ∈ X such that almost surely w.r.t (𝑤, 𝐵) ∼ 𝐺 we have

𝜇(𝑤, 𝐵) ∈ argmin𝑡∈[0,𝜔/𝐵min] 𝑞
𝜇(𝑤, 𝐵, 𝑡).

Dealing with infinitely many individual optimization problems min𝑡∈[0,𝜔/𝐵min] 𝑞
𝜇(𝑤, 𝐵, 𝑡), one for

each (𝑤, 𝐵), makes the analysis hard. To remedy this issue, we combine these optimization prob-

lems by defining the objective 𝑓 : X × X → R, for all 𝜇, �̂� ∈ X, as follows

𝑓 (𝜇, �̂�) B E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, �̂�(𝑤, 𝐵))].

For a fixed 𝜇 ∈ X, we then get a single optimization problem min�̂�∈X 𝑓 (𝜇, �̂�) over functions in

X, instead of one optimization problem for each of the infinitely-many buyer types (𝑤, 𝐵) ∈ Θ.

Later, in Lemma 15, we will show that any optimal solution to the combined optimization problem

is also an optimal solution to the individual optimization problems almost surely w.r.t (𝑤, 𝐵) ∼ 𝐺.

Thus, shifting our attention to the combined optimization problem is without any loss (because

sub-optimality on zero-measure sets is tolerable).

With 𝑓 as above, we proceed to define the correspondence that is used in our fixed-point argu-

ment. The optimal solution correspondence 𝐶∗ : X ⇒ X is given by 𝐶∗(𝜇) B arg min�̂�∈X 𝑓 (𝜇, �̂�)

(which could be empty) for all 𝜇 ∈ X. In Lemma 15, we will show that the proof of Proposition 7
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boils down to showing that 𝐶∗ has a fixed point, which will be our next step.

Our proof will culminate with an application of the Kakutani-Glicksberg-Fan theorem, on a

suitable version of 𝐶∗, to show the existence of a fixed point. An application of this result (or

any other infinite dimensional fixed point theorem) requires intricate topological considerations.

In particular, we need to endow X with a topology that satisfies the following conditions:

I. X is compact, convex and 𝐶∗(𝜇) is a non-empty subset of X for all 𝜇 ∈ X.

II. 𝐶∗ is a Kakutani map, i.e., it is upper hemicontinuous, and 𝐶∗(𝜇) is compact and convex for

all 𝜇 ∈ X.

In the case of infinite dimensions, bounded sets in many spaces, such as the 𝐿𝑝(Ω) spaces,

are not compact. In particular, X is not compact as a subset of 𝐿𝑝(Ω) for any 1 ≤ 𝑝 ≤ ∞.

One possible way around it would be to consider the weak* topology on X ⊂ 𝐿∞(Ω), in which

bounded sets are compact. This choice runs into trouble because it is difficult to show the upper

hemicontinuity of 𝐶∗ (property II) under the weak convergence notion of the weak* topology.

Alternatively, one could impose structural properties and restrict to a subset of X, such as the

space of Lipschitz functions, in which both compactness and continuity can be established. The

issue with this approach is that the correspondence operator may, in general, not preserve these

properties, i.e., property I might not hold. For example, even if 𝜇 is Lipschitz, 𝐶∗(𝜇) might not

contain any Lipschitz functions.

We would like to strike a delicate balance between properties I and II by picking a space in

which we can establish compactness of X and upper hemicontinuity of 𝐶∗, while, at the same

time, ensuring that 𝐶∗(𝜇) contains at least one element from this space. It turns out that the right

space that works for our proof is the space of bounded variation. To motivate this topology on the

space of pacing functions, we state some properties of the “smallest” dual optimal pacing function.

For 𝜇 : Θ→ [0, 𝜔/𝐵min], we define ℓ𝜇 : Θ→ [0, 𝜔/𝐵min] as

ℓ𝜇(𝑤, 𝐵) B min
{
𝑠 ∈ argmin𝑡∈[0,𝜔/𝐵min] 𝑞

𝜇(𝑤, 𝐵, 𝑡)
}
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for all (𝑤, 𝐵) ∈ Θ. The minimum always exists because 𝑞𝜇(𝑤, 𝐵, 𝑡) is continuous as a function of

𝑡 (see Corollary 3 in the appendix for a proof) and the feasible set of the dual problem is compact.

We first show that ℓ𝜇 varies nicely with 𝑤 and 𝐵 along individual components:

Lemma 12. For 𝜇 : Θ→ [0, 𝜔/𝐵min], the following statements hold:

1. ℓ𝜇 : Θ→ [0, 𝜔/𝐵min] is non-decreasing in each component of 𝑤.

2. ℓ𝜇 : Θ→ [0, 𝜔/𝐵min] is non-increasing as a function of 𝐵.

The proof applies results from comparative statics, which characterize the way the optimal solu-

tions change with the parameters, to the family of optimization problems min𝑡∈[0,𝜔/𝐵min] 𝑞
𝜇(𝑤, 𝐵, 𝑡)

parameterized by (𝑤, 𝐵) ∈ Θ.

Now we wish to show bounded variation of ℓ𝜇. It is a well-known fact that monotonic functions

of one variable have finite total variation. Moreover, functions of bounded total variation also form

the dual space of the space of continuous functions with the 𝐿∞ norm, which allows us to invoke

the Banach-Alaoglu Theorem to establish compactness in the weak* topology. These results for

single variable functions, although not directly applicable to the multivariable setting, act as a

guide in choosing the appropriate topology for our setting.

Since pacing functions take as input several variables, we need to look at multivariable gener-

alizations of total variation. To this end, we state one of the standard definitions (there are multiple

equivalent ones) of total variation for functions of several variables (see section 5.1 of [EG15]) and

then follow it up by a lemma which gives a bound on the total variation of the component-wise

monotonic function ℓ𝜇.

Definition 5. For an open subset Ω ⊂ R𝑛, the total variation of a function 𝑢 ∈ 𝐿1(Ω) is given by

𝑉(𝑢,Ω) B sup
{∫

Ω

𝑢(𝜔) div 𝜙(𝜔)𝑑𝜔
���� 𝜙 ∈ 𝐶1

𝑐 (Ω,R𝑛), ∥𝜙∥∞≤ 1
}

where 𝐶1
𝑐 (Ω,R𝑛) is the space of continuously differentiable vector functions 𝜙 of compact support

contained in Ω and div 𝜙 = ∑𝑛
𝑖=1

𝜕𝜙𝑖
𝜕𝑥𝑖

is the divergence of 𝜙.
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Lemma 13. For any pacing function 𝜇 : Θ→ [0, 𝜔/𝐵min], the following statements hold:

1. ℓ𝜇 ∈ 𝐿1(Θ).

2. 𝑉(ℓ𝜇,Θ) ≤ 𝑉0 where 𝑉0 := (𝑑 + 1)𝑈𝑑+1𝜔/𝐵min is a fixed constant.

Motivated by the above lemma, we define the set of pacing functions that will allow us to use

our fixed-point argument. DefineX0 = {𝜇 ∈ X | 𝑉(𝜇,Θ) ≤ 𝑉0} to be the subset of pacing functions

with variation at most𝑉0. Note that ℓ𝜇 ∈ X0. Define 𝐶∗0 : X0 ⇒ X0 as 𝐶∗0(𝜇) B argmin�̂�∈X0
𝑓 (𝜇, �̂�)

for all 𝜇 ∈ X0. We now state the properties satisfied by X0 that make it compatible with the

Kakutani-Fan-Glicksberg fixed-point theorem.

Lemma 14. The following statements hold:

1. X0 is non-empty, compact and convex as a subset of 𝐿1(Θ).

2. 𝑓 : X0 × X0 → R is continuous when X0 × X0 is endowed with the product topology.

3. 𝐶∗0 : X0 ⇒ X0 is upper hemi-continuous with non-empty, convex and compact values.

Finally, with the above lemma in place, we can apply the Kakutani-Fan-Glicksberg theorem to

establish the existence of a 𝜇 ∈ X0 such that 𝜇 ∈ 𝐶∗0(X0). The following lemma completes the

proof of Proposition 7 by showing that the fixed point is also almost surely optimal for each type.

It follows from the fact that for 𝜇 ∈ X0 that satisfy 𝜇 ∈ 𝐶∗0(𝜇), we have ℓ𝜇 ∈ 𝐶∗0(𝜇).

Lemma 15. If 𝜇 ∈ 𝐶∗0(𝜇) = argmin�̂�∈X0
𝑓 (𝜇, �̂�), then 𝜇(𝑤, 𝐵) is almost surely optimal for each

type, i.e., 𝜇(𝑤, 𝐵) ∈ argmin𝑡∈[0,𝜔/𝐵min] 𝑞
𝜇(𝑤, 𝐵, 𝑡) a.s. w.r.t. (𝑤, 𝐵) ∼ 𝐺.

As mentioned earlier, Proposition 7, combined with Proposition 6, implies Theorem 8.

4.3 Standard Auctions and Revenue Equivalence

In this section, we move beyond first-price auctions and generalize our results to anonymous

standard auctions with reserve prices. An auction A = (𝑄, 𝑀), with allocation rule 𝑄 : R𝑛≥0 →

[0, 1]𝑛, payment rule 𝑀 : R𝑛≥0 → R
𝑛
≥0 and reserve price 𝑟, is called an anonymous standard auction

if the following conditions are satisfied:
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• Highest bidder wins. When the buyers bid (𝑏1, . . . , 𝑏𝑛), the allocation received by buyer 𝑖 is

given by 𝑄𝑖(𝑏1, . . . , 𝑏𝑛) = 1(𝑏𝑖 ≥ 𝑟, 𝑏𝑖 ≥ 𝑏 𝑗 ∀ 𝑗 ∈ [𝑛]), for all 𝑖 ∈ [𝑛].

• Anonymity. The payments made by a buyer do not depend on the identity of the buyer. More

formally, if the buyers bid (𝑏1, . . . , 𝑏𝑛), then for any permutation 𝜋 of [𝑛] and buyer 𝑖 ∈ [𝑛],

we have 𝑀𝑖(𝑏1, . . . , 𝑏𝑛) = 𝑀𝜋(𝑖)(𝑏𝜋(1), . . . , 𝑏𝜋(𝑛)), i.e., the payment made by the 𝑖th buyer

before the bids are permuted equals the payment made by the bidder 𝜋(𝑖) after the bids have

been permuted.

As in our definition of SFPE, we are using an infeasible tie-breaking rule which allocates the

entire good to every highest bidder. As with SFPE, ties are a zero-probability event under our

value-pacing-based equilibria, and our results hold for arbitrary tie-breaking rules.

For consistency of notation, we will modify the above notation slightly to better match the one

used in previous sections. Exploiting the anonymity of auction A, we will denote the payment

made by a buyer who bids 𝑏, when the other 𝑛 − 1 buyers bid {𝑏𝑖}𝑛−1
𝑖=1 , by 𝑀

(
𝑏, {𝑏𝑖}𝑛−1

𝑖=1

)
, i.e., we

use the first argument for the bid of the buyer under consideration and the other arguments for the

competitors’ bids. Also, as the reserve price completely determines the allocation rule of a standard

auction, in the rest of the section, we will omit the allocation rule while discussing anonymous

standard auctions and represent them as a tuple A = (𝑟, 𝑀) of reserve price and payment rule.

To avoid delving into the inner workings of the auction, we assume the existence of an oracle

that takes as an input an atomless distribution H over [0, 𝜔] and outputs a bidding strategy 𝜓H :

[0, 𝜔]→ R satisfying the following properties:

1. The strategy 𝜓H is a single-auction equilibrium for the auctionA when the values are drawn

i.i.d. fromH , i.e.,

𝜓H (𝑥) ∈ argmax𝑏≥0 E𝑋𝑖∼H
[
𝑥 1{𝑏 ≥ max(𝑟, {𝜓H (𝑋𝑖)}𝑖)} − 𝑀

(
𝑏, {𝜓H (𝑋𝑖)}𝑖

)]
.

2. The strategy 𝜓H (𝑥) is non-decreasing in 𝑥, and 𝜓H (𝑥) ≥ 𝑟 if and only if 𝑥 ≥ 𝑟.
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3. The payoff for a bidder who has zero value for the object is zero at the single-auction equi-

librium.

4. The distribution of 𝜓H (𝑥), when 𝑥 ∼ H , is atomless.

Our results will produce a pacing-based equilibrium bidding strategy for budget-constrained buyers

by invoking 𝜓H as a black box. To make the discussion more concrete, let A to be a second-price

auction with reserve price 𝑟. For a given atomless distribution H , define 𝜓H (𝑣) = 𝑣 to be the

truthful bidding strategy. Then, 𝜓H is a single-auction equilibrium because bidding truthfully is

a dominant strategy in second-price auctions. Moreover, 𝜓H is non-decreasing, 𝜓H (𝑥) ≥ 𝑟 if

and only if 𝑥 ≥ 𝑟 , a bidder with zero value bids zero to attain a payoff of zero, and finally the

distribution of 𝜓H (𝑥) when 𝑥 ∼ H is simply H , which is atomless. Thus, second-price auctions

with reserve prices satisfy the above assumptions.

In our analysis, we allow the seller to condition on the feature vector and choose a different

mechanism for each context 𝛼 ∈ 𝐴. Let {A𝛼 = (𝑟(𝛼), 𝑀𝛼)}𝛼∈𝐴 be a family of anonymous standard

auctions such that 𝛼 ↦→ 𝑟(𝛼) is measurable. Moreover, suppose that for any measurable bidding

function 𝛼 ↦→ 𝑏(𝛼) and any collection of measurable competing bidding functions 𝛼 ↦→ 𝑏𝑖(𝛼) for

𝑖 ∈ [𝑛−1], the payment function 𝛼 ↦→ 𝑀𝛼

(
𝑏(𝛼), {𝑏𝑖(𝛼)}𝑛−1

𝑖=1

)
is also measurable. Below, we define

the equilibrium notion for the family {A𝛼}𝛼∈𝐴 of anonymous standard auctions.

Definition 6. A strategy 𝛽∗ : Θ × 𝐴 → R is called a Symmetric Equilibrium for the family

of standard auctions {A𝛼}𝛼∈𝐴, if 𝛽∗(𝑤, 𝐵, 𝛼) (as a function of 𝛼) is an optimal solution to the

following optimization problem almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺.

max
𝑏:𝐴→R≥0

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1

[
𝑤𝑇𝛼 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {𝛽∗(𝜃𝑖, 𝛼)}𝑖)} − 𝑀𝛼 (𝑏(𝛼), {𝛽∗(𝑤𝑖, 𝐵𝑖, 𝛼)}𝑖)

]
s.t. E𝛼,{𝜃𝑖}𝑛−1

𝑖=1
[𝑀𝛼 (𝑏(𝛼), {𝛽∗(𝑤𝑖, 𝐵𝑖, 𝛼)}𝑖)] ≤ 𝐵 .

Observe that the above definition reduces to Definition 3 if we take {A𝛼}𝛼∈𝐴 to be the set of

first-price auctions with reserve price 𝑟(𝛼). Next, we show that the equilibrium existence and char-
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acterization results of the previous sections apply to all standard auctions that satisfy the required

assumptions. To do this, we first need to define value-pacing strategies for anonymous standard

auctions. These are a natural generalization of the value-pacing-based strategies used for first-price

auctions.

Recall that, for a pacing function 𝜇 : Θ→ R≥0 and 𝛼 ∈ 𝐴, 𝜆𝜇𝛼 denotes the distribution of paced

values for item 𝛼, and 𝐻𝜇
𝛼 denotes the distribution of the highest value for 𝛼, among 𝑛 − 1 buyers.

For ease of notation, we will use 𝜓𝜇𝛼 to denote the single-auction equilibrium strategy for auction

A𝛼 when values are drawn from H = 𝜆
𝜇
𝛼 or more formally 𝜓𝜇𝛼 := 𝜓

𝜆
𝜇
𝛼
𝛼 . For a pacing function

𝜇 : Θ→ R≥0, (𝑤, 𝐵) ∈ Θ and 𝛼 ∈ 𝐴, define

Ψ𝜇(𝑤, 𝐵, 𝛼) B 𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
, (4.1)

to be our candidate equilibrium strategy. This strategy is well-defined because, by Lemma 34, 𝜆𝜇𝛼

is atom-less almost surely w.r.t. 𝛼. As before, the bid Ψ𝜇(𝑤, 𝐵, 𝛼) is the amount a non-budget-

constrained buyer with type (𝑤, 𝐵) would bid on item 𝛼 if her paced value was her true value,

when competitors are pacing their values accordingly. In other words, bidders in the proposed

equilibrium first pace their values, and then bid according to the single-auction equilibrium of

auction A𝛼 in which competitors’ values are also paced.

With the definition of value-pacing-based strategies in place, we can now state the main result

of this section. Recall that, 𝐶∗0 : X0 ⇒ X0 is given by 𝐶∗0(𝜇) B arg min�̂�∈X0 𝑓 (𝜇, �̂�) for all 𝜇 ∈ X0,

where 𝑓 is the expected dual function in the case of a first-price auction, as defined in Section 4.2.3.

Theorem 9 (Revenue and Pacing Equivalence). For any pacing function 𝜇 ∈ X0 such that 𝜇 ∈

𝐶∗0(𝜇) is an equilibrium pacing function for first-price auctions, the value-pacing-based strategy

Ψ𝜇 : Θ × 𝐴 → R≥0 is a Symmetric Equilibrium for the family of auctions {A𝛼}𝛼∈𝐴. Moreover,

the expected payment made by buyer 𝜃 under this equilibrium strategy is equal to the expected

payment made by buyer 𝜃 in first-price auctions under the equilibrium strategy 𝛽𝜇 : Θ× 𝐴→ R≥0,
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i.e.,

E𝛼,{(𝜃𝑖)}𝑛−1
𝑖=1
[𝑀𝛼 (Ψ𝜇(𝜃, 𝛼), {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)]

=E𝛼,{(𝜃𝑖)}𝑛−1
𝑖=1
[𝛽𝜇(𝜃, 𝛼) 1{𝛽𝜇(𝜃, 𝛼) ≥ max(𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖)}]

The key step in the proof involves showing that the dual of the budget-constrained utility-

optimization problem faced by a buyer is identical for all standard auctions, when the other buyers

use the equilibrium strategy Ψ𝜇 of the standard auction under consideration. To establish this

key step, we exploit the separable structure of the Lagrangian optimization problem and apply

the known utility equivalence result for standard auctions in the single-auction i.i.d. setting, once

for each item 𝛼 ∈ 𝐴. Then, we establish the analogue of Proposition 6 for standard auctions.

Combining this with 𝜇 ∈ 𝐶∗0(𝜇) yields Theorem 9.

Our revenue equivalence relies on three critical assumptions: risk-neutrality, independence

of weight vectors, and symmetry. As in the classical setting, revenue equivalence would fail if

buyers are risk averse (see, e.g., [Kri09]). We emphasize that, in contrast to the classical revenue

equivalence result, buyers’ values 𝑤𝑇𝛼 are not independent. Our result does require that weight

vectors are independent across buyers. Buyers in our model are ex-ante homogeneous since buyer

types are drawn from the same population. We remark, however, that buyers are heterogenous

in the interim sense: the buyers competing in an auction can have different budgets and weight

vectors. Revenue equivalence would fail is buyers are ex-ante heterogenous, i.e., if competitors are

drawn from different populations.

Before ending this section, we state some important implications of Theorem 9. If the pacing

function 𝜇 allows the buyers to satisfy their budget constraints in some standard auction, then the

same pacing function 𝜇 allows the buyers to satisfy their budgets in every other standard auction.

In other words, the equilibrium pacing functions are the same for all standard auctions. This means

that in order to calculate an equilibrium pacing function 𝜇 that satisfies 𝜇 ∈ 𝐶∗0(𝜇), it suffices to

compute it for any standard auction (in particular, one could consider a second-price auction for
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which bidding truthfully is a dominant-strategy equilibrium in the absence of budget constraints).

This fact is especially pertinent in view of the recent shift in auction format used for selling display

ads from second-price auctions to first-price auctions, because it states that, in equilibrium, the

buyers can use the same pacing function even after the change. Moreover, the same pacing function

continues to work even if the family {A𝛼}𝛼∈𝐴 is an arbitrary collection of first-price and second-

price auctions (or any other combination of standard auctions), i.e., Theorem 9 states that, not

only can one pacing function be used to manage budgets in first-price and second-price auctions,

the same pacing function also works in the intermediate transitions stages, in which buyers may

potentially participate in some mixture of these auctions.

Another important takeaway is that all standard auctions with the same allocation rule yield the

same revenue to the seller. We remark, however, that the revenue of the seller does depend on the

allocation, and the seller could thus maximize her revenue by optimizing over the reserve prices.

We leave the question of optimizing the auction design as a future research direction.

The revenue-equivalence in the presence of in-expectation budget constraints is driven by the

invariance of the pacing function over all standard auctions and the classical revenue equivalence

result for the unconstrained i.i.d. setting, which shows that—on average—payments are the same

across standard auctions. While revenue equivalence is known to hold for standard auctions with-

out budget constraints, [CG98] showed that, when budget constraints are hard, first-price auctions

lead to higher revenue than second-price auctions. The intuition for their result is that because

bids are higher in second-price auctions than first-price auctions, hard budget constraints are more

likely to bind in the former, which reduces the seller’s revenue. Surprisingly, Theorem 9 shows

that when budgets constraints are in expectation (and values are feature-based), we recover revenue

equivalence. To better understand the difference between the two types of constraints, consider the

following example:

Example 2. Consider two buyers with values drawn uniformly from the unit interval [0, 1]. More-

over, let the budget of the buyer with value 𝑣 be given by 0.5 + 𝜖𝑣 for some small 𝜖 > 0. First,

observe that, in the absence of budget constraints, bidding truthfully is a dominant strategy in a
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second-price auction and bidding half of one’s value is a Bayes-Nash equilibrium in a first-price

auction. Moreover, from the standard revenue-equivalence result, a buyer with value 𝑥 spends 𝑥2/2

in expectation over the other buyer’s type in both auctions. Now, since this expected expenditure is

less than 1/2 for all types, the in-expectation budget constraints are non-binding and the equilibria

remain unchanged even when in-expectation budget constraints are imposed. On the other hand,

consider the case when the budget constraints are hard. The first-price auction equilibrium re-

mains unchanged because every buyer type bids less than 0.5, so the constraint is always satisfied.

But, for second-price auction, this is not the case: With hard budget constraints, the equilibrium

strategy for the buyers is to bid the minimum of their value and budget, thereby leading to lower

revenue compared to the truthful-bidding equilibrium.

We conclude this section with a discussion of extensions and alternative models. Firstly, even

though we only consider anonymous standard auctions in this work, our equilibrium existence and

revenue equivalence results can be extended to other anonymous allocation rules𝑄 which (i) admit

an oracle that outputs an equilibrium bidding strategy for traditional i.i.d. setting and satisfies

properties (1)-(4) listed at the beginning of this section, (ii) lead to continuous non-decreasing

interim-allocation rules for every buyer-item pair when other buyers follow a value-pacing-based

strategy analogous to the one defined in equation (4.1). Secondly, the argument developed in the

section also implies the existence of value-pacing-based equilibria and revenue equivalence for

standard auctions in the symmetric special case of the models studied in [BBW15] and [Bal+21],

which consider buyers with ex-ante budget constraints that hold in expectation over a buyer’s own

value and the values of others (see Appendix C.3.1 for a detailed description).

4.4 Worst-Case Efficiency Guarantees

In this section, we use our framework to characterize the Price of Anarchy, i.e., the worst-

case ratio of the efficiency of a pacing equilibrium relative to the efficiency of the best possible

allocation. We measure efficiency of an allocation using the notion of liquid welfare introduced

by [DL14], which captures the maximum revenue that can be extracted by a seller who knows
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the values in advance. We use liquid welfare as a measure of efficiency instead of social welfare

because the latter can have arbitrarily small Price of Anarchy (see Appendix C.4 for an example).

Throughout this section, we assume that the reserve price is zero for each item, i.e., 𝑟(𝛼) = 0 for

all 𝛼 ∈ 𝐴.

We begin by defining the appropriate notion of liquid welfare of an allocation for our model

motivated by the original definition of [DL14]. Here, an allocation simply refers to a measurable

function 𝑥 : 𝐴 × Θ𝑛 → Δ𝑛, where Δ𝑛 = {𝑦 ∈ R𝑛+ |
∑𝑛
𝑘=1 𝑦𝑘 = 1} is the 𝑛-simplex, and 𝑥𝑖(𝛼, ®𝜃)

denotes the fraction of the item 𝛼 allocated to buyer 𝑖 when the buyer types are given by the profile

®𝜃 = (𝜃1, . . . , 𝜃𝑛). In our setting, the liquid welfare of a buyer is equal to the minimum of the value

obtained by the buyer from the allocation and her budget.

Definition 7. For an allocation 𝑥 : 𝐴 × Θ𝑛 → Δ𝑛, we define its liquid welfare as

LW(𝑥) =
𝑛∑︁
𝑖=1
E𝜃𝑖

[
min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}]
.

Next, we define Price of Anarchy with respect to liquid welfare for pacing-based equilibria. Our

definition is an instantiation of the general definition of Price of Anarchy introduced in [KP99].

Before proceeding with the definition, it is worth noting an important consequence of our revenue

equivalence result (Theorem 9): Given an equilibrium pacing function 𝜇, i.e., a fixed point of 𝐶∗0 ,

the allocation under the equilibrium parameterized by 𝜇 is the same for all standard auctions. Thus,

the equilibrium allocation is determined by the pacing function and is independent of the pricing

rule of the standard auction, which is reflected in the following definition. For an equilibrium

pacing function 𝜇, we use 𝑥𝜇 to denote the allocation under the equilibrium parameterized by 𝜇;

again, this allocation is the same for all standard auctions without reserve prices.

Definition 8. The Price of Anarchy (PoA) of pacing-based equilibria (for all standard auctions) is

defined as the ratio of the worst-case liquid welfare across all pacing equilibria, and the optimal
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liquid welfare

PoA =
inf𝜇:𝜇∈𝐶∗0(𝜇) LW(𝑥𝜇)

sup𝑥 LW(𝑥)

where the supremum in the denominator is taken over all measurable allocations 𝑥.

Since the PoA of pacing-based equilibria does not depend on the payment rule, we can work

with the most convenient standard auction to prove a lower bound on the PoA, which in this case

happens to be the second-price auction. [Aza+17] study the PoA of pure-strategy Nash equilibria

of second-price auctions in a non-Bayesian multi-item setting with budgets, and provide a lower

bound of 1/2 for it. Unfortunately, their result hinges on the “no over-budgeting" assumption that

requires the sum of equilibrium bids to be bounded above by the budget, which need not hold

for pacing-based equilibria, thereby necessitating new proof ideas. Moreover, their bound may be

vacuous for some parameter values because a pure-strategy Nash equilibrium is not guaranteed to

exist in their setting. To get around this, they study mixed-strategy and Bayes-Nash equilibria, and

bound their PoA, but the lower bound they obtain for these equilibria is much worse (less than

0.02). Our model does not suffer from the problem of existence: a pure-strategy pacing-based

equilibrium is always guaranteed to exist (Theorem 8). This makes the following lower bound on

the PoA, which provides a worst-case guarantee of 1/2, more appealing.

Theorem 10. The PoA of pacing-based equilibria of any standard auction is greater or equal to

1/2.

The proof, which is in Appendix C.4, leverages the complementary slackness condition of

pacing-based equilibria to bound the PoA. Interestingly, our proof does not use a hypothetical

deviation to another bidding strategy, a technique commonly found in PoA bounds (see [RST17]

for a survey); and thus may be of independent interest.
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4.5 Structural Properties

In this section, we will show that pacing-based equilibria satisfy certain monotonicity and

geometric properties related to the space of value vectors. It is worth noting that, in light of the

revenue equivalence result of the preceding section, the properties established in this section hold

for pacing equilibria of all standard auctions. As in Section 4.4, we will assume that the reserve

price for each item is zero, i.e., 𝑟(𝛼) = 0 for all 𝛼 ∈ 𝐴. Without this assumption, similar results

hold, but they become less intuitively appealing and harder to state. Moreover, we will also assume

that the support of 𝐺, denoted by 𝛿(𝐺), is a convex compact subset of R𝑑+1
+ . This assumption is

made to avoid having to specify conditions on the pacing multipliers of types with probability zero

of occurring. Moreover, we consider a pacing function 𝜇 : Θ → [0, 𝜔/𝐵min] such that 𝜇(𝑤, 𝐵) is

the unique optimal solution for the dual minimization problem for each (𝑤, 𝐵) in the support of 𝐺,

i.e., 𝜇(𝑤, 𝐵) = argmin𝑡∈[0,𝜔/𝐵min] 𝑞
𝜇(𝑤, 𝐵, 𝑡) for all (𝑤, 𝐵) ∈ 𝛿(𝐺). We remark that we are assuming

that the best response is unique rather than the equilibrium being unique. The former can be shown

to hold under fairly general conditions.

First, in Lemma 12 we showed that the pacing function associated with an SFPE is monotone

in the buyer type. In particular, when the best response is unique, this result implies that 𝜇(𝑤, 𝐵)

is non-decreasing in each component of the weight vector 𝑤 and non-increasing in the budget

𝐵. Intuitively, if the budget decreases, a buyer needs to shade bids more aggressively to meet her

constraints. Alternatively, when the weight vector increases, the advertiser’s paced values increase,

which would result in more auctions won and higher payments. Therefore, to meet her constraints

the advertiser would need to respond by shading bids more aggressively. Furthermore, when the

best response is unique, it can also be shown that 𝜇 is continuous (see Lemma 42 in the appendix).

The next theorem further elucidates the structure imposed on 𝜇 by virtue of it corresponding to

the optima of the family of dual optimization problems parameterized by (𝑤, 𝐵). In what follows,

we will refer to a buyer (𝑤, 𝐵) with 𝜇(𝑤, 𝐵) = 0 as an unpaced buyer, and call her a paced buyer

otherwise.
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Proposition 8. Consider a unit vector �̂� ∈ R𝑑+ and budget 𝐵 > 0 such that 𝑤/∥𝑤∥= �̂�, for some

(𝑤, 𝐵) ∈ 𝛿(𝐺). Then, the following statements hold,

1. Paced buyers with budget 𝐵 and weight vectors lying along the same unit vector �̂� have

identical paced feature vectors in equilibrium. Specifically, if (𝑤1, 𝐵), (𝑤2, 𝐵) ∈ 𝛿(𝐺), with

𝑤1/∥𝑤1∥= 𝑤2/∥𝑤2∥= �̂� and 𝜇(𝑤1, 𝐵), 𝜇(𝑤2, 𝐵) > 0, then 𝑤1/(1 + 𝜇(𝑤1, 𝐵)) = 𝑤2/(1 +

𝜇(𝑤2, 𝐵)).

2. Suppose there exists an unpaced buyer (𝑤, 𝐵) ∈ 𝛿(𝐺) with 𝑤/∥𝑤∥= �̂� and 𝜇(𝑤, 𝐵) = 0. Let

𝑤0 = argmax{∥𝑤∥ | 𝑤 ∈ R𝑑; 𝜇(𝑤, 𝐵) = 0 and 𝑤/∥𝑤∥= �̂�} be the largest unpaced weight

vector along the direction �̂�. Then, all paced weight vectors get paced down to 𝑤0, i.e.,

𝑤/(1 + 𝜇(𝑤, 𝐵)) = 𝑤0 for all 𝑤 ∈ 𝛿(𝐺) with 𝑤/∥𝑤∥= �̂� and 𝜇(𝑤, 𝐵) > 0.

In combination with complementary slackness, the first part states that, in equilibrium, buyers

who have the same budget, have positive pacing multipliers, and have feature vectors which are

scalar multiples of each other, get paced down to the same type at which they exactly spend their

budget. In other words, scaling up the feature vector of a budget-constrained buyer, while keeping

her budget the same, does not affect the equilibrium outcome. The second case of Proposition 8

addresses the directions of buyers that have a mixture of paced and unpaced buyers. In this case,

there is a critical buyer type who exactly spends her budget when unpaced, and all buyer types that

have weight vectors with larger norm (but the same budget) get paced down to this critical buyer

type, i.e., their paced weight vector equals the critical buyer type’s weight vector in equilibrium.

The buyer types which have a smaller norm are unpaced.

Our non-atomic model also allows us to answer the following question: Keeping the competi-

tion fixed, how should an advertiser modify her targeting criteria or ad (as captured by the weight

vector) in order to maximize her utility? This result is especially important for online display ad

auctions, where the weight vector is estimated with the goal of predicting the click-through-rate

(CTR) and advertisers routinely modify their ads to attract more clicks. The following theorem

states that the gradient w.r.t. the weight vector of the equilibrium utility of a buyer with type

(𝑤, 𝐵) is given by the expected feature vector that she wins in equilibrium. This is because strong
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duality (Proposition 6) implies that the utility of every buyer type is given by the optimal dual

value 𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)). From a practical perspective, an advertiser should focus on improving

the weights of those features which have the largest average among the contexts won. It is worth

noting that these quantities can be easily computed using data available to an advertiser.

Proposition 9. Assume that 𝐴 is compact. Let 𝜇 : Θ → R≥0 be an equilibrium pacing function,

i.e., 𝜇 : Θ→ R≥0 such that 𝜇(𝑤, 𝐵) ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡) almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺. Then,

for all (𝑤, 𝐵) ∈ Θ, we have ∇𝑤𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)) = E𝛼,{𝜃𝑖}𝑛−1
𝑖=1
[𝛼 1 {𝛽𝜇((𝑤, 𝐵), 𝛼) ≥ 𝛽𝜇(𝜃𝑖, 𝛼)𝑖 ∀𝑖}].

4.6 Analytical Example and Numerical Experiments

In this section, we illustrate our theory by providing a stylized example in which we can de-

termine the equilibrium bidding strategies in closed form, and then conduct some numerical ex-

periments to verify our theoretical results. The purpose of the analytical example is to confirm our

structural results and also help validate that our numerical procedures converge to an approximate

version of the equilibrium strategies proposed in this chapter.

4.6.1 Analytical Example

We provide an instructive (albeit stylized) example with two-dimensional feature vectors to

illustrate the structural property described in Section 4.5. For 1 ≤ 𝑎 < 𝑏, define the set of buyer

types as (see the blue region in Figure 4.1 for a visualization of this set)

Θ B

{
(𝑤, 𝐵) ∈ R2

≥0 × R+

����𝑎 ≤ ∥𝑤∥≤ 𝑏, 𝐵 =
2∥𝑤∥−𝑤1 − 𝑤2

𝜋∥𝑤∥

}
.

In this example weight vectors lie in the intersection of a disk with the non-negative quadrant.

Observe that all buyer types whose weight vectors are co-linear (i.e., they lie along the same unit

vector) have identical budgets. Let the number of buyers in the auction be 𝑛 = 2. Moreover, define

the set of item types as the two standard basis vectors 𝐴 B {𝑒1, 𝑒2}. Finally, let 𝐺 (distribution

over buyer types) and 𝐹 (distribution over item types) be the uniform distribution on Θ and 𝐴
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respectively. Since 𝐴 is discrete and 𝐹 does not have a density, this example does not satisfy the

assumptions we made in our model. Nonetheless, in the next claim, we show that not only does a

pacing equilibrium exists, but we can also state it in closed form. The proof of the claim can be

found in Appendix C.6.

Claim 1. The pacing functions 𝜇 : Θ → R defined as 𝜇(𝑤, 𝐵) = ∥𝑤∥−1, for all (𝑤, 𝐵) ∈ Θ, is an

equilibrium, i.e., 𝛽𝜇, as given in Definition 3, is a SFPE.

Since 𝐻𝜇
𝛼(·) is a strictly increasing function for all 𝛼 ∈ 𝐴, it is easy to check that 𝜇(𝑤, 𝐵) is the

unique optimal to the dual optimization problem min𝑡∈[0,𝜔/𝐵min] 𝑞(𝜇, 𝑤, 𝐵, 𝑡) for all (𝑤, 𝐵) ∈ 𝛿(𝐺).

Therefore, this example falls under the purview of part 1 of Proposition 8. As expected, conforming

to Proposition 8, the buyers whose weight vectors are co-linear get paced down to the same point

on the unit arc, as shown in Figure 4.1.

4.6.2 Numerical Experiments

We now describe the simulation-based experiments we conducted to verify our theoretical re-

sults. As is necessitated by computer simulations, we studied a discretized version of our problem

in these experiments. More precisely, in our experiments, we used discrete approximations to the

buyer type distribution 𝐺 and the item type distribution 𝐹. Moreover, for all item types 𝛼, we set

the reserve price 𝑟(𝛼) = 0. One of the primary objectives of our simulations is to demonstrate that,

despite the discretization, a buyer type can obtain her optimal bidding strategy by finding the opti-

mal solution to the dual problem, as our theory suggests. In other words, to compute an equilibrium

it suffices to best-respond in the dual space which has the advantage of being much simpler than

the primal space. To do so, for each discretized instance, we run best-response dynamics in the

dual space by iterating over buyer types; computing each buyer type’s optimal dual solution while

keeping everyone else’s pacing-based strategy fixed and then using this optimal dual solution to

determine her pacing-based bidding strategy. This approach is not guaranteed to converge. In fact,

due to the discretization, strong duality may fail to hold and a pure strategy equilibrium may not

even exist. Nevertheless, despite the lack of theoretical guarantees, our experiments demonstrate
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that our analytical results and the dual best-response algorithm they inspire continue to work well

in discrete settings.

As a first step, and to validate our best-response dynamics, we ran the algorithm on the discrete

approximation of the example discussed in Subsection 4.6.1, for which we had already analytically

determined a pacing equilibrium in Claim 1. The problem was discretized by picking 320 points

lying in the set of buyer types Θ defined in Subsection 4.6.1. In Figure 4.1, we provide plots for the

case when 𝑎 = 2, 𝑏 = 3. We see that the theoretical predictions from Claim 1 are replicated almost

exactly by the solution computed by best-response iteration on the discretized problem. Moreover,

co-linear buyer types converge to the same paced type vector, thereby validating Proposition 8.
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2.5
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Paced

Figure 4.1: The example from Section 4.6.1 with 𝑎 = 2, 𝑏 = 3. The unpaced and paced buyer
weight vectors are uniformly distributed in the gray (triangle) and black (circle) region, respec-
tively. Each plot shows the distribution of two-dimensional buyer weight vectors. The weight
vectors before pacing are depicted in gray (triangles) and the paced weight vectors are depicted in
black (circles). The left plot shows the theoretical results of Subsection 4.6.1. In the left plot, the
buyer weight vectors lying on the dotted line get paced down to the point. The right plot shows the
results of best-response iteration on the corresponding discretized problem.

We conducted experiments to verify the structural properties described in Proposition 8. Here

we consider instances with 𝑛 = 3 buyers per auction, 𝑑 = 2 features, the buyer type distribution 𝐺

given by the uniform distribution on (1, 2)× (1, 2)×{0.6} and the item type distribution 𝐹 given by

the uniform distribution on the one-dimensional simplex {(𝑥, 𝑦) | 𝑥, 𝑦 ≥ 0; 𝑥 + 𝑦 = 1}. These were

discretized taking a uniform grid with 10 points along each dimension. The results are portrayed

in Figure 4.2.

The structural properties discussed in Proposition 8 are clearly evident in Figure 4.2. In this
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Figure 4.2: The left plot depicts how the multiplicative shading factor 1/(1 + 𝜇(𝑤, 𝐵)) varies with
buyer weight vector 𝑤 (budget 𝐵 = 0.6 is the same for every buyer type). On the right, we plot the
paced weight vectors of the buyer types.

scenario, the buyer types are uniformly distributed on (1, 2)× (1, 2)× {0.6} and, as a consequence,

all buyers have identical budgets equal to 0.6. At equilibrium, it can be seen that the co-linear

buyer types (i.e., buyers whose weight vectors 𝑤 are co-linear) who have a positive multiplier get

paced down to the critical buyer type who exactly spends her budget. Moreover, at equilibrium, the

boundary that separates the paced buyer types from the unpaced buyer types—the curve in which

the critical buyer types lie—can be clearly observed in the left-hand plot in Figure 4.2. Finally, we

constructed random discrete instances by uniformly sampling 50 buyer weight vectors and 20 item

feature vectors from the square (1, 2)× (1, 2), and setting the number of buyers to be 𝑁 = 3 and the

budget of all buyer types to be 𝐵 = 2. We found that our dual-based dynamics always converged

within 250 iterations to pacing-based bidding strategies which on average were within 2.5% of the

utility-maximizing budget feasible bidding strategy.

4.7 Conclusion

This chapter introduces a natural contextual valuation model and characterizes the equilibrium

bidding behavior of budget-constrained buyers in first-price auctions in this model. We extend

this result to other standard auctions and establish revenue equivalence among them. Due to the

extensive focus on second-price auctions, previous works endorse bid-pacing as the framework of

choice for budget management in the presence of strategic buyers. Our results suggest that value-

pacing, which coincides with bid-pacing in second-price auctions, is an appropriate framework to
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manage budgets across all standard auctions.

An important open question we leave unanswered is that of optimizing the reserve prices to

maximize seller revenue under equilibrium bidding. In general, optimizing under equilibrium con-

straints is usually challenging, so it is interesting to explore whether our model possesses additional

structure that allows for tractability. Another related question is that of characterizing the revenue-

optimal mechanism for our model. Our contextual-value model can capture multi-item auctions

with additive valuations as a special case (by interpreting each context as a different item), which

is a notoriously hard setting for revenue maximization, even in the absence of budget constraints.

Investigating dynamics in first-price auctions with strategic budget-constrained buyers is another

interesting open direction worth exploring. We also leave open the question of efficient computa-

tion of the pacing-based equilibria discussed in this chapter. Addressing this question will likely

require choosing a suitable method of discretization and tie-breaking, without which equilibrium

existence may not be guaranteed (see, e.g., [Con+18; Bab+20]). Finally, another interesting re-

search direction is to develop conditions that guarantee uniqueness of an equilibrium. In light of

recent results by [Con+18], we conjecture that, without further assumptions, the equilibrium would

generally not be unique.
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Chapter 5: Complexity of Pacing for Second-Price Auctions

Based on the publication [CKK23] co-authored with Xi Chen and Christian Kroer.

In this chapter, we analyze equilibria of pacing-based budget management systems from a

computational perspective. In Section 5.2, we first show that the problem of finding an approximate

pacing equilibrium is PPAD-hard. Our notion of approximation relaxes the definition of (exact)

pacing equilibria in two ways: (i) buyers who bid close to (but not necessarily exactly equal to)

the highest bid may also win fractions of an item; (ii) each buyer either spends most of her budget,

or her pacing multiplier is close to one. We use two parameters 𝛿 and 𝛾 to capture these two

relaxations quantitatively and such a solution is called a (𝛿, 𝛾)-approximate pacing equilibrium

(see Definition 10).

Theorem 11. For any constant 𝑐 > 0, finding a (𝛿, 𝛾)-approximate pacing equilibrium in a second-

price pacing game with 𝑛 players is PPAD-hard when 𝛿 = 𝛾 = 1/𝑛𝑐.

Next, in Section 5.3, we first prove that finding a pacing equilibrium is in PPAD. In particular,

this implies that, when values and budgets of buyers are rational in the game, there always exists

a pacing equilibrium in which every entry is rational and can be written using polynomially many

bits. (In contrast, the existence proof of [Con+18] uses a convergence argument, from which it is

not clear whether an equilibrium with rational entries always exists.)

Theorem 12. Finding a pacing equilibrium in a second-price pacing game is in PPAD.

Note that, by virtue of being a relaxation, finding an approximate pacing equilibrium is in

PPAD as a direct consequence of Theorem 12. Similarly, the PPAD-hardness of finding an exact

pacing equilibrium follows from Theorem 11.
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5.1 Model

We start with the definition of Second-price Pacing Games. In a Second-price Pacing Game

(SPP game as a shorthand) 𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)), there are 𝑛 buyers and 𝑚 (indivisible) goods.

Each good is sold through independent (single slot) second-price auctions. We use 𝑣𝑖 𝑗 ≥ 0, 𝑖 ∈ [𝑛]

and 𝑗 ∈ [𝑚], to denote the value of good 𝑗 to buyer 𝑖, and 𝐵𝑖 > 0 to denote the budget of buyer 𝑖.

We will require (1) for each 𝑗 ∈ [𝑚], 𝑣𝑖 𝑗 > 0 for some 𝑖 ∈ [𝑛], and (2) for each 𝑖 ∈ [𝑛], 𝑣𝑖 𝑗 > 0

for some 𝑗 ∈ [𝑚]. Each buyer 𝑖 plays the game by picking a pacing multiplier 𝛼𝑖 ∈ [0, 1] and then

bidding 𝛼𝑖𝑣𝑖 𝑗 on good 𝑗 for each 𝑗 ∈ [𝑚].

To finish describing the game, one approach is to specify a tie-breaking rule: a rule that de-

termines the probabilities with which a good is allocated among the highest bidders. However,

[Con+18] showed that the choice of tie-breaking rule affects equilibrium existence. This motivated

them to introduce an equilibrium notion called the pacing equilibrium, which is not concerned with

any specific tie-breaking rule, but instead includes the probability distribution used to allocate each

good as part of the equilibrium (see Definition 9). We will take a similar approach and work with

pacing equilibrium, focusing on its computational aspects. It is worth pointing out that this only

makes our hardness results stronger because they apply to any tie-breaking rule (such as the one

used by [Bor+07], which works via random perturbations; see Section 5.2.3 for a detailed discus-

sion of the implications of our hardness results).

With slight abuse of notation, we will write 𝑥𝑖 𝑗 ≥ 0 to denote the fraction of good 𝑗 allocated

to buyer 𝑖, which, in our indivisible goods regime, should be interpreted to mean the probability of

allocating good 𝑗 to buyer 𝑖. Therefore, the allocation should always satisfy
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1 for all

𝑗 ∈ [𝑚]. In addition, only buyers 𝑖 with the highest bid for good 𝑗 can have 𝑥𝑖 𝑗 > 0 and they pay

for good 𝑗 under the second-price rule.

Formally, when buyers use pacing multipliers 𝛼 = (𝛼1, . . . , 𝛼𝑛), we let ℎ 𝑗 (𝛼) = max𝑖∈[𝑛] 𝛼𝑖𝑣𝑖 𝑗

denote the highest bid on good 𝑗 and 𝑝 𝑗 (𝛼) denote the second highest bid on good 𝑗 , i.e., 𝑝 𝑗 (𝛼) is

the second largest element among 𝛼1𝑣1 𝑗 , . . . , 𝛼𝑛𝑣𝑛 𝑗 (in particular, 𝑝 𝑗 (𝛼) = ℎ 𝑗 (𝛼) when there is a tie
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for the highest bid). Only buyers who bid ℎ 𝑗 (𝛼) can purchase (fractions of) good 𝑗 under the price

𝑝 𝑗 (𝛼). Thus, under an allocation 𝑥 = (𝑥𝑖 𝑗 ), the total payment of buyer 𝑖 is given by
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼),

which should not exceed the budget 𝐵𝑖 of buyer 𝑖.

Next, we define the notion of pacing equilibria [Con+18] of SPP games. A pacing equilibrium

consists of a tuple of pacing multipliers 𝛼 = (𝛼𝑖) and an allocation 𝑥 = (𝑥𝑖 𝑗 ) of goods that satisfy

the two conditions described above (i.e., only buyers with the highest bid can be allocated a good

and their budgets are satisfied, as captured in (a) and (c) below). In addition, we require (b) the full

allocation of any good with a positive bid and (d) that there is no unnecessary pacing: if a buyer 𝑖

does not spend her whole budget, then her pacing multiplier should be one. Intuitively, this makes

sense because if her budget is not binding, then she should participate as if each auction is a regular

second-price auction.

Definition 9 (Pacing Equilibria). Given an SPP game 𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)), we say (𝛼, 𝑥) with

𝛼 = (𝛼𝑖) ∈ [0, 1]𝑛, 𝑥 = (𝑥𝑖 𝑗 ) ∈ [0, 1]𝑛𝑚 and
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1 for all 𝑗 ∈ [𝑚] is a pacing equilibrium if

(a) Only buyers with the highest bid win the good: 𝑥𝑖 𝑗 > 0 implies 𝛼𝑖𝑣𝑖 𝑗 = ℎ 𝑗 (𝛼).

(b) Full allocation of each good with a positive bid: ℎ 𝑗 (𝛼) > 0 implies
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1.

(c) Budgets are satisfied:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) ≤ 𝐵𝑖.

(d) No unnecessary pacing:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) < 𝐵𝑖 implies 𝛼𝑖 = 1.

We will work with an approximate version of pacing equilibria in both of our PPAD-hardness

and PPAD-membership results. In an approximate pacing equilibrium, we make two relaxations

on (b) and (d); the two parameters used to capture these two relaxations are 𝛿 and 𝛾, respectively.

Definition 10 (Approximate Pacing Equilibria). Given an SPP game 𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)) and

parameters 𝛿, 𝛾 ∈ [0, 1), we say (𝛼, 𝑥), with 𝛼 = (𝛼𝑖) ∈ [0, 1]𝑛, 𝑥 = (𝑥𝑖 𝑗 ) ∈ [0, 1]𝑛𝑚 and
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤

1 for all 𝑗 ∈ [𝑚], is a (𝛿, 𝛾)-approximate pacing equilibrium of 𝐺 if
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(a) Only buyers close to the highest bid win the good: 𝑥𝑖 𝑗 > 0 implies 𝛼𝑖𝑣𝑖 𝑗 ≥ (1 − 𝛿)ℎ 𝑗 (𝛼).

(b) Full allocation of each good with a positive bid: ℎ 𝑗 (𝛼) > 0 implies
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1.

(c) Budgets are satisfied:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) ≤ 𝐵𝑖.

(d) Not too much unnecessary pacing:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) < (1 − 𝛾)𝐵𝑖 implies 𝛼𝑖 ≥ 1 − 𝛾.

For convenience we will write (𝛿, 𝛾)-approximate PE to denote (𝛿, 𝛾)-approximate pacing equi-

librium, and write 𝛾-approximate PE to denote (0, 𝛾)-approximate PE. It is clear from the definition

that when 𝛿 = 𝛾 = 0, (𝛿, 𝛾)-approximate PE captures the exact pacing equilibria of a SPP game.

Remark 7. We can incorporate reserve prices in our model. Definition 9 can be extended in a

natural way to model the presence of reserve prices (see Definition 20). All our results continue to

hold with this extension. We refer the reader to Appendix D.3 for a full discussion.

5.1.1 Connections to Dynamics, Best Response and Nash Equilibrium

Before moving on to our results, we motivate the definition of pacing equilibrium by connecting

it more concretely to practice and previous work. Consider a collection of 𝑛 buyers that participate

repeatedly in 𝑇 second-price auctions. For each auction 𝑡 ∈ [𝑇], the good to be sold is drawn from

a collection of 𝑚 possible goods, with good 𝑗 being selected with probability 𝑑 𝑗 > 0. Moreover,

suppose the value 𝑣′
𝑖 𝑗

that buyer 𝑖 has for good 𝑗 is given by 𝜖𝑖 𝑗𝑣𝑖 𝑗/𝑑 𝑗 for some 𝑣𝑖 𝑗 ≥ 0, where

𝜖𝑖 𝑗 is drawn independently for each buyer-good pair from some continuous distribution supported

over [1 − 𝛿, 1]. The 𝜖𝑖 𝑗 component of the value can also be thought of as a perturbation that arises

from errors in estimating the click-through-rate (probability of a click) which is a crucial factor in

determining the value of an advertiser in internet advertising. Finally, let 𝐵′
𝑖

denote the budget of

buyer 𝑖, which is the maximum amount she is willing to spend over all 𝑇 auctions.

[BG19] prove that, if we fix the bidding strategy of the other buyers, then it is optimal for a

buyer to use pacing-based strategy to bid. The optimal pacing-based algorithm of [BG19] itera-

tively updates the pacing multiplier and satisfies the following properties: (i) If the buyer spends
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less than her per-period budget 𝐵𝑖 = 𝐵′
𝑖
/𝑇 in an iteration, her pacing multiplier is increased, and if

the payment is greater than her per-period budget, then the multiplier is decreased; (ii) The pacing

multiplier is constrained to belong to [0, 1] because bidding more than the value leads to negative

utility. These properties are also satisfied by the algorithm proposed by [Bor+07] and forms the

basis of pacing algorithms used in practice which aim to smooth the expenditure of a buyer by

evenly spending the budget over all auctions, i.e., aim to spend the per-period budget in each pe-

riod if possible. If all of the buyers use an algorithm that satisfies these properties, the system can

only stabilize when all of the buyers satisfy the no-unnecessary-pacing condition.

The no-unnecessary-pacing condition and the optimality of pacing stem from strong duality,

as argued in [BBW15] and [BG19]. We provide a brief overview of their argument here. When

𝑇 is large and 𝐵′
𝑖

= Θ(𝑇), as is the case in online advertising, concentration arguments kick in

and the problem of repeatedly bidding in 𝑇 auctions can be interpreted as repeatedly bidding in the

following single-shot game: Each buyer wishes to maximize her expected utility (value − payment)

while keeping her expenditure below 𝐵𝑖 = 𝐵′
𝑖
/𝑇 in expectation over the randomness in the values

(see [BBW15; BG19] for more details). This single-shot game captures the crux of the problem

and its variants have been extensively studied in the literature [BBW15; Bal+21; Bab+20]. In fact,

[BG19] show that, under some fairly stringent assumptions, their algorithm efficiently converges

to an approximate pacing equilibrium of this single-shot game when all of the buyers employ it.

But, these assumptions require independence of values across buyers and strong monotonicity of

payments as a function of the pacing multipliers, both of which are unlikely to hold in practice.

As we show in this chapter, if PPAD ̸= P, then the convergence can no longer be efficient in

the absence of these assumptions. In the rest of this subsection, we will restrict our focus to this

single-shot game and connect it to SPP games and pacing equilibria.

Fix buyer 𝑖 and let 𝑓 𝑗 denote the highest bid from buyers other than 𝑖 on good 𝑗 . Then, the

optimization problem faced by buyer 𝑖 in the single-shot game is given by

max
𝑏

𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[
(𝑣′𝑖 𝑗 − 𝑓 𝑗 )1(𝑏( 𝑗 , 𝑣′𝑖 𝑗 ) ≥ 𝑓 𝑗 )

]
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s.t.
𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[
𝑓 𝑗 · 1(𝑏( 𝑗 , 𝑣′𝑖 𝑗 ) ≥ 𝑓 𝑗 )

]
≤ 𝐵𝑖

where 𝑏( 𝑗 , ·) denotes the bidding strategy of buyer 𝑖 for good 𝑗 . Assume that the distribution of

𝑓 𝑗 conditioned on 𝑣′
𝑖 𝑗

(value of buyer 𝑖 for good 𝑗) is continuous. Then, using the strong-duality

argument of Chapter 4, it can be shown that strong duality holds, where the dual problem is given

by

min
𝜇𝑖≥0

𝜇𝑖 · 𝐵 + max
𝑏

𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[
(𝑣′𝑖 𝑗 − (1 + 𝜇𝑖) 𝑓 𝑗 )1(𝑏( 𝑗 , 𝑣′𝑖 𝑗 ) ≥ 𝑓 𝑗 )

]
= min
𝜇𝑖≥0

𝜇𝑖 · 𝐵 + (1 + 𝜇𝑖) max
𝑏

𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[(
𝑣′
𝑖 𝑗

1 + 𝜇𝑖
− 𝑓 𝑗

)
1(𝑏( 𝑗 , 𝑣′𝑖 𝑗 ) ≥ 𝑓 𝑗 )

]
Therefore, if 𝜇∗

𝑖
≥ 0 is the optimal dual solution, then an optimal bidding strategy for buyer

𝑖 is 𝑏( 𝑗 , 𝑣′
𝑖 𝑗

) = 𝑣′
𝑖 𝑗
/(1 + 𝜇∗

𝑖
) (i.e., to pace her value with the multiplier 𝛼𝑖 = 1/(1 + 𝜇∗

𝑖
)) since it is

optimal for the inner Lagrangian optimization problem over 𝑏. Note that this argument does not

require other buyers to use a pacing-based strategy. Thus, it establishes that a pacing-based best

response always exists.

Strong duality also implies that any optimal primal-dual solution pair satisfies complementary

slackness: 𝜇∗
𝑖

= 0 if

𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[
𝑓 𝑗 · 1(𝑣′𝑖 𝑗/(1 + 𝜇∗𝑖 ) ≥ 𝑓 𝑗 )

]
< 𝐵𝑖 .

The fixed-point argument of [BBW15] further shows that a pacing-based Nash equilibrium exists

for the single-shot game where all of the buyers use pacing with multipliers 𝛼𝑖 = 1/(1 + 𝜇𝑖). More-

over, if a collection of feasible dual multipliers satisfy complementary slackness and the corre-

sponding pacing-based strategies satisfy the budget constraints, then they form a Nash equilibrium

of the single-shot game described above. Now, let 𝛼𝑖 = 1/(1 + 𝜇∗
𝑖
) be a collection of equilibrium

pacing multipliers. Then, the complementary slackness condition for buyer 𝑖 can equivalently be
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written as a no-unnecessary-pacing condition: 𝛼𝑖 = 0 if

𝑚∑︁
𝑗=1
𝑑 𝑗 · E𝑣′

𝑖 𝑗
, 𝑓 𝑗

[
𝑓 𝑗 · 1(𝛼𝑖𝑣′𝑖 𝑗 ≥ 𝑓 𝑗 )

]
< 𝐵𝑖

As a consequence, every pacing equilibrium of this single-shot game is also a Nash equilibrium,

where we define a pacing equilibrium to be any collection of pacing multipliers that satisfy the

no-unnecessary-pacing condition and satisfy the budget constraint. Even if one has no interest

in duality, the no-unnecessary-pacing condition is also extremely desirable in practice when the

platform manages the budget of the buyer on her behalf — it ensures that the platform bids the

value of the buyer on each good unless doing so would violate her budget. Thus, as outlined

above, pacing equilibrium is an important refinement of Nash equilibrium for the single-shot game

in both theory and practice.

Next, we connect pacing equilibria in single-shot games to approximate pacing equilibria in

SPP games. Observe that, when all of the buyers use pacing to bid, 𝑓 𝑗 = max𝑘 ̸=𝑖 𝛼𝑘𝜖𝑘 𝑗𝑣𝑘 𝑗/𝑑 𝑗 .

Hence, the expected payment of buyer 𝑖 in this single-shot game can be rewritten as

E{𝜖𝑖 𝑗 }𝑖, 𝑗

[
𝑚∑︁
𝑗=1

{
max
𝑘 ̸=𝑖

𝛼𝑘𝜖𝑘 𝑗𝑣𝑘 𝑗

}
1
(
𝜖𝑖 𝑗𝛼𝑖𝑣𝑖 𝑗 ≥ max

𝑘 ̸=𝑖
𝜖𝑘 𝑗𝛼𝑘𝑣𝑘 𝑗

)]
If we ignore the perturbations 𝜖𝑖 𝑗 , this is exactly the payment of buyer 𝑖 in the SPP game with values

𝑣𝑖 𝑗 and pacing multipliers 𝛼𝑖. To account for the perturbations and connect the single-shot game to

the SPP game, we can define a perturbed SPP game (like [Bor+07]) as one in which (i) the value

of buyer 𝑖 for good 𝑗 is given by 𝜖𝑖 𝑗𝑣𝑖 𝑗 ; (ii) each item is sold through second-price auction; (iii)

the strategy of each buyer is her pacing multiplier 𝛼𝑖 ∈ [0, 1]; (iv) 𝜖𝑖 𝑗 are drawn i.i.d. from some

distribution with a positive density over [1− 𝛿, 1]; (v) each buyer wishes to maximize her expected

utility while satisfying her budget constraint in expectation over the perturbations (−∞ utility if the

budget constraint is violated). We define an approximate pacing equilibrium of this perturbed SPP

game as simply a collection of budget-feasible pacing multipliers that satisfy the not-too-much-

unnecessary-condition (see Appendix D.4). Recall that approximate pacing equilibrium of SPP
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games allows for arbitrary allocation between all buyers close to the highest bid, and therefore

includes the allocation induced by perturbations as a special case. In Appendix D.4, we use this

fact to show that computing a pacing equilibrium of perturbed SPP games is harder than computing

an approximate pacing equilibrium in (unperturbed) SPP games, and therefore PPAD-hard due to

Theorem 13.

Finally, as we make 𝛿 smaller, this perturbed SPP game gets closer to a true SPP game. Un-

fortunately, the duality-based arguments of existence (like those given in [BBW15] and Chapter 4)

break down when 𝛿 = 0 because ties are no longer a zero-probability event. The following example

shows that a pacing equilibrium may not exist in this case under the uniform tie-breaking rule.

Example 3. Consider a setting with two buyers and one good. 𝑣11 = 1, 𝑣21 = 𝑣 ≫ 1 and 𝐵1 = ∞,

𝐵2 = 1/4. Then, in any pacing equilibrium we have 𝛼1 = 1 because of the no-unnecessary-pacing

condition. Now, if 𝛼2 ≥ 1/𝑣, then buyer 2 spends at least 1/2 due to the uniform tie-breaking rule,

which violates her budget. Hence, 𝛼2 < 1/𝑣2 and buyer two wins nothing and spends 0, thereby

violating the no-unnecessary pacing condition.

[Con+18] show that a pacing equilibrium does exist if the ties are broken carefully, which

was their motivation behind making the tie-breaking rule a part of the equilibrium concept. This

equilibrium tie-breaking rule can be thought of as the limiting expected allocation in the perturbed

equilibrium as 𝛿 approaches zero. They also show that, in an unperturbed SPP game, if we fix

the bids of other buyers and allow a buyer to pick her bids along with the fraction of each good

she wants, it is a best-response for her to use pacing to bid because it allows her to win goods

that yield the highest value per unit cost—using the multiplier 𝛼𝑖 ensures that a buyer wins a good

if and only if 𝛼𝑖 times her value is greater than the second-highest bid, i.e., if the value per unit

cost is above 1/𝛼𝑖. In the one-shot game studied by [Con+18], pacing may not be a best response

if the 𝑚 good types arrive one-by-one and a buyer can change her bid to cause other buyers to

drop out of later auctions due to budget exhaustion. In the repeated auction setting that motivates

our single-stage pacing game, the budget constraint is over all 𝑇 auctions. Therefore, deviating
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in a single-stage game would not cause other advertisers to drop out of that game1. [Con+18]

also provide a discussion on the undesirable properties of Nash equilibria in SPP games enroute to

motivating pacing equilibria as a more desirable solution concept. Nevertheless, we would like to

note that our hardness result can be extended to Nash equilibria: In Appendix D.4, we prove that

computing a Nash equilibrium of the perturbed SPP game is also PPAD-hard. We do so by showing

that a minor modification of the game constructed in our hardness reduction for Theorem 13 only

admits Nash equilibria that are also pacing equilibria.

5.2 Hardness Results

In this section we investigate the hardness of computing approximate pacing equilibria and

show that the problem is PPAD-hard for second-price pacing games. Our most general result

(Theorem 11) shows that the problem of finding a (𝛿, 𝛾)-approximate PE in a SPP game is PPAD-

hard, even when 𝛿 and 𝛾 are polynomially small in the number of players.

Our result is shown by reducing the problem of computing a Nash equilibriun in a {0, 1}-cost

bimatrix game to that of finding a (𝛿, 𝛾)-approximate PE in a corresponding SPP game. Because

we wish to show the result for (𝛿, 𝛾)-approximate PE, we must start our reduction from such ap-

proximate PE. In order to manage the resulting approximation factors, we are forced to introduce

a number of additional bookkeeping gadgets, and correspondingly work with the problem of com-

puting 𝜖-well-supported Nash equilibria of {0, 1}-cost bimatrix games, as opposed to standard

Nash equilibria. Taken together, all these facts lead to a longer proof that may obfuscate the main

ideas underlying our reduction. To better highlight the key ideas in our reduction and motivate our

techniques, we are going to start by proving that finding an exact pacing equilibrium in a SPP game

is PPAD-hard, by showing a reduction from the problem of finding an exact Nash equilibrium in a

1One can imagine a strategy where a buyer consistently bids higher in an attempt to run other buyers out of budget
early with the goal of winning goods for cheap later on. Although interesting, an analysis of these strategies would
require studying a complicated incomplete-information extensive-form game, which is not the focus of this work.
Moreover, in practice, these pacing algorithms are predominantly implemented by platforms who have no incentive to
take advantage of some advertisers on behalf of other ones. Finally, while such strategies may seem appealing in toy
examples, in a large-scale market, where the budget of an individual advertiser is small relative to the whole market,
such an approach is unlikely to be possible.
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{0, 1}-cost bimatrix game.

5.2.1 Hardness of Finding Exact Pacing Equilibria

Our reduction will be from the problem of computing a Nash equilibrium in a {0, 1}-cost

bimatrix game. Let Δ𝑛 denote the set of probability distributions over [𝑛]. The input of the bimatrix

problem is a pair of cost matrices 𝐴, 𝐵 ∈ {0, 1}𝑛×𝑛 and the goal is to find a Nash equilibrium

(𝑥, 𝑦) ∈ Δ𝑛 × Δ𝑛, meaning that 𝑥 minimizes cost given 𝑦, i.e. 𝑥𝑇 𝐴𝑦 ≤ 𝑥𝑇 𝐴𝑦 for all 𝑥 ∈ Δ𝑛, and

similarly 𝑦 minimizes cost given 𝑥, i.e. 𝑥𝑇𝐵𝑦 ≤ 𝑥𝑇𝐵�̂� for all �̂� ∈ Δ𝑛. Equivalently, (𝑥, 𝑦) is a Nash

equilibrium if 𝑥𝑖 > 0 for any 𝑖 ∈ [𝑛] implies that
∑
𝑗 𝐴𝑖 𝑗 𝑦 𝑗 ≤

∑
𝑗 𝐴𝑘 𝑗 𝑦 𝑗 for all 𝑘 ∈ [𝑛], and 𝑦 𝑗 > 0

for any 𝑗 ∈ [𝑛] implies that
∑
𝑖 𝑥𝑖𝐵𝑖 𝑗 ≤

∑
𝑖 𝑥𝑖𝐵𝑖𝑘 for all 𝑘 ∈ [𝑛]. This problem is known to be

PPAD-complete [CTV07].

Given a {0, 1}-cost bimatrix game (𝐴, 𝐵) with 𝐴, 𝐵 ∈ {0, 1}𝑛×𝑛, we would like to construct an

SPP game 𝐺 in time polynomial in 𝑛, such that every exact PE of 𝐺 can be mapped back to a Nash

equilibrium of the bimatrix game (𝐴, 𝐵) in polynomial time.

Before proceeding further, we informally describe some important aspects of the construction

to provide some intuition. First, in the SPP game 𝐺, we will encode the pair (𝑥, 𝑦) of mixed

strategies in Δ𝑛 using pacing multipliers. For each player 𝑝 ∈ {1, 2} in the bimatrix game (𝐴, 𝐵)

and each (pure) strategy 𝑠 ∈ [𝑛], there will be a corresponding buyer C(𝑝, 𝑠) in the SPP game 𝐺,

whose pacing multiplier 𝛼(C(𝑝, 𝑠)) will be used to encode the probability with which player 𝑝

plays strategy 𝑠 in the bimatrix game (𝐴, 𝐵). For now, take 𝑥 to be the distribution obtained by

normalizing 𝛼(C(1, 𝑠)), i.e., 𝑥𝑡 = 𝛼(C(1, 𝑡))/∑𝑠 𝛼(C(1, 𝑠)), and define 𝑦 similarly using 𝛼(C(2, 𝑠));

we will discuss the issues with this proposal and ways to fix them momentarily.

Second, in order to capture the best response condition of Nash equilibria, we need to encode

the cost borne by player 𝑝 ∈ {1, 2} when playing a given strategy 𝑠 ∈ [𝑛] against the mixed strategy

of the other player. For simplicity, let us focus on 𝑝 = 1. We will create a set of 𝑛 expenditure

goods 𝐸(1, 𝑠)1, . . . , 𝐸(1, 𝑠)𝑛 for each pure strategy 𝑠 of player 1. We will set buyer C(1, 𝑠)’s value

at 1 for each of the expenditure goods 𝐸(1, 𝑠)1, . . . , 𝐸(1, 𝑠)𝑛. Additionally, each buyer C(2, 𝑡) will
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value 𝐸(1, 𝑠)𝑡 at 𝜈𝐴𝑠𝑡 , where 𝜈 = 1/(16𝑛) is set to be so small that C(1, 𝑠) always wins all the goods

𝐸(1, 𝑠)1, . . . , 𝐸(1, 𝑠)𝑛 under any PE of 𝐺. This means that, in any PE with multipliers 𝛼(C(𝑝, 𝑠)),

buyer C(1, 𝑠) pays a total of 𝜈
∑
𝑡 𝛼(C(2, 𝑡))𝐴𝑠𝑡 for the expenditure goods 𝐸(1, 𝑠)1, . . . , 𝐸(1, 𝑠)𝑛,

which captures player 1’s cost for playing strategy 𝑠 in (𝐴, 𝐵), when player 2 uses the mixed

strategy that plays each 𝑡 with probability defined by 𝛼(C(2, 𝑡)) after normalization.

Finally we need to make sure that the best response condition of Nash equilibria holds for a

strategy pair (𝑥, 𝑦) obtained from multipliers 𝛼(C(𝑝, 𝑠)) in any PE of 𝐺, i.e., only best-response

strategies are played with positive probability. This poses a challenge because pacing multipliers

are never zero in a pacing equilibrium, so we can’t use them directly to encode probabilities in

𝑥 and 𝑦 (which need to be zero for strategies which are not best responses). To get around this

issue, we will use thresholds to encode entries of (𝑥, 𝑦) using 𝛼(C(𝑝, 𝑠)). More formally, we

add a threshold buyer and a set of threshold goods to 𝐺 to make sure that 𝛼(C(𝑝, 𝑠)) ≥ 1/2 in

any PE of 𝐺. This allows us to encode 𝑥 by normalizing 𝛼(C(1, 𝑠)) − 1/2 and 𝑦 by normalizing

𝛼(C(2, 𝑠)) − 1/2. The most challenging part of the construction is to have buyers /goods work

together to ensure that both 𝛼(C(1, 𝑠)) − 1/2 and 𝛼(C(2, 𝑠)) − 1/2, 𝑠 ∈ [𝑛], are not identically

zero. We accomplish this by creating a set of normalization goods for each buyer C(𝑝, 𝑠), with the

property that each buyer C(𝑝, 𝑠) spends approximately
∑𝑛
𝑡=1 𝛼(C(𝑝, 𝑡)) on her normalization goods.

This, in combination with a carefully chosen budget and the ‘No unnecessary pacing’ condition,

ensures that {𝛼(C(𝑝, 𝑠))−1/2}𝑠 are not identically zero. Then, we can follow the plan described in

the last paragraph to encode the cost of player 𝑝 playing 𝑠 using the expenditure of buyer C(𝑝, 𝑠)

on 𝐸(𝑝, 𝑠)1, . . . , 𝐸(𝑝, 𝑠)𝑛, with careful calibration via the use of thresholds. This finally helps

us enforce the best response condition of Nash equilibria on (𝑥, 𝑦) in (𝐴, 𝐵) by comparing total

expenditures of buyers C(𝑝, 𝑠) and using implications from such comparisons.

We now formally define the SPP game 𝐺 in the next section, and then the following sections

show the hardness result based on 𝐺.
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C(𝑝, 1) C(𝑝, 2) C(𝑝, 3) C(𝑝, 4) C(𝑝, 5)

𝑁(𝑝, 3)1 𝑁(𝑝, 3)2 𝑁(𝑝, 3)3 𝑁(𝑝, 3)4 𝑁(𝑝, 3)5

D(𝑝, 3)

Figure 5.1: Normalization goods for 𝑝 ∈ {1, 2} and 𝑠 = 3, when 𝑛 = 5. A buyer having a non-zero
value for a good is represented by a line connecting the two. Solid line denotes a value of 1 and
dotted line denotes a value of 2.

C(2, 1) C(2, 2) C(2, 3) C(2, 4)

𝐸(2, 1)1 𝐸(2, 2)1 𝐸(2, 3)1 𝐸(2, 4)1 𝐸(1, 1)1 𝐸(1, 1)2 𝐸(1, 1)3 𝐸(1, 1)4

C(1, 1) T

Figure 5.2: All the expenditure goods for which buyer C(1, 1) has a non-zero value, when 𝑛 = 4. A
buyer having a non-zero value for a good is represented by a line connecting the two. Solid lines
denote a value of 1 and dotted lines denote values which are smaller than 𝜈 = 1/(16𝑛).

The SPP Game

The game 𝐺 has the following set of goods:

• Normalization goods: 𝑛 goods {𝑁(𝑝, 𝑠)1, . . . , 𝑁(𝑝, 𝑠)𝑛} for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

• Expenditure goods: 𝑛 goods {𝐸(𝑝, 𝑠)1, . . . , 𝐸(𝑝, 𝑠)𝑛} for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

• Threshold goods: 1 good 𝑇(𝑝, 𝑠) for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

Set 𝜈 = 1/(16𝑛). The set of buyers in 𝐺 is defined as follows, where we write 𝑉(·, ·) to denote

the value of a good (the second component) to a buyer (the first component):

• Buyer C(𝑝, 𝑠), 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛]: C(𝑝, 𝑠) has positive values for the following goods:
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– Normalization goods: 𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑖) = 2 for all 𝑖 ∈ [𝑛] \ {𝑠};

𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑠) = 1; and 𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑡)𝑠) = 1 for all 𝑡 ∈ [𝑛] \ {𝑠}.

– Threshold good 𝑇(𝑝, 𝑠): 𝑉(C(𝑝, 𝑠), 𝑇(𝑝, 𝑠)) = 2𝑛4.

– Expenditure goods: 𝑉(C(𝑝, 𝑠), 𝐸(𝑝, 𝑠)𝑖) = 1 for all 𝑖 ∈ [𝑛].

For 𝑝 = 1: 𝑉(C(1, 𝑠), 𝐸(2, 𝑡)𝑠) = 𝜈𝐵𝑠𝑡 for all 𝑡 ∈ [𝑛].

For 𝑝 = 2: 𝑉(C(2, 𝑠), 𝐸(1, 𝑡)𝑠) = 𝜈𝐴𝑡𝑠 for all 𝑡 ∈ [𝑛].

For 𝑝 = 1, the budget of C(1, 𝑠) is 𝑛/2 + 𝑛4 + 1/4 − 𝜈 + ∑
𝑡∈[𝑛] 𝜈𝐴𝑠𝑡/2;

For 𝑝 = 2, the budget of C(2, 𝑠) is 𝑛/2 + 𝑛4 + 1/4 − 𝜈 + ∑
𝑡∈[𝑛] 𝜈𝐵𝑡𝑠/2.

• Threshold Buyer T: T has positive values only for the following goods:

– Threshold goods: 𝑉(T, 𝑇(𝑝, 𝑠)) = 𝑛4 for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

– Expenditure goods: 𝑉(T, 𝐸(1, 𝑠)𝑡) = 𝜈𝐴𝑠𝑡/2 and 𝑉(T, 𝐸(2, 𝑠)𝑡) = 𝜈𝐵𝑡𝑠/2 for all 𝑠, 𝑡 ∈

[𝑛].

T has budget 𝑛7 (high enough so that 𝛼(T) = 1 in any PE).

• Dummy buyers D(𝑝, 𝑠), 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛]: The budget of D(𝑝, 𝑠) is 𝜈 and she only

values the normalization good 𝑁(𝑝, 𝑠)𝑠 at 𝑉(D(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑠) = 1.

It is clear from the definition of 𝐺 that it can be constructed from (𝐴, 𝐵) in polynomial time.

Structure of Pacing Equilibria of 𝐺

With the definition of 𝐺 in place, we start by showing some auxiliary structural results on the

PE of 𝐺; these will be used to construct strategies for the bimatrix game. Let E be a PE of the SPP

game 𝐺. We will use 𝛼(𝑏) to denote the pacing multiplier of buyer 𝑏 in E. Observe that, from the

definition of pacing equilibria, we can conclude that 𝛼(T) = 1 in E; otherwise T needs to spend all
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her budget of 𝑛7, which is impossible given that no buyer has value more than 2𝑛4 for any good.

The following lemma establishes bounds on 𝛼(C(𝑝, 𝑠)) in E.

Lemma 16. For each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], 1/2 ≤ 𝛼(C(𝑝, 𝑠)) < 1 and 𝛼(D(𝑝, 𝑠)) = 𝛼(C(𝑝, 𝑠)).

Proof. Suppose for some 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], we have 𝛼(C(𝑝, 𝑠)) < 1/2. Then C(𝑝, 𝑠) doesn’t

win any part of threshold good 𝑇(𝑝, 𝑠). Observe that she has value at most 2 for every other good.

Given that there are only 𝑂(𝑛2) goods in 𝐺, she cannot possibly spend all her budget (which is

Ω(𝑛4)). Here, we have used the fact that the payment is smaller than her bid on every item that she

wins because of the second-price auction format, which in turn is always smaller than her value.

This contradicts the assumption that E is a PE of 𝐺. Therefore, 𝛼(C(𝑝, 𝑠)) ≥ 1/2.

Next we prove 𝛼(D(𝑝, 𝑠)) = 𝛼(C(𝑝, 𝑠)). Suppose 𝛼(D(𝑝, 𝑠)) > 𝛼(C(𝑝, 𝑠)) for some 𝑝 ∈ {1, 2}

and 𝑠 ∈ [𝑛]. Then, buyer D(𝑝, 𝑠) wins all of good 𝑁(𝑝, 𝑠)𝑠 at price 𝛼(C(𝑝, 𝑠)) ≥ 1/2 because

D(𝑝, 𝑠) and C(𝑝, 𝑠) both value 𝑁(𝑝, 𝑠)𝑠 at 1, and the rest of the buyers have zero value for it. This

violates her budget constraint and leads to a contradiction. Therefore, 𝛼(D(𝑝, 𝑠)) ≤ 𝛼(C(𝑝, 𝑠)).

Moreover, if 𝛼(D(𝑝, 𝑠)) < 𝛼(C(𝑝, 𝑠)) (which implies 𝛼(D(𝑝, 𝑠)) < 1) then her expenditure is zero.

This violates the no unnecessary pacing condition. Hence, 𝛼(D(𝑝, 𝑠)) = 𝛼(C(𝑝, 𝑠)) must hold.

Observe that, in particular, this means that the price of 𝑁(𝑝, 𝑠)𝑠 is 𝛼(C(𝑝, 𝑠)).

Finally suppose 𝛼(C(𝑝, 𝑠)) = 1 for some 𝑝 ∈ {1, 2}, 𝑠 ∈ [𝑛]. Then she wins the following

goods:

• All of normalization goods 𝑁(𝑝, 𝑠)𝑡 for each 𝑡 ̸= 𝑠 because C(𝑝, 𝑠) has the higher value for

them, and she spends at least 1/2 on each of them because 𝛼(C(𝑝, 𝑡)) ≥ 1/2 by the first part

of the proof.

• Part of normalization good 𝑁(𝑝, 𝑠)𝑠 by spending at least 1 − 𝜈. This is because 𝑁(𝑝, 𝑠)𝑠 has

price 1, she shares it with D(𝑝, 𝑠), and buyer D(𝑝, 𝑠) only has budget 𝜈.

• All of threshold good 𝑇(𝑝, 𝑠) by spending 𝑛4 because she has the higher value.
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• All of expenditure good 𝐸(𝑝, 𝑠)𝑡 , for each 𝑡 ∈ [𝑛], by spending at least 𝜈𝐴𝑠𝑡/2 if 𝑝 = 1

and 𝜈𝐵𝑡𝑠/2 if 𝑝 = 2 because she has the higher value.

Hence, the total expenditure of C(𝑝, 𝑠) is at least (𝑛 − 1)/2 + 1 − 𝜈 + 𝑛4 + ∑
𝑡 𝜈𝐴𝑠𝑡/2 if 𝑝 = 1 and at

least (𝑛 − 1)/2 + 1 − 𝜈 + 𝑛4 + ∑
𝑡 𝜈𝐵𝑡𝑠/2 if 𝑝 = 2. In both cases, the budget constraint is violated,

leading to a contradiction. Therefore, the lemma holds. □

The above lemma implies that every C(𝑝, 𝑠) is paced in E (i.e. 𝛼(C(𝑝, 𝑠)) < 1), thereby

implying that their total expenditures must exactly equal their budgets. Additionally, we have the

following corollary which will be used in the proof of Lemma 18.

Corollary 1. For each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], C(𝑝, 𝑠) spends exactly 𝛼(C(𝑝, 𝑠)) − 𝜈 on 𝑁(𝑝, 𝑠)𝑠.

Next let 𝑥′𝑠 = 𝛼(C(1, 𝑠))− 1/2 and 𝑦′𝑠 = 𝛼(C(2, 𝑠))− 1/2 for each 𝑠 ∈ [𝑛]. The following lemma

will allow us to normalize 𝑥′ and 𝑦′ to obtain probability distributions 𝑥 and 𝑦.

Lemma 17. The following inequalities hold:
∑
𝑠∈[𝑛] 𝑥

′
𝑠 > 0 and

∑
𝑠∈[𝑛] 𝑦

′
𝑠 > 0.

Proof. We show
∑
𝑠 𝑥
′
𝑠 > 0. The proof of

∑
𝑠 𝑦
′
𝑠 > 0 is completely analogous. Suppose

∑
𝑠 𝑥
′
𝑠 = 0.

Then, 𝛼(C(1, 𝑠)) = 1/2 for all 𝑠 ∈ [𝑛] because 𝛼(C(1, 𝑠)) = 1/2 by Lemma 16. We argue below

that C(1, 1) violates the no-unnecessary-pacing condition.

To see this, observe C(1, 1) only wins a non-zero fraction of the following goods, and spends:

• At most 1/2 on each normalization good 𝑁(1, 1)𝑡 , 𝑡 ∈ [𝑛], because the highest competing

bid is 1/2 on these goods.

• At most 𝑛4 on the threshold good 𝑇(1, 1) because that is the highest competing bid.

• At most 𝜈𝐴1𝑡 on each expenditure good 𝐸(1, 1)𝑡 , 𝑡 ∈ [𝑛], because that is the highest possible

competing bid.

Hence, the total expenditure of C(1, 1) is at most 𝑛/2 + 𝑛4 + ∑
𝑡 𝜈𝐴1𝑡 , which is strictly less than her

budget of 𝑛/2 + 𝑛4 + 1/4 − 𝜈 + ∑
𝑡 𝜈𝐴1𝑡/2, a contradiction. □
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Extracting Bimatrix Game Equilibria from 𝐺

Now, we are ready to define the mixed strategies (𝑥, 𝑦) for the bimatrix game (𝐴, 𝐵). Set player

1’s mixed strategy 𝑥 to be 𝑥𝑠 = 𝑥′𝑠/
∑
𝑖 𝑥
′
𝑖

and player 2’s mixed strategy 𝑦 to be 𝑦𝑠 = 𝑦′𝑠/
∑
𝑖 𝑦
′
𝑖
. These

are valid mixed strategies because of Lemma 16 and Lemma 17. The next lemma shows that (𝑥, 𝑦)

is indeed a Nash equilibrium of (𝐴, 𝐵).

Lemma 18. (𝑥, 𝑦) is a Nash equilibrium for the bimatrix game (𝐴, 𝐵).

Proof. Suppose there are 𝑠, 𝑠∗ ∈ [𝑛] such that 𝑥𝑠 > 0 but
∑
𝑡 𝐴𝑠𝑡𝑦𝑡 >

∑
𝑡 𝐴𝑠∗𝑡𝑦𝑡 (the proof for 𝑦 is

analogous). Using 𝑥𝑠 > 0, buyer C(1, 𝑠) spends non-zero amounts on the following goods:

• 𝛼(C(1, 𝑡)) on the normalization good 𝑁(1, 𝑠)𝑡 for each 𝑡 ̸= 𝑠 because C(1, 𝑠) has a bid strictly

greater than 1, which is the value and an upper bound on the bid of C(1, 𝑡).

• 𝛼(C(1, 𝑠)) − 𝜈 on the normalization good 𝑁(1, 𝑠)𝑠 because she shares the good with D(1, 𝑠)

who has a budget of 𝜈.

• 𝑛4 on the threshold good 𝑇(1, 𝑠) because her bid is strictly greater than 𝑛4.

• 𝛼(C(2, 𝑡)) · 𝜈𝐴𝑠𝑡 on the expenditure good 𝐸(1, 𝑠)𝑡 for each 𝑡 ∈ [𝑛].

Therefore, the total expenditure of buyer C(1, 𝑠) is given by

∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) + 𝑛4 − 𝜈 +
∑︁
𝑡∈[𝑛]

𝛼(C(2, 𝑡)) · 𝜈𝐴𝑠𝑡

=
∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) + 𝑛4 − 𝜈 +
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 +
∑︁
𝑡∈[𝑛]

𝑦𝑡𝜈𝐴𝑠𝑡

Note that the RHS above after replacing 𝑠 with 𝑠∗:

∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) + 𝑛4 − 𝜈 +
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2 +
∑︁
𝑡∈[𝑛]

𝑦𝑡𝜈𝐴𝑠∗𝑡

is an upper bound for the total expenditure of buyer C(1, 𝑠∗) (no matter whether 𝑥𝑠∗ > 0 or not).
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As a result, the total expenditure of C(1, 𝑠) minus that of C(1, 𝑠∗) is at least(∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 +
∑︁
𝑡∈[𝑛]

𝑦𝑡𝜈𝐴𝑠𝑡

)
−

(∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2 +
∑︁
𝑡∈[𝑛]

𝑦𝑡𝜈𝐴𝑠∗𝑡

)
>

∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 −
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2

using the assumption that
∑
𝑡 𝐴𝑠𝑡𝑦𝑡 >

∑
𝑡 𝐴𝑠∗𝑡𝑦𝑡 . On the other hand, the budget of C(1, 𝑠) minus

that of C(1, 𝑠∗) is equal to the RHS above. This is a contradiction because both buyers should have

their total expenditures equal to their budgets. This finishes the proof of the lemma. □

Thus, given a {0, 1}-cost bimatrix game (𝐴, 𝐵), we have defined an SPP game𝐺 which satisfies

the following properties: (i) 𝐺 can be constructed in polynomial time; (ii) any PE E of 𝐺 can be

used to construct a Nash equilibrium (𝑥, 𝑦) of (𝐴, 𝐵) in polynomial time. As a result, the problem

of finding an exact pacing equilibrium in a second-price pacing game is PPAD-hard.

5.2.2 Hardness of Finding Approximate Pacing Equilibria

We next state our main hardness result, which extends the PPAD-hardness of finding pacing

equilibria to the approximate case of finding (𝛿, 𝛾)-approximate pacing equilibria.

Theorem 13. The problem of computing a (𝛿, 𝛾)-approximate PE of an SPP game𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ),

(𝐵𝑖)) with 𝛿 = 𝛾 = 1/𝑛7 is PPAD-hard.

The proof is relegated to Appendix D.1. It uses similar ideas but entails more involved book-

keeping to incorporate approximations introduced in (𝛿, 𝛾)-approximate PE. Theorem 11 follows

from Theorem 13 by standard padding arguments (i.e., adding dummy buyers to the game).

5.2.3 Implications of The Hardness Result

Before concluding this section, we discuss some implications of our hardness results. In

[Bor+07], the authors introduced a natural bidding heuristic for optimizing the utility of budget-

constrained agents who repeatedly participate in day-long auction campaigns for 𝑚 items, where

the set of agents and items remains the same every day. The heuristic maintains a pacing multi-

plier for each agent, which is increased by a small amount if the buyer ran out of her daily budget
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before the end of the previous day, and decreased otherwise. They use random perturbation to

avoid instabilities, which gives an agent who bids close to the highest bid a fraction of the item in

expectation. If we ignore the intra-day temporal aspects of their model, their setting can be thought

of as repeatedly playing the perturbed SPP game from Section 5.1.1 every day. In Theorem 1 of

[Bor+07], they prove that their heuristic efficiently converges for first-price auctions. Furthermore,

they conjecture the convergence of the heuristic for second-price auctions to pacing multipliers

which satisfy the following conditions: (i) Every agent runs out of her daily-budget close to the

end of the day; (ii) Every agent either spends most of her daily budget or has a pacing multiplier

close to one. In Theorem 27 of Appendix D.4, we show that Theorem 13 implies that computing

an approximate pacing equilibrium of the perturbed SPP game is also PPAD hard. As a conse-

quence, if PPAD ̸= P, then ALGORITHM 1 of [Bor+07] does not always converge efficiently for

second-price auctions, i.e., the number of days/time-steps required for convergence cannot scale

as a polynomial function of the input size and (1/𝛿, 1/𝛾) in the worst-case. In other words, we

have shown that Theorem 1 of [Bor+07] cannot be extended to second-price auctions in any way

that maintains efficient convergence unless PPAD = P, thereby making progress towards their open

conjecture.

Moreover, recall from Section 5.1.1 that if all of the buyers employ pacing algorithms, like

the one proposed by [BG19], and the resulting dynamics converge, then they will converge to an

approximate pacing equilibrium. Our hardness result (Theorem 13 and Theorem 27) implies that

there exists a (correlated) value distribution such that the algorithm of [BG19], which is optimal

for a single buyer against an adversarial/stochastic competition, does not converge efficiently to an

equilibrium when employed by all the buyers, unless PPAD=P.

Our hardness results are also pertinent to the relationship between pacing equilibria and market

equilibria. In Proposition 5 of [Con+18], the authors show that every pacing equilibrium in a

second-price pacing game has an equivalent supply-aware market equilibrium with linear utilities,

where supply-aware means that the buyers are aware of the supplies of each item and choose their

demand set accordingly. Thus, the relationship between pacing equilibria and market equilibria,

122



in combination with Theorem 13, implies that there exists a refinement of the set of supply-aware

market equilibria with linear utilities which is PPAD-hard to compute.

5.3 Existence of Pacing Equilibria and Membership in PPAD

We prove Theorem 12 in this section, i.e., the problem of finding a pacing equilibrium of an

SPP game is in PPAD. One consequence of this result is that every SPP game with rational values

𝑣𝑖 𝑗 and budgets 𝐵𝑖 has a pacing equilibrium (𝛼, 𝑥) with rational entries.

Our plan is as follows. We first introduce a restricted version of approximate pacing equilibria

called smooth (𝛿, 𝛾)-approximate PE (see Definition 11), which will only be used in Section 5.3.1.

We prove in Section 5.3.1 that the problem of finding a smooth (𝛿, 𝛾)-approximate PE (when 𝛿

and 𝛾 are input parameters encoded in binary) is in PPAD. Given that the smooth version (Defini-

tion 11) is a restriction of (𝛿, 𝛾)-approximate PE (Definition 10), this implies that the problem of

computing a (𝛿, 𝛾)-approximate PE is in PPAD.

Next we give in Section 5.3.2 an efficient algorithm that can round any (𝛿, 𝛾/2)-approximate PE

into a 𝛾-approximate PE when 𝛿 is sufficiently small. This, combined with the PPAD-membership

of (𝛿, 𝛾)-approximate PE, shows that the problem of computing 𝛾-approximate PE is also in PPAD.

Finally we show in Section 5.3.3 that, when 𝛾 is sufficiently small, any 𝛾-approximate PE

of 𝐺 can be used to build a linear program which can then be solved to obtain an exact pacing

equilibrium of 𝐺. It follows that the problem of computing an exact pacing equilibrium is in

PPAD.

5.3.1 PPAD Membership of Computing (𝛿, 𝛾)- Approximate Equilibria

We start with the definition of smooth (𝛿, 𝛾)-approximate PE. It is a refinement of (𝛿, 𝛾)-

approximate PE in which the pacing multipliers (𝛼𝑖) fully determine the allocations (𝑥𝑖 𝑗 ). Note that

this is not the case for (𝛿, 𝛾)-approximate PE in general: potentially there can be (𝛿, 𝛾)-approximate

PE with identical multipliers but different allocations. The smooth version we consider below, on

the other hand, specifies the allocations as continuous functions of multipliers.
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Definition 11 (Smooth Approximate Pacing Equilibria). Given an SPP game𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖))

and two parameters 𝛿 ∈ (0, 1), 𝛾 ∈ [0, 1), we say that (𝛼, 𝑥) with 𝛼 = (𝛼𝑖) ∈ [0, 1]𝑛, 𝑥 = (𝑥𝑖 𝑗 ) ∈

[0, 1]𝑛𝑚 and
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1 for all 𝑗 ∈ [𝑚] is a smooth (𝛿, 𝛾)-approximate PE of 𝐺 if

(a) Only buyers close to the highest bid win the good and the allocation 𝑥 is completely

specified by 𝛼: For each 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚], 𝑥𝑖 𝑗 (as a function of 𝛼) is given by

𝑥𝑖 𝑗 (𝛼) :=
[𝛼𝑖𝑣𝑖 𝑗 − (1 − 𝛿)ℎ 𝑗 (𝛼)]+∑

𝑟∈[𝑛][𝛼𝑟𝑣𝑟 𝑗 − (1 − 𝛿)ℎ 𝑗 (𝛼)]+

where [𝑦]+ is 𝑦 if 𝑦 ≥ 0 and 0 otherwise. (We assume by default that 0/0 = 0.)

(b) Budgets are satisfied:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) ≤ 𝐵𝑖.

(c) Not too much unnecessary pacing:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) < (1 − 𝛾)𝐵𝑖 implies 𝛼𝑖 ≥ 1 − 𝛾.

Observe from the definition that, if (𝛼, 𝑥) is a smooth (𝛿, 𝛾)-approximate PE of an SPP game𝐺,

then it must be a (𝛿, 𝛾)-approximate PE of 𝐺 as well. Therefore, the PPAD membership of com-

puting a smooth (𝛿, 𝛾)-approximate PE in an SPP game implies directly the PPAD membership for

(𝛿, 𝛾)-approximate PE. A similar statement holds for establishing their existence.

The main tools we will use are Sperner’s Lemma and the search problem it defines.

High-dimensional Sperner’s Lemma. We review Sperner’s lemma. Consider a (𝑛 − 1)-dimen-

sional simplex 𝑆 = {∑𝑛
𝑖=1 𝛼𝑖𝑣𝑖 | 𝛼𝑖 ≥ 0,∑𝑛

𝑖=1 𝛼𝑖 = 1}, where 𝑣1, . . . , 𝑣𝑛 are 𝑛 vertices of 𝑆. A

triangulation of 𝑆 is a partition of 𝑆 into smaller subsimplices such that any two subsimplices either

are disjoint or share a full face of a certain dimension. A Sperner coloring 𝑇 of a triangulation of 𝑆

is then an assignment of 𝑛 colors {1, . . . , 𝑛} to vertices of the triangulation (union of the vertices

of subsimplices that make up the triangulation) such that

• Vertices of the original simplex 𝑆 each receive a different color: 𝑇(𝑣𝑖) = 𝑖 for each 𝑖 ∈ [𝑛].

• Vertices on each face of 𝑆 are colored using only the colors of the vertices defining that

face: For any vertex 𝑢 = ∑
𝑖 𝛽𝑖𝑣𝑖 in the triangulation, we have 𝑇(𝑢) ̸= 𝑗 if 𝛽 𝑗 = 0.
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A panchromatic subsimplex of 𝑇 is one in the triangulation whose vertices have all the 𝑛 colors.

Sperner’s Lemma: Every Sperner coloring 𝑇 of any triangulation of 𝑆 has a panchromatic

subsimplex.

Before proceeding with the formal proof of PPAD membership (with its added burden of rigor-

ously attending to complexity-theoretic details), we provide an informal argument for the existence

of smooth (𝛿, 𝛾)-approximate PE which forms the basis of its PPAD membership proof. Let 𝐺 be

an SPP game and 𝑆 be the standard simplex 𝑆 = {𝛽 = (𝛽1, . . . , 𝛽𝑛) | 𝛽𝑖 ≥ 0,∑𝑖 𝛽𝑖 = 1} from now

on. We will assign a color to each point 𝛽 ∈ 𝑆 (informally) as follows: Construct a pacing multi-

plier 𝛼𝑖(𝑡) = 𝑡𝛽𝑖 for each 𝑖 ∈ [𝑛], where 𝑡 is a scalar. Increase 𝑡, starting at 0, and instruct each buyer

𝑖 ∈ [𝑛] to say “Stop” when either 𝛼𝑖(𝑡) = 1 or
∑
𝑗 𝑥𝑖 𝑗 (𝛼(𝑡))𝑝 𝑗 (𝛼(𝑡)) = 𝐵𝑖 happens. Color 𝛽 with 𝑘 if

buyer 𝑘 is the first to say “Stop” (with tie breaking done arbitrarily, e.g., taking the smallest such

𝑘).

Let 𝑡∗(𝛽) be the value of 𝑡 at which some buyer says “Stop” for the first time. Then the buyer

that says “Stop” first is either spending her budget or is not paced, i.e. she satisfies both the budget

constraint (b) and the ‘No unnecessary pacing’ condition (c) (see Definition 9). Now, by taking a

triangulation of 𝑆, it is easy to verify that the coloring described above induces a Sperner coloring

and thus, Sperner’s lemma implies the existence of a panchromatic subsimplex 𝑄. It follows from

our coloring that every buyer says “Stop” at one of the vertices of𝑄 and hence, every buyer satisfies

(b) and (c) of Definition 9 at one of its vertices. By proving the Lipschitzness of 𝑡∗(𝛽) and the total

expenditures of buyers, both as functions of 𝛽, we show that when the triangulation is fine enough,

any point 𝛽 in a panchromatic subsimplex yields a (𝛿, 𝛾)-approximate PE of 𝐺.

With the blueprint of the proof in place, we now proceed with the formal proof that places the

problem of computing smooth (𝛿, 𝛾)-approximate PE in PPAD. Let 𝑆 be the standard simplex as

above, and we consider Kuhn’s triangulation of 𝑆 [Kuh60; DQS12]. Given any 𝜔 > 0 with 1/𝜔

being an integer, Kuhn’s triangulation uses 𝑆𝜔 as its vertices, where 𝑆𝜔 consists of all points 𝛽 ∈ 𝑆

whose coordinates 𝛽𝑖 are integer multiples of 𝜔. Kuhn’s triangulation also has the property that

any two vertices of a subsimplex of the triangulation has ℓ∞-distance at most 2𝜔.
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A proof of the following PPAD membership result can be found in [EY10] (see the proof of

item 2 of Proposition 2.2; note that on page 2548 they reduce the problem they are interested in to

the problem of finding a panchromatic subsimplex in a Sperner coloring over Kuhn’s triangulation

and then show the latter is in PPAD):

Theorem 14. Given a Boolean circuit2 that encodes a Sperner coloring 𝑇 : 𝑆𝜔 → [𝑛] of Kuhn’s

triangulation for some 𝜔 and 𝑛, the problem of finding a panchromatic subsimplex is in PPAD.

We prove the PPAD membership of the problem of finding a smooth (𝛿, 𝛾)-approximate PE by

giving a polynomial-time reduction to the problem described in Theorem 14. Given an SPP game

𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)) and parameters 𝛿 and 𝛾 (which we assume without loss of generality that

𝛿, 𝛾 < 1/4), we set the parameter 𝜔 to be

𝜔 =
min(𝐵min, 1)(
2|𝐺 |/𝛿

)10,000 ·
𝛾

2

where 𝐵min := min𝑖∈[𝑛] 𝐵𝑖 and |𝐺 | denotes the number of bits needed to represent 𝐺. We define a

coloring 𝑇 : 𝑆𝜔 → [𝑛], following ideas described in the sketch of existence above, and prove that

𝑇 satisfies the following properties:

Lemma 19. 1. 𝑇 is a Sperner coloring;

2. Every panchromatic subsimplex of 𝑇 in the triangulation can be used to compute a smooth

(𝛿, 𝛾)-approximate PE of the SPP game 𝐺 in polynomial time.

3. There is a polynomial-time algorithm that outputs 𝑇(𝛽) on inputs 𝐺, 𝜔, 𝛿 and 𝛽 ∈ 𝑆𝜔.

The PPAD membership of computing a smooth (𝛿, 𝛾)-approximate PE in an SPP game follows

directly by combining Theorem 14 and Lemma 19.

We now give the definition of the coloring 𝑇 : 𝑆𝜔 → [𝑛]. Let 𝛽 = (𝛽1, . . . , 𝛽𝑛) be a vertex of

𝑆𝜔. Set 𝛼𝑖(𝑡) = 𝑡𝛽𝑖, where 𝑡 is a positive scalar. As discussed earlier, we set the color 𝑇(𝛽) of 𝛽 by

2The circuit has 𝑂(𝑛 log(1/𝜔)) input variables to encode a point of 𝑆𝜔 and has ⌈log 𝑛⌉ output gates to encode the
output of the Sperner coloring 𝑇 .
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increasing 𝑡, starting at 0, and instructing each buyer 𝑖 to say “Stop” when either 𝛼𝑖(𝑡) = 1 or

∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝛼(𝑡)) · 𝑝 𝑗 (𝛼(𝑡)) = 𝐵𝑖 .

The color 𝑇(𝛽) of 𝛽 is set to be 𝑘 ∈ [𝑛] if buyer 𝑘 is the first buyer to say “Stop” (with arbitrary tie

breaking, e.g., by taking the smallest such 𝑘).

More formally, recall that for 𝑡 > 0,

𝑥𝑖 𝑗 (𝛼(𝑡)) =
[𝑡𝛽𝑖𝑣𝑖 𝑗 − (1 − 𝛿) max𝑘 𝑡𝛽𝑘𝑣𝑘 𝑗 ]+∑
𝑟[𝑡𝛽𝑟𝑣𝑟 𝑗 − (1 − 𝛿) max𝑘 𝑡𝛽𝑘𝑣𝑘 𝑗 ]+ =

[𝛽𝑖𝑣𝑖 𝑗 − (1 − 𝛿) max𝑘 𝛽𝑘𝑣𝑘 𝑗 ]+∑
𝑟[𝛽𝑟𝑣𝑟 𝑗 − (1 − 𝛿) max𝑘 𝛽𝑘𝑣𝑘 𝑗 ]+ = 𝑥𝑖 𝑗 (𝛽),

which does not depend on 𝑡. Also, for 𝑡 ≥ 0, 𝑝 𝑗 (𝛼(𝑡)) = 𝑡 𝑝 𝑗 (𝛽), where we write 𝑝 𝑗 (𝛽) to denote

the second largest element among 𝛽1𝑣1 𝑗 , . . . , 𝛽𝑛𝑣𝑛 𝑗 . For each buyer 𝑖 ∈ [𝑛], define

𝑡𝑖(𝛽) = min
{

1
𝛽𝑖
,

𝐵𝑖∑
𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽)

}
,

where the first term is +∞ if 𝛽𝑖 = 0 and the second term is +∞ if
∑
𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽) = 0. Note that

𝑡𝑖(𝛽) is exactly the value of 𝑡 at which buyer 𝑖 would say “Stop” in the informal coloring procedure

described earlier. Given our assumption of 𝐵𝑖 > 0, we have 𝑡𝑖(𝛽) > 0 for all 𝑖 ∈ [𝑛]. Additionally,

define 𝑡∗(𝛽) = min𝑖∈[𝑛] 𝑡𝑖(𝛽). Given that 𝛽𝑖’s sum to 1, we have that 𝑡∗(𝛽) ≤ 𝑛 because 𝛽𝑖 ≥ 1/𝑛 for

some 𝑖 ∈ [𝑛]. We record the discussion as the following lemma:

Lemma 20. For every 𝛽 ∈ 𝑆𝜔 we have 0 < 𝑡∗(𝛽) ≤ 𝑛.

Finally, the color 𝑇(𝛽) of 𝛽 ∈ 𝑆𝜔 is set to be the smallest 𝑖 ∈ [𝑛] such that 𝑡𝑖(𝛽) = 𝑡∗(𝛽). We are

now ready to prove Lemma 19.

Proof of Lemma 19. Part (3) of Lemma 19 follows from the description of 𝑇 . To prove part (1) (𝑇

is a Sperner coloring), consider a vertex 𝛽 ∈ 𝑆𝜔 on the facet of 𝑆 opposite to the vertex 𝑒𝑖, i.e.,

𝛽𝑖 = 0. Hence, 𝑡𝑖(𝛽) = ∞, which by Lemma 20 implies that 𝑇(𝛽) ̸= 𝑖 given that 𝑡∗(𝛽) ≤ 𝑛.

To prove part (2), we show that if 𝑞 is a vertex of any panchromatic subsimplex of 𝑇 , then (𝛼, 𝑥)

must be a smooth (𝛿, 𝛾)-approximate PE of 𝐺 where 𝛼 = 𝑡∗(𝑞) · 𝑞 and 𝑥 = (𝑥𝑖 𝑗 ) has 𝑥𝑖 𝑗 = 𝑥𝑖 𝑗 (𝑞).
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First it follows from the definition of 𝑡∗(𝛽) and 𝑥𝑖 𝑗 (𝛽) that 𝛼𝑖 ∈ [0, 1] and 𝑥𝑖 𝑗 ∈ [0, 1]. Condi-

tions (a) and (b) of Definition 11 also trivially hold for all vertices of the triangulation. It suffices

to prove (c) for all 𝑖 ∈ [𝑛], which means the complementarity condition that either 𝛼𝑖 ≥ 1 − 𝛾 or

the expenditure of buyer 𝑖 is at least (1 − 𝛾)𝐵𝑖. Fix an arbitrary 𝑖 ∈ [𝑛].

For this purpose we note that given the subsimplex is panchromatic, it has a vertex 𝑞′ such that

𝑇(𝑞′) = 𝑖, which implies that if we used 𝑞′ to define 𝛼′ and 𝑥′ (i.e. 𝛼′ = 𝑡∗(𝑞′) · 𝑞′ and 𝑥′
𝑖 𝑗

= 𝑥𝑖 𝑗 (𝑞′)),

then they would satisfy the above complementarity condition for buyer 𝑖 with 𝛾 = 0. The following

claim shows that both the multiplier 𝑡∗(𝛽) · 𝛽𝑖 and the total expenditure of buyer 𝑖:

∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝛽) · 𝑝 𝑗 (𝑡∗(𝛽) · 𝛽) = 𝑡∗(𝛽)
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝛽) · 𝑝 𝑗 (𝛽)

are smooth as functions of 𝛽. Intuitively this allows us to use the complementarity condition for

buyer 𝑖 at 𝑞′ to show that the same condition holds at 𝑞 approximately given that ∥𝑞 − 𝑞′∥∞≤ 2𝜔

(as a property of subsimplices in Kuhn’s triangulation).

Claim 2. Let 𝐿 = (2|𝐺 |/𝛿)10,000. Then for any panchromatic subsimplex 𝑆0 of 𝑇 and buyer 𝑖 ∈ [𝑛],

the following Lipschitz conditions hold for all 𝛽, 𝛽′ ∈ 𝑆0:

��� 𝑡∗(𝛽) · 𝛽𝑖 − 𝑡∗(𝛽′) · 𝛽′𝑖
��� ≤ 𝐿 · ∥𝛽 − 𝛽′∥∞ and����� 𝑡∗(𝛽)

∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝛽) · 𝑝 𝑗 (𝛽) − 𝑡∗(𝛽′)
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝛽′) · 𝑝 𝑗 (𝛽′)
����� ≤ 𝐿 · ∥𝛽 − 𝛽′∥∞

We use Claim 2 to finish the proof of the lemma and consign the claim’s proof to Appendix

D.2. Given 𝑇(𝑞′) = 𝑖, one of the following two cases holds:

• 𝑡∗(𝑞′) · 𝑞′
𝑖

= 1, which by Claim 2 and our chocie of 𝜔 implies

𝛼𝑖 = 𝑡∗(𝑞) · 𝑞𝑖 ≥ 1 − 2𝐿𝜔 ≥ 1 − 𝛾
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• 𝑡∗(𝑞′) ∑ 𝑗 𝑥𝑖 𝑗 (𝑞′)𝑝 𝑗 (𝑞′) = 𝐵𝑖, which in combination with Claim 2 and our choice of 𝜔 implies

that the expenditure of buyer 𝑖 exceeds (1 − 𝛾)𝐵𝑖:

𝑡∗(𝑞)
∑︁
𝑗∈[𝑚]

𝑥𝑖 𝑗 (𝑞) · 𝑝 𝑗 (𝑞) ≥ 𝐵𝑖 − 2𝐿𝜔 ≥ 𝐵𝑖 − 𝐵min𝛾 ≥ (1 − 𝛾)𝐵𝑖 .

Since 𝑖 ∈ [𝑛] was arbitrary, this finishes the proof that (𝛼, 𝑥) is a smooth (𝛿, 𝛾)-approximate ap-

proximate PE. □

5.3.2 PPAD Membership of Computing 𝛾- approximate PE

Consider an SPP game 𝐺 = (𝑛, 𝑚, {𝑣𝑖 𝑗 }𝑖, 𝑗 , {𝐵𝑖}𝑖). As before, we will use |𝐺 | to denote the

number of bits required to represent 𝐺. The main result of this subsection shows that (informally)

when 𝛿 is small enough, any (𝛿, 𝛾/2)-approximate PE of 𝐺 can be efficiently rounded to a 𝛾-

approximate PE. It follows from the PPAD membership of (𝛿, 𝛾)-approximate PE established in

the previous subsection that the problem of computing a 𝛾-approximate PE is in PPAD as well.

Before presenting the rounding algorithm, we motivate the main idea behind it. Observe that

the major difference between (𝛿, 𝛾)-approximate PE and 𝛾-approximate PE is the ability of buyers

that don’t have the highest bid to win the good in the former. In order to round a (𝛿, 𝛾′)-approximate

PE (𝛼∗, 𝑥∗) to obtain a 𝛾-approximate PE (𝛼′, 𝑥′) of 𝐺 (where 𝛾′ = 𝛾/2 in the rest of this subsec-

tion), we set 𝑥′ = 𝑥∗ and need to round 𝛼∗ to 𝛼′ to ensure that all the winners are tied for the highest

bid and at the same time, the multiplier and total expenditure of each buyer changes only slightly.

We now present an informal argument that demonstrates how this is achieved in our rounding

algorithm when there are only two buyers (𝑛 = 2). Define the set of all valuation ratios

Ṽ =
{
𝑣𝑎𝑟

𝑣𝑏𝑟
: 𝑎, 𝑏 ∈ [𝑛], 𝑟 ∈ [𝑚] such that 𝑣𝑎𝑟 , 𝑣𝑏𝑟 > 0

}
.

Set 𝛿 to be small enough: for all 𝑦, 𝑧 ∈ V with 𝑦𝑧 > 1, we have (1− 𝛿)2𝑦𝑧 > 1. Consider a (𝛿, 𝛾′)-

approximate PE (𝛼∗, 𝑥∗). Assume without loss of generality that there is a good 𝑗 such that 𝛼∗1𝑣1 𝑗

= 𝑐 𝑗𝛼∗2𝑣2 𝑗 and 1− 𝛿 ≤ 𝑐 𝑗 ≤ 1/(1− 𝛿). If no such good 𝑗 exists then every good is fully allocated to
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the buyer with the highest bid because only bidders with bids greater than (1− 𝛿) times the highest

bid can win the item in a (𝛿, 𝛾′)-approximate PE, and thus, (𝛼∗, 𝑥∗) is already a 𝛾′-approximate

PE. We show that after scaling the pacing multiplier of buyer 2 from 𝛼∗2 to 𝑐 𝑗𝛼
∗
2 (and letting

𝛼′ = (𝛼∗1, 𝑐 𝑗𝛼
∗
2) be the new multipliers), (𝛼′, 𝑥∗) satisfies the property that 𝑥∗

𝑖ℓ
> 0 for any 𝑖 and ℓ

implies buyer 𝑖 has the highest bid for good ℓ. This is trivially true for good ℓ = 𝑗 given that the

two buyers are now tied on good 𝑗 . The remaining goods can be divided into two categories and

we argue about each one separately:

• Consider good ℓ such that 𝛼∗1𝑣1ℓ = 𝑐ℓ𝛼∗2𝑣2ℓ and 𝑐ℓ satisfies either 𝑐ℓ < 1−𝛿 or 𝑐ℓ > 1/(1−𝛿).

Given that we only changed the multiplier of buyer 2 by a factor of 1 − 𝛿 ≤ 𝑐 𝑗 ≤ 1/(1 − 𝛿),

the highest bidder does not change. Moreover, the highest bidder won the entire good in

the (𝛿, 𝛾′)-approximate PE because 1 − 𝛿 ≤ 𝑐 𝑗 ≤ 1/(1 − 𝛿) and continues to do so in the

(𝛿, 𝛾′)-approximate PE because the allocation does not change.

• Consider a good ℓ such that 𝛼∗1𝑣1ℓ = 𝑐ℓ𝛼∗2𝑣2ℓ and 𝑐ℓ satisfies (1− 𝛿) ≤ 𝑐ℓ ≤ 1/(1− 𝛿). Then,

we can write 𝛼∗1/𝛼
∗
2 = 𝑐 𝑗 (𝑣2 𝑗/𝑣1 𝑗 ) = 𝑐ℓ(𝑣2ℓ/𝑣1ℓ), which implies (𝑐 𝑗/𝑐ℓ)(𝑣2 𝑗/𝑣1 𝑗 )(𝑣1ℓ/𝑣2ℓ) =

1. Observe that 𝑐 𝑗/𝑐ℓ ∈ [(1 − 𝛿)2, 1/(1 − 𝛿)2]. Thus, by our choice of 𝛿, we get

(𝑣2 𝑗/𝑣1 𝑗 )(𝑣1ℓ/𝑣2ℓ) = 1, which implies 𝑐 𝑗 = 𝑐ℓ. Hence, both buyers are tied in good ℓ.

To finish the proof that (𝛼′, 𝑥∗) is a 𝛾-approximate PE, it suffices to show that the budget constraint

and the not too much unnecessary pacing condition still hold approximately after the small scaling

of 𝛼∗2. In the rest of this subsection, we extend the aforementioned line of reasoning to design a

rounding algorithm for the general setting, and prove its correctness.

Building on Ṽ defined above, we can define the set of valuation ratio products

V =
{
𝑦1𝑦2 . . . 𝑦𝑘 : 𝑘 ∈ [2𝑛] and 𝑦𝑖 ∈ Ṽ for each 𝑖 ∈ [𝑘]

}
,

i.e.,V consists of all products of no more than 2𝑛 numbers from Ṽ. Given 𝐺 and 𝛾 ∈ [0, 1) (with

𝛾′ = 𝛾/2), we choose 𝛿 ∈ [0, 1) to be small enough to satisfy the following two conditions:

130



(1 − 𝛿)2𝑛 > (1 − 𝛾′) and (1 − 𝛿)2𝑛𝑧 > 1 for all 𝑧 ∈ V such that 𝑧 > 1.

It suffices to set 𝛿 to be 1/2𝑁 where 𝑁 is polynomial in |𝐺 | and log(1/𝛾).

Let (𝛼∗, 𝑥∗) be a (𝛿, 𝛾′)-approximate PE of𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)), where 𝛾′ = 𝛾/2 and 𝛿 satisfies

the two conditions above. We will use 𝑊 𝑗 to denote the winners of the good 𝑗 under 𝑥∗: 𝑊 𝑗

consists of buyers 𝑖 with 𝑥∗
𝑖 𝑗
> 0. Moreover, recall that ℎ 𝑗 (𝛼) denotes the highest bid on good 𝑗

when the pacing multipliers are given by 𝛼. Our rounding algorithm is presented in Algorithm 5.

The polynomial reduction then follows from the following performance guarantee of the rounding

algorithm, which we prove in the rest of the subsection:

Lemma 21 (Correctness). The rounding algorithm takes (𝛼∗, 𝑥∗), 𝛿 and 𝐺 as input and runs in

polynomial time. Let 𝛼′ be the tuple of multipliers returned by the rounding algorithm. Then

(𝛼′, 𝑥∗) is a 𝛾-approximate PE of 𝐺.

The rounding algorithm maintains an undirected graph G over vertices [𝑛] as buyers. G starting

out with an empty edge set and edges are added according to Algorithm 5 to keep track of the

rounding-updates performed on 𝛼. We use 𝐶G(𝑖) to denote the connected component of 𝑖 in the

graph G. The algorithm also maintains an edge labeling 𝐼(·) that maps each edge of the graph G

to a good 𝑗 ∈ [𝑚] (which intuitively is the good that caused the creation of this edge). We remark

that the labeling 𝐼(·) is only relevant for the analysis of the algorithm below. Now, we proceed to

prove Lemma 21.

Lemma 22. Suppose in the 𝑡0 iteration of the while loop, {𝑖, 𝑘} is the edge that was just added to

G with 𝐼({𝑖, 𝑘}) = 𝑗 , then at the end of this iteration we have 𝐶G(𝑖) = 𝐶G(𝑘) and

𝛼𝑖

𝛼𝑘
=
𝑣𝑘 𝑗

𝑣𝑖 𝑗
. (#)

Moreover, (#) holds for all iterations 𝑡 ≥ 𝑡0.

Proof. We prove the lemma using induction on the iterations on the while loop. For the base case

𝑡 = 𝑡0, note that (#) holds at the end of the iteration due to Step 2 of Algorithm 5. Moreover,
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Algorithm 5: Rounding Algorithm
Initialize: Graph G = (𝑉, 𝐸) with 𝑉 = [𝑛] and 𝐸 = ∅; 𝛼 = 𝛼∗
While there exists a good 𝑗 ∈ [𝑚] and a buyer 𝑖 ∈ 𝑊 𝑗 such that 𝛼𝑖𝑣𝑖 𝑗 < ℎ 𝑗 (𝛼), i.e., 𝑖 does not

have the highest bid on 𝑗 but wins a positive fraction of it:

1. Pick 𝑘, 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚] such that 𝑖 ∈ 𝑊 𝑗 and 𝛼𝑖𝑣𝑖 𝑗 < 𝛼𝑘𝑣𝑘 𝑗 = ℎ 𝑗 (𝛼)

2. Set 𝛼𝑎 ← (ℎ 𝑗 (𝛼)/𝛼𝑖𝑣𝑖 𝑗 ) · 𝛼𝑎 for every buyer 𝑎 ∈ 𝐶G(𝑖)

3. Set 𝐸 ← 𝐸 ∪ {{𝑖, 𝑘}} and 𝐼({𝑖, 𝑘}) = 𝑗

Return: 𝛼′ B (1 − 𝛿)2𝑛𝛼

since edge {𝑖, 𝑘} is added to G in Step 3, we also have 𝐶G(𝑖) = 𝐶G(𝑘) at the end of iteration 𝑡0.

Moreover, since no edges are removed during the run of Algorithm 5, {𝑖, 𝑘} ∈ 𝐸 for iterations after

𝑡0, and hence 𝐶G(𝑖) = 𝐶G(𝑘) at the end of all iterations 𝑡 ≥ 𝑡0. Suppose (#) holds at the end of

iteration 𝑡 − 1 for some 𝑡 − 1 ≥ 𝑡0. Then, either both 𝛼𝑖 and 𝛼𝑘 will both be updated identically or

neither of them will be updated because 𝐶G(𝑖) = 𝐶G(𝑘), thereby maintaining (#). This completes

the induction and establishes the lemma. □

Next we prove that at the end of each iteration, bids for the same good from buyers in the same

component of G are either tied or not very close.

Lemma 23. After each iteration of the while loop, and for each good 𝑗 ∈ [𝑚], all buyers from

the same connected component of G are either tied for 𝑗 , or their bids for 𝑗 are multiplicatively

separated by a factor larger than (1 − 𝛿)2𝑛 .

Proof. Let G be the current graph and 𝑎, 𝑏 ∈ [𝑛] be two buyers in the same connected component

of G. Assuming 𝛼𝑎𝑣𝑎 𝑗 > 𝛼𝑏𝑣𝑏 𝑗 for some 𝑗 ∈ [𝑚], we show below that (1−𝛿)2𝑛𝛼𝑎𝑣𝑎 𝑗 > 𝛼𝑏𝑣𝑏 𝑗 from

which the lemma follows. Given that 𝑎 and 𝑏 are connected in G, we write {𝑎, 𝑖1}, {𝑖1, 𝑖2}, . . . ,

{𝑖𝐿 , 𝑏} to denote a path from 𝑎 to 𝑏 in G with 𝐿 < 𝑛. Then, using Lemma 22, we can write

1 >
𝛼𝑏𝑣𝑏 𝑗

𝛼𝑎𝑣𝑎 𝑗
=
𝑣𝑏 𝑗

𝑣𝑎 𝑗
·
𝛼𝑖1

𝛼𝑎

𝛼𝑖2

𝛼𝑖1

𝛼𝑖3

𝛼𝑖2
. . .

𝛼𝑏

𝛼𝑖𝐿
=
𝑣𝑏 𝑗

𝑣𝑎 𝑗
·
𝑣𝑎𝐼({𝑎,𝑖1})
𝑣𝑖1𝐼({𝑎,𝑖1})

𝑣𝑖1𝐼({𝑖1,𝑖2})
𝑣𝑖2𝐼({𝑖1,𝑖2})

. . .
𝑣𝑖𝐿 𝐼({𝑖𝐿 ,𝑏})
𝑣𝑏𝐼({𝑖𝐿 ,𝑏})
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Hence, 𝛼𝑎𝑣𝑎 𝑗/𝛼𝑎𝑣𝑏 𝑗 ∈ V and 𝛼𝑎𝑣𝑎 𝑗/𝛼𝑏𝑣𝑏 𝑗 > 1. Therefore, our choice of 𝛿 implies that

(1 − 𝛿)2𝑛 ·
𝛼𝑎𝑣𝑎 𝑗

𝛼𝑏𝑣𝑏 𝑗
> 1 ,

as required. □

Initially (in 𝛼∗) we have every 𝑖 ∈ 𝑊 𝑗 has 𝛼∗
𝑖
𝑣𝑖 𝑗 ≥ (1− 𝛿)ℎ 𝑗 (𝛼∗) (given that (𝛼∗, 𝑥∗) is a (𝛿, 𝛾′)-

approximate PE). The next lemma shows that, at the end of each iteration, 𝛼𝑖𝑣𝑖 𝑗 of every 𝑖 ∈ 𝑊 𝑗

(note that𝑊 𝑗 is always defined using the original allocation 𝑥∗) remains not far from ℎ 𝑗 (𝛼).

Lemma 24. After 𝑡 iterations of the while loop, every 𝑗 ∈ [𝑚] and 𝑖 ∈ 𝑊 𝑗 satisfy

𝛼𝑖𝑣𝑖 𝑗 ≥ (1 − 𝛿)2𝑡 · ℎ 𝑗 (𝛼).

Proof. The proof follows from induction. The base case of 𝑡 = 0 follows from definition.

Suppose the statement holds after (𝑡 − 1) iterations, and let’s focus on some 𝑗 ∈ [𝑚] and 𝑖 ∈ 𝑊 𝑗

during the 𝑡-th iteration. By our inductive hypothesis, we have

𝛼𝑖𝑣𝑖 𝑗 ≥ (1 − 𝛿)2𝑡−1 · ℎ 𝑗 (𝛼)

before the start of the 𝑡-th iteration. On the other hand, note that all changes to 𝛼 occur in step

2 of the while loop, and moreover, all such changes result in an increase of some entries of 𝛼. It

also follows from the inductive hypothesis and the choices of 𝑘, 𝑖, 𝑗 in step 1 of the while loop that

entries of 𝛼 can only go up by a multiplicative factor of at most 1/(1 − 𝛿)2𝑡−1
. Therefore, after the

𝑡-th iteration, we have

𝛼𝑖𝑣𝑖 𝑗 ≥ (1 − 𝛿)2𝑡−1 · (1 − 𝛿)2𝑡−1 · ℎ 𝑗 (𝛼) = (1 − 𝛿)2𝑡 · ℎ 𝑗 (𝛼).

This completes the induction step. □

Lemmas 23 and 24 imply that, in each of the first 𝑛 iterations of the while loop, buyers 𝑖 and 𝑘
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picked in step 1 must belong to different connected components of G. As a result, there are at most

𝑛− 1 iterations of the while loop given that we merge two connected components in each loop. On

the one hand, this implies that the rounding algorithm terminates in polynomial time. On the other

hand, at the termination of the while loop, for every good 𝑗 ∈ [𝑚], we have 𝛼𝑖𝑣𝑖 𝑗 = ℎ 𝑗 (𝛼) for all

𝑖 ∈ 𝑊 𝑗 , i.e., every winner of 𝑗 under 𝑥∗ has the highest bid for 𝑗 .

The next lemma shows that the 𝛼′ returned by the rounding algorithm is close to 𝛼∗.

Lemma 25. Let 𝛼′ be the tuple of multipliers returned by the rounding algorithm. Then

(1 − 𝛿)2𝑛𝛼∗ ≤ 𝛼′ ≤ 𝛼∗.

Proof. By Lemma 24, in iteration 𝑡 of the while loop, each entry of 𝛼 either stays the same or

increases multiplicatively by a factor of at most 1/(1 − 𝛿)2𝑡−1
. As there are at most 𝑛 − 1 iterations

of the while loop, we have for every 𝑖 ∈ [𝑛]:

(1 − 𝛿)2𝑛 · 𝛼∗𝑖 ≤ 𝛼′𝑖 B (1 − 𝛿)2𝑛 · 𝛼𝑖 ≤ (1 − 𝛿)2𝑛
𝑛−1∏
𝑡=1

1
(1 − 𝛿)2𝑡−1 · 𝛼

∗
𝑖 ≤ 𝛼∗𝑖 .

This finishes the proof of the lemma. □

We are now ready to prove Lemma 21.

Proof of Lemma 21. We have already shown that the algorithm runs in polynomial time. Assuming

that (𝛼∗, 𝑥∗) is a (𝛿, 𝛾′)-approximate PE of G, we show that (𝛼′, 𝑥∗) is a 𝛾-approximate PE of G by

establishing conditions (a)-(d) of Definition 10. Using Lemma 25, we have 𝛼′ ∈ [0, 1]𝑛. Condition

(a) has already been established earlier using Lemmas 23 and 24. Condition (b) holds because we

kept the same allocation 𝑥∗ and given how we obtain 𝛼′ from 𝛼∗, the set of goods 𝑗 with ℎ 𝑗 (𝛼∗) > 0

is the same as that in 𝛼′. Condition (c) follows easily from Lemma 25. So it suffices to verify that

(d) holds with 𝛾.

To see this we have for each buyer 𝑖 ∈ [𝑛] that either 𝛼∗
𝑖
≥ 1 − 𝛾′ or

∑
𝑗 𝑥
∗
𝑖 𝑗
𝑝 𝑗 (𝛼∗) ≥ (1 − 𝛾′)𝐵𝑖.
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For the former case, we have from Lemma 25 that

𝛼′𝑖 ≥ (1 − 𝛿)2𝑛 · (1 − 𝛾′) > (1 − 𝛾′)2 ≥ 1 − 𝛾

using (1 − 𝛿)2𝑛 > 1 − 𝛾′ from the choice of 𝛿 and that 𝛾 = 2𝛾′. For the latter case, it follows from

Lemma 25 and our choice of 𝛿 that

𝑝 𝑗 (𝛼′) ≥ (1 − 𝛿)2𝑛 · 𝑝 𝑗 (𝛼∗) > (1 − 𝛾′) · 𝑝 𝑗 (𝛼∗)

for all 𝑗 ∈ [𝑚]. Here we have used the fact that 𝑝 𝑗 ((1−𝛿)2𝑛𝛼∗) = (1−𝛿)2𝑛 𝑝 𝑗 (𝛼∗) and 𝑝 𝑗 (𝛼) ≥ 𝑝 𝑗 (�̃�)

whenever 𝛼 ≥ �̃�. As a result, the total expenditure of buyer 𝑖 in (𝛼′, 𝑥∗) is

∑︁
𝑗∈[𝑚]

𝑥∗𝑖 𝑗 · 𝑝 𝑗 (𝛼′) > (1 − 𝛾′)
∑︁
𝑗∈[𝑚]

𝑥∗𝑖 𝑗 · 𝑝 𝑗 (𝛼∗) ≥ (1 − 𝛾′)2𝐵𝑖 ≥ (1 − 𝛾)𝐵𝑖 .

Therefore, we have shown that (𝛼′, 𝑥∗) is a 𝛾-approximate PE of 𝐺. □

5.3.3 PPAD Membership of Computing Exact Pacing Equilibria

In the last subsection we showed that the problem of finding a 𝛾-approximate PE of a second-

price pacing game 𝐺 is in PPAD. Finally we show in this subsection that the problem of finding

an exact equilibrium of a pacing game is also in PPAD. To this end, we show that when 𝛾 is small

enough (though with bit length polynomial in |𝐺 |), any 𝛾-approximate PE(𝛼′, 𝑥′) of 𝐺 can be

“rounded” into an exact equilibrium by solving a linear program defined using support information

extracted from (𝛼′, 𝑥′). This technique is similar to the one used in [EY10; VY11] and [FR+20].

For this purpose we recall the following fact about linear programs:

Fact 1. There is a polynomial 𝑟(·) with the following property. Let LP be a linear program that

minimizes a non-negative variable 𝛾. Then an optimal solution of LP has either 𝛾 = 0 or 𝛾 ≥

1/2𝑟(|LP|), where |LP| denotes the number of bits needed to represent LP.

Given a 𝛾-approximate PE (𝛼′, 𝑥′) of 𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)) (for some sufficiently small 𝛾 to be
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specified later), we extract from (𝛼′, 𝑥′) the following support information:

1. 𝐼′ ⊆ [𝑛] consists of buyers 𝑖 ∈ [𝑛] who are almost unpaced, i.e., 𝛼′
𝑖
≥ 1 − 𝛾. Given that

(𝛼′, 𝑥′) is a 𝛾-approximate PE, condition (d) of Definition 10 implies that

∑︁
𝑗∈[𝑚]

𝑥′𝑖 𝑗 𝑝 𝑗 (𝛼
′) ≥ (1 − 𝛾)𝐵𝑖, for all 𝑖 /∈ 𝐼 .

2. For each 𝑗 ∈ [𝑚],𝑊′
𝑗

is the set of buyers 𝑖 ∈ [𝑛] with 𝑥′
𝑖 𝑗
𝑝 𝑗 (𝛼′) > 0 (which implies

𝛼′
𝑖
𝑣𝑖 𝑗 = ℎ 𝑗 (𝛼′)). These are buyers who win good 𝑗 and pay a positive amount for it.

3. For each 𝑗 ∈ [𝑚], let 𝑠 𝑗 ∈ [𝑛] be the smallest index 𝑖 such that 𝛼′
𝑖
𝑣𝑖 𝑗 = ℎ 𝑗 (𝛼′), i.e., 𝑠 𝑗 is the

smallest index among the buyers who have the highest bid in good 𝑗 .

4. For each 𝑗 ∈ [𝑚], let 𝑡 𝑗 ∈ [𝑛] be the smallest index 𝑖 ̸= 𝑠 𝑗 such that 𝛼′
𝑖
𝑣𝑖 𝑗 = max𝑘 ̸=𝑠 𝑗 𝛼′𝑘𝑣𝑘 𝑗

(so we have that 𝛼′𝑡 𝑗𝑣𝑡 𝑗 𝑗 = 𝑝 𝑗 (𝛼′)).

On the other hand, given any 𝐼 ⊆ [𝑛], 𝑊 = (𝑊 𝑗 ⊆ [𝑛] : 𝑗 ∈ [𝑛]), 𝑠 = (𝑠 𝑗 ∈ [𝑛] : 𝑗 ∈ [𝑚]), and

𝑡 = (𝑡 𝑗 ∈ [𝑛] : 𝑗 ∈ [𝑚]), we use LP(𝐼,𝑊, 𝑠, 𝑡) to denote the following linear program on 𝑛 + 𝑛𝑚 + 1

variables 𝛼 = (𝛼𝑖 : 𝑖 ∈ [𝑛]), 𝑞 = (𝑞𝑖 𝑗 : 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]) and 𝜏 (where each variable 𝑞𝑖 𝑗 captures the

amount buyer 𝑖 pays for good 𝑗):

minimize 𝜏

𝜏 ≥ 0, 𝛼𝑖 ∈ [0, 1], 𝑞𝑖 𝑗 ≥ 0 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑚]

𝑞𝑖 𝑗 = 0 for all 𝑗 ∈ [𝑚] and 𝑖 /∈ 𝑊 𝑗

𝛼𝑠 𝑗𝑣𝑠 𝑗 𝑗 ≥ 𝛼𝑘𝑣𝑘 𝑗 for all 𝑗 ∈ [𝑚] and 𝑘 ∈ [𝑛]

𝛼𝑡 𝑗𝑣𝑡 𝑗 𝑗 ≥ 𝛼𝑘𝑣𝑘 𝑗 for all 𝑗 ∈ [𝑚] and 𝑘 ̸= 𝑠 𝑗 ∈ [𝑛]

(𝑎) 𝛼𝑖𝑣𝑖 𝑗 ≥ 𝛼𝑠 𝑗𝑣𝑠 𝑗 𝑗 for all 𝑗 ∈ [𝑚] and 𝑖 ∈ 𝑊 𝑗

(𝑏) ∑
𝑘∈[𝑛] 𝑞𝑘 𝑗 = 𝛼𝑡 𝑗𝑣𝑡 𝑗 𝑗 for all 𝑗 ∈ [𝑚]
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(𝑐) ∑
𝑗∈[𝑚] 𝑞𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛]

(𝑑) 𝛼𝑖 ≥ 1 − 𝜏 for all 𝑖 ∈ 𝐼 and
∑
𝑗∈[𝑚] 𝑞𝑖 𝑗 ≥ (1 − 𝜏)𝐵𝑖 for all 𝑖 /∈ 𝐼

Here, (𝑎) ensures that the buyers in𝑊 𝑗 have the highest bid on good 𝑗 ; (𝑏) ensures that the total

payment of all buyers for good 𝑗 is equal to the second highest bid; (𝑐) ensures that the budgets

are satisfied; and (𝑑) ensures that the not-too-much-unnecessary-pacing condition is satisfied. The

lemma below follows directly from the definition of 𝛾-approximate PE and the way 𝐼′,𝑊′, 𝑠′ and

𝑡′ are extracted from (𝛼′, 𝑥′).

Lemma 26. Suppose (𝛼′, 𝑥′) is a 𝛾-approximate PE of 𝐺. Then (𝛼′, 𝑞′, 𝛾) is a feasible solution to

the linear program LP(𝐼′,𝑊′, 𝑠′, 𝑡′), where 𝑞′ = (𝑞′
𝑖 𝑗

) with 𝑞′
𝑖 𝑗

= 𝑥′
𝑖 𝑗
𝑝 𝑗 (𝛼′).

On the other hand, the next lemma shows that if LP(𝐼,𝑊, 𝑠, 𝑡) has a feasible solution (𝛼, 𝑞, 0) for

some 𝐼,𝑊, 𝑠 and 𝑡, then (𝛼, 𝑥) is an exact pacing equilibrium, where 𝑥 = (𝑥𝑖 𝑗 ) and 𝑥𝑖 𝑗 = 𝑞𝑖 𝑗/𝑝 𝑗 (𝛼)

if 𝑝 𝑗 (𝛼) > 0; when 𝑝 𝑗 (𝛼) = 0 we set 𝑥𝑠 𝑗 𝑗 = 1 and 𝑥𝑖 𝑗 = 0 for all other 𝑖.

Lemma 27. If (𝛼, 𝑞, 0) is a feasible solution to LP(𝐼,𝑊, 𝑠, 𝑡), then (𝛼, 𝑥) is an exact equilibrium.

Proof. Let (𝛼, 𝑞, 0) be a feasible solution to LP(𝐼,𝑊, 𝑠, 𝑡). Set 𝛼 to be the pacing multipliers of

buyers in 𝐺 and define the allocation 𝑥 = (𝑥𝑖 𝑗 ) as above. Then, the LP constraints imply that the

highest bid on good 𝑗 is ℎ 𝑗 (𝛼) = 𝛼𝑠 𝑗𝑣𝑠 𝑗 𝑗 and the second highest bid is 𝑝 𝑗 (𝛼) = 𝛼𝑡 𝑗𝑣𝑡 𝑗 𝑗 . Next we

note that, in the latter case, the constraints of the LP force the set of winners {𝑖 | 𝑥𝑖 𝑗 > 0} of good

𝑗 ∈ [𝑚] to be a subset of 𝑊 𝑗 . This is because 𝑥𝑖 𝑗 > 0 implies 𝑞𝑖 𝑗 > 0 and 𝑞𝑖 𝑗 = 0 for all 𝑖 /∈ 𝑊 𝑗 .

Now, it is straightforward to see that constraints (a)-(d), in combination with 𝜏 = 0, imply that

(𝛼, 𝑥) satisfies the corresponding conditions (a)-(d) of Definition 9. □

Given the definition of LP(𝐼,𝑊, 𝑠, 𝑡), there is a polynomial 𝑟′(·) such that

max
𝐼,𝑊,𝑠,𝑡

|LP(𝐼,𝑊, 𝑠, 𝑡)| ≤ 𝑟′(|𝐺 |).
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Now we can set 𝛾 to be smaller than 1/2𝑟(𝑟 ′(|𝐺 |)) (with bit length still polynomial in |𝐺 |). To finish

the proof of Theorem 12, we let (𝛼′, 𝑥′) be a 𝛾-approximate PE of 𝐺. It follows from Lemma

26 that (𝛼′, 𝑞′, 𝛾) is a feasible solution to LP(𝐼′,𝑊′, 𝑠′, 𝑡′). Next it follows from Fact 1 that this

linear program has a feasible solution (𝛼, 𝑞, 0) and the latter can be computed in polynomial time.

Lemma 27 shows that (𝛼, 𝑥), which can be computed in polynomial time, is a pacing equilibrium

of 𝐺.

5.4 Conclusion

We studied the computational complexity of pacing equilibria in second-price pacing games

with multiplicative pacing. Our results show that finding a pacing equilibrium, whether exact or

approximate, is a PPAD-complete problem. As discussed previously, these results close the open

problem from [Con+18] on the complexity of pacing equilibria, and make progress towards resolv-

ing the conjecture of [Bor+07] by showing that their dynamics is unlikely to converge efficiently

in second-price auctions. More generally, our results show that algorithms for budget-smoothing

in auctions, an important problem for Internet advertising, cannot be expected to efficiently find

even approximate pacing equilibria in the worst case.

There are several interesting future questions and implications to investigate based on our work.

Perhaps most importantly, we would like to understand exactly when budget-smoothing becomes

hard. As discussed in the literature review, [BG19] developed regret minimization algorithms

for the case of i.i.d. and continuous stochastic valuations. Yet our results imply that for general

correlated valuations convergence cannot occur efficiently. The question is now which types of

correlated stochastic valuations admit efficient algorithms, and which types are hard. It would also

be interesting to understand whether other methods of budget smoothing (such as those discussed

by [Bal+21]) lead to PPAD-complete equilibrium problems as well.

In the direction of positive results, our PPAD membership proof suggests that complementary

pivoting may be a fruitful research direction for computing pacing equilibria. This is especially per-

tinent because approaches based on mixed-integer programming seem to scale poorly [Con+18].
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Chapter 6: Throttling Equilibria in Auction Markets

Based on the publication [CKK21] co-authored with Xi Chen and Christian Kroer.

This chapter goes beyond pacing and investigates the other most popular method of budget

management: throttling. In Section 6.2, we analyze first-price auctions. We show that a throttling

equilibrium always exists, and characterize it as the maximal element in the set of participation

probabilities that result in all buyers satisfying their budgets (Theorem 15). Furthermore, we use

this characterization to establish its uniqueness. On the computational front, we describe decentral-

ized dynamics in which buyers repeatedly play the throttling game and make simple tâtonnement-

style adjustments to their participation probabilities based on their expected expenditure (Algo-

rithm 6). We show that these tâtonnement-style dynamics converge to an approximate throttling

equilibrium in polynomial time (Theorem 16).

In Section 6.3, we study second-price auctions, We begin by establishing that a throttling equi-

librium always exists for second-price auctions (Theorem 17), but find that it may not be unique,

and for some games all throttling equilibria can be irrational. Next, we prove results about the com-

putational complexity of finding throttling equilibria, which requires the use of terminology from

computational complexity theory. Before summarizing those results, we make a note for readers

who may not be familiar with complexity theory: In order to make our results more accessible, we

provide an informal description of them at the head of every subsection, in an attempt to avoid let-

ting complexity-theoretic terminology obscure the conclusions derived from the result. Continuing

on with the summary of our results, we prove that the problem of computing approximate throttling

equilibria is PPAD-hard even when each good has at most three bids (Theorem 18), by showing

a reduction from the PPAD-hard problem of computing an approximate equilibrium of a thresh-

old game [PP21]. As a consequence, we show that, unlike first-price auctions, no dynamics can

converge in polynomial time to a second-price throttling equilibrium (assuming PPAD-complete
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problems cannot be solved in polynomial time). Furthermore, we place the problem of comput-

ing approximate throttling equilibria in the class PPAD by showing a reduction to the problem

of finding a Brouwer fixed point of a Lipschitz mapping from a unit hypercube to itself (Theo-

rem 20); the latter is known to be in PPAD via Sperner’s lemma (e.g. see [CD06]). We provide

additional evidence of the computational challenges that afflict throttling for second-price auctions

by proving the NP-hardness of finding a revenue-maximizing approximate throttling equilibrium

(Theorem 21). We complement these hardness results by describing a polynomial-time algorithm

for computing throttling equilibria for the special case in which there are at most two bids on each

good (Algorithm 7), thereby precisely delineating the boundary of tractability.

In Section 6.4, we compare the equilibrium outcomes of throttling with those of pacing. We

show that, for first-price auctions, the revenue of the unique throttling equilibrium and the unique

pacing equilibrium, although incomparable directly, are always within a factor of 2 of each other

(Theorem 23). Moreover, we find that pacing and throttling equilibria share a remarkably similar

computational and structural landscape, as summarized in Table 6.1 and Table 6.2. In view of

this comparison, our work can be seen as providing the analogous set of results for throttling

equilibria that [Bor+07; Con+18; Con+19] proved for pacing equilibria. Our results reaffirm what

the analysis of pacing suggested: budget management for first-price auctions is more well-behaved

as compared to second-price auctions.

Existence Rationality Multiplicity Computational Complexity Efficient Dynamics

Always Not always Always unique Poly.-time for approx. eq. For approx. eq.

Always Always Always unique Poly.-time for exact eq. For approx. eq.

[Con+19] [Con+19] [Con+19] [Con+19] [Bor+07]

Table 6.1: Comparison of throttling (top row) and pacing equilibria (bottom row) for first-price
auctions.
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Existence Rationality Multiplicity Computational Complexity Revenue Max.

Always Not always Possibly infinite PPAD-complete for approx. eq NP-hard

Always Always Possible PPAD-complete for both exact NP-hard

[Con+18] [Chapter 5] [Con+18] and approx. eq. [Chapter 5] [Con+18]

Table 6.2: Comparison of throttling equilibria (top row) and pacing equilibria (bottom row) for
second-price auctions.

Finally, in Section 6.5, we analyze the price of anarchy of liquid welfare [DL14; Aza+17]. We

show that the liquid welfare under any throttling equilibrium is at most a factor of 2 away from the

liquid welfare that can be obtained by a central planner with complete information of the buyers

bids/values, i.e., the Price of Anarchy is at most 2. We do so for both first-price and second-price

auctions. Moreover, we provide examples to show that this bound is tight for both auction formats.

6.1 Model

Consider a seller who has 𝑚 types of goods to sell, and 𝑛 budget constrained buyers who are

interested in buying these goods. The seller runs an auction amongst the buyers in order to make

the sale. We assume that the type of good to be sold is drawn from some known distribution

𝑑 = (𝑑1, . . . , 𝑑𝑚), i.e., the good to be sold is of type 𝑗 with probability 𝑑 𝑗 . Buyer 𝑖 bids �̃�𝑖 𝑗 on good

type 𝑗 , for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], and has a per-auction budget of 𝐵𝑖 > 0. To control their budget

expenditure, each buyer 𝑖 is associated with a throttling parameter 𝜃𝑖 ∈ [0, 1], which represents the

probability with which she participates in the auction: each buyer 𝑖 independently flips a biased

coin which comes up heads with probability 𝜃𝑖, and submits their bid �̃�𝑖 𝑗 if the coin comes up

heads, while submitting no bid if the coin comes up tails.

We focus on the setting where each buyer wishes to satisfy her budget constraint in expec-

tation, i.e., buyer 𝑖 would like to spend less than 𝐵𝑖 in expectation over the good types and par-

ticipation coin flips of all buyers. Requiring the budget constraints to be satisfied in expectation

draws its motivation from the large number of auctions that are run by online-advertising plat-

forms, in conjunction with concentration arguments, and has been employed by previous works

141



on budget management in online auctions (see, e.g., [GKP12; AH13; BBW15; Bal+21; BG19;

Con+18]). Additionally, in this chapter, we restrict our attention to the two most commonly-used

auction formats in online advertising: first-price auctions and second-price auctions. In a first-price

auction, the participating buyer with the highest bid wins the good and pays her bid, whereas in

a second-price auction, the participating buyer with the highest bid wins the good and pays the

second-highest bid among the participating buyers. Our model can be interpreted as a discrete

version of the one defined in [Bal+21].

Before proceeding further, we introduce some additional notation that allows us to capture the

stochastic nature of the good types via a rescaling of the bids, thereby allowing us to analyze the

setting as a deterministic multi-good auction problem: Set 𝑏𝑖 𝑗 B 𝑑 𝑗 �̃�𝑖 𝑗 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚].

Since the participation of buyers is independent of the good type and we are only concerned with

expected payments, the good type distribution 𝑑 = (𝑑 𝑗 ) 𝑗 and the bids {�̃�𝑖 𝑗 }𝑖, 𝑗 are consequential

only insofar as they determine {𝑏𝑖 𝑗 }𝑖, 𝑗 . Therefore, with some abuse of terminology, going forward,

we refer to 𝑏𝑖 𝑗 as the bid of buyer 𝑖 on good 𝑗 (instead of �̃�𝑖 𝑗 , which will no longer be used).1

Furthermore, to simplify our analysis, we will assume that ties are broken lexicographically, i.e.,

the smaller buyer number wins in case of a tie. Our results continue to hold for all other tie-breaking

priority orders over the buyers (even when they are different for each good). The lexicographic tie-

breaking rule allows for simplified notation, albeit with some abuse: We will write 𝑏𝑖 𝑗 > 𝑏𝑘 𝑗 to

mean that either 𝑏𝑖 𝑗 is strictly greater than 𝑏𝑘 𝑗 , or 𝑏𝑖 𝑗 = 𝑏𝑘 𝑗 and 𝑖 < 𝑘 . Finally, we refer to any

tuple
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
as a throttling game.

In online-advertising auctions, the buyers (or, more typically in practice, the platform on behalf

of the buyers) attempt to satisfy their budget constraints by adjusting their throttling parameters.

This naturally leads to a game where each buyer’s strategy is her throttling parameter. We use

𝑝(𝜃)𝑖 𝑗 to denote the expected payment of buyer 𝑖 on good 𝑗 when buyers use 𝜃 = (𝜃1, . . . , 𝜃𝑛) to

decide their participation probabilities. Let 𝑋𝑖 be a random variable such that 𝑋𝑖 = 1 if buyer 𝑖

1This deterministic view is equivalent to the model of [Con+18], except that we focus on probabilistic throttling for
managing budgets, whereas they focus on multiplicative pacing. Their model can similarly be viewed as a stochastic
setting.
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participates and 𝑋𝑖 = 0 if buyer 𝑖 does not participate. Then, by our modeling assumptions, 𝑋𝑖 is a

Bernoulli(𝜃𝑖) random variable. More concretely, 𝑝(𝜃)𝑖 𝑗 can be defined as follows:

• First-price auction: 𝑝(𝜃)𝑖 𝑗 = E
[
𝑋𝑖𝑏𝑖 𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗 (1 − 𝑋𝑘 )

]
= 𝜃𝑖𝑏𝑖 𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗 (1 − 𝜃𝑘 )

• Second-price auction:

𝑝(𝜃)𝑖 𝑗 = E

[ ∑︁
ℓ:𝑏ℓ 𝑗<𝑏𝑖 𝑗

𝑏ℓ 𝑗𝑋𝑖𝑋ℓ
∏

𝑘 ̸=𝑖:𝑏𝑘 𝑗>𝑏ℓ 𝑗
(1 − 𝑋𝑘 )

]
=

∑︁
ℓ:𝑏ℓ 𝑗<𝑏𝑖 𝑗

𝑏ℓ 𝑗𝜃𝑖𝜃ℓ
∏

𝑘 ̸=𝑖:𝑏𝑘 𝑗>𝑏ℓ 𝑗
(1 − 𝜃𝑘 )

We overload 𝑝(𝜃)𝑖 𝑗 to represent the expected payment in both auction formats; the auction

format will be clear from the context. We assume here that the participation probability of a buyer

across goods is perfectly correlated for simplicity (𝑋𝑖 is the same for all 𝑗). Any other correlation

structure, e.g. independent across goods, would also lead to the same results due to linearity of

expectation. Next, we define the equilibrium concept which will be the main object of study in this

work.

Definition 12 (Throttling Equilibrium). Given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, a vector of

throttling parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛) ∈ [0, 1]𝑛 is called an 𝛿-approximate throttling equilibrium

if:

1. Budget constraints are satisfied:
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛]

2. No unnecessary throttling occurs: If
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < 𝐵𝑖, then 𝜃𝑖 = 1

The above definition applies to both first-price and second-price auctions using the correspond-

ing payment rule 𝑝(𝜃)𝑖 𝑗 . Definition 12 draws its motivation from the fact that, in a natural utility

model, throttling equilibria are essentially equivalent to pure Nash Equilibria, which we describe

next. Consider a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
. Fix an auction format: either first-price or

second-price. Suppose buyer 𝑖 has value 𝑣𝑖 𝑗 for good type 𝑗 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]. We make the

natural assumption that the buyers bid less than their value, i.e., 𝑑𝑖𝑣𝑖 𝑗 ≥ 𝑏𝑖 𝑗 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]

in second-price auctions and strictly less than their value, i.e., 𝑑𝑖𝑣𝑖 𝑗 > 𝑏𝑖 𝑗 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]

143



in first-price auctions. Define a new game 𝐺 in which each buyer 𝑖’s strategy is her throttling

parameter 𝜃𝑖 and her utility function is given by

𝑢𝑖(𝜃) =


∑
𝑗

(
𝑣𝑖 𝑗𝑑𝑖𝜃𝑖

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗 (1 − 𝜃𝑘 ) − 𝑝(𝜃)𝑖 𝑗

)
if

∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖

−∞ otherwise

This utility is simply the expected quasi-linear utility modified to ascribe a utility value of negative

infinity for budget violations. Since all of the buyers get a non-negative utility from winning

any good, increasing the throttling parameter improves utility so long as the budget constraint

is satisfied. This makes it easy to see that every throttling equilibrium of the throttling game(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
is a Nash equilibrium of the corresponding game 𝐺. Furthermore, it is also

straightforward to check that a pure Nash equilibrium of 𝐺 is not a throttling equilibrium only in

the following scenario: There is a buyer who spends 0 in the Nash equilibrium and has a throttling

parameter strictly less than 1. In this scenario, setting the throttling parameter of all such buyers

to 1 yields a throttling equilibrium with exactly the same expected allocation and payment for all

the buyers as under the Nash equilibrium. Hence, given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, for

every pure Nash equilibrium of the corresponding game 𝐺, there is a throttling equilibrium with

the same expected allocation and revenue.

We conclude this section by defining an approximate version of throttling equilibrium, which

allows us to side-step issues of irrationality that can plague exact equilibria (see Example 10 and

Example 11).

Definition 13 (Approximate Throttling Equilibrium). Given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, a

vector of throttling parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛) is called an 𝛿-approximate throttling equilibrium

if:

1. Budget constraints are satisfied:
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛]

2. Not too much unnecessary throttling occurs: If
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛿)𝐵𝑖, then 𝜃𝑖 ≥ 1 − 𝛿
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6.2 Throttling in First-price Auctions

We begin by studying throttling equilibria in the first-price auction setting. We start by showing

that, for first-price auctions, there always exists a unique throttling equilibrium. We then describe

a simple and efficient tâtonnement-style algorithm for approximate throttling equilibria.

6.2.1 Existence of First-Price Throttling Equilibria

To show existence, we will characterize the throttling equilibrium as a component-wise max-

imum of the set of all budget-feasible throttling parameters. This argument is inspired from the

technique used in [Con+19] for pacing equilibria in first-price auctions. We use the following

definition to make the argument precise.

Definition 14 (Budget-feasible Throttling Parameters). Given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
,

a vector of throttling parameters 𝜃 ∈ [0, 1]𝑛 is called budget-feasible if every buyer satisfies her

budget constraints, i.e.,
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all buyers 𝑖 ∈ [𝑛].

The following lemma captures the crucial fact that the component-wise maximum of two

budget-feasible throttling parameters is also budget-feasible.

Lemma 28. Given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, if 𝜃, 𝜃 ∈ [0, 1]𝑛 are budget-feasible, then

max(𝜃, 𝜃) B (max(𝜃𝑖, 𝜃𝑖))𝑖 is also budget-feasible.

Proof. Fix 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑚]. Without loss of generality, we assume that 𝜃𝑖 ≥ 𝜃𝑖. Observe that

𝑝(max(𝜃, 𝜃))𝑖 𝑗 =
∏

𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗
(1 −max(𝜃𝑘 , 𝜃𝑘 ))𝜃𝑖𝑏𝑖 𝑗 ≤

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗

(1 − 𝜃𝑘 )𝜃𝑖𝑏𝑖 𝑗 = 𝑝(𝜃)𝑖 𝑗

Summing over all goods 𝑗 ∈ [𝑚] completes the proof. □

The maximality property shown in Lemma 28 is analogous to the maximality property of mul-

tiplicative pacing: there it is also the case that component-wise maxima over pacing vectors pre-

serves budget feasibility for first-price auctions, and this was used by [Con+19] to show several
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structural properties of pacing equilibria. Next we show that the maximality property allows us to

establish the existence and uniqueness of throttling equilibria for first-price auction.

Theorem 15. For every throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, there exists a unique throttling equilib-

rium 𝜃∗ ∈ [0, 1]𝑛 which is given by 𝜃∗
𝑖

= sup{𝜃𝑖 ∈ [0, 1] | ∃ 𝜃−𝑖 s.t. 𝜃 = (𝜃𝑖, 𝜃−𝑖) is budget-feasible}.

Proof. Set 𝜃∗
𝑖

= sup{𝜃𝑖 ∈ [0, 1] | ∃ 𝜃−𝑖 s.t. 𝜃 = (𝜃𝑖, 𝜃−𝑖) is budget-feasible} for all 𝑖 ∈ [𝑛]. First,

we show that 𝜃∗
𝑖

is budget-feasible. Observe that the function 𝜃 ↦→
(∑

𝑗 𝑝(𝜃)1 𝑗 , . . . ,
∑
𝑗 𝑝(𝜃)𝑛 𝑗

)
is continuous. Therefore, the pre-image of the set

>𝑛
𝑖=1[0, 𝐵𝑖] under this function is closed. In

other words, the set of all budget-feasible throttling parameters is closed. Fix 𝜖 > 0. For all

𝑖 ∈ [𝑛], by the definition of 𝜃∗
𝑖
, there exists 𝜃(𝑖) ∈ [0, 1]𝑛 which is budget feasible and 𝜃(𝑖)

𝑖
> 𝜃∗

𝑖
− 𝜖 .

Iterative application of Lemma 28 yields the budget-feasibility of the vector 𝜃 defined by 𝜃𝑖 =

max𝑘∈[𝑛] 𝜃
(𝑘)
𝑖

. Moreover, 𝜃𝑖 > 𝜃∗𝑖 − 𝜖 for all 𝑖 ∈ [𝑛] because 𝜃(𝑖)
𝑖
> 𝜃∗

𝑖
− 𝜖 for all 𝑖 ∈ [𝑛]. Since 𝜖 > 0

was arbitrary, we have shown that there exists a sequence of budget-feasible throttling parameters

which converges to 𝜃∗, which implies that 𝜃∗ is budget-feasible because the set of budget-feasible

throttling parameters is closed.

Next, we show that 𝜃∗ also satisfies the ‘No unnecessary pacing’ property. Suppose there exists

𝑖 ∈ [𝑛] such that
∑
𝑗 𝑝(𝜃∗)𝑖 𝑗 < 𝐵𝑖 and 𝜃∗

𝑖
< 1. Then, by the continuity of 𝜃 ↦→ ∑

𝑗 𝑝(𝜃)𝑖 𝑗 , there exists

𝜃𝑖 such that 𝜃∗
𝑖
< 𝜃𝑖 < 1 and

∑
𝑗 𝑝(𝜃𝑖, 𝜃∗−𝑖)𝑖 𝑗 < 𝐵𝑖, which contradicts the definition of 𝜃∗. Therefore,

for all 𝑖 ∈ [𝑛], we have
∑
𝑗 𝑝(𝜃∗)𝑖 𝑗 < 𝐵𝑖 implies 𝜃∗

𝑖
= 1. Thus, 𝜃∗ is a throttling equilibrium.

Finally, we prove uniqueness of 𝜃∗. Suppose there is a throttling equilibrium 𝜃 ∈ [0, 1]𝑛 such

that 𝜃𝑖 ̸= 𝜃∗
𝑖

for some 𝑖 ∈ [𝑛]. Then, the set of buyers 𝐶 ⊂ [𝑛] for whom 𝜃∗
𝑖
> 𝜃𝑖 is non-empty.

Note that 𝜃𝑖 < 1 for all 𝑖 ∈ 𝐶. Hence, every buyer in 𝐶 spends her entire budget under 𝜃. On the

other hand, since 𝜃∗
𝑖
> 𝜃𝑖 for all 𝑖 ∈ 𝐶 and 𝜃∗

𝑖
= 𝜃𝑖 for 𝑖 /∈ 𝐶, the total payment made by buyers in

𝐶 under 𝜃∗ is strictly greater than the payment under 𝜃, which contradicts the budget-feasibility of

𝜃∗. Therefore, 𝜃∗ is the unique throttling equilibrium. □

We conclude this subsection by noting that in Appendix E.1 we describe a throttling game for

which the unique throttling equilibrium has irrational throttling parameters for some buyers. In
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Algorithm 6: Dynamics for First-price Auction

Input: Throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
and approximation parameter 𝛿 ∈ (0, 1/2)

Initialize: 𝜃𝑖 = min{𝐵𝑖/(2
∑
𝑗 𝑏𝑖 𝑗 ), 1} for all 𝑖 ∈ [𝑛]

While there exists a buyer 𝑖 ∈ [𝑛] such that 𝜃𝑖 < 1 − 𝛿 and
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛿)𝐵𝑖:

• For all 𝑖 ∈ [𝑛] such that 𝜃𝑖 < 1 − 𝛿 and
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛿)𝐵𝑖, set 𝜃𝑖 ← 𝜃𝑖/(1 − 𝛿)

Return: 𝜃

other words, rational throttling equilibrium need not always exist. Since irrational numbers cannot

be represented exactly with a finite number of bits in the standard floating point representation, it

leads us to consider algorithms for finding approximate throttling equilibrium instead.

6.2.2 An Algorithm for Computing Approximate First-Price Throttling Equilibria

In this subsection, we define a simple tâtonnement-style algorithm and prove that it yields an

approximate throttling equilibrium in polynomial time.

Before proceeding to prove the correctness and efficiency of Algorithm 6, we note some of its

properties. Typically, in online advertising auctions, buyers participate in a large number of auc-

tions throughout their campaign, and the platform periodically updates their throttling parameters

to ensure that they don’t finish their budgets prematurely and loose out on valuable advertising

opportunity. The above algorithm is especially suited for this setting due to its decentralized and

easy-to-implement updates to the throttling parameter. Moreover, it also lends credence to the no-

tion of throttling equilibrium as a solution concept because the update step in Algorithm 6 can be

implemented independently by the buyers, resulting in decentralized dynamics which converge to

a throttling equilibrium in polynomially-many steps. We refer the reader to [Bor+07] for a detailed

model under which Algorithm 6 can be naturally interpreted as decentralized dynamics for online

advertising auctions.

In the next lemma, we show that, throughout the run of Algorithm 6, all the buyers always

satisfy their budget constraints.

Lemma 29. Consider the run of Algorithm 6 on the throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
and ap-
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proximation parameter 𝛿 ∈ (0, 1/2). Then, after every iteration of the while loop, we have∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛].

Proof. We prove the lemma using induction on the number of iterations of the while loop. Note

that
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛] before the first iteration of the while loop by virtue of our

initialization. Let 𝜃 and 𝜃′ represent the throttling parameters after the 𝑡-th iteration and the (𝑡 + 1)-

th iteration of the while loop. Suppose
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛]. To complete the proof

by induction, we need to show that
∑
𝑗 𝑝(𝜃′)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛]. Consider a buyer 𝑖. Suppose∑

𝑗 𝑝(𝜃)𝑖 𝑗 ≥ (1−𝛿)𝐵𝑖. By the update step of the algorithm, 𝜃′
𝑖

= 𝜃𝑖 and 𝜃′
𝑗
≥ 𝜃 𝑗 for 𝑗 ̸= 𝑖. Therefore,

∑︁
𝑗

𝑝(𝜃′)𝑖 𝑗 =
∑︁
𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗

(1 − 𝜃′𝑘 )𝜃
′
𝑖𝑏𝑖 𝑗 ≤

∑︁
𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗

(1 − 𝜃𝑘 )𝜃𝑖𝑏𝑖 𝑗 =
∑︁
𝑗

𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖

On the other hand, suppose
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛿)𝐵𝑖. Then, by the update step of the algorithm,

𝜃′
𝑖
≤ 𝜃𝑖/(1 − 𝛿) and 𝜃′

𝑗
≥ 𝜃 𝑗 for 𝑗 ̸= 𝑖. Therefore,

∑︁
𝑗

𝑝(𝜃′)𝑖 𝑗 =
∑︁
𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗

(1 − 𝜃′𝑘)𝜃′𝑖𝑏𝑖 𝑗 ≤
1

1 − 𝛿 ·
∑︁
𝑗

∏
𝑘:𝑏𝑘 𝑗>𝑏𝑖 𝑗

(1 − 𝜃𝑘)𝜃𝑖𝑏𝑖 𝑗 =
1

1 − 𝛿 ·
∑︁
𝑗

𝑝(𝜃)𝑖 𝑗 < 𝐵𝑖

This completes the proof of
∑
𝑗 𝑝(𝜃′)𝑖 𝑗 ≤ 𝐵𝑖 for all buyers 𝑖 ∈ [𝑛]. □

We conclude this subsection by proving the correctness and efficiency of Algorithm 6.

Theorem 16. Given a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
and an approximation parameter 𝛿 ∈

(0, 1/2) as input, Algorithm 6 returns a 𝛿-approximate throttling equilibrium in polynomial time.

Proof. Since each iteration of the while loop only performs basic arithmetic operations, to es-

tablish a polynomial run-time complexity, it suffices to show that the while loop terminates in

polynomially-many steps. Note that 𝑐 = min𝑖 min{𝐵𝑖/(2
∑
𝑗 𝑏𝑖 𝑗 ), 1} is a lower bound on the initial

value of the throttling parameter of every buyer. Due to the termination condition of the while loop

and the update step, at each iteration of the while loop, there exists a buyer 𝑖 ∈ [𝑛] whose throttling

parameter is updated, i.e., there exists 𝑖 ∈ [𝑛] such that 𝜃𝑖 < 1 − 𝛿 and 𝜃𝑖 ← 𝜃𝑖/(1 − 𝛿). Therefore,
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the number of iteration of the while loop 𝑇 satisfies the following relationships:

𝑐

(1 − 𝛿)𝑇/𝑛
≤ 1 ⇐⇒ 𝑇 ≤ 𝑛 log(1/𝑐)

log(1/(1 − 𝛿))
≤ 𝑛 log(1/𝑐)

𝛿

The second sequence of inequalities upper bounds the number of iterations of the while loop by a

polynomial function of the problem size.

To complete the proof, it suffices to show that at the termination of the while loop, 𝜃 is a 𝛿-

approximate throttling equilibrium. Budget-feasibility follows from Lemma 29, and the ‘Not too

much unnecessary throttling’ condition is satisfied by virtue of the termination condition. □

6.3 Throttling in Second-price Auctions

In this section, we study throttling equilibria in second-price auctions. We begin by establishing

the existence of exact throttling equilibria. Next, we show that, in contrast to first-price auctions,

it is PPAD-hard to compute an approximate throttling equilibrium. To complete the characteriza-

tion of its complexity, we then place the problem in PPAD. Moreover, we also show that, unlike

first-price auctions, multiple throttling-equilibria can exist for second-price auctions, and finding

the revenue-maximizing one is NP-hard. Finally, we complement these negative results with an

efficient algorithm for the case when each good has at most two positive bids.

6.3.1 Existence of Second-Price Throttling Equilibria

The following theorem establishes the existence of an exact throttling equilibrium for every bid

profile by invoking Brouwer’s fixed-point theorem on an appropriately defined function.

Theorem 17. For every throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, there exists a throttling equilibrium

𝜃∗ ∈ [0, 1]𝑛.
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Proof. First, observe that we can write the expected payment of buyer 𝑖 on good 𝑗 under 𝜃 as

𝑝(𝜃)𝑖 𝑗 =
∑︁

ℓ:𝑏ℓ 𝑗<𝑏𝑖 𝑗
𝑏ℓ 𝑗𝜃𝑖𝜃ℓ

∏
𝑘 ̸=𝑖:𝑏𝑘 𝑗>𝑏ℓ 𝑗

(1 − 𝜃𝑘 ) = 𝜃𝑖 ·
∑︁

ℓ:𝑏ℓ 𝑗<𝑏𝑖 𝑗
𝑏ℓ 𝑗𝜃ℓ

∏
𝑘 ̸=𝑖:𝑏𝑘 𝑗>𝑏ℓ 𝑗

(1 − 𝜃𝑘 ) = 𝜃𝑖 · 𝑝(1, 𝜃−𝑖)𝑖 𝑗

(6.1)

Define 𝑓 : [0, 1]𝑛 → [0, 1]𝑛 as

𝑓𝑖(𝜃) = min
{

𝐵𝑖∑
𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗

, 1
}
∀𝜃 ∈ [0, 1]𝑛

where, we assume that 𝑓𝑖(𝜃) = 1 if
∑
𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗 = 0. Note that 𝑝(1, 𝜃−𝑖)𝑖 𝑗 is a continuous function

of 𝜃 because it is a polynomial. Therefore, 𝑓 is continuous as a function of 𝜃 and hence, by

Brouwer’s fixed-point theorem, there exists a 𝜃∗ such that 𝑓 (𝜃∗) = 𝜃∗. As a consequence, for all

buyers 𝑖 ∈ [𝑛], we get the following equivalent statements

𝑓𝑖(𝜃∗) = 𝜃∗𝑖 ⇐⇒ 𝜃∗𝑖 ·
∑︁
𝑗

𝑝(1, 𝜃∗−𝑖)𝑖 𝑗 < 𝐵𝑖 implies 𝜃∗𝑖 = 1 ⇐⇒
∑︁
𝑗

𝑝(𝜃∗)𝑖 𝑗 < 𝐵𝑖 implies 𝜃∗𝑖 = 1

where the last equivalence follows from equation 6.1. Moreover, by definition of 𝑓 , we get

𝜃∗𝑖 = 𝑓𝑖(𝜃∗) ≤
𝐵𝑖∑

𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗

which in conjunction with equation 6.1 implies
∑
𝑗 𝑝(𝜃∗)𝑖 𝑗 ≤ 𝐵𝑖. Therefore, 𝜃∗ is a throttling

equilibrium. □

Even though the above theorem establishes the existence of a throttling equilibrium for every

throttling game, in Appendix E.1 we give an example of a throttling game for which all equilibria

have a buyer with an irrational throttling parameter. This prompts us to study the problem of

computing approximate throttling equilibria, which we do in the following subsections.
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6.3.2 Complexity of Finding Approximate Second-Price Throttling Equilibria

In the previous subsection, by way of our existence proof, we reduced the problem of finding

an approximate throttling equilibrium to that of finding a Brouwer fixed point of the function 𝑓 ;

but this is of little use if we want to actually compute an approximate throttling equilibrium: no

known algorithm can compute a Brouwer fixed point in polynomial time and it is believed to be

a hard problem. This is because the problem of computing an approximate Brouwer fixed point

is a complete problem for the class PPAD [Pap94]; informally, this means that it is as hard as any

other problem in the class, such as computing Nash equilibria of bimatrix games [DGP09; CD06]

or computing a market equilibrium under piece-wise linear concave utilities [CT09; VY11]. These

problems have eluded a polynomial-time algorithm for decades despite intensive effort.

However, through our reduction we have only shown that the problem of computing an ap-

proximate throttling equilibrium is easier than the problem of computing a Brouwer fixed point by

showing that any algorithm for the latter can be employed to solve the former. Perhaps, comput-

ing an approximate throttling equilibrium is strictly easier? Unfortunately, this is not the case and

the goal of this subsection is to prove it. More precisely, we show that the problem of finding an

approximate throttling equilibrium is PPAD-hard, which in informal terms means that it is as hard

as any other problem in the class PPAD, in particular that of computing a Brouwer fixed point.

Before stating the hardness result itself, we note a consequence of particular importance: Under

the assumption that PPAD-hard problems cannot be solved in polynomial time, no dynamics can

efficiently converge to an approximate throttling equilibrium in polynomial time, which is in stark

contrast to throttling in first-price auctions. Now, we state the main result of the section.

Theorem 18. There is a positive constant 𝛿 < 1 such that the problem of finding a 𝛿-approximate

throttling equilibrium in a throttling game is PPAD-hard. This holds even when the number of

buyers with non-zero bids for each good is at most three.

The proof of Theorem 18 uses threshold games, introduced recently by [PP21]. They showed

that the problem of finding an approximate equilibrium in a threshold game is PPAD-complete.
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Definition 15 (Threshold game of [PP21]). A threshold game is defined over a directed graph

G = ([𝑛], 𝐸). Each node 𝑖 ∈ [𝑛] represents a player with strategy space 𝑥𝑖 ∈ [0, 1]. Let 𝑁𝑖 be the

set of nodes 𝑗 ∈ [𝑛] with ( 𝑗 , 𝑖) ∈ 𝐸 . Then (𝑥𝑖 : 𝑖 ∈ [𝑛]) ∈ [0, 1]𝑛 is an 𝜖-approximate equilibrium if

every 𝑥𝑖 satisfies

𝑥𝑖 ∈



[0, 𝜖] ∑
𝑗∈𝑁𝑖

𝑥 𝑗 > 0.5 + 𝜖

[1 − 𝜖, 1] ∑
𝑗∈𝑁𝑖

𝑥 𝑗 < 0.5 − 𝜖

[0, 1] ∑
𝑗∈𝑁𝑖

𝑥 𝑗 ∈ [0.5 − 𝜖, 0.5 + 𝜖]

Theorem 19 (Theorem 4.7 of [PP21]). There is a positive constant 𝜖 < 1 such that the problem

of finding an 𝜖-approximate equilibrium in a threshold game is PPAD-hard. This holds even when

the in-degree and out-degree of each node is at most three in the threshold game.

Given a threshold game G = ([𝑛], 𝐸), we let 𝑂𝑖 denote the set of nodes 𝑗 ∈ 𝑉 with (𝑖, 𝑗) ∈ 𝐸 .

So |𝑁𝑖 |, |𝑂𝑖 |≤ 3 for every 𝑖 ∈ [𝑛]. To prove Theorem 18, we need to construct a throttling game

IG from G such that any approximate throttling equilibrium of IG corresponds to an approximate

equilibrium of the threshold game. Before rigorously diving into the construction, we give an

informal description to build intuition.

With each node of G, we will associate a collection of buyers and goods, with the goal of

capturing the corresponding strategy and equilibrium conditions of the threshold game. Fix a node

𝑖 ∈ [𝑛]. We will define a strategy buyer 𝑆(𝑖) and set the strategy 𝑥𝑖 for node 𝑖 to be proportional to

1−𝜃𝑆(𝑖). Next, in order to implement the equilibrium condition of the threshold game, our goal will

be to define buyers and goods such that the linear form
∑
𝑗∈𝑁𝑖

𝑥 𝑗 ends up being proportional to the

total payment of a buyer who we will refer to as the threshold buyer 𝑇(𝑖). For each in-neighbour

𝑗 ∈ 𝑁𝑖, we will define a neighbour good 𝐺(𝑖, 𝑗), for which the strategy buyer of the neighbour 𝑆( 𝑗)

places the highest bid of 6 and the threshold buyer 𝑇(𝑖) places a bid of 5. Furthermore, for a reason

that will become clear shortly, the strategy buyer 𝑆(𝑖) places a bid of 4 on 𝐺(𝑖, 𝑗). With these bids,

the payment made by the threshold buyer 𝑇(𝑖) on all the neighbour goods {𝐺(𝑖, 𝑗)} 𝑗 is proportional
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Figure 6.1: A diagrammatic representation of the non-zero bids made and received by the buyers
and goods corresponding to a particular node of the threshold game. Consider a particular node of
the threshold game, represented here by the black rectangle. It has three out neighbours, depicted
as orange rectangles, and three in neighbours, depicted as pink rectangles. The hollow circles
represent goods and the solid circles represent buyers. Corresponding to each node of the threshold
game, there is one strategic buyer, shown here in green, and one threshold buyer, shown in brown.
Furthermore, for each node of the threshold game, there are three neighbour goods, shown in red,
and one reciprocal good, shown in blue. The lines represent non-zero bids.

to 𝜃𝑇(𝑖)𝜃𝑆(𝑖)
∑
𝑗∈𝑁𝑖

(1 − 𝜃𝑆( 𝑗)) = 𝜃𝑇(𝑖)𝜃𝑆(𝑖)
∑
𝑗∈𝑁𝑖

𝑥 𝑗 . Now, if we are somehow able to ensure that the

throttling parameter of the strategy buyer 𝜃𝑆(𝑖) is inversely proportional to the throttling parameter

of the threshold buyer 𝜃𝑇(𝑖), then the payment made by the threshold buyer on all the neighbour

goods will be proportional to
∑
𝑗∈𝑁𝑖

𝑥 𝑗 , as desired. To achieve this, we define a reciprocal good

𝑅(𝑖). Finally, we set the budget of the threshold buyer 𝑇(𝑖) in such a way that comparing it to

her payment, which is proportional to
∑
𝑗∈𝑁𝑖

𝑥 𝑗 , is tantamount to making a comparison between∑
𝑗∈𝑁𝑖

𝑥 𝑗 and 0.5. The challenging part of the reduction lies in setting up the bids and budgets in a

way that ensures that this comparison leads to an enforcement of the equilibrium condition of the

threshold game.

With this high level overview of the reduction in place, we move on to the rigorous construction

of the throttling game IG from G. First, IG contains the following set of goods:

• For each 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑁𝑖, there is a neighbor good 𝐺(𝑖, 𝑗).

• For each 𝑖 ∈ [𝑛], there is a reciprocal good 𝑅(𝑖).

Next, setting two constants 𝑀 and 𝛿 as 𝑀 = 160/𝛿 and 𝛿 = min{𝜖/(3 + 𝜖), 𝜖/2, 1/4}, the throttling
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game IG has the following set of buyers:

• For each 𝑖 ∈ [𝑛], there is a threshold buyer 𝑇(𝑖) who has budget 1/2 and has non-zero bids

only on the following goods: 𝑏(𝑇(𝑖), 𝐺(𝑖, 𝑗)) = 5 for all 𝑗 ∈ 𝑁𝑖; and 𝑏(𝑇(𝑖), 𝑅(𝑖)) = 𝑀 |𝑂𝑖 |.

• For each 𝑖 ∈ [𝑛], there is a strategy buyer 𝑆(𝑖) who has budget 𝑀 |𝑂𝑖 |/2 and has non-zero

bids only on the following goods: 𝑏(𝑆(𝑖), 𝑅(𝑖)) = 𝑀 |𝑂𝑖 |+1; 𝑏(𝑆(𝑖), 𝐺(𝑖, 𝑗)) = 4 for all

𝑗 ∈ 𝑁𝑖; and 𝑏(𝑆(𝑖), 𝐺( 𝑗 , 𝑖)) = 6 for all 𝑗 ∈ 𝑂𝑖.

It is clear that IG can be constructed from G in polynomial time, and the number of buyers with

non-zero bids for each good is at most three. Let 𝜃 be any 𝛿-approximate throttling equilibrium of

IG and use it to define (𝑥𝑖 : 𝑖 ∈ [𝑛]) ∈ [0, 1]𝑛 as follows:

𝑥𝑖 = min {2(1 − 𝜃𝑆(𝑖)), 1}, for all 𝑖 ∈ [𝑛]. (6.2)

To complete the reduction, we will show that (𝑥𝑖 : 𝑖 ∈ [𝑛]) is an 𝜖-approximate equilibrium of the

threshold game G. Since we are considering a particular 𝜃, we will suppress the dependence on

𝜃 of the payment made by buyer 𝐵 on good 𝐺 and simply denote it by 𝑝(𝐵, 𝐺). The next lemma

notes the payment terms of buyers in IG .

Lemma 30. For all 𝑖 ∈ [𝑛], we have

1. 𝑝(𝑇(𝑖), 𝐺(𝑖, 𝑗)) =
(
1 − 𝜃𝑆( 𝑗)

)
𝜃𝑇(𝑖)𝜃𝑆(𝑖)4, for all 𝑗 ∈ 𝑁𝑖; and 𝑝(𝑇(𝑖), 𝑅(𝑖)) = 0.

2. 𝑝(𝑆(𝑖), 𝑅(𝑖)) = 𝜃𝑆(𝑖)𝜃𝑇(𝑖)𝑀 |𝑂𝑖 |; 𝑝(𝑆(𝑖), 𝐺(𝑖, 𝑗)) = 0, for all 𝑗 ∈ 𝑁𝑖; and

𝑝(𝑆(𝑖), 𝐺( 𝑗 , 𝑖)) = 𝜃𝑆(𝑖)
[
𝜃𝑇( 𝑗)5 + (1 − 𝜃𝑇( 𝑗))𝜃𝑆( 𝑗)4

]
, for all 𝑗 ∈ 𝑂(𝑖).

In the next lemma, we bound the total payment made by strategy buyer 𝑆(𝑖) on the neighbor

goods and provide lower bounds on the throttling parameters:
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Lemma 31. For all 𝑖 ∈ [𝑛], we have 𝜃𝑆(𝑖) ≥ (1 − 2𝛿)/2, 𝜃𝑇(𝑖) ≥ 1/32, and the total payment of 𝑆(𝑖)

on the neighbor goods satisfies:

|𝑂𝑖 |𝜃𝑆(𝑖) ≤
∑︁
𝑗∈𝑁𝑖

𝑝(𝑆(𝑖), 𝐺(𝑖, 𝑗)) +
∑︁
𝑗∈𝑂𝑖

𝑝(𝑆(𝑖), 𝐺( 𝑗 , 𝑖)) ≤ 5|𝑂𝑖 |𝜃𝑆(𝑖)

Proof. For 𝑖 ∈ [𝑛], using Lemma 30, we get

∑︁
𝑗∈𝑁𝑖

𝑝(𝑆(𝑖), 𝐺(𝑖, 𝑗)) +
∑︁
𝑗∈𝑂𝑖

𝑝(𝑆(𝑖), 𝐺( 𝑗 , 𝑖)) =
∑︁
𝑗∈𝑂𝑖

𝜃𝑆(𝑖)
[
𝜃𝑇( 𝑗)5 + (1 − 𝜃𝑇( 𝑗))𝜃𝑆( 𝑗)4

]
≤ 5|𝑂𝑖 |𝜃𝑆(𝑖).

Suppose 𝜃𝑆(𝑖) < (1 − 2𝛿)/2 for some 𝑖 ∈ [𝑛]. Then, the total payment made by 𝑆(𝑖) is at most

𝜃𝑆(𝑖)𝜃𝑇(𝑖)𝑀 |𝑂𝑖 |+5|𝑂𝑖 |𝜃𝑆(𝑖) <
(1 − 2𝛿)𝑀 |𝑂𝑖 |

2
+ 5|𝑂𝑖 |< (1 − 𝛿) · 𝑀 |𝑂𝑖 |

2

using 𝑀 > 10/𝛿 by our choice of 𝑀 . This contradicts the definition of 𝛿-approximate throttling

equilibrium because 𝑆(𝑖) has a budget of 𝑀 |𝑂𝑖 |/2. Therefore, we have 𝜃𝑆(𝑖) ≥ (1 − 2𝛿)/2 and in

particular, 𝜃𝑆(𝑖) ≥ 1/4 for all 𝑖 ∈ [𝑛] using 𝛿 ≤ 1/4. Hence,

∑︁
𝑗∈𝑁𝑖

𝑝(𝑆(𝑖), 𝐺(𝑖, 𝑗)) +
∑︁
𝑗∈𝑂𝑖

𝑝(𝑆(𝑖), 𝐺( 𝑗 , 𝑖)) =
∑︁
𝑗∈𝑂𝑖

𝜃𝑆(𝑖)
[
𝜃𝑇( 𝑗)5 + (1 − 𝜃𝑇( 𝑗))𝜃𝑆( 𝑗)4

]
>

∑︁
𝑗∈𝑂𝑖

𝜃𝑆(𝑖)
[
𝜃𝑇( 𝑗)𝜃𝑆( 𝑗)4 + (1 − 𝜃𝑇( 𝑗))𝜃𝑆( 𝑗)4

]
= 4𝜃𝑆(𝑖) ·

∑︁
𝑗∈𝑂𝑖

𝜃𝑆( 𝑗) ≥ |𝑂𝑖 |𝜃𝑆(𝑖).

Suppose, 𝜃𝑇(𝑖) < 1/32. By Lemma 30 the total payment of threshold buyer 𝑇(𝑖) is at most

∑︁
𝑗∈𝑁𝑖

4𝜃𝑇(𝑖) ≤ 12𝜃𝑇(𝑖) <
3
8
≤ 1 − 𝛿

2

using |𝑁𝑖 |≤ 3 and 𝛿 ≥ 1/4. Hence, we have obtained a contradiction with the definition of 𝛿-

approximate throttling equilibria. Therefore, 𝜃𝑇(𝑖) ≥ 1/32. □

We are now ready to complete the reduction.
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Lemma 32. (𝑥𝑖 : 𝑖 ∈ [𝑛]), as defined in (6.2), is an 𝜖-approximate equilibrium of the threshold

game G.

Proof. Fix an 𝑖 ∈ [𝑛]. First consider the case when
∑
𝑗∈𝑁𝑖

𝑥 𝑗 > 0.5 + 𝜖 . Assume for a contradiction

that 𝑥𝑖 > 𝜖 . Then, 𝜃(𝑆(𝑖)) < 1 − (𝜖/2) ≤ 1 − 𝛿 using 𝛿 ≤ 𝜖/2. By the definition of 𝛿-approximate

throttling equilibrium, the total payment of threshold buyer 𝑆(𝑖) is at least (1 − 𝛿)𝑀 |𝑂𝑖 |/2. Com-

bining this observation with Lemma 30 and Lemma 31, we get

𝜃𝑆(𝑖)
[
𝜃𝑇(𝑖)𝑀 |𝑂𝑖 |+5|𝑂𝑖 |

]
≥ (1 − 𝛿) · 𝑀 |𝑂𝑖 |

2

and thus (using 𝜃𝑇(𝑖) ≥ 1/32 from Lemma 31 and our choice of 𝑀 = 160/𝛿),

𝜃𝑆(𝑖) ≥
1 − 𝛿

2𝜃𝑇(𝑖) + (10/𝑀)
≥ 1

2𝜃𝑇(𝑖)
· 1 − 𝛿

1 + 𝛿
=⇒ 𝜃𝑇(𝑖)𝜃𝑆(𝑖) ≥

1
2(1 + 2𝜖)

using 𝛿 ≤ 𝜖/2 and 𝜖 < 1. Moreover, note that
∑
𝑗∈𝑁𝑖

𝑥 𝑗 > 0.5 + 𝜖 implies

∑︁
𝑗∈𝑁𝑖

2
(
1 − 𝜃𝑆( 𝑗)

)
> (1 + 2𝜖)/2

Combining the above statements allows us to bound the total payment of buyer 𝑇(𝑖):

∑︁
𝑗∈𝑁𝑖

(
1 − 𝜃𝑆( 𝑗)

)
𝜃𝑇(𝑖)𝜃𝑆(𝑖)4 ≥

4
2(1 + 2𝜖)

·
∑︁
𝑗∈𝑁𝑖

(
1 − 𝜃𝑆( 𝑗)

)
>

1
2
.

This yields a contradiction because 𝑇(𝑖) has budget 1/2. Hence 𝑥𝑖 ≤ 𝜖 when
∑
𝑗∈𝑁𝑖

𝑥 𝑗 > 0.5 + 𝜖 .

Next consider the case of
∑
𝑗∈𝑁𝑖

𝑥 𝑗 < 0.5 − 𝜖 . The budget constraint of 𝑆(𝑖) and Lemma 31 yield

𝜃𝑆(𝑖)
[
𝜃𝑇(𝑖)𝑀 |𝑂𝑖 |+|𝑂𝑖 |

]
≤ 𝑀 |𝑂𝑖 |

2

which implies that

𝜃𝑆(𝑖)
[
𝜃𝑇(𝑖)𝑀 |𝑂𝑖 |+𝜃𝑇(𝑖) |𝑂𝑖 |

]
≤ 𝑀 |𝑂𝑖 |

2
=⇒ 𝜃𝑇(𝑖)𝜃𝑆(𝑖) ≤

1
2(1 + (1/𝑀))

<
1
2
. (6.3)
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By Lemma 31, we have 𝜃𝑆( 𝑗) ≥ (1 − 2𝛿)/2 and thus, 2(1 − 𝜃𝑆( 𝑗)) ≤ 1 + 2𝛿. Multiplying both sides

by (1 − 2𝛿) yields 2(1 − 𝜃𝑆( 𝑗))(1 − 2𝛿) ≤ 1 − 4𝛿2 < 1. In other words, we have

2(1 − 𝜃𝑆( 𝑗))(1 − 2𝛿) < min{2(1 − 𝜃𝑆( 𝑗)), 1} = 𝑥 𝑗 (6.4)

for every 𝑗 ∈ [𝑛]. This together with
∑
𝑗∈𝑁𝑖

𝑥 𝑗 < 0.5 − 𝜖 implies

(1 − 2𝛿)
∑︁
𝑗∈𝑁𝑖

2
(
1 − 𝜃𝑆( 𝑗)

)
< (1 − 2𝜖)/2.

Therefore, we get that the total payment of 𝑇(𝑖) satisfies the following bound

∑︁
𝑗∈𝑁𝑖

(
1 − 𝜃𝑆( 𝑗)

)
𝜃𝑇(𝑖)𝜃𝑆(𝑖)4 <

∑︁
𝑗∈𝑁𝑖

2
(
1 − 𝜃𝑆( 𝑗)

)
<

1 − 2𝜖
2(1 − 2𝛿)

≤ (1 − 𝛿) · 1
2

using 𝛿 ≤ 𝜖/2. As a consequence of the definition of 𝛿-approximate throttling equilibria, we have

that 𝜃𝑇(𝑖) ≥ 1 − 𝛿. Finally, using (6.3) and (6.4), we have

𝑥𝑖 > 2(1 − 𝜃𝑆(𝑖))(1 − 2𝛿) ≥ 2
(
1 − 1

2𝜃𝑇(𝑖)

)
(1 − 2𝛿) ≥ (1 − 2𝛿)2

1 − 𝛿 >
1 − 4𝛿
1 − 𝛿 ≥ 1 − 𝜖,

where the last inequality follows from 𝛿 ≤ 𝜖/(3 + 𝜖). □

This completes the reduction, and thereby the proof of Theorem 18, because we have shown

that for any 𝛿-approximate throttling equilibrium of the throttling game IG , the strategy (𝑥𝑖)𝑖 is an

𝜖-approximate equilibrium of the threshold game G.

PPAD Membership of Approximate Second-Price Throttling Equilibria Next, we show that

the problem of computing a 𝛿-approximate throttling equilibrium belongs to PPAD by showing a

reduction to BROUWER: the problem of computing an approximate fixed point of a Lipschitz con-

tinuous function from a 𝑛-dimensional unit cube to itself, which known to be in PPAD [CD06]. Its

proof is motivated by the argument for existence of exact throttling equilibria given in Theorem 17

and can be found in Appendix E.2.1
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Theorem 20. The problem of computing an approximate throttling equilibrium is in PPAD.

6.3.3 NP-hardness of Revenue Maximization under Throttling

To further strengthen our hardness result, next we establish the NP-hardness of computing the

revenue-maximizing approximate throttling equilibrium. With revenue being one of the primary

concerns of advertising platforms, this result provides further evidence of the computational dif-

ficulties which plague throttling equilibria in second-price auctions. We begin by defining the

decision version of the revenue-maximization problem.

Definition 16 (REV). Given a throttling game 𝐺 and target revenue 𝑅 as input, decide if there

exists a 𝛿-approximate throttling equilibrium of 𝐺, for any 𝛿 ∈ [0, 1), with revenue greater than or

equal to 𝑅.

Note that we allow for arbitrarily bad approximations to the throttling equilibrium by allowing

𝛿 to be any number in [0, 1). Theorem 21 states the problem of finding the revenue maximizing

approximate throttling equilibrium is NP-hard. Its based on a reduction from 3-SAT to REV and

has been relegated to Appendix E.2.2.

Theorem 21. REV is NP-hard.

6.3.4 An Algorithm for Second-Price Throttling Equilibria with Two Buyers Per Good

Next, we contrast the hardness results of the previous subsection with an algorithm for the case

when each good receives at most two non-zero bids. Since goods with only one positive bid never

result in a payment, without loss of generality, we can assume that every good has exactly two

buyers with positive bids. More precisely, in this subsection, we will assume that |{𝑖 ∈ [𝑛] | 𝑏𝑖 𝑗 >

0}|= 2 for all 𝑗 ∈ [𝑚]. This special case demarcates the boundary of tractability for computing

throttling equilibria in second-price auctions: Our PPAD-hardness result (Theorem 18) holds for

the slightly more general case of each good receiving at most three positive bids. We begin by

describing the algorithm (Algorithm 7).
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Algorithm 7: Algorithm for the Two Buyer Case

Input: Throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
and parameter 𝛾 > 0

Initialize: 𝜃𝑖 = min{𝐵𝑖/(2
∑
𝑗 𝑏𝑖 𝑗 ), 1} for all 𝑖 ∈ [𝑛]

While there exists a buyer 𝑖 ∈ [𝑛] such that 𝜃𝑖 < 1 − 𝛾 and
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛾)3𝐵𝑖:

1. For all 𝑖 ∈ [𝑛] such that 𝜃𝑖 < 1 − 𝛾 and
∑
𝑗 𝑝(𝜃)𝑖 𝑗 < (1 − 𝛾)2𝐵𝑖, set 𝜃𝑖 ← 𝜃𝑖/(1 − 𝛾)

2. For all 𝑖 ∈ [𝑛] such that
∑
𝑗 𝑝(𝜃)𝑖 𝑗 > 𝐵𝑖, set 𝜃𝑖 ← (1 − 𝛾)𝜃𝑖

Return: 𝜃

The following theorem, whose proof can be found in Appendix E.2.3, establishes the correct-

ness and polynomial runtime of Algorithm 7.

Theorem 22. Algorithm 7 returns a (1 − 3𝛾)-approximate throttling equilibrium in time which is

polynomial in the size of the instance and 1/𝛾.

6.4 Comparing Pacing and Throttling

In this section, we compare two of the most popular budget management strategies: multiplica-

tive pacing and throttling. First, we restate the definition of pacing equilibrium, as it appears in

[Con+18; Con+19]. Under pacing, each buyer 𝑖 has a pacing parameter 𝛼𝑖 and, she bids 𝛼𝑖𝑏𝑖 𝑗 on

good 𝑗 . Let 𝑝 𝑗 (𝛼) denote the price on good 𝑗 when all of the buyers use pacing, i.e., 𝑝 𝑗 (𝛼) is

the highest (second-highest) element among {𝛼𝑖𝑣𝑖 𝑗 }𝑖 for first-price (second-price) auctions. Then,

a tuple ((𝛼𝑖), (𝑥𝑖 𝑗 )) of pacing parameters and allocations 𝑥𝑖 𝑗 is called a pacing equilibrium if the

following hold:

(a) Only buyers with the highest bid win the good: 𝑥𝑖 𝑗 > 0 implies 𝛼𝑖𝑣𝑖 𝑗 = max𝑖 𝛼𝑖𝑏𝑖 𝑗 .

(b) Full allocation of each good with a positive bid: max𝑖 𝛼𝑖𝑏𝑖 𝑗 > 0 implies
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1.

(c) Budgets are satisfied:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) ≤ 𝐵𝑖.

(d) No unnecessary pacing:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗 𝑝 𝑗 (𝛼) < 𝐵𝑖 implies 𝛼𝑖 = 1.
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Comparing Pacing and Throttling in First-Price Auctions We begin with a comparison of

pacing equilibria and throttling equilibria for first-price auctions. In [Con+19], the authors show

that a unique pacing equilibrium always exists in first-price auctions and characterize it as the

largest element in the collection of all budget-feasible vectors of pacing parameters. In Theo-

rem 15, we show the analogous result for throttling using similar techniques. However, unlike

pacing equilibrium, which is known to be rational [Con+19], there exist throttling games where

the throttling equilibrium is irrational as we demonstrate through Example 10. Furthermore, in

[Bor+07], the authors develop tâtonnement-style dynamics similar to those described in Algo-

rithm 6, which converge to an approximate pacing equilibrium in polynomial time. In combina-

tion with Theorem 16, this provides evidence supporting the tractability of budget management for

first-price auctions.

The uniqueness of pacing equilibrium and throttling equilibrium in first-price auctions is con-

ducive to comparison, which we carry out for revenue. More specifically, in Theorem 23, we show

that the revenue under the pacing equilibrium and the throttling equilibrium are always within a

multiplicative factor of 2 of each other. Let REV(PE) and REV(TE) denote the revenue under the

unique pacing equilibrium and the unique throttling equilibrium respectively.

Theorem 23. For any throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
, the revenue from the pacing equilibrium

and the revenue from the throttling equilibrium are always within a factor of 2 of each other, i.e.,

REV(PE) ≤ 2 × REV(TE) and REV(TE) ≤ 2 × REV(PE).

Proof. Consider a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
. Let 𝜃 = (𝜃𝑖)𝑖 be the unique throttling equilib-

rium (TE) and 𝛼 = (𝛼𝑖)𝑖 be the unique pacing equilibrium (PE) for this game. We will use 𝑝 𝑗 (𝜃)

and 𝑝 𝑗 (𝛼) to denote the (expected) payment made to the seller on good 𝑗 under the TE and PE

respectively. Then, REV(TE) = ∑
𝑗 𝑝 𝑗 (𝜃) and REV(PE) = ∑

𝑗 𝑝 𝑗 (𝛼).

First, we show that REV(PE) ≤ 2 × REV(TE). Let 𝑁 B {𝑖 ∈ [𝑛] | 𝜃𝑖 = 1} be the set of buyers

who are not budget constrained under the TE. Moreover, define

𝑀 B { 𝑗 ∈ [𝑚] | ∃ 𝑖 ∈ 𝑁 such that 𝑖 wins a non-zero fraction of 𝑗 under the PE 𝛼}
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Note that, since 𝜃𝑖 = 1 and 𝛼𝑖 ≤ 1 for all 𝑖 ∈ 𝑁 , we get that the TE yields a higher revenue

for the seller on all goods in the set 𝑀 , i.e., 𝑝 𝑗 (𝜃) ≥ 𝑝 𝑗 (𝜃) for all 𝑗 ∈ 𝑁 . Therefore, REV(TE)

≥ ∑
𝑗∈𝑀 𝑝 𝑗 (𝜃) ≥ ∑

𝑗∈𝑀 𝑝 𝑗 (𝛼). Furthermore, the definition of throttling equilibrium implies that

every buyer 𝑖 /∈ 𝑁 spends her entire budget 𝐵𝑖 under the TE. Hence, by our choice of 𝑀 , we

get
∑
𝑗 /∈𝑀 𝑝 𝑗 (𝛼) ≤ ∑

𝑖 /∈𝑁 𝐵𝑖 ≤ REV(TE). Combining the two statements yields REV(PE) ≤ 2 ×

REV(TE), as desired.

Next, we complete the proof by showing that REV(TE) ≤ 2×REV(PE). Let 𝑆 = {𝑖 ∈ [𝑛] | 𝛼𝑖 =

1} be the set of buyers who are not budget constrained under the PE. Note that, for all 𝑖 ∈ 𝑆 and

𝑗 ∈ [𝑚], buyer 𝑖 bids 𝑏𝑖 𝑗 under the PE, which implies 𝑝 𝑗 (𝛼) ≥ max𝑖∈𝑆 𝑏𝑖 𝑗 for all goods 𝑗 ∈ [𝑚].

Therefore, for any good 𝑗 ∈ [𝑚], the total payment made by buyers in the set 𝑆 under the TE is

at most 𝑝 𝑗 (𝛼). As a consequence, the total payment made by buyers in 𝑆 under the TE is at most

REV(PE). Furthermore, the buyers not in 𝑆 completely spend their budget under the TE so the

total payment made by buyers not in 𝑆 under the TE is also at most REV(PE). Hence, we have the

desired inequality REV(TE) ≤ 2 × REV(PE). □

In Appendix E.3, we give examples to demonstrate that REV(TE) can be arbitrarily close

to 2 × REV(PE), and REV(PE) can be arbitrarily close to (4/3) × REV(TE). In other words,

for Theorem 23, the inequality REV(TE) ≤ 2 × REV(PE) is tight and the inequality REV(PE)

≤ 2 × REV(TE) is not too loose.

Comparing Pacing and Throttling for Second-Price Auctions This subsection is devoted to

the comparison of pacing equilibria and throttling equilibria in second-price auctions. We begin

by noting that, in stark contrast to first-price auctions, there could be infinitely many throttling

equilibria for second-price auctions as the following example demonstrates.

Example 4. There are 2 goods and 2 buyers. The bids are given by 𝑏11 = 𝑏22 = 2, 𝑏12 = 𝑏21 = 1,

and the budgets are given by 𝐵1 = 𝐵2 = 1/2. Then, it is straightforward to check that any pair of

throttling parameters 𝜃1, 𝜃2 ∈ [1/2, 1] such that 𝜃1𝜃2 = 1/2 forms a throttling equilibrium.
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[Con+18] demonstrate that multiplicity (although only finitely-many different equilibria) also

shows up for pacing equilibria in second-price auctions, which in combination with the multiplic-

ity of throttling equilibria bodes unfavorably for potential comparisons of revenue. The similari-

ties do not end with multiplicity: the problems of computing an approximate pacing equilibrium

and computing an approximate throttling equilibrium are both PPAD-complete (Chapter 5). As

a consequence, we get that, unlike first-price auctions, no dynamics can converge to an approxi-

mate equilibrium in polynomial time for second-price auctions under either budget-management

approach (assuming PPAD-hard problems cannot be solved in polynomial time). Furthermore,

finding the revenue maximizing throttling equilibrium and finding the revenue maximizing pacing

equilibrium are both NP-hard problems [Con+18]. However, unlike throttling equilibria, a rational

pacing equilibrium always exists (Chapter 5).

6.5 Price of Anarchy

In this section, we study the efficiency of throttling equilibria in first-price and second-price

auctions. We will use liquid welfare [DL14] to measure efficiency. It is an alternative to social

welfare which is more suitable for settings with budget constraints, and it reduces to social welfare

when budgets are infinite.

Definition 17. For an allocation 𝑦 = {𝑦𝑖 𝑗 }, where 𝑦𝑖 𝑗 ∈ [0, 1] denotes the probability of allocating

good 𝑗 to buyer 𝑖, its liquid welfare LW(𝑥) is defined as

LW(𝑦) =
𝑛∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
Remark 8. Liquid welfare is traditionally defined as the amount of revenue that can be extracted

from budget-constrained buyers with full knowledge of their values. If buyer 𝑖 was assumed to have

value 𝑣𝑖 𝑗 for good 𝑗 , this is given by

𝑛∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑣𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
.
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However, since our model does not assume a valuation structure, we define LW(𝑦) to capture the

amount of revenue that can be extracted from budget-constrained buyers with full knowledge of

their bids if no buyer could be charged more than her bid for any good. It reverts to the traditional

definition when 𝑏𝑖 𝑗 = 𝑣𝑖 𝑗 .

Let 𝑦(𝜃) denote the allocation when the buyers use the throttling parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛),

and let Θ∗ be the set of all throttling equilibria. Price of Anarchy [KP99], which we define next, is

the ratio of the worst-case liquid welfare of throttling equilibria to the best-possible liquid welfare

that can be attained by any allocation. It measures the worst-case loss in efficiency incurred due

the strategic behavior of agents when compared to the optimal outcome that could be achieved by

a central planner.

Definition 18. The Price of Anarchy (PoA) of throttling equilibria for liquid welfare is given by

PoA =
sup𝑦∈(Δ𝑛)𝑚 𝐿𝑊(𝑦)
inf𝜃∈Θ∗ LW(𝑦(𝜃))

We begin by establishing an upper bound on the Price of Anarchy for both first-price and

second-price auctions. Its proof critically leverages the no-unnecessary-throttling condition of

throttling equilibria, and is inspired by the Price of Anarchy result of Chapter 4 for pacing equilib-

ria.

Theorem 24. For both first-price and second-price auctions, we have PoA ≤ 2.

Next, we show that the upper bound on the PoA established in Theorem 24 is tight for both

first-price and second-price auctions. We do so by demonstrating particular instances for which

the bound is tight, starting with the second-price auction format.

Example 5. Consider a second-price auction with 𝑚 + 1 buyers and 𝑚 goods for some 𝑚 ∈ Z+.

Each of the first 𝑚 buyers bid 1 for the 𝑚 goods respectively and have a budget of ∞, i.e., for
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𝑖 ∈ [𝑚], we have

𝑏𝑖 𝑗 =


1 if 𝑖 = 𝑗

0 if 𝑖 ̸= 𝑗

,

and 𝐵𝑖 = ∞ (any 𝐵 > 2𝑚 would suffice). The last buyer has bid 𝑏𝑚+1, 𝑗 = 𝑚 for each of the goods

𝑗 ∈ [𝑚] and has a budget of 𝐵𝑚+1 = 𝑚 + 𝜖 for some small 𝜖 > 0. In any throttling equilibrium

𝜃 ∈ Θ, we have 𝜃𝑖 = 1 for all 𝑖 ∈ [𝑚] because of the no-unnecessary-throttling condition. Since

the sum of all the second-highest bids is 𝑚 and buyer 𝑚 + 1 has the highest bid for every good, she

cannot possibly spend her entire budget of 𝐵𝑚+1 = 𝑚 + 𝜖 and we must also have 𝜃𝑚+1 = 1 by the

no-unnecessary throttling condition. Therefore, there is a unique throttling equilibrium 𝜃 such that

𝜃𝑖 = 1 for all 𝑖 ∈ [𝑚 + 1] and it has liquid welfare given by

LW(𝑦(𝜃)) =

(
𝑚∑︁
𝑖=1

min {𝑦𝑖𝑖(𝜃), 𝐵𝑖}
)

+ min

{
𝑚∑︁
𝑗=1
𝑚 · 𝑦𝑚+1, 𝑗 (𝜃), 𝑚 + 𝜖

}
= 𝑚 + 𝜖

because 𝑦𝑚+1, 𝑗 (𝜃) = 1 for all 𝑗 ∈ [𝑚]. On the other hand, consider the allocation 𝑦 such that

𝑦𝑖𝑖 = 1 for all 𝑖 ∈ [𝑚 − 1] and 𝑦𝑚+1,𝑚 = 1. It has liquid welfare given by

LW(𝑦) =

(
𝑚−1∑︁
𝑖=1

min {𝑦𝑖𝑖, 𝐵𝑖}
)

+ min
{
𝑚 · 𝑦𝑚+1,𝑚, 𝑚 + 𝜖

}
= 𝑚 − 1 + 𝑚 = 2𝑚 − 1 .

Hence, the PoA is at least (2𝑚 − 1)/(𝑚 + 𝜖). As 𝑚 and 𝜖 were arbitrary, we can consider the limit

when 𝑚 →∞ and 𝜖 → 0, which yields the required lower bound of PoA ≥ 2.

Observe that in the previous example none of the buyers were throttled (𝜃𝑖 = 1), which indicates

that the lower bound is driven more by the second-price auction format than the specific budget

management method, and applies to other methods like pacing. Next, we show that our bound is

tight for first-price auctions.

Example 6. Consider a first-price auction with 𝑚 + 1 buyers and 𝑚 + 1 goods, for some 𝑚 ∈ Z+.

Each of the first 𝑚 buyers bid 1 for the first 𝑚 goods respectively and bid 𝑚 on good 𝑚 + 1, and
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have a budget of 1, i.e., for each 𝑖 ∈ [𝑚], we have

𝑏𝑖 𝑗 =



1 if 𝑗 = 𝑖

𝑚 if 𝑗 = 𝑚 + 1

0 otherwise

,

and 𝐵𝑖 = 1. Moreover, buyer 𝑚 + 1 has value 𝑏𝑚+1,𝑚+1 = 𝑚 for the (𝑚 + 1)-th good and 𝑏𝑚+1, 𝑗 = 0

for all 𝑗 ∈ [𝑚], with 𝐵𝑚+1 = ∞.

Consider a throttling equilibrium 𝜃 ∈ Θ. We begin by showing that 𝜃𝑖 < 1 for all 𝑖 ∈ [𝑚]. For

contradiction, suppose not. Let 𝑖 be the smallest index such that 𝜃𝑖 = 1. Then, buyer 𝑖 spends 1 on

good 𝑖 and spends 𝑚 ·∏𝑖−1
𝑘=1(1−𝜃𝑘 ) > 0 on good 𝑚+1 (we use the lexicographic tie-breaking rule),

which makes her total expenditure strictly greater than her budget of 𝐵𝑖 = 1, thereby yielding

the required contradiction. Hence, 𝜃𝑖 < 1 for all buyers 𝑖 ∈ [𝑚], and consequently, the no-

unnecessary-throttling condition implies that their total expected expenditure is exactly 1, i.e., the

following equivalent statements hold

𝜃𝑖 · 1 +

(
𝑖−1∏
𝑘=1

(1 − 𝜃𝑘 )
)
· 𝜃𝑖 · 𝑚 = 1 ⇐⇒ 𝜃𝑖 =

1

1 +
(∏𝑖−1

𝑘=1(1 − 𝜃𝑘 )
)
· 𝑚

. (6.5)

Moreover, since their expenditure is 𝐵𝑖 = 1, that is also their contribution towards the liquid

welfare. Let 𝑔(𝑖) B ∏𝑖
𝑘=1(1 − 𝜃𝑘 ) denote the probability that the first 𝑖 buyers do not participate.

Next, observe that 𝜃𝑚+1 = 1 because of the no-unnecessary-throttling condition and 𝐵𝑚+1 = ∞.

Therefore, due to the lexicographic tie-breaking rule, buyer 𝑚 wins good 𝑚 + 1 with probability

𝑔(𝑚) = ∏𝑚
𝑘=1(1 − 𝜃𝑘 ). Hence, the liquid welfare of 𝜃 is given by

LW(𝑦(𝜃)) = 𝑚 · 1 + 𝑔(𝑚) · 𝑚

On the other hand, the allocation 𝑦 which awards good 𝑖 to buyer 𝑖 for all 𝑖 ∈ [𝑚 + 1] has LW(𝑦) =
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𝑚 + 𝑚 = 2𝑚. Consequently, we have

PoA ≥ 2𝑚
𝑚 + 𝑔(𝑚) · 𝑚 =

2
1 + 𝑔(𝑚)

.

To show PoA ≥ 2, it suffices to show lim𝑚→∞ 𝑔(𝑚) = 0, which is what we do next. First,

observe that (6.5) implies the following recursion for 𝑔(·):

𝑔(𝑖) = (1 − 𝜃𝑖)𝑔(𝑖 − 1) =

(∏𝑖−1
𝑘=1(1 − 𝜃𝑘 )

)
· 𝑚

1 +
(∏𝑖−1

𝑘=1(1 − 𝜃𝑘 )
)
· 𝑚
· 𝑔(𝑖 − 1) =

𝑔(𝑖 − 1)2 · 𝑚
1 + 𝑔(𝑖 − 1) · 𝑚 .

We will inductively show that 𝑔(𝑖) ≤ 1 − 𝑖/(𝑚 +
√
𝑚). Set 𝑏 = 1/(𝑚 +

√
𝑚) The base case 𝑖 = 1

follows because 𝜃1 = 1/(1 + 𝑚) (see (6.5)). Suppose 𝑔(𝑖 − 1) ≤ 1 − (𝑖 − 1)/(𝑚 +
√
𝑚) for some

𝑖 ∈ [𝑚]. Then, we have

𝑔(𝑖) =
𝑔(𝑖 − 1)2 · 𝑚

1 + 𝑔(𝑖 − 1) · 𝑚 =
𝑚

1
𝑔(𝑖−1)2 + 𝑚

𝑔(𝑖−1)
≤ 𝑚

1
(1−𝑏(𝑖−1))2 + 𝑚

1−𝑏(𝑖−1)
=
𝑚 · (1 − 𝑏𝑖 + 𝑏)2

1 + 𝑚(1 − 𝑏𝑖 + 𝑏)
.

To complete the induction, it suffices to show:

𝑚 · (1 − 𝑏𝑖 + 𝑏)2

1 + 𝑚(1 − 𝑏𝑖 + 𝑏)
≤ 1 − 𝑏𝑖

⇐⇒ 𝑚(1 + 𝑏2𝑖2 + 𝑏2 − 2𝑏𝑖 + 2𝑏 − 2𝑏2𝑖) ≤ 1 − 𝑏𝑖 + 𝑚(1 + 𝑏2𝑖2 − 2𝑏𝑖 + 𝑏 − 𝑏2𝑖)

⇐⇒ 1 − 𝑏𝑖 + 𝑚(𝑏2𝑖 − 𝑏 − 𝑏2) ≥ 0

⇐⇒ 1 − 𝑚
(

1
𝑚 +
√
𝑚

+
1

(𝑚 +
√
𝑚)2

)
− 𝑖

(
1

𝑚 +
√
𝑚
− 𝑚

(𝑚 +
√
𝑚)2

)
≥ 0

⇐⇒ 1 − 𝑚
(

1
𝑚 +
√
𝑚

+
1

(𝑚 +
√
𝑚)2

)
− 𝑖

( √
𝑚

(𝑚 +
√
𝑚)2

)
≥ 0
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To see why the last inequality in the above equivalence chain holds, observe that:

1 − 𝑚
(

1
𝑚 +
√
𝑚

+
1

(𝑚 +
√
𝑚)2

)
− 𝑖

( √
𝑚

(𝑚 +
√
𝑚)2

)
≥1 − 𝑚

(
1

𝑚 +
√
𝑚

+
1

(𝑚 +
√
𝑚)2

)
− 𝑚

( √
𝑚

(𝑚 +
√
𝑚)2

)
=

(𝑚 +
√
𝑚)2 − 𝑚(𝑚 +

√
𝑚) − 𝑚 − 𝑚

√
𝑚

(𝑚 +
√
𝑚)2

=
𝑚2 + 𝑚 + 2𝑚

√
𝑚 − 𝑚2 − 𝑚

√
𝑚 − 𝑚 − 𝑚

√
𝑚

(𝑚 +
√
𝑚)2

=0

which completes the induction. Hence, 𝑔(𝑚) ≤ 1−𝑚/(𝑚+
√
𝑚) and lim𝑚→∞ 𝑔(𝑚) = 0, as required.

6.6 Conclusion

We defined the notion of a throttling equilibrium and studied its properties for both first-price

and second-price auctions. Through our analysis of computational and structural properties, we

found that throttling equilibria in first-price auctions satisfy the desirable properties of unique-

ness and polynomial-time computability. In contrast, we showed that for second-price auctions,

equilibrium multiplicity may occur, and computing a throttling equilibrium is PPAD hard. This

disparity between the two auction formats is reinforced when we compare throttling and pacing:

our results show that the properties of throttling equilibrium across the two formats have a striking

similarity to the properties of first-price versus second-price pacing equilibrium. Finally, we also

showed that the Price of Anarchy of throttling equilibria for liquid welfare is bounded above by 2

for both first-price and second-price auctions, and that this bound is tight for both auction formats.

Altogether, this provides a comprehensive analysis of the equilibria which arise from the use of

throttling as a method of budget management.

There are many interesting directions for future work, such as what happens when a combina-

tion of pacing and throttling-based buyers exist in the market, whether the combination of throttling

and pacing behaves well for second-price auctions, whether second-price throttling equilibria can
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be computed efficiently under some natural assumptions on the bids, and whether the tractability

of budget management in first-price auctions holds more generally beyond throttling and pacing.
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Appendix A: Appendix to Chapter 2

A.1 Fluid Benchmark is Stronger

Proposition 10. For any collection of request distributions {P𝑡}𝑡 , we have E{𝛾𝑡 }𝑡 [OPT({𝛾𝑡}𝑡)] ≤

FLUID({P𝑡}𝑡).

Proof. Fix any request sequence {𝛾𝑡}𝑡 and let {𝑥∗𝑡 }𝑡 be an optimal solution to the corresponding

hindsight optimization problem OPT({𝛾𝑡}𝑡). Then, 𝑥𝑡(𝛾) = 𝑥∗𝑡 for all 𝛾 ∈ S is a feasible solution of

FLUID({P𝑡}) and consequently, we have OPT({𝛾𝑡}𝑡) ≤ FLUID({P𝑡}𝑡). Since the request sequence

{𝛾𝑡}𝑡 was arbitrary, we have E{𝛾𝑡 }𝑡 [OPT({𝛾𝑡}𝑡)] ≤ FLUID({P𝑡}𝑡), as required. □

A.2 General Position

Given any collection of request distributions {P𝑡}𝑡 (which may or may not satisfy Assump-

tion 1), we can define perturbed distributions {P̂𝑡}𝑡 to capture the distribution of perturbed requests

�̂�𝑡 = ( 𝑓𝑡 , �̂�𝑡) generated using the following two step procedure: (i) Draw a request 𝛾𝑡 = ( 𝑓𝑡 , 𝑏𝑡) ac-

cording to the unperturbed distributions P𝑡 ; (ii) Add a perturbation by setting 𝑓𝑡(𝑥) = 𝑓𝑡(𝑥) + 𝜖𝑡 · 𝑥

for all 𝑥 ∈ X, where 𝜖𝑡 ∼ Unif([0, 𝑎]), and leave the consumption function unchanged �̂�𝑡(·) = 𝑏𝑡(·).

Then, {P̂𝑡}𝑡 satisfy Assumption 1 and
��FLUID({P𝑡}𝑡) − FLUID({P̂𝑡}𝑡)

�� ≤ 𝑎 · 𝑇 , where 𝑎 > 0 can

be made arbitrarily small.

A.3 Efficiently Computing the Target Sequence

In this section, we describe an efficient procedure for computing the empirical optimal dual

solution �̃� and the target sequence {𝜆𝑡}𝑡 . Consider a trace {�̃�𝑡}𝑡 and set �̃�0 = ( 𝑓0, 𝑏0) such that

𝑓0(𝑥) = 𝑏0(𝑥) = 0 for all 𝑥 ∈ X. Without loss of generality, we will assume that {�̃�𝑡}𝑡 is sorted in
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Algorithm 8: Learning the Dual from the Trace
Input: Trace {�̃�𝑡}𝑡 in general position and sorted in increasing order of coeff( 𝑓𝑡)/coeff(�̃�𝑡).
Initialize: Total payment 𝑃 = 0 and target sequence 𝜆𝑡 = 0 for all 𝑡 ∈ [𝑇].
for 𝑡 = 𝑇, . . . , 0 do

if 𝑃 + �̃�𝑡(𝑥) > 𝐵 then
Set 𝜆𝑡 ← �̃�𝑡(𝑥), and set �̃� = coeff( 𝑓𝑡)/coeff(�̃�𝑡). Break.

end
else

Update total payment 𝑃← 𝑃 + �̃�𝑡(𝑥) and set 𝜆𝑡 ← �̃�𝑡(𝑥).
end

end
return Dual variable �̃�, target sequence {𝜆𝑡}𝑡

increasing order of coeff( 𝑓𝑡)/coeff(�̃�𝑡) (assume 0/0 = 0), i.e.,

coeff( 𝑓𝑠)
coeff(�̃�𝑠)

≤ coeff( 𝑓𝑡)
coeff(�̃�𝑡)

∀ 𝑠 ≤ 𝑡 .

This can be easily achieved by maintaining a sorted array with 𝑂(log(𝑇)) insertion time or

sorting the array with 𝑂(𝑇 log(𝑇)) processing time. Moreover, since the trace {�̃�𝑡}𝑡 is in general

position by Assumption 1, all the coeff( 𝑓𝑡)/coeff(�̃�𝑡) are distinct for 𝑡 ∈ [𝑇].

Theorem 25. �̃� returned by Algorithm 8 is the smallest element in

argmin𝜇≥0 𝜇 · 𝐵 +
𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
.

Moreover, 𝜆𝑡 = 𝑏∗𝑡 (�̃�) for all 𝑡 ∈ [𝑇].

Proof. Set 𝑞(𝜇) = 𝜇 · 𝐵 + ∑𝑇
𝑡=1 max𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
. First, we show that the dual variable �̃�

is smallest element in argmin𝜇≥0 𝑞(𝜇). To do so, we consider the following two cases:

• �̃� = 0. In this case, the ‘If’ condition implies that there exists 𝑠 ∈ [𝑇] such that
∑𝑇
𝑡=𝑠 �̃�𝑡(𝑥) ≤

𝐵 and coeff( 𝑓𝑡) = 0 for all 𝑡 < 𝑠. Moreover, we have 0 ∈ argmax𝑥∈X
{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
for all 𝑡 < 𝑠 and 𝑥 ∈ argmax𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
for all 𝑡 ≥ 𝑠. Now, note that the set

of sub-gradients of the maximum of a collection of linear functions is equal to convex hull
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of gradients of all the linear functions which are binding (for example, see Chapter 5 of

[Ber09]). Therefore, 𝐵 − ∑𝑇
𝑡=𝑠 �̃�(𝑥) ∈ 𝜕𝑞(0). Since 𝐵 − ∑𝑇

𝑡=𝑠 �̃�(𝑥) ≥ 0, the definition of a

subgradient implies that 𝑞(0) ≤ 𝑞(𝜇) for all 𝜇 ≥ 0. Hence, we have shown that �̃� is the

smallest minimizer of 𝑞(·), as required.

• �̃� > 0. In this case, the ‘If’ condition implies that there exists 𝑠 ∈ [𝑇] such that
∑𝑇
𝑡=𝑠+1 �̃�𝑡(𝑥) <

𝐵,
∑𝑇
𝑡=𝑠 �̃�𝑡(𝑥) > 𝐵 and 𝑓𝑠(𝑥) − �̃� · �̃�𝑠(𝑥) = 0 for all 𝑥 ∈ X. Moreover, we have 0 ∈

argmax𝑥∈X
{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
for all 𝑡 < 𝑠, 𝑥 ∈ argmax𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
for all 𝑡 > 𝑠

and {0, 𝑥} ⊆ argmax𝑥∈X
{
𝑓𝑠(𝑥) − 𝜇 · �̃�𝑠(𝑥)

}
. Now, select a 𝜆 ∈ [0, 1] such that

𝐵 − 𝜆 · �̃�𝑠(0) + (1 − 𝜆) · �̃�𝑠(𝑥) +
𝑇∑︁

𝑡=𝑠+1
�̃�𝑡(𝑥) = 0 .

Now, note that the set of sub-gradients of the maximum of a collection of linear functions is

equal to convex hull of gradients of all the linear functions which are binding (for example,

see Chapter 5 of [Ber09]). Therefore, 0 = 𝐵 − 𝜆 · �̃�𝑠(0) + (1 − 𝜆) · �̃�𝑠(𝑥) + ∑𝑇
𝑡=𝑠+1 �̃�𝑡(𝑥) ∈

𝜕𝑞(�̃�). Consequently, the definition of a subgradient implies that 𝑞(0) ≤ 𝑞(𝜇) for all

𝜇 ≥ 0. Finally, consider any 𝜇 < �̃�. Then, 𝑓𝑠(𝑥) − 𝜇 · �̃�𝑠(𝑥) > 0, which further im-

plies {𝑥} = argmax𝑥∈X
{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
for all 𝑡 ≥ 𝑠. Therefore, for any {𝑥𝑡}𝑡 such that

𝑥𝑡 ∈ argmax𝑥∈X
{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
, we have 𝐵 − ∑𝑇

𝑡=1 �̃�𝑡(𝑥𝑡) > 0. Hence, 𝑣 > 0 for all

𝑣 ∈ 𝜕𝑞(𝜇) and consequently 𝜇 is a minimizer of 𝑞(·). Hence, we have shown that �̃� is the

smallest minimizer of 𝑞(·), as required.

Finally, we show that 𝜆𝑡 = �̃�∗𝑡 (�̃�) for all 𝑡 ∈ [𝑇]. Let 𝑠 be the value of 𝑡 at which the ‘For’

loop terminates. From the definition of �̃�, we have {𝑥} = argmax𝑥∈X
{
𝑓𝑡(𝑥) − �̃� · �̃�𝑡(𝑥)

}
for all

𝑡 > 𝑠, X = argmax𝑥∈X
{
𝑓𝑠(𝑥) − �̃� · �̃�𝑠(𝑥)

}
and {0} = argmax𝑥∈X

{
𝑓𝑡(𝑥) − �̃� · �̃�𝑡(𝑥)

}
for all 𝑡 < 𝑠.

Therefore, �̃�∗𝑡 (�̃�) = �̃�𝑡(𝑥) = 𝜆𝑡 for all 𝑡 ≥ 𝑠 and �̃�∗𝑡 (�̃�) = �̃�𝑡(0) = 𝜆𝑡 for all 𝑡 < 𝑠. □
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A.4 Missing Proofs from Section 2.2

A.4.1 Proof of Lemma 1

Proof of Lemma 1. Define 𝑞(𝜇) = 𝜇 · 𝐵 + ∑𝑇
𝑡=1 max𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
. Then, 𝑞(·) is a convex

function of 𝜇 because the maximum of a collection of linear function is convex and the sum of con-

vex function is also convex [Ber09]. Since �̃� ∈ argmin𝜇≥0 𝑞(𝜇), first-order condition of optimality

(Proposition 5.4.7 of [Ber09]) implies that one of the following statements holds:

(i) �̃� = 0 and there exists 𝑣 ∈ 𝜕𝑞(0) such that 𝑣 ≥ 0.

(ii) Zero is a sub-differential of 𝑞 at �̃�, i.e., 0 ∈ 𝜕𝑞(�̃�).

Recall that the trace {�̃�𝑡}𝑡 is assumed to be in general position with probability one. Therefore,

there is at most one time step for which argmax𝑥∈X 𝑓𝑡(𝑥)− �̃� · 𝑏𝑡(𝑥) is not unique. Let 𝑠 be that time

step. Now, note that the set of sub-gradients of the maximum of a collection of linear functions

is equal to convex hull of gradients of all the linear functions which are binding (for example, see

Chapter 5 of [Ber09]). Hence, 𝑣 ∈ 𝜕𝑞(�̃�) implies the existence of D𝑠 ∈ Δ(X) such that

Support(D𝑠) ⊆ argmax𝑥∈X 𝑓𝑠(𝑥) − �̃� · �̃�𝑠(𝑥) and 𝑣 = 𝐵 − E𝑥∼D𝑠
[�̃�𝑠(𝑥)] −

𝑇∑︁
𝑡 ̸=𝑠

�̃�∗𝑡 (�̃�) .

where 𝑥∗𝑡 (𝛾𝑡 , �̃�) is the optimal solution to max𝑥∈X 𝑓𝑡(𝑥)− �̃� · �̃�𝑡(𝑥) as described in Definition 1. Since

0 ≤ 𝑏𝑠(𝑥) ≤ �̄� for all 𝑥 ∈ X, we get �����𝐵 − 𝑣 − 𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�)

����� ≤ �̄� ,
where we have used 0 ≤ 𝑏𝑡(𝑥) ≤ �̄� for all 𝑥 ∈ X and 𝑡 ∈ [𝑇]. Therefore, statements (i) and (ii)

imply that either �̃� = 0 and �̄� + 𝐵 −∑𝑇
𝑡=1 �̃�

∗
𝑡 (�̃�) ≥ 𝑣 ≥ 0, or

��𝐵 −∑𝑇
𝑡=1 �̃�

∗
𝑡 (�̃�)

�� ≤ �̄�, as required. □
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A.4.2 Proof of Theorem 1

Proof of Theorem 1. Define the hypothesis class

F B {( 𝑓 , 𝑏) ↦→ 𝑏∗(𝜇) | 𝜇 ≥ 0} .

Let Rad(·) denote Radmacher complexity. Then, we know from PAC learning theory (for

example see Chapter 26 of [SSBD14]) that

Pr
{�̃�}𝑡∼

∏
𝑡 P̃𝑡

(
sup
𝜇≥0

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (𝜇) −
𝑇∑︁
𝑡=1
E�̂�𝑡∼P̃𝑡

[
�̂�∗𝑡 (𝜇)

] ����� ≥ 𝑟(𝑇)

)
≤ 1
𝑇2 . (A.1)

for

𝑟(𝑇) ≥ 2𝑇 · E{�̂�𝑡 }𝑡∼∏𝑡 P̃𝑡 [Rad(F ◦ {�̂�𝑡}𝑡)] + 2�̄� ·
√︁
𝑇 log(2𝑇) .

Let 𝐻({�̂�𝑡}𝑡) =
{
{�̂�∗𝑡 (𝜇)}𝑡 | 𝜇 ≥ 0

}
denote the set of all possible resource expenditure vectors

that can be generated from a trace {�̂�𝑡}𝑡 , then

E{�̂�𝑡 }𝑡∼
∏

𝑡 P̃𝑡 [Rad(F ◦ {�̂�𝑡}𝑡)] = E{�̂�𝑡 }𝑡∼∏𝑡 P̃𝑡 [Rad(𝐻({�̂�𝑡}𝑡))]

=
1
𝑇
· E{�̂�𝑡 }𝑡∼∏𝑡 P̃𝑡E®𝜎

[
sup
𝜇≥0

𝑇∑︁
𝑡=1

𝜎𝑡 · �̂�∗𝑡 (𝜇)

]
, (A.2)

where {𝜎𝑡}𝑡 are independent Radmacher random variables.

For a linear function 𝑓 : R→ R, let coeff( 𝑓 ) denote its coefficient. Moreover, let 𝑥 = max𝑥∈X 𝑥.

Then, observe that for a request 𝛾 = ( 𝑓 , 𝑏) and dual variable 𝜇 ≥ 0, we have

𝑥∗(𝛾, 𝜇) =


𝑥 if coeff( 𝑓 ) − 𝜇 · coeff(𝑏) ≥ 0 and coeff( 𝑓 ) ̸= 0

0 otherwise
.

Therefore, for any request 𝛾 = ( 𝑓 , 𝑏) with coeff( 𝑓 ) ̸= 0 and coeff(𝑏) ̸= 0, there exists a critical
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𝜇∗ = coeff( 𝑓 )/coeff(𝑏) such that

𝑏∗(𝜇) =


𝑏(𝑥) if 𝜇 ≤ 𝜇∗

0 if 𝜇 > 𝜇∗
.

For 𝛾 = ( 𝑓 , 𝑏) with coeff( 𝑓 ) = 0 or coeff(𝑏) ̸= 0, we have 𝑏∗(𝜇) = 0 for all 𝜇 ≥ 0. Consider

the trace {�̂�𝑡}𝑡 , and let 𝜇∗𝑡 be the critical dual solution for request �̂�𝑡 as defined above. Then, the

assumption that the trace is in general position (Assumption 1) implies that the critical points {𝜇∗𝑡 }𝑡

are distinct. Consequently, we get that {�̂�∗𝑡 (𝜇)}𝑡 remains constant whenever 𝜇 lies between any two

critical points. Since the total number of critical points is 𝑇 , we get that |𝐻({�̂�𝑡}𝑡)|≤ 𝑇 . Therefore,

Massart Lemma applies and we get

Rad(𝐻({�̂�𝑡}𝑡)) ≤ �̄� ·
√︂

2 log(𝑇)
𝑇

.

Combining this with (A.1) and (A.2) yields the theorem. □

A.4.3 Proof of Theorem 2

Proof of Theorem 2. By Assumption 1, the request sequence {𝛾𝑡} is in general position almost

surely. Therefore, there is at most 1 time step such that 𝑓𝑡(𝑥′𝑡) ̸= 𝑓 ∗𝑡 (�̃�), call it 𝑠. Let 𝜁𝐴 be the first

time step 𝑡 in which 𝐵𝑡+1 ≤ �̄�, i.e.,
∑𝜁𝐴
𝑡=1 𝑏

∗
𝑡 (�̃�) ≥ 𝐵 − �̄�. Then,

E [𝑅(𝐴|{𝛾𝑡}𝑡)] = E

[
𝜁𝐴∑︁
𝑡=1

𝑓𝑡(𝑥′𝑡)

]
≥ E

[
𝜁𝐴∑︁
𝑡=1

𝑓 ∗𝑡 (�̃�)

]
− | 𝑓 ∗𝑠 (�̃�) − 𝑓𝑠(𝑥′𝑠)|

≥ E
[
𝑇∑︁
𝑡=1

𝑓 ∗𝑡 (�̃�)

]
− E

[
𝑇∑︁

𝑡=𝜁𝐴+1
𝑓 ∗𝑡 (�̃�)

]
− 𝑓

≥ E
[
𝑇∑︁
𝑡=1

𝑓 ∗𝑡 (�̃�)

]
− E

[
𝜅 ·

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�)

]
− 𝑓
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≥ 𝐷(�̃� |{P𝑡}𝑡) − E
[
�̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)]
− E

[
𝜅 ·

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�)

]
− 𝑓

≥ FLUID({P𝑡}𝑡) − E
[
�̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)]
− E

[
𝜅 ·

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�)

]
− 𝑓 .

Therefore,

Regret(𝐴) ≤ E
[
𝜅 ·

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�)

]
+ E

[
�̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)]
+ 𝑓 .

In the remainder of the proof, we bound the first two terms on the RHS.

For the first term, observe that

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�) ≤
(
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)
− (𝐵 − �̄�)

=

(
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�)

)
−

(
𝐵 −

𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�)

)
+ �̄�

≤
����� 𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�)

����� + 2 · �̄� , (A.3)

where the first inequality follows from the definition of 𝜁𝐴 and the last inequality follows from

Lemma 1.

For the second term, observe that Lemma 1 implies

�̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)
= �̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�)

)
+ �̃� ·

(
𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)
≤ �̃� · �̄� + �̃� ·

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

����� .
Note that �̃� ≤ 𝜅. This is because the definition of 𝜅 implies that max𝑥∈X 𝑓 (𝑥) − 𝜇 · 𝑏(𝑥) = 0 for

all 𝛾 = ( 𝑓 , 𝑏) ∈ S and 𝜇 ≥ 𝜅. Hence,

𝜇 · 𝐵 +
𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
= 𝜇 · 𝐵 < 𝜅 · 𝐵 = 𝜅 · 𝐵 +

𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜅 · �̃�𝑡(𝑥)

}
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for all 𝜇 > 𝜅. Therefore, we get

�̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)
≤ 𝜅 · �̄� + 𝜅 ·

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

����� . (A.4)

Define 𝐺 to be the good event to be one in which the total expenditures under the trace and the

requests sequence are close:

sup
𝜇≥0

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (𝜇) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (𝜇)

����� ≤ 𝑟(𝑇) .

Then, Theorem 1 and Union Bound imply that Pr(𝐺𝑐) ≤ 2/𝑇2 and Pr(𝐺) ≥ 1/2/𝑇2. Finally,

we can put it all together to get the required bound:

Regret(𝐴) ≤ E
[
𝜅 ·

𝑇∑︁
𝑡=𝜁𝐴+1

𝑏∗𝑡 (�̃�)

]
+ E

[
�̃� ·

(
𝐵 −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

)]
+ 𝑓

≤ E
[
𝜅 ·

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

�����
]

+ 2𝜅�̄� + E

[
𝜅 ·

����� 𝑇∑︁
𝑡=1

�̃�∗𝑡 (�̃�) −
𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

�����
]

+ 𝜅�̄� + 𝜅�̄�

= 2𝜅 · E
[����� 𝑇∑︁

𝑡=1
�̃�∗𝑡 (�̃�) −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

����� ���� 𝐺
]

Pr(𝐺) + 2𝜅 · E
[����� 𝑇∑︁

𝑡=1
�̃�∗𝑡 (�̃�) −

𝑇∑︁
𝑡=1

𝑏∗𝑡 (�̃�)

����� ���� 𝐺𝑐

]
Pr(𝐺𝑐) + 4𝜅�̄�

≤ 2𝜅 · 𝑟(𝑇) + 2𝜅 · 2𝑇�̄� · 2
𝑇2 + 4𝜅�̄�

≤ 12𝜅�̄� + 2𝜅𝑟(𝑇) . □

A.5 Missing Proofs from Section 2.3

A.5.1 Proof of Theorem 3

Proof of Theorem 3. Let 𝜁𝐴 be the first time less than 𝑇 for which
∑𝜁𝐴
𝑡=1 𝑏𝑡(𝑥𝑡) + �̄� ≥ 𝐵. Set 𝜁𝐴 = 𝑇

if this inequality is never satisfied. Then, 𝑥𝑡 = 𝑥′𝑡 for all 𝑡 ≤ 𝜁𝐴 and
∑𝜁𝐴
𝑡=1 𝑏𝑡(𝑥

′
𝑡) ≥ 𝐵 − �̄�.

First, observe that

𝑅(𝐴|{𝛾𝑡}𝑡) ≥
𝜁𝐴∑︁
𝑡=1

𝑓𝑡(𝑥′𝑡) =
𝑇∑︁
𝑡=1

𝑓𝑡(𝑥′𝑡) −
𝑇∑︁

𝑡=𝜁𝐴+1
𝑓𝑡(𝑥′𝑡) ≥

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥′𝑡) − 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡) . (A.5)
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Next observe that, for all 𝑡 ∈ [𝑇], 𝜇𝑡 is independent of 𝛾𝑡 because 𝜇𝑡 is completely determined

by {𝛾1, . . . , 𝛾𝑡−1}. Hence,

E𝛾𝑡
[
𝑓𝑡(𝑥′𝑡) | 𝜇𝑡

]
= E𝛾𝑡

[
𝑓𝑡(𝑥′𝑡) + 𝜇𝑡 · (𝛽𝑡 − 𝑏𝑡(𝑥′𝑡)) | 𝜇𝑡

]
− E𝛾𝑡

[
𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) | 𝜇𝑡

]
− E𝛾𝑡 [𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡) | 𝜇𝑡]

= E𝛾𝑡 [𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)|𝜇𝑡] − E𝛾𝑡
[
𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) | 𝜇𝑡

]
− E𝛾𝑡 [𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡) | 𝜇𝑡] .

Taking unconditional expectations on both sides and applying the tower rule yields

E
[
𝑓𝑡(𝑥′𝑡)

]
= E [𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)] − E

[
𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡))

]
− E [𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡)] .

Summing over 𝑡 ∈ [𝑇], we get

𝑇∑︁
𝑡=1
E[ 𝑓𝑡(𝑥′𝑡)] =

𝑇∑︁
𝑡=1
E [𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)] −

𝑇∑︁
𝑡=1
E

[
𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡))

]
−

𝑇∑︁
𝑡=1
E [𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡)] . (A.6)

Therefore, (A.5) and (A.6) together imply

E

[{
𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)
}
− 𝑅(𝐴|{𝛾𝑡}𝑡)

]
≤ E

[
𝑇∑︁
𝑡=1

𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) + 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡)

]
+

𝑇∑︁
𝑡=1
E[𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡)] . (A.7)

FTRL Regret Bound. Define 𝑤𝑡(𝜇) B 𝜇 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)). Then, Algorithm 2 can be seen

as running FTRL with linear losses {𝑤𝑡(·)}𝑡 . The gradients of these loss functions are given by

∇𝑤𝑡(𝜇) = 𝜆𝑡 − 𝑏𝑡(𝑥′𝑡), which satisfy ∥∇𝑤𝑡(𝜇)∥∞≤ ∥𝑏𝑡(𝑥′𝑡)∥∞+∥𝜆𝑡 ∥∞≤ �̄� + �̄�. Therefore, the regret

bound for FTRL implies that for all 𝜇 ≥ 0:

𝑇∑︁
𝑡=1

𝑤𝑡(𝜇𝑡) − 𝑤𝑡(𝜇) ≤ 𝐸(𝑇, 𝜇) , (A.8)

where 𝐸(𝑇, 𝜇) = 2(�̄�+�̄�)2

𝜎
𝜂 · 𝑇 + ℎ(𝜇)−ℎ(𝜇1)

𝜂
is the regret bound of FTRL after 𝑇 iterations [Haz+16].
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Equivalently, we can write

𝑇∑︁
𝑡=1

𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) ≤ 𝐸(𝑇, 𝜇) +
𝑇∑︁
𝑡=1

𝜇 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) ∀ 𝜇 ≥ 0.

Now, consider the following two cases:

• Case 1: 𝜁𝐴 = 𝑇 . Here, setting 𝜇 = 0 yields

𝑇∑︁
𝑡=1

𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) + 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡) ≤ 𝐸(𝑇, 0) .

• Case 2: 𝜁𝐴 < 𝑇 . Then,
∑𝜁𝐴
𝑡=1 𝑏𝑡(𝑥

′
𝑡) ≥ 𝐵 − �̄�. Hence, setting 𝜇 = 𝜅 yields

𝑇∑︁
𝑡=1

𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) + 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡) ≤ 𝐸(𝑇, 𝜅) +

𝑇∑︁
𝑡=1

𝜅 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) + 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡)

= 𝐸(𝑇, 𝜅) + 𝜅 ·
(
𝑇∑︁
𝑡=1
𝜆𝑡 −

𝜁𝐴∑︁
𝑡=1

𝑏𝑡(𝑥′𝑡)

)
≤ 𝐸(𝑇, 𝜅) + 𝜅 ·

({
𝑇∑︁
𝑡=1
𝜆𝑡

}
− (𝐵 − �̄�)

)
= 𝐸(𝑇, 𝜅) + 𝜅�̄� + 𝜅 ·

({
𝑇∑︁
𝑡=1
𝜆𝑡

}
− 𝐵

)
.

Combining the two cases implies that for all values of 𝜁𝐴 we have

𝑇∑︁
𝑡=1

𝜇𝑡 · (𝜆𝑡 − 𝑏𝑡(𝑥′𝑡)) + 𝜅 ·
𝑇∑︁

𝑡=𝜁𝐴+1
𝑏𝑡(𝑥′𝑡) ≤ max{𝐸(𝑇, 0), 𝐸(𝑇, 𝜅)} + 𝜅�̄� + 𝜅 ·

({
𝑇∑︁
𝑡=1
𝜆𝑡

}
− 𝐵

)+

.

(A.9)

Finally, combining (A.7) and (A.9) yields

E

[{
𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)
}
− 𝑅(𝐴|{𝛾𝑡}𝑡)

]
≤max{𝐸(𝑇, 0), 𝐸(𝑇, 𝜅)} + 𝜅�̄� + 𝜅 ·

({
𝑇∑︁
𝑡=1
𝜆𝑡

}
− 𝐵

)+

+
𝑇∑︁
𝑡=1
E[𝜇𝑡 · (𝛽𝑡 − 𝜆𝑡)] .
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Plugging in the definition of 𝐸(𝑇, 𝜇) finishes the proof. □

A.5.2 Proof of Lemma 2

Proof of Lemma 2. Consider any two request distributions P, P̃ ∈ Δ(S). Then, by the definition of

the Wasserstein metric, there exists a joint probability distribution 𝑄, with marginals P and P̃ on

the first and second factors respectively, such that

W(P, P̃) = E(𝛾,�̃�)∼𝑄

[
sup
𝑥

| 𝑓 (𝑥) − 𝑓 (𝑥)|+ sup
𝑥

|𝑏(𝑥) − �̃�(𝑥)|
]
.

Let 𝑥∗(𝛾, 𝜇) be the optimal solution of max𝑥∈𝑋 𝑓 (𝑥) − 𝜇 · 𝑏(𝑥) for request 𝛾 = ( 𝑓 , 𝑏) as described

in Definition 1. Then, for any 𝜇 ∈ [0, 𝜅] and 𝑥 : S→ X, we have

E(𝛾,�̃�)∼𝑄
[�� 𝑓 (𝑥(𝛾)) − 𝜇 · 𝑏(𝑥(𝛾)) −

{
𝑓 (𝑥(𝛾)) − 𝜇 · �̃�(𝑥(𝛾))

}��]
≤E(𝛾,�̃�)∼𝑄

[�� 𝑓 (𝑥(𝛾)) − 𝑓 (𝑥(𝛾))
�� + 𝜇 ·

��𝑏(𝑥(𝛾)) − �̃�(𝑥(𝛾))
��]

≤W(P, P̃) + 𝜅 · W(P, P̃)

=(1 + 𝜅) · W(P, P̃) . (A.10)

Now, for 𝑡 ∈ [𝑇], we can use (A.10) to write

𝐷(𝜇𝑡 |P̃, 𝛽𝑡) − 𝐷(𝜇𝑡 |P, 𝛽𝑡)

=E�̃�∼P̃[ 𝑓 (𝑥∗(�̃�, 𝜇𝑡)) − 𝜇𝑡 · �̃�(𝑥∗(�̃�, 𝜇𝑡)) + 𝜇𝑡 · 𝛽𝑡] − E𝛾∼P[ 𝑓 (𝑥∗(𝛾, 𝜇𝑡)) − 𝜇𝑡 · 𝑏(𝑥∗(𝛾, 𝜇𝑡)) + 𝜇𝑡 · 𝛽𝑡]

≤E�̃�∼P̃,𝛾∼P[ 𝑓 (𝑥∗(�̃�, 𝜇𝑡)) − 𝜇𝑡 · �̃�(𝑥∗(�̃�, 𝜇𝑡)) + 𝜇𝑡 · 𝛽𝑡 − { 𝑓 (𝑥∗(�̃�, 𝜇𝑡)) − 𝜇𝑡 · 𝑏(𝑥∗(�̃�, 𝜇𝑡)) + 𝜇𝑡 · 𝛽𝑡}]

≤E(𝛾,�̃�)∼𝑄
[�� 𝑓 (𝑥∗(�̃�, 𝜇𝑡)) − 𝜇𝑡 · 𝑏(𝑥∗(�̃�, 𝜇𝑡)) −

{
𝑓 (𝑥∗(�̃�, 𝜇𝑡)) − 𝜇𝑡 · �̃�(𝑥∗(�̃�, 𝜇𝑡))

}��]
≤(1 + 𝜅) · W(P, P̃) ,

where the first inequality follows from the definition of 𝑥∗(𝛾, 𝜇𝑡) and the second inequality follows
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from the fact that (P, P̃) are the marginals of 𝑄. As a consequence, we get

𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) =
𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P̃𝑡 , 𝛽𝑡) −
𝑇∑︁
𝑡=1

{
𝐷(𝜇𝑡 |P̃𝑡 , 𝛽𝑡) − 𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡)

}
≥

𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P̃𝑡 , 𝛽𝑡) − (1 + 𝜅) ·
𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡)

≥
𝑇∑︁
𝑡=1

FLUID(P̃𝑡 , 𝛽𝑡) − (1 + 𝜅) ·
𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) , (A.11)

where the second inequality follows from weak duality.

Next, observe that the definition of 𝛽𝑡 = E�̂�∼P̃𝑡 [�̂�
∗(�̃�)] implies that 𝑥∗(�̃�𝑡 , �̃�) is a feasible to

solution to the optimization problem which defines FLUID(P̃𝑡 , 𝛽𝑡). Hence,

𝑇∑︁
𝑡=1

FLUID(P̃𝑡 , 𝛽𝑡) ≥
𝑇∑︁
𝑡=1
E�̃�𝑡∼P̃𝑡

[
𝑓𝑡(𝑥∗(�̃�𝑡 , �̃�))

]
=

𝑇∑︁
𝑡=1
E�̃�𝑡∼P̃𝑡

[
𝑓𝑡(𝑥∗(�̃�𝑡 , �̃�)) − �̃� · �̃�𝑡(𝑥∗(�̃�𝑡 , �̃�))

]
+ �̃� ·

𝑇∑︁
𝑡=1
E�̃�𝑡∼P̃𝑡

[
�̃�𝑡(𝑥∗(�̃�𝑡 , �̃�))

]
.

Let {𝑥𝑡(·)}𝑡 be an optimal solution for FLUID({P𝑡}). Then, for all 𝑡 ∈ [𝑇], we have

E�̃�𝑡∼P̃𝑡
[
𝑓𝑡 (𝑥∗(�̃�𝑡 , �̃�)) − �̃� · �̃�𝑡 (𝑥∗(�̃�𝑡 , �̃�))

]
= E(𝛾𝑡 ,�̃�𝑡 )∼𝑄

[
𝑓𝑡 (𝑥∗(�̃�𝑡 , �̃�)) − �̃� · �̃�𝑡 (𝑥∗(�̃�𝑡 , �̃�))

]
≥ E(𝛾𝑡 ,�̃�𝑡 )∼𝑄

[
𝑓𝑡 (𝑥𝑡 (𝛾𝑡 )) − �̃� · �̃�𝑡 (𝑥(𝛾𝑡 ))

]
≥ E(𝛾𝑡 ,�̃�𝑡 )∼𝑄 [ 𝑓𝑡 (𝑥𝑡 (𝛾𝑡 )) − �̃� · 𝑏𝑡 (𝑥(𝛾𝑡 ))] − (1 + 𝜅) · W(P𝑡 , P̃𝑡 )

= E𝛾𝑡∼P𝑡 [ 𝑓𝑡 (𝑥𝑡 (𝛾𝑡 )) − �̃� · 𝑏𝑡 (𝑥(𝛾𝑡 ))] − (1 + 𝜅) · W(P𝑡 , P̃𝑡 ) ,

where the first inequality follows from the definition of 𝑥∗(�̃�𝑡 , �̃�) and the second inequality follows

from (A.10). Therefore,

𝑇∑︁
𝑡=1

FLUID(P̃𝑡 , 𝛽𝑡)

≥
𝑇∑︁
𝑡=1
E𝛾𝑡 [ 𝑓𝑡(𝑥𝑡(𝛾𝑡)) − �̃� · 𝑏𝑡(𝑥(𝛾𝑡))] − (1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) + �̃� ·

𝑇∑︁
𝑡=1
E�̃�𝑡

[
�̃�𝑡(𝑥∗(�̃�𝑡 , �̃�))

]
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=
𝑡∑︁
𝑡=1
E𝛾𝑡∼P𝑡 [ 𝑓𝑡(𝑥(𝛾𝑡))] − �̃� ·

(
𝑇∑︁
𝑡=1
E𝛾𝑡 [𝑏𝑡(𝑥(𝛾𝑡))] −

𝑇∑︁
𝑡=1
E�̃�𝑡 [�̃�

∗
𝑡 (�̃�)]

)
− (1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡)

≥ FLUID({P𝑡}𝑡) − �̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝛽𝑡

)
− (1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) ,

where the second inequality follows from the feasibility of the optimal solution {𝑥𝑡(·)}𝑡 , i.e.,∑𝑇
𝑡=1 E𝛾𝑡 [𝑏𝑡(𝑥(𝛾𝑡))] ≤ 𝐵. Combining this with (A.11) yields

𝑇∑︁
𝑡=1

𝐷(𝜇𝑡 |P𝑡 , 𝛽𝑡) ≥ FLUID({P𝑡}𝑡) − �̃� ·
(
𝐵 −

𝑇∑︁
𝑡=1

𝛽𝑡

)
− 2(1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) ,

as required. □

A.5.3 Proof of Lemma 4

Proof of Lemma 4. The definition of 𝑥 and 𝑥′ implies

𝑓 (𝑥) − 𝜇 · 𝑏(𝑥) ≥ 𝑓 (𝑥′) − 𝜇 · 𝑏(𝑥′) and 𝑓 (𝑥′) − 𝜇′ · 𝑏(𝑥′) ≥ 𝑓 (𝑥) − 𝜇′ · 𝑏(𝑥) .

Combining the two inequalities, we get

𝑓 (𝑥) − 𝜇 · 𝑏(𝑥) − { 𝑓 (𝑥) − 𝜇′ · 𝑏(𝑥)} ≥ 𝑓 (𝑥′) − 𝜇 · 𝑏(𝑥′) − { 𝑓 (𝑥′) − 𝜇′ · 𝑏(𝑥′)}

=⇒ (𝜇 − 𝜇′) · (𝑏(𝑥′) − 𝑏(𝑥)) ≥ 0 .

The lemma follows from the last inequality because 𝜇 − 𝜇′ > 0. □

A.5.4 Proof of Lemma 5

Proof of Lemma 5. Define

𝑞(𝜇) B 𝜇 · 𝐵 +
𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
and 𝑞(−𝑠)(𝜇) B 𝜇 · 𝐵 +

∑︁
𝑡 ̸=𝑠

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
.
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We start by proving �̃� ≥ �̃�(−𝑠). For contradiction, suppose �̃� < �̃�(−𝑠). Consider the following

two cases:

• Case I: 0 ∈ argmax𝑥∈X 𝑓𝑠(𝑥)− �̃� · �̃�𝑠(𝑥). Then, we must have 0 ∈ argmax𝑥∈X 𝑓𝑠(𝑥)− 𝜇 · �̃�𝑠(𝑥)

for all 𝜇 ≥ �̃�. This is because, for 𝜇 ≥ �̃�, Lemma 4 implies that �̃�𝑠(𝑥′) ≤ �̃�𝑠(0) = 0 for all

𝑥′ ∈ argmax𝑥∈X 𝑓𝑠(𝑥)−𝜇 · �̃�𝑠(𝑥), and 𝑓𝑠(𝑥) ≤ 𝜅 · �̃�𝑠(𝑥) for all 𝑥 ∈ X. Therefore, 𝑞(𝜇) = 𝑞(−𝑠)(𝜇)

for all 𝜇 ≥ �̃�. Since �̃� is a minimizer of 𝑞(·) and �̃�(−𝑠) > �̃�, we get that

𝑞(−𝑠)(�̃�) = 𝑞(�̃�) ≤ 𝑞(�̃�(−𝑠)) = 𝑞(−𝑠)
(
�̃�(−𝑠)

)
.

On the other hand, �̃�(−𝑠) is a minimizer of 𝑞(−𝑠)(·), which implies 𝑞(−𝑠) (
�̃�(−𝑠)) ≤ 𝑞(−𝑠)(�̃�).

Therefore, 𝑞(−𝑠) (
�̃�(−𝑠)) ≤ 𝑞(−𝑠)(�̃�), which contradicts the fact that �̃�(−𝑠) is the smallest mini-

mizer of 𝑞(−𝑠)(·).

• Case II: 0 /∈ argmax𝑥∈X 𝑓𝑠(𝑥) − �̃� · �̃�𝑠(𝑥). Since 𝑓𝑠(𝑥) ≤ 𝜅 · 𝑏𝑠(𝑥) for all 𝑥 ∈ X, we get that

�̃�𝑠(𝑥′) > 0 for all 𝑥′ ∈ argmax𝑥∈X 𝑓𝑠(𝑥)− �̃� · �̃�𝑠(𝑥). Consider any sequences of optimal action

sequences {𝑥𝑡}𝑡 and {𝑥(−𝑠)
𝑡 }𝑡 such that for all 𝑡 ∈ [𝑇], we have

𝑥𝑡 ∈ argmax𝑥∈X 𝑓𝑡(𝑥) − �̃� · �̃�𝑡(𝑥) and 𝑥
(−𝑠)
𝑡 ∈ argmax𝑥∈X 𝑓𝑡(𝑥) − �̃�(−𝑠) · �̃�𝑡(𝑥) .

Then, Lemma 4 implies that �̃�𝑡(𝑥𝑡) ≥ �̃�𝑡(𝑥(−𝑠)
𝑡 ) for all 𝑡 ̸= 𝑠. Therefore,

𝐵 −
𝑇∑︁
𝑡=1

�̃�𝑡(𝑥𝑡) =

{
𝐵 −

∑︁
𝑡 ̸=𝑠

�̃�𝑡(𝑥𝑡)

}
− 𝑏𝑡(𝑥𝑡) < 𝐵 −

∑︁
𝑡 ̸=𝑠

�̃�𝑡(𝑥𝑡) ≤ 𝐵 −
∑︁
𝑡 ̸=𝑠

�̃�𝑡(𝑥(−𝑠)
𝑡 ) . (A.12)

Now observe that, since 𝑞(·) (and 𝑞(−𝑠)(·)) are the maxima of a collection of linear functions,

its sub-gradient is given by the convex hull of gradients of all the linear functions which are

binding (for example, see Chapter 5 of [Ber09]). Therefore, 𝜕𝑞(�̃�) (and 𝜕𝑞(−𝑠) (
�̃�(−𝑠))) is a

convex hull of terms of the form 𝐵−∑𝑇
𝑡=1 �̃�𝑡(𝑥𝑡) for some optimal action sequence {𝑥𝑡}𝑡 (and

{𝑥(−𝑠)
𝑡 }𝑡). Since �̃�(−𝑠) > �̃� ≥ 0, first-order optimality conditions imply that 0 ∈ 𝜕𝑞(−𝑠) (

�̃�(−𝑠)) .
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Therefore, (A.12) implies that 𝑣 < 0 for all 𝑣 ∈ 𝜕𝑞(�̃�). This contradicts the optimality of �̃�

for 𝑞(·).

As we have obtained a contradiction in both cases, we get that �̃� ≥ �̃�(−𝑠), as required. Moreover,

𝜆𝑡 ≤ 𝜆(−𝑠)
𝑡 for all 𝑡 ̸= 𝑠 follows immediately from Lemma 4. Hence, to finish the proof, it suffices

to show the final inequality in the following chain:

𝑠−1∑︁
𝑡=1

���𝜆(−𝑠)
𝑡 − 𝜆𝑡

��� ≤∑︁
𝑡 ̸=𝑠

���𝜆(−𝑠)
𝑡 − 𝜆𝑡

��� =
∑︁
𝑡 ̸=𝑠
𝜆

(−𝑠)
𝑡 −

∑︁
𝑡 ̸=𝑠
𝜆𝑡 ≤ 3�̄� . (A.13)

Note that, Lemma 1 implies that at least one of the following conditions hold

1. �̃� = 0 and
∑𝑇
𝑡=1 𝜆𝑡 ≤ 𝐵 + �̄�.

2.
��𝐵 −∑𝑇

𝑡=1 �̃�𝑡
�� ≤ �̄�.

If �̃� = 0, then �̃�(−𝑠) = 0 because �̃�𝑢(−𝑠) ≤ �̃�. Therefore, in that case 𝜆(−𝑠)
𝑡 = 𝜆𝑡 = �̃�∗𝑡 (0) for all 𝑡 ̸= 𝑠

and (A.13) follows.

Suppose
��𝐵 −∑𝑇

𝑡=1 �̃�𝑡
�� ≤ �̄�. Observe that Lemma 1 applied to the trace {�̂�𝑡}𝑡 , where �̂�𝑡 = �̃�𝑡 for

all 𝑡 ̸= 𝑠 and �̂�𝑠 = (0, 0), implies that at least one of the following conditions hold:

1. �̃�(−𝑠) = 0 and
∑
𝑡 ̸=𝑠 𝜆

(−𝑠)
𝑡 ≤ 𝐵 + �̄�.

2.
���𝐵 −∑

𝑡 ̸=𝑠 �̃�
(−𝑠)
𝑡

��� ≤ �̄�.

Therefore,
∑
𝑡 ̸=𝑠 𝜆

(−𝑠)
𝑡 − ∑

𝑡 ̸=𝑠 𝜆𝑡 ≤ 𝐵 + �̄� − ∑
𝑡 ̸=𝑠 𝜆𝑡 ≤ �̄� + �̄� + 𝜆𝑠 ≤ 3�̄�, as required to establish

(A.13). □

A.5.5 Proof of Lemma 6

Proof of Lemma 6. It is known that FTRL is equivalent to Lazy Online Mirror Descent (for ex-

ample, see [Haz+16]). In particular, if we let 𝑉ℎ(𝑥, 𝑦) = ℎ(𝑥) − ℎ(𝑦) − ∇ℎ(𝑦)⊤(𝑥 − 𝑦) denote the

Bregman divergence w.r.t. ℎ(·), then the FTRL update (2.3) of Algorithm 2 can be equivalently
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written as:

𝜃𝑠 = ∇ℎ(𝜇𝑠)

𝜃𝑠+1 = 𝜃𝑡 − 𝜂 · 𝑔𝑠 = 𝜃𝑡 − 𝜂 · (𝜆𝑠 − 𝑏𝑠(𝑥′𝑡))

𝜇𝑡+1 = argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, (∇ℎ)−1(𝜃𝑠+1)) .

where 𝑥′𝑡 ∈ argmax𝑥∈X 𝑓𝑠(𝑥) − 𝜇𝑠 · 𝑏𝑠(𝑥). We will use {𝜇′𝑡}𝑡 and {𝜃′𝑡}𝑡 to represent the dual and

mirror iterates of Algorithm 2 with target sequence {𝜆′𝑡}𝑡 :

𝜃′𝑠 = ∇ℎ(𝜇′𝑠)

𝜃′𝑠+1 = 𝜃′𝑡 − 𝜂 · 𝑔𝑠 = 𝜃′𝑡 − 𝜂 · (𝜆′𝑠 − 𝑏𝑠(𝑦′𝑡))

𝜇′𝑡+1 = argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, (∇ℎ)−1(𝜃′𝑠+1)) .

where 𝑦′𝑡 ∈ argmax𝑥∈X 𝑓𝑠(𝑥) − 𝜇′𝑠 · 𝑏𝑠(𝑥).

We will first use induction on 𝑠 to prove the following statement,

��𝜃𝑠 − 𝜃′𝑠�� ≤ 𝜂 · { 𝑠−1∑︁
𝑡=1
|𝜆𝑡 − 𝜆′𝑡 |

}
+ 𝜂 · �̄� . (A.14)

The base case 𝑠 = 1 follows directly from our assumption that the initial iterates 𝜃1 = ∇ℎ(𝜇1) =

∇ℎ(𝜇′1) = 𝜃2 are the same.

Suppose (A.14) holds for 𝑠 ∈ [𝑇 − 1] (Induction Hypothesis). Define 𝜃𝑠+1/2 = 𝜃𝑠 + 𝜂 · 𝑏𝑠(𝑥′𝑡)

and 𝜃′
𝑠+1/2 = 𝜃′𝑠 + 𝜂 · 𝑏𝑠(𝑦′𝑡). W.l.o.g. assume that 𝜃𝑠 ≥ 𝜃′𝑠. Due to the invertibility of ∇ℎ, we get

that 𝜇𝑠 ≥ 𝜇′𝑠, and consequently Lemma 4 implies 𝑏(𝑥′𝑡) ≤ 𝑏(𝑦′𝑡). Consider the following cases:

• Case I: 𝜃′
𝑠+1/2 ≤ 𝜃𝑠+1/2. Then, 𝜃𝑠+1/2 − 𝜃′𝑠+1/2 = 𝜃𝑠 − 𝜃′𝑠 + 𝜂 · (𝑏(𝑥′𝑡)− 𝑏(𝑦′𝑡)) ≤ 𝜃𝑠 − 𝜃′𝑠 because

𝑏(𝑥′𝑡) ≤ 𝑏(𝑦′𝑡).

• Case II: 𝜃′
𝑠+1/2 ≥ 𝜃𝑠+1/2. Then, 𝜃′

𝑠+1/2 − 𝜃𝑠+1/2 = 𝜃′𝑠 − 𝜃𝑠 + 𝜂 · (𝑏(𝑥′𝑡) − 𝑏(𝑦′𝑡)) ≤ 𝜂 · �̄� because

𝜃′𝑠 ≤ 𝜃𝑠 and 𝑏(𝑦′𝑡) − 𝑏(𝑥′𝑡) ≤ �̄�.
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Therefore, in both cases we have

|𝜃𝑠+1/2 − 𝜃′𝑠+1/2 |≤ max{𝜃𝑠 − 𝜃′𝑠, 𝜂 · �̄�} ≤ 𝜂 ·
{
𝑠−1∑︁
𝑡=1
|𝜆𝑡 − 𝜆′𝑡 |

}
+ 𝜂 · �̄� .

where we used the induction hypothesis in the second inequality. Consequently, we can write

|𝜃𝑠+1 − 𝜃′𝑠+1 | =
���𝜃𝑠+1/2 − 𝜂 · 𝜆𝑠 + (𝜃′𝑠+1/2 − 𝜂 · 𝜆

′
𝑠)
���

≤ |𝜃𝑠+1/2 − 𝜃′𝑠+1/2 |+𝜂 · |𝜆𝑠 − 𝜆
′
𝑠 |

≤ 𝜂 ·
{

𝑠∑︁
𝑡=1
|𝜆𝑡 − 𝜆′𝑡 |

}
+ 𝜂 · �̄� .

Hence, we have established (A.14) for all 𝑠 ∈ [𝑇]. Now, since ℎ is 𝜎-strongly convex and differ-

entiable, we have

∇ℎ(𝑥) − ∇ℎ(𝑦) ≥ 𝜎 · (𝑥 − 𝑦) ∀ 𝑥 ≥ 𝑦 .

Therefore, we have

��(∇ℎ)−1(𝜃𝑠) − (∇ℎ)−1(𝜃′𝑠)
�� ≤ 1

𝜎
· |𝜃𝑠 − 𝜃′𝑠 | . (A.15)

To finish the proof, we will use the fact that Bregman projections are contractions in one di-

mensions, which we prove next. Consider any 𝑥 < 0, then for any 𝜇 ∈ [0, 𝜅], we have

𝑉ℎ(𝜇, 𝑥) −𝑉ℎ(0, 𝑥) = ℎ(𝜇) − ℎ(0) − ∇ℎ(𝑥)⊤(𝜇 − 0) ≥ ℎ(𝜇) − ℎ(0) − ∇ℎ(0)⊤(𝜇 − 0) ≥ 0 ,

where the inequality follows from ∇ℎ(0) ≥ ∇ℎ(𝑥) (convexity of ℎ(·)). Therefore,

argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, 𝑥) = 0 = argmin𝜇∈[0,𝜅] |𝜇 − 𝑥 | .
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Similarly, for 𝑥 > 𝜅 and 𝜇 ∈ [0, 𝜅], we have

𝑉ℎ(𝜇, 𝑥) −𝑉ℎ(𝜅, 𝑥) = ℎ(𝜇) − ℎ(𝜅) − ∇ℎ(𝑥)⊤(𝜇 − 𝜅) ≥ ℎ(𝜇) − ℎ(𝜅) − ∇ℎ(𝜅)⊤(𝜇 − 𝜅) ≥ 0 ,

where the inequality follows from ∇ℎ(𝑥) ≥ ∇ℎ(𝜅) (convexity of ℎ(·)). Therefore,

argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, 𝑥) = 𝜅 = argmin𝜇∈[0,𝜅] |𝜇 − 𝑥 | .

Consequently, we have shown that argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, 𝑥) = argmin𝜇∈[0,𝜅] |𝜇 − 𝑥 |, i.e., the Bregman

project is identical to the Euclidean projection in one dimension. Since Euclidean projection is a

contraction, we get

��𝜇𝑠 − 𝜇′𝑠�� =
��argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, (∇ℎ)−1(𝜃𝑠+1)) − argmin𝜇∈[0,𝜅]𝑉ℎ(𝜇, (∇ℎ)−1(𝜃′𝑠+1))

��
=

��argmin𝜇∈[0,𝜅] |𝜇 − (∇ℎ)−1(𝜃𝑠+1))|− argmin𝜇∈[0,𝜅] |𝜇 − (∇ℎ)−1(𝜃′𝑠+1))|
��

≤
��(∇ℎ)−1(𝜃𝑠) − (∇ℎ)−1(𝜃′𝑠)

�� .
Finally, combining this with (A.14) and (A.15), we get

|𝜇𝑠 − 𝜇′𝑠 |≤
𝜂

𝜎
·
{
𝑠−1∑︁
𝑡=1
|𝜆𝑡 − 𝜆′𝑡 |

}
+
𝜂

𝜎
· �̄� ,

as required. □

A.5.6 Proof of Lemma 7

Proof of Lemma 7. Using the definitions of 𝜆𝑠 and 𝛽𝑠, we can write

E
[
𝜆𝑠 | �̃�(−𝑠)] = E

[
�̃�∗𝑠(�̃�)

���� �̃�(−𝑠)
]

and E
[
𝛽𝑠 | �̃�(−𝑠)] = E

[
E�̂�∼P̃𝑡

[
�̂�∗𝑠(�̃�)

] ���� �̃�(−𝑠)
]
.
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Fix a trace {�̃�𝑡}𝑡 . Observe that for any request

𝑥∗(�̃�𝑠, �̃�) =


𝑥 if coeff( 𝑓𝑠) − �̃� · coeff(�̃�𝑠) ≥ 0 and coeff( 𝑓𝑠) ̸= 0

0 otherwise
,

and

𝑥∗(�̃�𝑠, �̃�(−𝑠)) =


𝑥 if coeff( 𝑓𝑠) − �̃�(−𝑠) · coeff(�̃�𝑠) ≥ 0 and coeff( 𝑓𝑠) ̸= 0

0 otherwise
.

From Lemma 5, we know that �̃�(−𝑠) ≤ �̃�. Now, if coeff( 𝑓𝑠) = 0, then 𝑥∗(�̃�𝑠, �̃�) = 𝑥∗(�̃�𝑠, �̃�(−𝑠)) =

0. Assume that coeff( 𝑓𝑠) > 0 (and thus coeff(�̃�𝑠) > 0 because 𝑓𝑠(𝑥) ≤ 𝜅 · 𝑏(𝑥)), let 𝐴 B {𝜇 ≥ 0 |

coeff( 𝑓𝑠) − 𝜇 · coeff(�̃�𝑠) < 0} be the set of all dual variables that lead to 𝑥∗(�̃�𝑠, 𝜇) = 0.

Define the dual functions:

𝑞(𝜇) B 𝜇 · 𝐵 +
𝑇∑︁
𝑡=1

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
and 𝑞(−𝑠)(𝜇) B 𝜇 · 𝐵 +

∑︁
𝑡 ̸=𝑠

max
𝑥∈X

{
𝑓𝑡(𝑥) − 𝜇 · �̃�𝑡(𝑥)

}
.

For contradiction, suppose �̃� ∈ 𝐴 and �̃�(−𝑠) /∈ 𝐴. Since 𝐴 is open, there exists a point 𝜇 ∈ 𝐴

such that 𝜇 = 𝛼 · �̃� + (1 − 𝛼) · �̃�(−𝑠) for some 𝛼 ∈ (0, 1). Moreover, observe that the minimality of

�̃�(−𝑠) implies 𝑞(−𝑠) (
�̃�(−𝑠)) ≤ 𝑞(−𝑠)(𝜇) and 𝑞(−𝑠) (

�̃�(−𝑠)) ≤ 𝑞(−𝑠)(�̃�). Therefore, as 𝑞(−𝑠) is convex, we

get

𝑞(−𝑠)(𝜇) ≤ 𝛼 · 𝑞(−𝑠)(�̃�) + (1 − 𝛼) · 𝑞(−𝑠)
(
�̃�(−𝑠)

)
≤ 𝛼 · 𝑞(−𝑠)(�̃�) + (1 − 𝛼) · 𝑞(−𝑠)(�̃�) = 𝑞(−𝑠)(�̃�) .

Now, observe that 𝑞(𝜇) = 𝑞(−𝑠)(𝜇) for all 𝜇 ∈ 𝐴. Therefore, 𝑞(𝜇) ≤ 𝑞(�̃�), which contradicts the

fact that �̃� is the smallest minimizer of 𝑞(·). Hence, either �̃�, �̃�(−𝑠) ∈ 𝐴 or �̃�, �̃�(−𝑠) ∈ 𝐴𝑐, and as a

consequence, we get �̃�∗𝑠(�̃�) = �̃�∗𝑠
(
�̃�(−𝑠)) . Furthermore, combining �̃� ≥ �̃�(−𝑠) (from Lemma 5) and
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Lemma 4, we also get �̂�∗𝑠
(
�̃�(−𝑠)) ≥ �̂�∗𝑠(�̃�) for every �̂�𝑠 ∈ S. Therefore,

E
[
𝜆𝑠 | �̃�(−𝑠)] = E

[
�̃�∗𝑠(�̃�)

���� �̃�(−𝑠)
]

= E
[
�̃�∗𝑠

(
�̃�(−𝑠)

)���� �̃�(−𝑠)
]

= E�̂�𝑠∼P̃𝑠

[
�̂�∗𝑠

(
�̃�(−𝑠)

)���� �̃�(−𝑠)
]

≥ E
[
E�̂�𝑠∼P̃𝑠

[
�̂�∗𝑠(�̃�)

���� �̃�(−𝑠)
] ]

= E
[
𝛽𝑠 | �̃�(−𝑠)] ,

where the third equality follows from the fact that �̃�𝑠 and �̃�(−𝑠) are independent of each other,

which allows us to rename the variable from �̃�𝑠 ∼ P̃𝑠 to �̂�𝑠 ∼ P̃𝑠. We combine this with the Tower

Property of conditional expectations to finish the proof:

E
[
𝜇

(−𝑠)
𝑠 · (𝛽𝑠 − 𝜆𝑠)

]
= E

[
𝜇

(−𝑠)
𝑠 · E

[
(𝛽𝑠 − 𝜆𝑠)

���� �̃�(−𝑠)
] ]

= E
[
𝜇

(−𝑠)
𝑠 ·

(
E

[
𝛽𝑠

���� �̃�(−𝑠)
]
− E

[
𝜆𝑠

���� �̃�(−𝑠)
] )]
≤ 0 .

□

A.5.7 Proof of Theorem 4

Proof of Theorem 4. Theorem 3 and (2.6) together imply that, with probability at least 1 − 1/𝑇2,

we have

Regret(𝐴) = FLUID({P𝑡}𝑡) − E{𝛾𝑡 }𝑡∼∏𝑡 P𝑡 [𝑅(𝐴|{𝛾𝑡}𝑡)]

≤ 𝑅1 + 𝑅2 + 𝑅3 + 𝜅 · 𝑟(𝑇) + 𝜅�̄� + 2(1 + 𝜅) ·
𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡) .

From our choice of step size 𝜂 =
√
𝑑𝑅/𝑇 and the observation that �̄� = max𝑡 𝜆𝑡 ≤ �̄�, we get that

𝑅1 = 𝜅�̄� +
2(�̄� + �̄�)2

𝜎
· 𝜂𝑇 +

𝑑𝑅

𝜂
≤ 𝜅�̄� +

(
8�̄�2

𝜎
+ 1

)
·
√︁
𝑑𝑟𝑇 .
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From (A.3), we know that

𝑅2 = 𝜅 ·
({

𝑇∑︁
𝑡=1
𝜆𝑡

}
− 𝐵

)+

≤ 𝜅�̄� .

Moreover, from Lemma 7 and 𝜂 =
√
𝑑𝑅/𝑇 , we know that

𝑅3 =
𝑇∑︁
𝑠=1
E [𝜇𝑠 · (𝛽𝑠 − 𝜆𝑠)] ≤

4𝜂�̄�2

𝜎
· 𝑇 =

4�̄�2

𝜎
·
√︁
𝑑𝑟𝑇 .

Combining the above inequalities and plugging in 𝑟(𝑇) = 8�̄�
√︁
𝑇 log(𝑇), we get that

Regret(𝐴) ≤ 3𝜅�̄� +
(
12�̄�2

𝜎
+ 1

)
·
√︁
𝑑𝑟𝑇 + 8𝜅�̄�

√︁
𝑇 log(𝑇) + 2(1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡)

with probability at least 1 − 1/𝑇2. On the other than, we always have Regret(𝑇) ≤ 𝑓 𝑇 ≤ 𝜅�̄�𝑇 .

Hence, we get

Regret(𝐴) ≤
(
1 − 1

𝑇2

)
·
[
3𝜅�̄� +

(
12�̄�2

𝜎
+ 1

)
·
√︁
𝑑𝑟𝑇 + 8𝜅�̄�

√︁
𝑇 log(𝑇) + 2(1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡 )

]
+
𝜅�̄�𝑇

𝑇2

≤ 4𝜅�̄�
√︁
𝑇 log(𝑇) +

(
12�̄�2

𝜎
+ 1

)
·
√︁
𝑑𝑟 ·

√︁
𝑇 log(𝑇) + 8𝜅�̄�

√︁
𝑇 log(𝑇) + 2(1 + 𝜅) ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡 )

= 𝐶1 ·
√︁
𝑇 log(𝑇) + 𝐶2 ·

𝑇∑︁
𝑡=1
W(P𝑡 , P̃𝑡 )

where 𝐶1 = 12�̄�2√𝑑𝑅
𝜎

+
√
𝑑𝑅 + 12𝜅�̄� and 𝐶2 = 2(1 + 𝜅). □
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Appendix B: Appendix to Chapter 3

B.1 Proofs for Section 3.2

We begin by formally stating and proving weak duality

Proposition 11. For every 𝜇 ∈ R+, 𝑇 ≥ 1 and ®𝛾 ∈ S𝑇 , we have OPT(𝑇, ®𝛾) ≤ 𝐷(𝜇 |𝑇, ®𝛾).

Proof. Consider any 𝑥 ∈ ∏
𝑡 X𝑡 such that

∑𝑇
𝑡=1 𝑏𝑡(𝑥𝑡) ≤ 𝐵. Then, for 𝜇 ≥ 0, we have

𝐷(𝜇 |𝑇, ®𝛾) ≥
{

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)

}
+ 𝜇⊤

(
𝐵 −

𝑇∑︁
𝑡=1

𝑏𝑡(𝑥𝑡)

)
≥

𝑇∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)

Since 𝑥 ∈ ∏
𝑡 X𝑡 satisfied

∑𝑇
𝑡=1 𝑏𝑡(𝑥𝑡) ≤ 𝐵 was otherwise arbitrary, we have shown OPT(𝑇 ®𝛾) ≤

𝐷(𝜇 |𝑇, ®𝛾). □

B.1.1 Proof of Lemma 8

Proof of Lemma 8. The convexity of D(·|𝜆,P) follows from part (a) and the fact that the dual

objective 𝐷(𝜇 |𝑇, ®𝛾) is always convex since it is a supremum of a collection of linear functions.

(a) Shown in equation 3.2.

(b) For 𝑎 ∈ [0, 1], we have

D(𝜇 |𝑎 · 𝜆,P) − 𝑎 · D(𝜇 |𝜆,P) = (1 − 𝑎)E𝛾∼P [ 𝑓 ∗(𝜇)] ≥ 0

where we have used the fact that 𝑓 ∗(𝜇) ≥ 0 for all 𝛾 = ( 𝑓 , 𝑏,X) ∈ S), which holds because

0 ∈ X.
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(c) For 𝜆 ≤ 𝜅, we have

D(𝜇 |𝜅,P) − D(𝜇 |𝜆,P) = (𝜅 − 𝜆)⊤𝜇 ≥ 0

where the inequality follows from the fact that 𝜅 − 𝜆, 𝜇 ≥ 0. □

B.1.2 Proof of Theorem 5

Proof of Theorem 5. Fix an arbitrary 𝑇 ≥ 1. To simplify notation, define

𝜆𝑡

𝜌𝑇
B min

1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗

We split the proof into four steps: (1) The first step involves lower bounding the performance

of our algorithm in terms of single-period duals and the complementary slackness term; (2) The

second step involves bounding the complementary slackness term using standard regret analysis

of mirror descent; (3) The third step involves bounding the optimal from above using the single-

period dual; (4) The final step puts it all it all together. Our proof significantly generalizes the

proof of [BLM23], who established this result for the special case of a constant target consumption

rate 𝜆𝑡 = 𝜌𝑇 for all 𝑡 ≤ 𝑇 . The main technical contribution of the current proof is establishing

a general performance guarantee for dual-mirror descent for all target consumption sequences,

which will prove critical in getting an asymptotically-near-optimal competitive ratio for our model.

This involves establishing a novel target-rate-dependent lower bound on the algorithm’s reward

(Step 1), a novel target-rate-dependent upper bound on the optimal reward (Step 3), and a new way

to put these bounds together (Step 4).

Step 1: Lower bound on algorithm’s reward. Consider the filtration F = {𝜎(𝜉𝑡)}𝑡 , where

𝜉𝑡 = {𝛾1, . . . , 𝛾𝑡} is the set of all requests seen till time 𝑡 and 𝜎(𝜉𝑡) is the sigma algebra generated

by it. Note that Algorithm 3 only collects rewards when there are enough resources left. Let 𝜁𝐴

be first time less than 𝑇 for which there exists a resource 𝑗 such that
∑𝜁𝐴
𝑡=1 𝑏𝑡, 𝑗 (𝑥𝑡) + �̄� ≥ 𝐵 𝑗 . Here,
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𝜁𝐴 = 𝑇 if this inequality is never satisfied. Observe that 𝜁𝐴 is a stopping time w.r.t. F and it is

defined so that we cannot violate the resource constraints before 𝜁𝐴. In particular, 𝑥𝑡 = 𝑥𝑡 for all

𝑡 ≤ 𝜁𝐴. Therefore, we get

𝑓𝑡(𝑥𝑡) = 𝑓 ∗(𝜇𝑡) + 𝜇⊤𝑡 𝑏𝑡(𝑥𝑡)

Observe that 𝜇𝑡 is measurable w.r.t. 𝜎(𝜉𝑡−1) and 𝛾𝑡 is independent of 𝜎(𝜉𝑡−1), which allows us to

take conditional expectation w.r.t. 𝜎(𝜉𝑡−1) to write

E [ 𝑓𝑡(𝑥𝑡)|𝜎(𝜉𝑡−1)] = E𝛾𝑡∼P [ 𝑓 ∗(𝜇𝑡)] + 𝜇⊤𝑡 𝜆𝑡 + 𝜇⊤𝑡 (E [𝑏𝑡(𝑥𝑡)|𝜎(𝜉𝑡−1)] − 𝜆𝑡)

= �̃�(𝜇𝑡 |𝜆𝑡 ,P) − E
[
𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡)) |𝜎(𝜉𝑡−1)

]
(B.1)

where the second equality follows the definition of the single-period dual function.

Define 𝑍𝑡 = ∑𝑡
𝑠=1 𝜇

⊤
𝑠 (𝜆𝑠 − 𝑏𝑠(𝑥𝑠)) − E

[
𝜇⊤𝑠 (𝜆𝑠 − 𝑏𝑠(𝑥𝑠)) |𝜎(𝜉𝑠−1)

]
. Then, {𝑍𝑡}𝑡 is a martingale

w.r.t. the filtration F because 𝑍𝑡 ∈ 𝜎(𝜉𝑡) and E[𝑍𝑡+1 |𝜎(𝜉𝑡)] = 𝑍𝑡 . As 𝜁𝐴 is a bounded stopping time

w.r.t. F , the Optional Stopping Theorem yields E
[
𝑍𝜁𝐴

]
= 0. Therefore,

E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]

= E

[
𝜁𝐴∑︁
𝑡=1
E

[
𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡)) |𝜎(𝜉𝑡−1)

] ]
.

A similar argument yields

E

[
𝜁𝐴∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)

]
= E

[
𝜁𝐴∑︁
𝑡=1
E [ 𝑓𝑡(𝑥𝑡)|𝜎(𝜉𝑡−1)]

]
.

Hence, summing over (B.1) and taking expectations, we get

E

[
𝜁𝐴∑︁
𝑡=1

𝑓𝑡(𝑥𝑡)

]
(B.2)

= E

[
𝜁𝐴∑︁
𝑡=1

�̃�(𝜇𝑡 |𝜆𝑡 ,P)

]
− E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]
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≥ E
[
𝜁𝐴∑︁
𝑡=1

�̃� (𝜇𝑡 |min{𝜆𝑡/𝜌𝑇 , 1} · 𝜌𝑇 ,P)
]
− E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]

≥ E
[
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} · �̃� (𝜇𝑡 |𝜌𝑇 ,P)
]
− E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]

= E

[
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} ·
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1}∑𝜁𝐴
𝑠=1 min{𝜆𝑠/𝜌𝑇 , 1}

· �̃� (𝜇𝑡 |𝜌𝑇 ,P)
]
− E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]

≥ E
[
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} · �̃�
(
�̄�𝜁𝐴 |𝜌𝑇 ,P

) ]
− E

[
𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))
]

(B.3)

where

�̄�𝜁𝐴 =
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} · 𝜇𝑡∑𝜁𝐴
𝑠=1 min{𝜆𝑠/𝜌𝑇 , 1}

.

The first inequality follows from part (c) of Lemma 8, the second inequality follows from part (b)

of Lemma 8 and the third inequality follows from the convexity of the single-period dual function

(Lemma 8).

Step 2: Complementary slackness. Define 𝑤𝑡(𝜇) B 𝜇⊤(𝜆𝑡 − 𝑏𝑡(𝑥𝑡)). Then, Algorithm 3 can

be seen as running online mirror descent on the choice of the dual variables with linear losses

{𝑤𝑡(·)}𝑡 . The gradients of these loss functions are given by ∇𝑤𝑡(𝜇) = 𝜆𝑡 − 𝑏𝑡(𝑥𝑡), which satisfy

∥∇𝑤𝑡(𝜇)∥∞≤ ∥𝑏𝑡(𝑥𝑡)∥∞+∥𝜆(𝑡)∥∞≤ �̄� + �̄�. Therefore, Proposition 5 of [BLM23] implies that for

all 𝜇 ∈ R𝑚+ :

𝜁𝐴∑︁
𝑡=1

𝑤𝑡(𝜇𝑡) − 𝑤𝑡(𝜇) ≤ 𝐸(𝜁𝐴, 𝜇) ≤ 𝐸(𝑇, 𝜇) , (B.4)

where 𝐸(𝑡, 𝜇) = 1
2𝜎 (�̄� + �̄�)2𝜂 · 𝑡 + 1

𝜂
𝑉ℎ(𝜇, 𝜇1) is the regret bound of the online mirror descent

algorithm after 𝑡 iterations, and the second inequality follows because 𝜁𝐴 ≤ 𝑇 and the error term

𝐸(𝑡, 𝜇) is increasing in 𝑡.
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Step 3: Upper bound on the optimal reward. For every 𝜁𝐴 ∈ [1, 𝑇], we have

E ®𝛾∼D𝑇
[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾)

]
=
∑𝑇

𝑠=1 min{𝜆𝑠/𝜌𝑇 , 1}
𝑇

· E ®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]
(
Defn. of 𝑐(®𝜆, 𝑇)

)
=
∑𝜁𝐴

𝑠=1 min{𝜆𝑠/𝜌𝑇 , 1}
𝑇

· E ®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)] +
∑𝑇

𝑠=𝜁𝐴+1 min{𝜆𝑠/𝜌𝑇 , 1}
𝑇

· E ®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

≤
𝜁𝐴∑︁
𝑠=1

min{𝜆𝑠/𝜌𝑇 , 1} ·
E ®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

𝑇
+

𝑇∑︁
𝑠=𝜁𝐴+1

min{𝜆𝑠/𝜌𝑇 , 1} · 𝑓
(
OPT(𝑇) ≤ 𝑇 · 𝑓

)
≤

𝜁𝐴∑︁
𝑠=1

min{𝜆𝑠/𝜌𝑇 , 1} ·
E ®𝛾∼D𝑇

[
𝐷(�̄�𝜁𝐴 |𝑇, ®𝛾)

]
𝑇

+
𝑇∑︁

𝑠=𝜁𝐴+1
min{𝜆𝑠/𝜌𝑇 , 1} · 𝑓 (weak duality)

=
𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} · �̃�
(
�̄�𝜁𝐴 |𝜌𝑇 ,P

)
+

𝑇∑︁
𝑠=𝜁𝐴+1

min{𝜆𝑠/𝜌𝑇 , 1} · 𝑓 (B.5)

where the last equality follows from part (a) of Lemma 8.

Step 4: Putting it all together. Combining the results from steps 1-3 yields:

E ®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) − 𝑅(𝐴|𝑇, ®𝛾)

]
≤ E ®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) −

𝜁𝐴∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 )

]
≤ E ®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) −

𝜁𝐴∑︁
𝑡=1

min{𝜆𝑡/𝜌𝑇 , 1} · �̃�
(
�̄�𝜁𝐴 |𝜌𝑇 ,P

)
+

𝜁𝐴∑︁
𝑡=1

𝜇⊤𝑡 (𝜆𝑡 − 𝑏𝑡 (𝑥𝑡 ))
]

(Equation B.2)

≤ E ®𝛾∼P𝑇

[
𝑇∑︁

𝑠=𝜁𝐴+1
min{𝜆𝑠/𝜌𝑇 , 1} · 𝑓 +

𝜁𝐴∑︁
𝑡=1

𝑤𝑡 (𝜇𝑡 )

]
(Equation B.5)

≤ E ®𝛾∼P𝑇

[
𝑇∑︁

𝑠=𝜁𝐴+1
min{𝜆𝑠/𝜌𝑇 , 1} · 𝑓 +

𝜁𝐴∑︁
𝑡=1

𝑤𝑡 (𝜇) + 𝐸(𝑇, 𝜇)

]
︸                                                                      ︷︷                                                                      ︸

♣

(Equation B.4)

for all 𝜇 ∈ R𝑚+ . All that remains to complete the proof is choosing the right 𝜇. If 𝜁𝐴 = 𝑇 (no

resource was completely depleted), set 𝜇 = 0. If 𝜁𝐴 < 𝑇 , then there exists a resource 𝑗 ∈ [𝑚]

that nearly got depleted, i.e.,
∑𝜁𝐴
𝑡=1 𝑏𝑡, 𝑗 (𝑥𝑡) + �̄� ≥ 𝐵 𝑗 . Moreover, recall that the definition of a target

consumption sequence implies
∑𝑇
𝑡=1 𝜆𝑡, 𝑗 ≤ 𝐵 𝑗 . Thus,

∑𝜁𝐴
𝑡=1 𝑏𝑡, 𝑗 (𝑥𝑡)) ≥ −�̄� + ∑𝑇

𝑡=1 𝜆𝑡, 𝑗 . Therefore,
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setting 𝜇 = ( 𝑓 /𝜌
𝑇

)𝑒 𝑗 , where 𝑒 𝑗 ∈ R𝑚 is the 𝑗-th unit vector, yields:

𝜁𝐴∑︁
𝑡=1

𝑤𝑡(𝜇) =
𝜁𝐴∑︁
𝑡=1

𝑓

𝜌
𝑇

𝑒⊤𝑗 (𝜆𝑡 − 𝑏𝑡(𝑥𝑡))

=
𝑓

𝜌
𝑇

·
(
𝜁𝐴∑︁
𝑡=1
𝜆𝑡, 𝑗 −

𝜁𝐴∑︁
𝑡=1

𝑏𝑡, 𝑗 (𝑥𝑡)

)
≤ 𝑓

𝜌
𝑇

·
(
�̄� −

{
𝑇∑︁
𝑡=1
𝜆𝑡, 𝑗 −

𝜁𝐴∑︁
𝑡=1
𝜆𝑡, 𝑗

})
=
𝑓 �̄�

𝜌
𝑇

− 𝑓 ·
𝑇∑︁

𝑡=𝜁𝐴+1

𝜆𝑡, 𝑗

𝜌
𝑇

≤ 𝑓 �̄�

𝜌
𝑇

− 𝑓 ·
𝑇∑︁

𝑡=𝜁𝐴+1
min{𝜆𝑡/𝜌𝑇 , 1}

Here we use that 𝜆𝑡 , 𝑗
𝜌
𝑇

≥ min{𝜆𝑡/𝜌𝑇 , 1}. This follows because min 𝑗 𝑎 𝑗/min 𝑗 𝑏 𝑗 ≥ min 𝑗 𝑎 𝑗/𝑏 𝑗 .

Finally, if we put everything together, we get

♣ ≤ 𝑓 �̄�

𝜌
𝑇

+ 𝐸(𝑇, 𝜇) ≤ 𝑓 �̄�

𝜌
𝑇

+
1

2𝜎
(�̄� + �̄�)2𝜂 · 𝑇 +

1
𝜂
𝑉ℎ(𝜇, 𝜇1) ,

where we have used the definition of 𝐸(𝑇, 𝜇). The theorem follows from observing that all of our

choices of 𝜇 in the above discussion lie in the set {0, ( 𝑓 /𝜌
𝑇

)𝑒1, . . . , ( 𝑓 /𝜌
𝑇

)𝑒𝑚}. □

B.1.3 Proof of Proposition 2

Proof of Proposition 2. Setting 𝜂 =
√︃
𝐶′3/{𝐶2𝜏2} in Theorem 5 yields

E®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) − 𝑅(𝐴|𝑇, ®𝛾)

]
≤ 𝐶(𝑇)

1 + 𝐶2𝑇

√︄
𝐶′3
𝐶2𝜏2

+ 𝐶(𝑇)
3

√︄
𝐶2𝜏2
𝐶′3

≤ 𝐶′1 +
√︃
𝐶2𝐶

′
3𝜏2 +

√︃
𝐶2𝐶

′
3𝜏2 .
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Dividing both sides by E[OPT(𝑇, ®𝛾)] and using E[OPT(𝑇, ®𝛾)] ≥ 𝜅 · 𝑇 , we get

E®𝛾∼P𝑇

[
𝑐(®𝜆, 𝑇) · OPT(𝑇, ®𝛾) − 𝑅(𝐴|𝑇, ®𝛾)

]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

≤
𝐶′1 + 2 ·

√︁
𝐶2𝐶

′
3𝜏2

E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

⇐⇒ 𝑐(®𝜆, 𝑇) −
E®𝛾∼P𝑇 [𝑅(𝐴|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

≤
𝐶′1
𝜅𝑇

+
2 ·

√︁
𝐶2𝐶

′
3𝜏2

𝜅𝑇
.

Therefore, rearranging terms and using 𝑇 ≥ 𝜏1 we get

E®𝛾∼P𝑇 [𝑅(𝐴|𝑇, ®𝛾)]
E®𝛾∼P𝑇 [OPT(𝑇, ®𝛾)]

≥ 𝑐(®𝜆, 𝑇) −
(
𝐶′1
𝜅𝑇

+ 2 ·
√︁
𝐶2𝐶

′
3𝜏2

𝜅𝑇

)
≥ 𝑐(®𝜆, 𝑇) −

(
𝐶′1
𝜅𝑇

+ 2 ·
√︁

(𝜏2/𝜏1)𝐶2𝐶
′
3𝜏1

𝜅𝑇

)
≥ 𝑐(®𝜆, 𝑇) −

(
𝐶′1
𝜅𝜏1

+ 2 ·
√︁

(𝜏2/𝜏1)𝐶2𝐶
′
3𝜏1

𝜅𝜏1

)
≥ 𝑐(®𝜆, 𝑇) −

(
𝐶′1
𝜅𝜏1

+ 2 ·
√︁

(𝜏2/𝜏1)𝐶2𝐶
′
3

𝜅
√
𝜏1

)
as required. □

B.2 Proofs and Extensions for Section 3.3.1

To prove Theorem 6, it suffices to prove the stronger statement which holds for online algo-

rithms with prior knowledge of (𝑟,P𝑟) before time 𝑡 = 1. Consequently, we assume that online

algorithms have this prior knowledge in the remainder of this section. Any algorithm without this

knowledge can only do worse.

B.2.1 Proof of Lemma 9

Proof of Lemma 9. Fix 𝑇 ∈ [𝜏1, 𝜏2]. As the resource consumption function is given by 𝐼(·), we get

that

OPT(𝑇, 𝑟) = max
𝑥

𝑇∑︁
𝑡=1

𝑓𝑟(𝑥𝑡) subject to
𝑇∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵
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Let 𝑥 be a feasible solution of the above optimization problem. Then,

𝑇∑︁
𝑡=1

𝑓𝑟(𝑥𝑡) = 𝑇 ·
∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)
𝑇

≤ 𝑇 · 𝑓𝑟

(∑𝑇
𝑡=1 𝑥𝑡

𝑇

)
≤ 𝑇 · 𝑓𝑟

(
𝐵

𝑇

)
(B.6)

where the first inequality follows from the concavity of 𝑓𝑟 and the second inequality follows from

the resource constraint
∑𝑇
𝑡=1 𝑥𝑡 ≤ 𝐵. Hence, we get that 𝑥∗𝑡 = 𝐵/𝑇 for all 𝑡 ≤ 𝑇 is an optimal

solution to the above optimization problem and as a consequence, OPT(𝑇, 𝑟) = 𝑇 · 𝑓𝑟(𝐵/𝑇) = 𝐵𝑟 ·

𝑇1−𝑟 . Moreover, we have that 𝑥∗𝑡 = 𝐵/𝑇 is the unique optimal solution because 𝑓𝑟 is strictly concave

and increasing for 𝑟 ∈ (0, 1), and therefore (i) The first inequality in (B.6) is strict whenever 𝑥𝑡 ̸= 𝑥𝑠

for some 𝑠, 𝑡 ∈ [𝑇]; (ii) 𝑓𝑟(
∑𝑇
𝑡=1 𝑥𝑡/𝑇) < 𝑓 (𝐵/𝑇) whenever

∑𝑇
𝑡=1 𝑥𝑡 < 𝐵. □

B.2.2 Proof of Lemma 10

Proof of Lemma 10. We begin by noting that our use of max instead of sup is justified in the right-

hand side of the equality in Lemma 10 because 𝑓 −1
𝑟 is continuous for all 𝑟 ∈ (0, 1). Now, fix

𝑟 ∈ (0, 1) and 1 ≤ 𝜏1 ≤ 𝜏2. Let

𝑐 ∈ argmax

{
𝑐′

���� 𝜏1 · 𝑓 −1
𝑟

(
𝑐′ · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝜏2∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐′ · ΔOPT(𝑡, 𝑟)) ≤ 𝐵

}
,

and define

𝑥𝑡 B


𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1,𝑟)

𝜏1

)
if 𝑡 ≤ 𝜏1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) if 𝜏1 < 𝑡 ≤ 𝜏2

(B.7)

Then, by definition of 𝑐, we have
∑𝜏2
𝑡=1 𝐼(𝑥𝑡) = ∑𝜏2

𝑡=1 𝑥𝑡 ≤ 𝐵. Moreover, observe that OPT(𝜏1, 𝑟)/𝜏1 =

(𝐵/𝜏1)𝑟 and

ΔOPT(𝑡, 𝑟) = OPT(𝑡, 𝑟) − OPT(𝑡 − 1, 𝑟) = 𝐵𝑟 ·
(
𝑡1−𝑟 − (𝑡 − 1)1−𝑟

)
≤ 𝐵𝑟 · 1 − 𝑟

(𝑡 − 1)𝑟
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for all 𝑡 ≥ 𝜏1 + 1. To see why the second-last inequality holds, note that the Intermediate Value

Theorem applied to the function 𝑡 ↦→ 𝑡1−𝑟 between the points 𝑡 and 𝑡 − 1 yields the existence of an

𝑠 ∈ [𝑡−1, 𝑡] such that 𝑡1−𝑟 − (𝑡−1)1−𝑟 = (1−𝑟)/𝑠𝑟 , which implies 𝑡1−𝑟 − (𝑡−1)1−𝑟 ≤ (1−𝑟)/(𝑡−1)𝑟 .

As a consequence, we get

𝑥𝑡 ≤


𝑐1/𝑟{𝐵/𝜏1} if 𝑡 ≤ 𝜏1

𝑐1/𝑟{𝐵/(𝑡 − 1)} if 𝜏1 < 𝑡 ≤ 𝜏2

(B.8)

Combining the above inequalities with the definition of 𝑐 yields 𝑐 ≤ 1. Hence, we have 𝑥𝑡 ∈ X for

all 𝑡 ∈ [𝜏2].

Consider the algorithm that selects action 𝑥𝑡 at time 𝑡. Then, in 𝑇 ∈ [𝜏1, 𝜏2] time steps, it

receives a reward of

𝑇∑︁
𝑡=1

𝑓𝑟(𝑥𝑡) =
𝜏1∑︁
𝑡=1

𝑓𝑟

(
𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

))
+

𝑇∑︁
𝑡=𝜏1+1

𝑓𝑟

(
𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟))

)
= 𝑐 · OPT(𝜏1, 𝑟) +

𝑇∑︁
𝑡=𝜏1+1

𝑐 · ΔOPT(𝑡, 𝑟)

= 𝑐 · OPT(𝑇, 𝑟) .

Therefore, we have shown that

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

≥ max

{
𝑐 ∈ [0, 1]

���� 𝜏1 · 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝜏2∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) ≤ 𝐵

}

Next, we prove the above inequality in the opposite direction. Consider an online algorithm 𝐴

such that

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

≥ 𝑐 ∀ 𝑇 ∈ [𝜏1, 𝜏2],

for some constant 𝑐 > 0. Let 𝑥(𝐴)𝑡 represent the action taken by 𝐴 at time 𝑡. Since the action

of an online algorithm cannot depend on future information, 𝑥(𝐴)𝑡 represents the action taken
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by algorithm 𝐴 for all horizons 𝑇 ≥ 𝑡. Let {𝑥(�̃�)𝑡}𝑡 represent the sequence obtained by sorting

{𝑥(𝐴)𝑡}𝑡 in decreasing order, and let �̃� represent the algorithm that takes action 𝑥(�̃�)𝑡 at time 𝑡.

Then, we have ∑𝑇
𝑡=1 𝑓𝑟(𝑥(�̃�)𝑡)
OPT(𝑇, 𝑟)

≥
∑𝑇
𝑡=1 𝑓𝑟(𝑥(𝐴)𝑡)
OPT(𝑇, 𝑟)

≥ 𝑐 ∀ 𝑇 ∈ [𝜏1, 𝜏2] ,

which allows us to assume that {𝑥(𝐴)𝑡}𝑡 is sorted in decreasing order without loss of generality.

Since
∑𝜏2
𝑡=1 𝑥(𝐴)𝑡 ≤ 𝐵, to complete the proof it suffices to show that

𝜏2∑︁
𝑡=1

𝑥𝑡 = 𝜏1 · 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝜏2∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) ≤

𝜏2∑︁
𝑡=1

𝑥(𝐴)𝑡

where the equality follows from the definition of 𝑥𝑡 (B.7). We will prove this via induction by

inductively proving the following statement for all 𝑇 ∈ [𝜏1, 𝜏2]:

𝑇∑︁
𝑡=1

𝑥𝑡 = 𝜏1 · 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
+

𝑇∑︁
𝑡=𝜏1+1

𝑓 −1
𝑟 (𝑐 · ΔOPT(𝑡, 𝑟)) ≤

𝑇∑︁
𝑡=1

𝑥(𝐴)𝑡

To do so, we will maintain variables {𝑤(𝑇)𝑡}𝑡≤𝑇 that we initialize to be 0 and update inductively.

At a high level, they capture a water-filling procedure. Suppose there is a container corresponding

to each time step 𝑡 with a capacity of 𝑥(𝐴)𝑡 . We assume that these containers can be connected to

each other so that water always goes to the lowest level, which corresponds to the highest marginal

reward since 𝑓𝑟 is concave. Moreover, we will assume that container 𝑇 becomes available at time

𝑇 and is connected to containers 𝑡 < 𝑇 at that point. Finally, we also freeze the newly-added water

at the end of each time step to inductively use the properties of the water level from the previous

time step. We would like to caution the reader that this water-filling interpretation is just a tool that

guided our intuition, and the mathematical quantities defined below may not match it exactly.

Base Case 𝑇 = 𝜏1: Let {𝑤(𝜏1)𝑡}𝜏1
𝑡=1 be a decreasing sequence that satisfies the following proper-

ties:
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I.
∑𝜏1
𝑡=1 𝑓𝑟(𝑤(𝜏1)𝑡) = 𝑐 · OPT(𝜏1, 𝑟).

II. 𝑤(𝜏1)𝑡 ≤ 𝑥(𝐴)𝑡 for all 𝑡 ≤ 𝜏1.

III’. 𝑤(𝜏1)𝑡 < 𝑤(𝜏1)1 =⇒ 𝑤(𝜏1)𝑡 = 𝑥(𝐴)𝑡 .

Such a sequence is guaranteed to exist because {𝑥(𝐴)𝑡}𝜏1
𝑡=1 satisfies properties (II - III’) trivially, and

(I) can be satisfied as
∑𝜏1
𝑡=1 𝑓𝑟(𝑥(𝐴)𝑡) ≥ 𝑐 ·OPT(𝜏1, 𝑟) and 𝑓𝑟 is a continuous increasing function. If

{𝑤(𝜏1)𝑡}𝜏1
𝑡=1 is a constant sequence, then property (I) implies

𝑤(𝜏1)𝑡 = 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
= 𝑥𝜏1 ∀ 𝑡 ≤ 𝜏1

Suppose {𝑤(𝜏1)𝑡}𝜏1
𝑡=1 is not a constant sequence. Then, the strict concavity of 𝑓𝑟 implies that

𝑓𝑟

(∑𝜏1
𝑡=1 𝑤(𝜏1)𝑡
𝜏1

)
>

∑𝜏1
𝑡=1 𝑓𝑟(𝑤(𝜏1)𝑡)

𝜏1
=
𝑐 · OPT(𝜏1, 𝑟))

𝜏1
,

which implies

𝑤(𝜏1)1 ≥
∑𝜏1
𝑡=1 𝑤(𝜏1)𝑡
𝜏1

> 𝑓 −1
𝑟

(
𝑐 · OPT(𝜏1, 𝑟)

𝜏1

)
= 𝑥𝜏1 . (B.9)

Therefore, we have established:

III. 𝑤(𝜏1)𝑡 < 𝑥𝑡 =⇒ 𝑤(𝜏1)𝑡 = 𝑥(𝐴)𝑡 .

IV.
∑𝜏1
𝑡=1 𝑤(𝜏1)𝑡 ≥

∑𝜏1
𝑡=1 𝑥𝑡 = 𝜏1 · 𝑥𝜏1 .

where (III) follows follows trivially when {𝑤(𝜏1)𝑡}𝜏1
𝑡=1 is a constant sequence and follows from (III’)

and 𝑤(𝜏1)1 > 𝑥𝑡 = 𝑥𝜏1 otherwise, and (IV) also follows trivially when {𝑤(𝜏1)𝑡}𝜏1
𝑡=1 is a constant

sequence and follows from (B.9) otherwise.

Induction Hypothesis 𝜏1 ≤ 𝑇 < 𝜏2: Suppose there exists a decreasing sequence {𝑤(𝑇)𝑡}𝑇𝑡=1 that

satisfies the following properties:
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I.
∑𝑇
𝑡=1 𝑓𝑟 (𝑤(𝑇)𝑡) = 𝑐 · OPT(𝑇, 𝑟).

II. 𝑤(𝑇)𝑡 ≤ 𝑥(𝐴)𝑡 for all 𝑡 ≤ 𝑇 .

III. 𝑤(𝑇)𝑡 < 𝑥𝑡 =⇒ 𝑤(𝑇)𝑡 = 𝑥(𝐴)𝑡 .

IV.
∑𝑇
𝑡=1 𝑤(𝑇)𝑡 ≥

∑𝑇
𝑡=1 𝑥𝑡 .

Induction Step 𝑇 + 1: If 𝑥(𝐴)𝑇+1 ≥ 𝑥𝑇+1, then set 𝑤(𝑇 + 1)𝑇+1 = 𝑥𝑇+1 and 𝑤(𝑇 + 1)𝑡 = 𝑤(𝑇)𝑡

for all 𝑡 ≤ 𝑇 . In this case, it is easy to see that conditions (I-IV) hold for {𝑤(𝑇 + 1)𝑡}𝑡 . Next,

assume 𝑥(𝐴)𝑇+1 < 𝑥𝑇+1. In this case, set 𝑤(𝑇 + 1)𝑇+1 = 𝑥(𝐴)𝑇+1. Moreover, let {𝑤(𝑇 + 1)𝑡}𝑇𝑡=1 be a

decreasing sequence that satisfies the following properties:

I.
∑𝑇
𝑡=1 𝑓𝑟(𝑤(𝑇 + 1)𝑡) = 𝑐 · OPT(𝑇, 𝑟) + 𝑓𝑟(𝑥𝑇+1) − 𝑓𝑟(𝑥(𝐴)𝑇+1).

II. 𝑤(𝑇 + 1)𝑡 ≤ 𝑥(𝐴)𝑡 for all 𝑡 ≤ 𝑇 .

III’. 𝑤(𝑇)𝑡 ≤ 𝑤(𝑇 + 1)𝑡 for all 𝑡 ≤ 𝑇 .

Such a sequence is guaranteed to exist because {𝑥(𝐴)𝑡}𝑇𝑡=1 satisfies property (II) trivially, (III’)

as a consequence of the inductive hypothesis, and (I) can be satisfied because 𝑓𝑟 is a continuous

increasing function and

𝑇+1∑︁
𝑡=1

𝑓𝑟(𝑥(𝐴)𝑡) ≥ 𝑐 · OPT(𝑇 + 1, 𝑟) ⇐⇒
𝑇+1∑︁
𝑡=1

𝑓𝑟(𝑥(𝐴)𝑡) ≥ 𝑐 · OPT(𝑇, 𝑟) + 𝑐 · ΔOPT(𝑇 + 1, 𝑟)

⇐⇒
𝑇∑︁
𝑡=1

𝑓𝑟(𝑥(𝐴)𝑡) ≥ 𝑐 · OPT(𝑇, 𝑟) + 𝑓𝑟(𝑥𝑇+1) − 𝑓𝑟(𝑥(𝐴)𝑇+1).

Observe that (III’) and 𝑤(𝑇 + 1)𝑇+1 = 𝑥(𝐴)𝑇+1 implies

III. 𝑤(𝑇 + 1)𝑡 < 𝑥𝑡 =⇒ 𝑤(𝑇 + 1)𝑡 = 𝑥(𝐴)𝑡

Now, only (IV) remains. First, note that the Intermediate Value Theorem applied to 𝑡 ↦→ 𝑡1−𝑟

implies

ΔOPT(𝑇 + 1, 𝑟) = 𝐵𝑟 · [(𝑇 + 1)1−𝑟 − 𝑇1−𝑟] ≤ 𝐵𝑟 · 1 − 𝑟
𝑇1−𝑟 ≤ 𝐵

𝑟 · [𝑇1−𝑟 − (𝑇 − 1)1−𝑟] = ΔOPT(𝑇, 𝑟),
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and as a consequence, we get 𝑥𝑇+1 ≤ 𝑥𝑇 . This further implies[
𝑇∑︁
𝑡=1

𝑤(𝑇 + 1)𝑡 −
𝑇∑︁
𝑡=1

𝑤(𝑇)𝑡

]
𝑓 ′𝑟 (𝑥𝑇+1) ≥

[
𝑇∑︁
𝑡=1

𝑤(𝑇 + 1)𝑡 −
𝑇∑︁
𝑡=1

𝑤(𝑇)𝑡

]
𝑓 ′𝑟 (𝑥𝑇 )

≥
𝑇∑︁
𝑡=1
[𝑤(𝑇 + 1)𝑡 − 𝑤(𝑇)𝑡] 𝑓 ′𝑟 (𝑤(𝑇)𝑡)

≥
𝑇∑︁
𝑡=1
[ 𝑓𝑟(𝑤(𝑇 + 1)𝑡) − 𝑓𝑟(𝑤(𝑇)𝑡)]

= 𝑓 (𝑥𝑇+1) − 𝑓 (𝑥(𝐴)𝑇+1)

≥ [𝑥𝑇+1 − 𝑥(𝐴)𝑇+1] 𝑓 ′𝑟 (𝑥𝑇+1)

where the first inequality follows from the concavity of 𝑓𝑟 and the fact that 𝑥𝑇+1 ≤ 𝑥𝑇 ; the second

inequality follows from concavity of 𝑓𝑟 and the observation that the induction hypothesis and (III’)

imply 𝑤(𝑇)𝑡 = 𝑤(𝑇 + 1)𝑡 = 𝑥(𝐴)𝑡 whenever 𝑤(𝑇)𝑡 < 𝑥𝑇 ≤ 𝑥𝑡 , i.e., 𝑤(𝑇 + 1)𝑡 − 𝑤(𝑇)𝑡 > 0 implies

𝑤(𝑇)𝑡 ≥ 𝑥𝑇 ; the third and the fourth inequalities follow from the Intermediate Value Theorem

applied to 𝑓𝑟 ; and the equality follows from (I). Therefore, we get (IV) by using the inductive

hypothesis and 𝑤(𝑇 + 1)𝑇+1 = 𝑥(𝐴)𝑇+1:

𝑇+1∑︁
𝑡=1

𝑤(𝑇 + 1) ≥
𝑇∑︁
𝑡=1

𝑤(𝑇)𝑡 + 𝑥𝑇+1 − 𝑥(𝐴)𝑇+1 + 𝑤(𝑇 + 1)𝑇+1 ≥
𝑇+1∑︁
𝑡=1

𝑥𝑡

This concludes the induction step and thereby the proof, since (II) and (IV) together imply∑𝑇
𝑡=1 𝑥𝑡 ≤

∑𝑇
𝑡=1 𝑥(𝐴)𝑡 . □

B.2.3 Proof of Theorem 6

Proof of Theorem 6. Combining Lemma 10 and Lemma 9 yields

𝜏1 ·
(
𝑐∗ ·

𝐵𝑟𝜏1−𝑟
1
𝜏1

)1/𝑟

+
𝜏2∑︁

𝑡=𝜏1+1

(
𝑐∗ · [𝐵𝑟 𝑡1−𝑟 − 𝐵𝑟(𝑡 − 1)1−𝑟]

)1/𝑟
≤ 𝐵 , (B.10)
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where 𝑐∗ = sup𝐴 min𝑇∈[𝜏1,𝜏2] 𝑅(𝐴|𝑇, 𝑟)/OPT(𝑇, 𝑟). First, note that the Intermediate Value Theorem

applied to 𝑡 ↦→ 𝑡1−𝑟 implies

𝑡1−𝑟 − (𝑡 − 1)1−𝑟 ≥ 1 − 𝑟
𝑡𝑟

∀ 𝑇 ≥ 𝜏1 + 1,

which allows us to derive the following inequality from (B.10):

(𝑐∗)1/𝑟 +
𝜏2∑︁

𝑡=𝜏1+1

(
𝑐∗ · 1 − 𝑟

𝑡𝑟

)1/𝑟
≤ 1

⇐⇒ (𝑐∗)1/𝑟 ≤ 1
1 + (1 − 𝑟)1/𝑟 ∑𝜏2

𝑡=𝜏1+1 1/𝑡

Using
∑𝜏2
𝑡=𝜏1+1 1/𝑡 ≥ ln(𝜏2/(𝜏1 + 1)) = ln(𝜏2/𝜏1) + ln(𝜏1/(𝜏1 + 1)) and (1 − 𝑟)1/𝑟 < 1, we get the first

half of Theorem 6:

𝑐∗ ≤ 1(
1 + (1 − 𝑟)1/𝑟 · ln(𝜏2/𝜏1) + (1 − 𝑟)1/𝑟 ln

(
𝜏1
𝜏1+1

))𝑟 ≤ 1(
1 + (1 − 𝑟)1/𝑟 · ln(𝜏2/𝜏1) + ln

(
𝜏1
𝜏1+1

))𝑟 .
To get the second half, note that 1 + ln(𝜏1/(𝜏1 + 1)) ≥ 0, which allows us to write:

𝑐∗ ≤ 1
(1 − 𝑟) ln(𝜏2/𝜏1)𝑟

Finally, define 𝑔 : (0, 1)→ R as 𝑔(𝑟) = (1 − 𝑟) ln(𝜏2/𝜏1)𝑟 . Then,

ln(𝑔(𝑟)) = ln(1 − 𝑟) + 𝑟 · ln ln(𝜏2/𝜏1)

=⇒ 𝑔′(𝑟)
𝑔(𝑟)

= − 1
1 − 𝑟 + ln ln(𝜏2/𝜏1)

=⇒ 𝑔′(𝑟) = − ln(𝜏2/𝜏1)𝑟 + ln ln(𝜏2/𝜏1)𝑔(𝑟)

=⇒ 𝑔′′(𝑟) = − ln ln(𝜏2/𝜏1) ln(𝜏2/𝜏1)𝑟 + ln ln(𝜏2/𝜏1) 𝑓 (𝑟) = − ln ln(𝜏2/𝜏1) · 𝑟 · ln(𝜏2/𝜏1)𝑟

Hence, for 𝜏2/𝜏1 > 𝑒
𝑒, 𝑔 is concave and is maximized at 𝑟 = 1 − (1/ln ln(𝜏2/𝜏1)). Plugging in
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𝑟 = 1 − (1/ln ln(𝜏2/𝜏1)) yields

𝑐∗ ≤ ln ln(𝜏2/𝜏1)

ln(𝜏2/𝜏1)1− 1
ln ln(𝜏2/𝜏1)

=
𝑒 · ln ln(𝜏2/𝜏1)

ln(𝜏2/𝜏1)

which completes the proof. □

B.2.4 Randomized Upper Bound with Linear Rewards and Consumptions

The upper bound of Theorem 6 can be extended to the popular special case of linear rewards

and linear consumption. Fix 𝑟 ∈ (0, 1) and 𝐵 = 𝜏1. We show that there exists a request distribution,

with linear rewards and random linear resource consumption functions, that behaves like ( 𝑓𝑟 , 𝐼,X)

in expectation. Define a consumption rate CDF 𝐻 as

𝐻(𝑠) =



0 if 𝑠 ≤ 0

𝑠
𝑟

1−𝑟 if 0 ≤ 𝑠 ≤ 1

1 if 𝑠 ≥ 1

.

Consider the following request distribution: the reward of every request is 𝑟𝑟 , the linear

resource-consumption rate 𝑠 is drawn randomly from 𝐻, and the action set is [0, 1] (to represent

the fraction of the request accepted), i.e., for request (𝑟𝑟 , 𝑠, [0, 1]) and action 𝑦 ∈ [0, 1], the reward

is 𝑟𝑟 · 𝑦 and the amount of resource consumed is 𝑠 · 𝑦. It is relatively straightforward to see that the

optimal action at each time-step is to set a threshold 𝑥 and accept a request (𝑟𝑟 , 𝑠, [0, 1]) (set 𝑦 = 1)

if and only if the consumption rate 𝑠 is less than or equal to the threshold 𝑥. For such a threshold

𝑥, the expected cost is given by

E𝑠∼𝐻[𝑠 · 1(𝑠 ≤ 𝑥)] = 𝑥𝐻(𝑥) −
∫ 𝑥

0
𝐻(𝑠)𝑑𝑠 = 𝑥

1
1−𝑟 − (1 − 𝑟) · 𝑥 1

1−𝑟 = 𝑟 · 𝑥 1
1−𝑟

and the expected reward is given by 𝑟𝑟 · 𝐻(𝑥) = 𝑟𝑟 · 𝑥 𝑟
1−𝑟 . Therefore, the expected reward is equal

to the expected cost raised to the power 𝑟, and consequently this request distribution behaves like
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( 𝑓𝑟 , 𝐼,X) in expectation.

B.2.5 Upper Bound with Distributional Knowledge of Horizon

In this appendix, we show that the upper bound of Theorem 6 holds even when the horizon

𝑇 drawn from a distribution T supported on [𝜏1, 𝜏2] and this distribution is known to the decision

maker. This is because the reward functions 𝑓𝑟(·) are concave and 𝐼(·) is linear, which makes the

problem of maximizing the competitive ratio a convex problem that satisfies strong duality. As we

note in the following theorem, the dual variables give rise to a distribution T𝑟 of the horizon which

leads to the same expected performance ratio as the competitive ratio.

Proposition 12. For every 𝑟 ∈ (0, 1), there exists a distribution T𝑟 of the horizon 𝑇 such that

sup
𝐴

E𝑇∼T𝑟

[
𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

]
= sup

𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

,

where sup𝐴 denotes the supremum over all online algorithms 𝐴 with the knowledge of the horizon

distribution T𝑟 and the request distribution P𝑟 .

Proof of Proposition 12. Fix 𝑟 ∈ (0, 1). We begin by showing that for all 𝑟 ∈ (0, 1), we have

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

= max
𝑧,𝑥𝑡

𝑧

s.t. 𝑧 ≤
∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)
∀𝑇 ∈ [𝜏1, 𝜏2] (B.11)

𝜏2∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵

𝑥𝑡 ∈ X ∀𝑡 ∈ [𝜏2]

The RHS is a convex program because 𝑓𝑟 is concave. Let 𝐴 be any online algorithm. Let 𝑥(𝐴)𝑡

denote the action taken by 𝐴 at time 𝑡. Then, 𝑥𝑡 = 𝑥(𝐴)𝑡 and

𝑧 = min
𝑇∈[𝜏1,𝜏2]

∑𝑇
𝑡=1 𝑓𝑟(𝑥(𝐴)𝑡)
OPT(𝑇, 𝑟)

= min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)
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is a feasible solution of the convex program, thereby establishing the ‘≤’ direction. The other

direction is equally straightforward: Any feasible solution (𝑥𝑡 , 𝑧) of the convex program naturally

gives rise to an algorithm which takes action 𝑥𝑡 at time 𝑡 and achieves the desired competitive ratio.

Note that 𝑥𝑡 = 1/2 and 𝑧 = 0 is a feasible solution of the convex program that satisfies

𝑧 <

∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)
∀𝑇 ∈ [𝜏1, 𝜏2]

Therefore, by Slater’s condition (see [BHM98]), we get that strong duality holds and there exists

an optimal dual multiplier {𝑝𝑇 }𝜏2
𝑇=𝜏1

associated with the constraints in (B.11) such that 𝑝𝑇 ≥ 0 for

all 𝑇 ∈ [𝜏1, 𝜏2] and

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

= max 𝑧 +
𝜏2∑︁
𝑇=𝜏1

𝑝𝑇

(∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)
− 𝑧

)
s.t.

𝜏2∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵

𝑥𝑡 ∈ X ∀𝑡 ∈ [𝜏2]

= max 𝑧

(
1 −

𝜏2∑︁
𝑇=𝜏1

𝑝𝑇

)
+

𝜏2∑︁
𝑇=𝜏1

𝑝𝑇 ·
∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)

s.t.
𝜏2∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵

𝑥𝑡 ∈ X ∀𝑡 ∈ [𝜏2]

Observe that, since 𝑧 is an unrestricted variable, we need
∑𝜏2
𝑇=𝜏1

𝑝𝑇 = 1 to ensure that the restated

(Lagrangian) optimization problem is bounded, which is necessary because the LHS is bounded.

Hence, we get

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

= max
𝜏2∑︁
𝑇=𝜏1

𝑝𝑇 ·
∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)

s.t.
𝜏2∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵

𝑥𝑡 ∈ X ∀𝑡 ∈ [𝜏2]

215



Let T𝑟 be the distribution which picks horizon 𝑇 with probability 𝑝𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2]. Then,

once again, we can use the equivalence between feasible solutions of the convex program and the

actions of an online algorithm (𝑥𝑡 = 𝑥(𝐴)𝑡) to get

sup
𝐴

min
𝑇∈[𝜏1,𝜏2]

𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

= max
𝜏2∑︁
𝑇=𝜏1

𝑝𝑇 ·
∑𝑇
𝑡=1 𝑓𝑟(𝑥𝑡)

OPT(𝑇, 𝑟)
= sup

𝐴

E𝑇∼T𝑟

[
𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

]
s.t.

𝜏2∑︁
𝑡=1

𝑥𝑡 ≤ 𝐵

𝑥𝑡 ∈ X ∀𝑡 ∈ [𝜏2]

as required. □

Combining Proposition 12 and Theorem 6 immediately yields the following corollary.

Corollary 2. For all 𝑟 ∈ (0, 1) and 1 ≤ 𝜏1 ≤ 𝜏2, there exists a horizon distribution T𝑟 such that

every online algorithm 𝐴 with knowledge of T𝑟 satisfies

E𝑇∼T𝑟

[
𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

]
≤ 1(

1 + (1 − 𝑟)1/𝑟 · ln(𝜏2/𝜏1) + ln
(
𝜏1
𝜏1+1

))𝑟 .
In particular, for 𝑟 = 1 − {1/ln ln(𝜏2/𝜏1)}, 𝜏2/𝜏1 > 𝑒

𝑒 and 𝜏1 ≥ 1, we have

E𝑇∼T𝑟

[
𝑅(𝐴|𝑇, 𝑟)
OPT(𝑇, 𝑟)

]
≤ 𝑒 · ln ln(𝜏2/𝜏1)

ln(𝜏2/𝜏1)
.

The above bounds hold even for online algorithms that have prior knowledge of P𝑟 before time

𝑡 = 1.

B.3 Proof of Proposition 3

Proof. Consider a target consumption sequence 𝜆. Set

𝑦𝑇,𝑡 = min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
and 𝑧 = min

𝑇∈[𝜏1,𝜏2]

1
𝑇
·
𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
.
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Then, (𝜆, 𝑧, 𝑦) is a feasible solution of the LP with objective value min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇). Hence, we

get LHS ≤ RHS. To prove LHS ≥ RHS, consider any feasible solution (𝜆, 𝑧, 𝑦). Then, 𝜆 is a target

consumption sequence and

𝑧 ≤ min
𝑇∈[𝜏1,𝜏2]

1
𝑇
·
𝑇∑︁
𝑡=1

𝑦𝑇,𝑡 ≤ min
𝑇∈[𝜏1,𝜏2]

1
𝑇
·
𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
= min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇)

where the first inequality follows constraints

𝑧 ≤ 1
𝑇

𝑇∑︁
𝑡=1

𝑦𝑇,𝑡 ∀𝑇 ∈ [𝜏1, 𝜏2] ,

and the second inequality follows from constraints

𝑦𝑇,𝑡 ≤
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
∀ 𝑗 ∈ [𝑚], 𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]

𝑦𝑇,𝑡 ≤ 1 ∀𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇] .

Therefore, we have LHS ≥ RHS, as required. □

B.4 Proofs of Section 3.4

B.4.1 Proof of Proposition 4

Proof. Consider a target consumption sequence 𝜆 such that min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇) ≥ 𝛾. Set

𝑦𝑇,𝑡 = min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
.

Then, (𝜆, 𝑦) is a feasible solution of the LP with objective value

1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

𝑦𝑇𝑃 ,𝑡 =
1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇𝑃 , 𝑗
, 1

}
= 𝑐(®𝜆, 𝑇𝑃) .

Hence, we get LHS ≤ RHS.
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To prove LHS ≥ RHS, consider any feasible solution (𝜆, 𝑦). Then, 𝜆 is a target consumption

sequence and we have

𝑦𝑇,𝑡 ≤ min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
,

for all 𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇], where the inequality follows from constraints

𝑦𝑇,𝑡 ≤
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
∀ 𝑗 ∈ [𝑚], 𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇]

𝑦𝑇,𝑡 ≤ 1 ∀𝑇 ∈ [𝜏1, 𝜏2], 𝑡 ∈ [𝑇] .

Therefore, we get

𝑐(®𝜆, 𝑇𝑃) =
1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇𝑃 , 𝑗
, 1

}
= 𝑐(®𝜆, 𝑇𝑃) =

1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

𝑦𝑇𝑃 ,𝑡

and

𝑐(®𝜆, 𝑇) =
1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
= 𝑐(®𝜆, 𝑇𝑃) ≥ 1

𝑇

𝑇∑︁
𝑡=1

𝑦𝑇,𝑡 ≥ 𝛾 .

Consequently, we have min𝑇∈[𝜏1,𝜏2] 𝑐(®𝜆, 𝑇) ≥ 𝛾 and the objective of the LP is at most 𝑐(®𝜆, 𝑇𝑃).

Hence, LHS ≥ RHS as required. □

B.4.2 Proof of Proposition 5

Proof of Proposition 5. It is straightforward to see that ®𝜆 satisfies the budget constraint:

𝑇∑︁
𝑡=1
𝜆𝑡 =

𝜏1∑︁
𝑡=1

𝛼

1 + ln(𝜏2/𝜏1)
· 𝐵
𝜏1

+
𝜏2∑︁

𝑡=𝜏1+1

𝛼

1 + ln(𝜏2/𝜏1)
· 𝐵
𝑡

+
𝑇𝑃∑︁
𝑡=1

(1 − 𝛼) · 𝐵
𝑇𝑃

=
𝛼𝐵

1 + ln(𝜏2/𝜏1)
·
(
𝜏1
𝜏1

+
𝜏2∑︁

𝑡=𝜏1+1

1
𝑡

)
+ (1 − 𝛼) · 𝐵

≤ 𝛼𝐵

1 + ln(𝜏2/𝜏1)
· (1 + ln(𝜏2/𝜏1)) + (1 − 𝛼) · 𝐵
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= 𝐵 .

Moreover, note that for any 𝑇 ∈ [𝜏1, 𝜏2], we have

𝑐(®𝜆, 𝑇) =
1
𝑇

𝑇∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 1

}
≥ 1
𝑇

𝑇∑︁
𝑡=1

𝛼

1 + ln(𝜏2/𝜏1)
=

𝛼

1 + ln(𝜏2/𝜏1)
,

and

𝑐(®𝜆, 𝑇𝑃) =
1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

min
{

min
1≤ 𝑗≤𝑚

𝜆𝑡, 𝑗

𝜌𝑇𝑃 , 𝑗
, 1

}
≥ 1
𝑇𝑃

𝑇𝑃∑︁
𝑡=1

1 − 𝛼 +
𝛼

1 + ln(𝜏2/𝜏1)
= 1 − 𝛼 +

𝛼

1 + ln(𝜏2/𝜏1)
,

where we have used the fact that 𝜌𝑡 ≥ 𝜌𝑇 for all 𝑡 ≤ 𝑇 . Hence, we have shown that Algorithm 3

with target sequence ®𝜆 is (𝛾−𝜖)-competitive, where 𝛾 = 𝛼·(1+ln(𝜏2/𝜏1))−1, and (1−𝛼)-consistent on

prediction 𝑇𝑃. Since ®𝜆 is one possible choice of the target consumption sequence, the proposition

holds. □

B.5 Proofs for Section 3.5

B.5.1 Proof of Theorem 7

Proof of Theorem 7. To simplify exposition, we define

𝑎𝑇 =


𝛽 if 𝑇 = 𝑇𝑃

𝛾 if 𝑇 ̸= 𝑇𝑃

Hence,

𝑐(®𝜆′, 𝑇𝑃) ≥ 𝛽 and min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆′, 𝑇) ≥ 𝛾 ⇐⇒ 𝑐(®𝜆′, 𝑇) ≥ 𝑎𝑇 ∀ 𝑇 ∈ [𝜏1, 𝜏2] .
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We start by proving some important properties of Algorithm 4. First, we show that

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
=
𝜆𝑡,𝑘

𝜌𝑇,𝑘
∀ 𝑗 , 𝑘 ∈ [𝑚], 𝑡 ∈ [𝑇]

throughout the run of the algorithm. We do so via induction on each update of ®𝜆 (see (3.9)).

Initially, ®𝜆 = 0 so the statement holds trivially. Suppose it holds before the update. Observe that

min

{
𝜌𝑇, 𝑗 − 𝜆𝑡, 𝑗 , 𝑎𝑇 · 𝐵 𝑗 −

𝑇∑︁
𝑠=1

𝜆𝑠, 𝑗

}
= 𝜌𝑇, 𝑗 min

{
1 −

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 𝑎𝑇 · 𝑇 −

𝑇∑︁
𝑠=1

𝜆𝑠, 𝑗

𝜌𝑇, 𝑗

}
.

Let ®𝜆′ be the sequence after the update in (3.9). Then, we have

𝜆′
𝑡, 𝑗

𝜌𝑇, 𝑗
=
𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
+ min

{
1 −

𝜆𝑡, 𝑗

𝜌𝑇, 𝑗
, 𝑎𝑇 · 𝑇 −

𝑇∑︁
𝑠=1

𝜆𝑠, 𝑗

𝜌𝑇, 𝑗

}
.

Since the RHS is the same for all 𝑗 ∈ [𝑚] by the induction hypothesis, the statement holds after

the update, thereby completing the induction step. Therefore, we have

𝑐(®𝜆∗, 𝑇) =
1
𝑇

𝑇∑︁
𝑡=1

min

{
min

1≤ 𝑗≤𝑚

𝜆∗
𝑡 , 𝑗

𝜌𝑇, 𝑗
, 1

}
= min

1≤ 𝑗≤𝑚

1
𝑇

𝑇∑︁
𝑡=1

min

{
𝜆∗
𝑡 , 𝑗

𝜌𝑇, 𝑗
, 1

}
= min

1≤ 𝑗≤𝑚

1
𝐵 𝑗

𝑇∑︁
𝑡=1

min
{
𝜆∗𝑡 , 𝑗 , 𝜌𝑇, 𝑗

}
.

(B.12)

We prove an intermediate lemma that will prove useful later

Lemma 33. For each outer For loop counter 𝑇 , the inner For loop always maintains 𝜆𝑡, 𝑗 ≤ 𝜌𝑇, 𝑗

and one of the following holds at its termination:

•
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 = 𝑎𝑇 · 𝐵 𝑗 .

•
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 ≥ 𝑎𝑇 · 𝐵 𝑗 held before the first iteration and 𝜆𝑡, 𝑗 was not modified during any of the

iterations of the inner For loop.

Proof. This is because, for each resource 𝑗 ∈ [𝑚], exactly one of the following cases holds after

each iteration of the inner For loop in which 𝜆𝑡, 𝑗 was modified:
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• 𝜆𝑡, 𝑗 = 𝜌𝑇, 𝑗 and
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 < 𝑎𝑇 · 𝐵 𝑗

•
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 = 𝑎𝑇 · 𝐵 𝑗

Now, suppose
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 < 𝑎𝑇 · 𝐵 𝑗 at termination of the inner For loop. Then, 𝜆𝑡, 𝑗 = 𝜌𝑇, 𝑗 for all

𝑡 ∈ [𝑇] and 𝑎𝑇 · 𝐵 𝑗 −
∑𝑇
𝑠=1 𝜆𝑠, 𝑗 ≤ 𝐵 𝑗 − 𝑇 · 𝜌𝑇, 𝑗 ≤ 0, which contradicts

∑𝑇
𝑠=1 𝜆𝑠, 𝑗 < 𝑎𝑇 · 𝐵 𝑗 . Hence,

the lemma holds. □

In both cases, at termination we have

𝑇∑︁
𝑠=1

𝜆𝑠, 𝑗 ≥ 𝑎𝑇 · 𝐵 𝑗 ∀ 𝑗 ∈ [𝑚] . (B.13)

As we only ever increase ®𝜆 in (3.9), we get

𝑇∑︁
𝑡=1

min{𝜆∗𝑡, 𝑗 , 𝜌𝑇, 𝑗 } ≥ 𝑎𝑇 · 𝐵 𝑗 ∀ 𝑇 ∈ [𝜏1, 𝜏2]

for all 𝑗 ∈ [𝑚]. Therefore, 𝑐(®𝜆∗, 𝑇) ≥ 𝑎𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2] by (B.12). Part (1) of the theorem

follows as a direct consequence and we focus on part (2) in the remainder

We are now ready to prove the theorem. We begin with the “only if" direction. Suppose∑𝜏2
𝑡=1 𝜆

∗
𝑡 ≤ 𝐵. Since we have shown that 𝑐(®𝜆∗, 𝑇) ≥ 𝑎𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2], this makes ®𝜆′ = ®𝜆∗ the

required target consumption sequence.

For the other direction, assume that there exists a target consumption sequence ®𝜆𝑜 (with∑𝜏2
𝑡=1 𝜆

𝑜
𝑡 ≤ 𝐵) which satisfies 𝑐(®𝜆𝑜, 𝑇) ≥ 𝑎𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2]. Let ®𝜆′ be the target consumption

sequence which minimizes
∑𝑚
𝑘=1

∑𝑇
𝑡=1 𝑡 · 𝜆

𝑜
𝑡, 𝑗

among all such sequences, i.e.,

®𝜆′ ∈ argmin®𝜆𝑜
𝑚∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑡 · 𝜆𝑜𝑡, 𝑗

s.t. 𝑐(®𝜆𝑜, 𝑇) ≥ 𝑎𝑇 ∀ 𝑇 ∈ [𝜏1, 𝜏2]
𝜏2∑︁
𝑡=1
𝜆𝑜𝑡 ≤ 𝐵
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By (3.8), we get

𝑇∑︁
𝑡=1

min{𝜆′𝑡, 𝑗 , 𝜌𝑇, 𝑗 } ≥ 𝑎𝑇 · 𝐵 𝑗 ∀ 𝑇 ∈ [𝜏1, 𝜏2], 𝑗 ∈ [𝑚] .

To prove
∑𝜏2
𝑡=1 𝜆

∗
𝑡 ≤ 𝐵, it suffices to show that 𝜆∗

𝑡, 𝑗
≤ 𝜆′

𝑡, 𝑗
for all 𝑡 ∈ [𝑡], 𝑗 ∈ [𝑚]. For contradiction,

suppose the latter does not hold. In what follows, we will use ®𝜆(𝑇∗) to denote the value of ®𝜆 at the

end of the 𝑇-th iteration of the outer For loop.

Let 𝑇 = 𝑇∗ and 𝑡 = 𝑡∗ be the outer and inner For loop counters respectively for the update (3.9)

at the end of which 𝜆𝑡∗,𝑘 > 𝜆′
𝑡∗,𝑘 for some resource 𝑘 ∈ [𝑚] for the first time during the run of

Algorithm 4. Since 𝑐(®𝜆′, 𝑇∗) ≥ 𝑎𝑇 , (3.8) implies that
∑𝑇∗

𝑡=1 min{𝜆′
𝑡,𝑘
, 𝜌𝑇,𝑘 } ≥ 𝑎𝑇 · 𝐵𝑘 . Since 𝜆𝑡∗,𝑘

had to be modified to get 𝜆𝑡∗,𝑘 > 𝜆′𝑡∗,𝑘 for the first time, Lemma 33 implies that the inner For loop

will terminate with
∑𝑇∗

𝑡=1 min
{
𝜆

(𝑇∗)
𝑡,𝑘
, 𝜌𝑇,𝑘

}
= 𝑎𝑇 · 𝐵𝑘 . Therefore, there must exist a 𝑡∗ < 𝑠 ≤ 𝑇∗ such

that 𝜆′
𝑠,𝑘
> 𝜆

(𝑇∗)
𝑠,𝑘

after the 𝑇∗-th iteration of the outer For loop.

Now, pick 𝜈 < min
{
𝜆′
𝑠,𝑘
− 𝜆(𝑇∗)

𝑠,𝑘
, 𝜆

(𝑇∗)
𝑡∗,𝑘 − 𝜆

′
𝑡∗,𝑘

}
and define a new target consumption sequence

®𝜆′′ which is exactly the same as ®𝜆′ except 𝜆′′
𝑡∗,𝑘 = 𝜆′

𝑡∗,𝑘 + 𝜈 and 𝜆′′
𝑠,𝑘

= 𝜆′
𝑠,𝑘
− 𝜈. Since 𝑡∗ < 𝑠, we get

𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑡 · 𝜆′′𝑡, 𝑗 <
𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑡 · 𝜆′𝑡, 𝑗 .

If we can show that 𝑐(®𝜆′′, 𝑇) ≥ 𝑎𝑇 for all 𝑇 ∈ [𝜏1, 𝜏2], we will contradict the minimality of ®𝜆′. To

see this, consider the following cases

• 𝑇 > 𝑇∗: 𝜆′′ ≥ 𝜆(𝑇) by definition of 𝑇∗, 𝑡∗ and 𝜈. Hence, (B.13) implies

𝑇∑︁
𝑡=1

min{𝜆′′𝑡, 𝑗 , 𝜌𝑇, 𝑗 } ≥
𝑇∑︁
𝑡=1

min{𝜆(𝑇)
𝑡, 𝑗
, 𝜌𝑇, 𝑗 } ≥ 𝑎𝑇 · 𝐵 𝑗 ∀ 𝑗 ∈ [𝑚] ,

and consequently 𝑐(®𝜆′′, 𝑇) ≥ 𝑎𝑇 .

• 𝑇 ≤ 𝑇∗: Observe that 𝜆′′
𝑡∗,𝑘 ≤ 𝜆

(𝑇)
𝑡∗,𝑘 ≤ 𝜌𝑇∗,𝑘 ≤ 𝜌𝑇,𝑘 . Recall that 𝜆′′

𝑡∗,𝑘 = 𝜆′
𝑡∗,𝑘 + 𝜈 and
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𝜆′′
𝑠,𝑘

= 𝜆′
𝑠,𝑘
− 𝜈 where 𝑡∗ < 𝑠, and 𝜆′′

𝑡, 𝑗
= 𝜆′

𝑡, 𝑗
otherwise. Therefore,

𝑇∑︁
𝑡=1

min{𝜆′′𝑡, 𝑗 , 𝜌𝑇, 𝑗 } ≥
𝑇∑︁
𝑡=1

min{𝜆′𝑡, 𝑗 , 𝜌𝑇, 𝑗 } ≥ 𝑎𝑇 · 𝐵 𝑗 ∀ 𝑗 ∈ [𝑚] ,

and consequently 𝑐(®𝜆′′, 𝑇) ≥ 𝑎𝑇 .

Thus we have established the required contradiction, thereby completing the proof. □

B.5.2 Binary Search Procedure

We explain how to use Algorithm 4 to find an 𝜀-approximate solution to the LP in Proposition 4.

A similar procedure can be used to compute an 𝜀-approximate solution to the LP in Proposition 3.

Consider a required level of competitiveness 𝛾 ≥ 0. Then, we can run binary search to find the

highest consistency that can be achieved by any target consumption sequence which is 𝛾 competi-

tive as follows:

• Initialize ℓ = 0 and 𝑢 = 1

• Set 𝛽 = (𝑢 + ℓ)/2. Run Algorithm 4. If it returns TRUE, set ℓ = 𝛽, otherwise set 𝑢 = 𝛽.

Repeat this step till 𝑢 − ℓ ≤ 𝜀.

Let ®𝜆′ be the optimal solution of the LP in Proposition 4, i.e.,

®𝜆′ ∈ argmax®𝜆≥0 𝑐(®𝜆, 𝑇𝑃) s.t. min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆, 𝑇) ≥ 𝛾 and
𝜏2∑︁
𝑡=1
𝜆𝑡 ≤ 𝐵 .

Then, part (2) of Theorem 7 implies that Algorithm 4 returns TRUE if and only if 𝛽 ≤ 𝑐(®𝜆′, 𝑇𝑃).

Consequently, ℓ ≤ 𝑐(®𝜆′, 𝑇𝑃) ≤ 𝑢 at all times during the run of the binary search procedure, which

further implies that ℓ ≥ 𝑐(®𝜆′, 𝑇𝑃) − 𝜀 at termination. Let ®𝜆∗ be the sequence computed by Algo-

rithm 4 when given 𝛽 = ℓ. Then, Theorem 7 implies that

𝑐(®𝜆∗, 𝑇𝑃) ≥ 𝑐(®𝜆∗, 𝑇𝑃) − 𝜀, min
𝑇∈[𝜏1,𝜏2]

𝑐(®𝜆∗, 𝑇) ≥ 𝛾 and
𝜏2∑︁
𝑡=1
𝜆∗𝑡 ≤ 𝐵 ,
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as required.
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Appendix C: Appendix to Chapter 4

C.1 Counter Example for Deterministic Context

Example 7. Consider an auction with 𝑛 = 2 budget-constrained buyers per auction. Buyers draw

their value 𝑣 uniformly from the interval [0, 1] and each with a budget of 1/8, i.e., 𝑇 = {(𝑣, 1/8) ∈

R2 | 0 ≤ 𝑣 ≤ 1} is the type space where the first component denotes the value and the second one

denotes the budget. (A uniform distribution of values can be achieved by a number of fixed contexts

and weight vector distributions, for example suppose the item context is 𝛼 = (1) and the weight

vectors 𝑤 are distributed uniformly in [0, 1]. This would yield values 𝑣 = 𝑤𝑇𝛼 that are uniformly

distributed) As in our model, the buyers would like to satisfy their budget constraint in expectation

at the interim stage: A buyer with value 𝑣 would like to spend less than 1/8 in expectation over

the value of the other buyer. Moreover, assume that the ties are broken uniformly. We will show

that there does not exist a symmetric continuous non-decreasing Bayes-Nash equilibrium strategy

𝛽 : 𝑇 → R≥0 for this example.

Let 𝐹 denote the distribution of bids under 𝛽. We first show that 𝐹 must contain an atom. For

contradiction, suppose not, i.e., 𝐹 is atomless. Since 𝐹 is atomless 𝛽 should strictly increasing.

Then, the probability that a buyer with value 𝑣 wins the item in equilibrium is given by 𝑣. This

follows because the bidder with the highest value wins when strategies are symmetric and strictly

increasing together with the fact that values are uniformly distributed. Therefore, if the buyer with

value 1 bids 𝑏, her expected expenditure is given by 𝑏, which must be less than or equal to 1/8 due

to the budget constraint. Hence, 𝛽(𝑣) ≤ 1/8 for all 𝑣 ∈ [0, 1]. It is easy to see that the optimal

bid for any buyer with value 𝑣 ∈ [1/2, 1], in response to the other buyer using 𝛽, is 1/8. This

contradicts the assumption that 𝐹 is atomless.

Hence, 𝐹 has an atom 𝑏∗. As 𝛽 is non-decreasing, there exists an interval [𝑥, 𝑥+𝜖], where 𝜖 > 0,
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such that 𝛽(𝑣) = 𝑏∗ for all 𝑣 ∈ [𝑥, 𝑥 + 𝜖] and 𝛽(𝑣) < 𝑏∗ for all 𝑣 < 𝑥. If 𝑏∗ = 𝑥 = 0, then bidding

infinitesimally more than 𝑏∗ is strictly better for a buyer with value 𝑥 + 𝜖 because her probability

of winning increases by at least 𝜖/2 without violating her budget constraint, thereby contradicting

the fact that 𝛽 is a BNE. Hence, we have 0 < 𝑏∗ = 𝛽(𝑥) < 𝑥, because if 𝑏∗ = 𝑥, then bidding

slightly less than 𝑏∗ would give the buyer with value 𝑥 a higher utility. Finally, the continuity of

𝛽 implies that, for a buyer with a value that is infinitesimally smaller than 𝑥, it is optimal to bid

𝑏∗ since it increases her probability of winning by at least 𝜖/2 with only an infinitesimal increase

in bid. This contradicts the definition of a BNE, thereby implying that no symmetric continuous

non-decreasing BNE strategy exists for this example. □

It is worth noting that a BNE does exist for the above example if the seller employs the second-

price auction. In particular, we claim that the following strategy forms a BNE for the second-price

auction:

𝛽(𝑣) =


1/4 if 𝑣 ≥ 1/4

𝑣 if 𝑣 < 1/4

First, observe that if a buyer bids 𝑏 > 1/4, her total expected expenditure (expectation over the

other buyer’s value) is given by

3
4
· 1

4
+

∫1/4

0
𝑣𝑑𝑣 =

7
32

which is strictly greater than 1/8. Therefore no buyer can bid strictly more than 1/4 without

violating her budget constraint. Moreover, a buyer who bids exactly 1/4 spends

1
2
· 3

4
· 1

4
+

∫1/4

0
𝑣𝑑𝑣 =

1
8

and satisfies her budget constraint.

Consider a buyer with value 𝑣 > 1/4 and suppose the competing buyer bids using 𝛽. As argued
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above, her budget constraints her to select a bid 𝑏 ≤ 1/4. Her utility from bidding 𝑏 < 1/4 is given

by 𝑣 · 𝑏 − 𝑏2/2, which is at most 𝑣 · (1/4) − (1/4)2/2 = 𝑣/4 − 1/32. On the other hand, the utility

she receives from bidding 𝑏 = 1/4 is given by

𝑣

[
1
2
· 3

4
+

1
4

]
− 1

8

which is strictly greater than 𝑣/4 − 1/32 because 𝑣 > 1/4. Next, consider a buyer with value

𝑣 ≤ 1/4. If she ignores her budget constraint, it is a weakly dominant strategy to bid her value. As

we have shown above, bidding her value also respects her budget constraint and is therefore a best

response. Hence, we have shown that, if the other buyer bids using 𝛽, it is a best response for any

buyer with value 𝑣 > 1/4 to bid 1/4 and for any buyer with value 𝑣 ≤ 1/4 to bid 𝑣, as desired.

C.2 Existence of Symmetric First-Price Equilibrium

C.2.1 Preliminaries on Continuity

The following lemma establishes the almost sure continuity of the CDF of the distribution of

the maximum of paced values 𝐻𝜇
𝛼 , which is used extensively in our analysis.

Lemma 34. For every 𝜇 : Θ→ R≥0, the following properties hold:

a. 𝜆𝜇𝛼 and 𝐻𝜇
𝛼 have continuous CDFs almost surely w.r.t. 𝛼 ∼ 𝐹

b. 𝜎𝜇𝛼 is continuous almost surely w.r.t. 𝛼 ∼ 𝐹

c. 𝜎𝜇𝛼 is non-decreasing. Furthermore, for 𝑥 ∈ [0, 𝜔] and 𝛼 ∈ 𝐴 such that 𝐻𝜇
𝛼 is continuous,

the following statement holds almost surely w.r.t. 𝑌 ∼ 𝐻𝜇
𝛼 ,

1{𝑥 ≥ 𝑟(𝛼), 𝑥 ≥ 𝑌 } = 1
{
𝜎
𝜇
𝛼 (𝑥) ≥ 𝑟(𝛼), 𝜎𝜇𝛼 (𝑥) ≥ 𝜎𝜇𝛼 (𝑌 )

}
d. Almost surely w.r.t. 𝛼 ∼ 𝐹, when 𝑥1, 𝑥2 ∼ 𝜆𝜇𝛼 i.i.d., the probability of 𝜎𝜇𝛼 (𝑥1) = 𝜎

𝜇
𝛼 (𝑥2) is

zero.
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Part (a) states that the distributions of paced values are atomless almost surely w.r.t. the items

𝛼 ∼ 𝐹. This property is crucial because it allows us to leverage the known result establishing

the existence of a symmetric equilibrium in the i.i.d. setting under arbitrary tie-breaking rules,

which holds only if the distribution of values is atom-less. Part (b) is a direct consequence of the

definition of 𝜎𝜇𝛼 . Part (c) follows from part (a). Part (c) says that when everyone uses the strategy

𝜎
𝜇
𝛼 , with probability 1, a buyer who has paced value 𝑥 for item 𝛼 has the highest bid if and only if

she has the highest paced value, which plays a key role in our analysis. Finally, part (d), says that

ties are a zero probability event when players use the value-pacing-based strategy. We will need

the following lemma to prove Lemma 34

Lemma 35. Consider a set 𝑌 = {𝑦𝛼}𝛼∈𝐼 with 𝑦𝛼 > 0, where 𝐼 is an index set. If 𝐼 is uncountable,

then there exists a countable sequence {𝛼𝑛}𝑛∈N ⊂ 𝐼 such that
∑
𝑛∈N 𝑦𝛼𝑛 = ∞.

Proof. Rewrite 𝐼 as 𝐼 = ∪𝑛∈Z+{𝛼 ∈ 𝐼 | 𝑦𝛼 ≥ 1/𝑛}. It is a well-known fact that a countable union

of countable sets is countable (see Theorem 2.12 of [Rud+64]). Therefore, in order for 𝐼 to be

uncountable, there must exist 𝑛0 such that {𝛼 ∈ 𝐼 | 𝑦𝛼 ≥ 1/𝑛0} is uncountable. It follows that we

can find a countable sequence {𝑦𝛼𝑛}𝑛∈N such that 𝑦𝛼𝑛 ≥ 1/𝑛0 for all 𝑛 ∈ N. For this sequence,∑
𝑛∈N 𝑦𝛼𝑛 = ∞. □

We now state the proof of Lemma 34.

Proof of Lemma 34.

a. Consider a pacing function 𝜇 : Θ → R≥0. Let 𝛼1, 𝛼2 ∈ 𝐴 be linearly independent feature

vectors and 𝑥1, 𝑥2 ∈ [0, 𝜔] be two possible item values. We consider the set of buyer types

which have paced value 𝑥1 for 𝛼1 and paced value 𝑥2 for 𝛼2, i.e., define

𝑆 B

{
(𝑤, 𝐵) ∈ Θ

���� 𝑤𝑇𝛼1
1 + 𝜇(𝑤, 𝐵)

= 𝑥1;
𝑤𝑇𝛼2

1 + 𝜇(𝑤, 𝐵)
= 𝑥2

}
Observe that, for (𝑤, 𝐵) ∈ 𝑆 and 𝑐 B 𝑥1/𝑥2, we have 𝑤𝑇𝛼1 = 𝑐 · 𝑤𝑇𝛼2. Therefore, the set

𝑇 = {𝑤 ∈ Θ𝑤 | 𝑤𝑇 (𝛼1 − 𝑐𝛼2) = 0} is a superset of the set 𝑆𝑤. Hence, 𝑆 ⊂ 𝑇 × (𝐵min,𝑈),
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which in combination with the assumption that 𝐺 has a density implies 𝐺(𝑆) = 0.

Define 𝐽 =
{
𝛼/∥𝛼∥ | ∃ 𝑥𝛼 > 0 s.t. 𝐺({(𝑤, 𝐵) | 𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵) = 𝑥𝛼}) > 0)

}
. Suppose

𝐽 is uncountable. Then, by Lemma 35, there exists a countable sequence {𝛼𝑚}𝑚∈N and

{𝑥𝛼𝑚}𝑚∈N such that 𝛼𝑖/∥𝛼𝑖∦= 𝛼 𝑗/∥𝛼 𝑗 ∥ for all 𝑖 ̸= 𝑗 and

∑︁
𝑚

𝐺({(𝑤, 𝐵) | 𝑤𝑇𝛼𝑚/(1 + 𝜇(𝑤, 𝐵) = 𝑥𝛼𝑚}) > 0) = ∞.

Set 𝑆𝑚 B {(𝑤, 𝐵) | 𝑤𝑇𝛼𝑚/(1 + 𝜇(𝑤, 𝐵) = 𝑥𝛼𝑚}. We have shown above that 𝐺(𝑆𝑖 ∩ 𝑆 𝑗 ) = 0

for all 𝑖 ̸= 𝑗 . Therefore, for all 𝑚 ≥ 1, we have 𝐺(𝑆𝑚 ∩ (∪ 𝑗<𝑚𝑆 𝑗 )) = 0, which implies

𝐺(𝑆𝑚 ∩ (∪ 𝑗<𝑚𝑆 𝑗 )𝐶) = 𝐺(𝑆𝑚). This contradicts 𝐺(∪𝑚𝑆𝑚) ≤ 1 as 𝐺(∪𝑚𝑆𝑚) = ∑
𝑚 𝐺(𝑆𝑚 ∩

(∪ 𝑗<𝑚𝑆 𝑗 )𝐶) = ∑
𝑚 𝐺(𝛼𝑇𝑚𝑠 = 𝑥𝛼𝑚) = ∞. Hence, 𝐽 is countable. Observe that

{
𝛼

∥𝛼∥

���� 𝜆𝜇𝛼 has an atom
}
⊂ 𝐽

As 𝐹 has a density, we get 𝐹(cone(𝐽)) = 0. Therefore, 𝜆𝜇𝛼 has no atoms almost surely w.r.t.

𝛼 ∈ 𝐴, i.e., 𝜆𝜇𝛼 has a continuous CDF almost surely w.r.t. 𝛼 ∼ 𝐹. Moreover, this implies that

𝐻
𝜇
𝛼 has a continuous CDF almost surely w.r.t. 𝛼 ∼ 𝐹.

b. Follows from the fact that the integral of every bounded function is continuous.

c. Using Lemma 2.2.8 from [Dur19], we can write

𝜎
𝜇
𝛼(𝑥) = 𝑥 −

∫ 𝑥

𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)

𝐻
𝜇
𝛼(𝑥)

𝑑𝑠 = 𝑟(𝛼) +
∫ 𝑥

𝑟(𝛼)

𝐻
𝜇
𝛼(𝑥) − 𝐻𝜇

𝛼(𝑠)
𝐻

𝜇
𝛼(𝑥)

𝑑𝑠 = E𝑌∼𝐻𝜇
𝛼
[max{𝑌, 𝑟(𝛼)} | 𝑌 < 𝑥]

From the last term, it can be easily seen that 𝜎𝜇𝛼 is non-decreasing.

Observe that 1(𝑥 ≥ 𝑟(𝛼), 𝑥 ≥ 𝑌 ) ≤ 1
(
𝜎
𝜇
𝛼 (𝑥) ≥ 𝑟(𝛼), 𝜎𝜇𝛼 (𝑥) ≥ 𝜎𝜇𝛼 (𝑌 )

)
always holds as 𝜎𝜇𝛼 is

non-decreasing and 𝜎𝜇𝛼 (𝑟(𝛼)) = 𝑟(𝛼). Moreover,

1(𝑥 ≥ 𝑟(𝛼), 𝑥 ≥ 𝑌 ) < 1
(
𝜎

𝜇
𝛼(𝑥) ≥ 𝑟(𝛼), 𝜎𝜇

𝛼(𝑥) ≥ 𝜎𝜇
𝛼(𝑌 )

)
=⇒ 𝑥 ≥ 𝑟(𝛼), 𝑥 < 𝑌, 𝜎𝜇

𝛼(𝑥) ≥ 𝜎𝜇
𝛼(𝑌 )

=⇒ 𝑥 ≥ 𝑟(𝛼), 𝑥 < 𝑌, 𝜎𝜇
𝛼(𝑥) = 𝜎𝜇

𝛼(𝑌 )
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because 𝜎𝜇𝛼 (𝑥) ≥ 𝑟(𝛼) if and only if 𝑥 ≥ 𝑟(𝛼), and 𝜎𝜇𝛼 is non-decreasing.

Therefore, it is enough to show for 𝛼 ∈ 𝐴 such that 𝐻𝜇
𝛼 is continuous and 𝑥 ≥ 𝑟(𝛼), we have

𝐻
𝜇
𝛼

(
{𝑦 ∈ [0, 𝜔] | 𝑥 < 𝑦, 𝜎𝜇𝛼 (𝑥) = 𝜎𝜇𝛼 (𝑦)}

)
= 0

Suppose the above statement doesn’t hold for some 𝛼 ∈ 𝐴 such that 𝐻𝜇
𝛼 is continuous and

𝑥 ≥ 𝑟(𝛼). Then, for 𝑦 = sup{𝑡 > 𝑥 | 𝜎𝜇𝛼 (𝑡) = 𝜎
𝜇
𝛼 (𝑥)}, we have 𝜎𝜇𝛼 (𝑦) = 𝜎

𝜇
𝛼 (𝑥) (as 𝜎𝜇𝛼 is

continuous) and 𝐻𝜇
𝛼((𝑥, 𝑦]) > 0. First, consider the case when 𝐻𝜇

𝛼(𝑥) > 0. Observe that

𝜎
𝜇
𝛼 (𝑦) − 𝜎𝜇𝛼 (𝑥) = 𝑦 − 𝑥 −

∫ 𝑦

𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)

𝐻
𝜇
𝛼(𝑦)

𝑑𝑠 +
∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)

𝐻
𝜇
𝛼(𝑥)

𝑑𝑠

= 𝑦 − 𝑥 −
∫ 𝑦

𝑥

𝐻
𝜇
𝛼(𝑠)

𝐻
𝜇
𝛼(𝑦)

𝑑𝑠 +
(

1
𝐻
𝜇
𝛼(𝑥)
− 1
𝐻
𝜇
𝛼(𝑦)

) ∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)𝑑𝑠

>

(
1

𝐻
𝜇
𝛼(𝑥)
− 1
𝐻
𝜇
𝛼(𝑦)

) ∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)𝑑𝑠

where the last inequality follows from 𝐻
𝜇
𝛼(𝑦) − 𝐻𝜇

𝛼(𝑥) = 𝐻𝜇
𝛼((𝑥, 𝑦]) > 0. Therefore, 𝜎𝜇𝛼 (𝑦) >

𝜎
𝜇
𝛼 (𝑥) because 𝐻𝜇

𝛼(𝑦) > 𝐻𝜇
𝛼(𝑥), which contradicts 𝜎𝜇𝛼 (𝑦) = 𝜎𝜇𝛼 (𝑥).

Next, consider the case when 𝐻𝜇
𝛼(𝑥) = 0. Then, 𝐻𝜇

𝛼(𝑥) = 0 and 𝐻𝜇
𝛼(𝑦) = 𝐻𝜇

𝛼(𝑥)+𝐻𝜇
𝛼((𝑥, 𝑦]) >

0. Note that

𝜎
𝜇
𝛼 (𝑦)𝐻𝜇

𝛼(𝑦) = 𝑦𝐻𝜇
𝛼(𝑦) −

∫ 𝑦

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠 =

∫ 𝑦

𝑟(𝛼)
[𝐻𝜇

𝛼(𝑦) − 𝐻𝜇
𝛼(𝑠)]𝑑𝑠 + 𝑟(𝛼)𝐻𝜇

𝛼(𝑦)

Hence, 𝜎𝜇𝛼 (𝑦) = 0 if and only if 𝐻𝜇
𝛼(𝑠) = 𝐻

𝜇
𝛼(𝑦) for all 𝑠 ∈ [𝑟(𝛼), 𝑦] and 𝑟(𝛼) = 0. As

𝐻
𝜇
𝛼(0) = 0 and 𝐻𝜇

𝛼(𝑦) > 0, we get 𝜎𝜇𝛼 (𝑦) > 0, which contradicts 𝜎𝜇𝛼 (𝑦) = 𝜎𝜇𝛼 (𝑥).

d. Consider 𝛼 ∈ 𝐴 such that 𝜆𝜇𝛼 has a continuous CDF and 𝑃𝑥∼𝜆𝜇𝛼(𝜎𝜇𝛼 (𝑥) = 𝑐) > 0 for some

𝑐 ≥ 0. Then, by the definition of 𝜎𝜇𝛼 , it must be that 𝑐 ≥ 𝑟(𝛼). Moreover, if we let

𝑥0 = inf{𝑥 | 𝜎𝜇𝛼 (𝑥) = 𝑐}, then 𝑃𝑥∼𝜆𝜇𝛼(𝜎𝜇𝛼 (𝑥) = 𝑐) > 0 implies

𝐻
𝜇
𝛼

(
{𝑦 ∈ [0, 𝜔] | 𝑥0 < 𝑦, 𝜎

𝜇
𝛼 (𝑥0) = 𝜎𝜇𝛼 (𝑦)}

)
> 0 .
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This contradicts the fact we proved as part of the proof of part (c): for 𝛼 ∈ 𝐴 such that 𝐻𝜇
𝛼 is

continuous and 𝑥 ≥ 𝑟(𝛼), we have

𝐻
𝜇
𝛼

(
{𝑦 ∈ [0, 𝜔] | 𝑥 < 𝑦, 𝜎𝜇𝛼 (𝑥) = 𝜎𝜇𝛼 (𝑦)}

)
= 0

Therefore, when 𝑥 ∼ 𝜆𝜇𝛼, the CDF of 𝜎𝜇𝛼 (𝑥) is continuous, and hence, if 𝑥1, 𝑥2 ∼ 𝜆𝜇𝛼 i.i.d.,

then the probability of 𝜎𝜇𝛼 (𝑥1) = 𝜎
𝜇
𝛼 (𝑥2) is zero. Part (d) follows from combining this fact

with part (a). □

C.2.2 Strong Duality and Characterizing an Optimal Pacing Strategy

We begin with the proof of Lemma 11.

Proof of Lemma 11. Note that bidding more than the highest competing bid with a positive prob-

ability is not optimal, i.e., if P𝛼(𝑏(𝛼) > 𝜎
𝜇
𝛼 (𝜔)) > 0, then 𝑏 is not optimal. Therefore, we can

restrict our attention to 𝑏 such that 0 ≤ 𝑏(𝛼) ≤ 𝜎𝜇𝛼 (𝜔) a.s. w.r.t. 𝛼 ∼ 𝐹. Now, consider such a 𝑏.

As 𝜎𝜇𝛼 (0) = 0 and 𝜎𝛼 is continuous a.s. w.r.t. 𝛼 ∼ 𝐹, by the Intermediate Value Theorem, there

exists 𝑧(𝛼) ∈ [0, 𝜔] such that 𝜎𝜇𝛼 (𝑧(𝛼)) = 𝑏(𝛼).

Therefore, with 𝑥(𝛼) B 𝑤𝑇𝛼/(1 + 𝑡), we have

max
𝑏(.)
E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[(
𝑤𝑇𝛼

1 + 𝑡
− 𝑏(𝛼)

)
1{𝑏(𝛼) ≥ max(𝑟(𝛼), {𝛽(𝜃𝑖, 𝛼)}𝑖)}

]
= max

𝑏(.)
E𝛼E𝑌∼𝐻𝜇

𝛼

[
(𝑥(𝛼) − 𝑏(𝛼)) 1

{
𝑏(𝛼) ≥ max(𝑟(𝛼), 𝜎𝜇𝛼 (𝑌 ))

}]
= max

𝑧(.)
E𝛼E𝑌∼𝐻𝜇

𝛼

[ (
𝑥(𝛼) − 𝜎𝜇𝛼 (𝑧(𝛼))

)
1

{
𝜎
𝜇
𝛼 (𝑧(𝛼)) ≥ max(𝑟(𝛼), 𝜎𝜇𝛼 (𝑌 ))

}]
= max

𝑧(.)
E𝛼E𝑌∼𝐻𝜇

𝛼

[ (
𝑥(𝛼) − 𝜎𝜇𝛼 (𝑧(𝛼))

)
1 {𝑧(𝛼) ≥ max(𝑟(𝛼), 𝑌 )}

]
= max

𝑧(.)
E𝛼

[ (
𝑥(𝛼) − 𝜎𝜇𝛼 (𝑧(𝛼))

)
𝐻
𝜇
𝛼 (𝑧(𝛼))) 1 {𝑧(𝛼) ≥ 𝑟(𝛼)}

]
where the third equality follows from part (c) of Lemma 34. Hence, to prove the claim, it is enough
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to show that for all 𝛼 ∈ 𝐴, we have

𝑥(𝛼) ∈ 𝑎𝑟𝑔max
𝑧(.)

(
𝑥(𝛼) − 𝜎𝜇𝛼 (𝑧(𝛼))

)
𝐻
𝜇
𝛼 (𝑧(𝛼)))1 {𝑧(𝛼) ≥ 𝑟(𝛼)}

The above statement holds trivially for 𝛼 such that 𝑥(𝛼) < 𝑟(𝛼), because 𝜎𝜇𝛼 (𝑡) ≥ 𝑟(𝛼) when

𝑡 ≥ 𝑟(𝛼). Consider 𝛼 ∈ 𝐴 for which 𝑥(𝛼) ≥ 𝑟(𝛼). Then, for 𝑧(𝛼) ≥ 𝑟(𝛼),

(
𝑥(𝛼) − 𝜎𝜇𝛼 (𝑧(𝛼))

)
𝐻
𝜇
𝛼 (𝑧(𝛼))) = 𝑥(𝛼)𝐻𝜇

𝛼(𝑧(𝛼)) − 𝑧(𝛼)𝐻𝜇
𝛼(𝑧(𝛼)) +

∫ 𝑧(𝛼)

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

= (𝑥(𝛼) − 𝑧(𝛼))𝐻𝜇
𝛼(𝑧(𝛼)) +

∫ 𝑧(𝛼)

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

Therefore, for 𝑧(𝛼) ≥ 𝑟(𝛼), we have

(
𝑥(𝛼) − 𝜎𝜇

𝛼(𝑥(𝛼))
)
𝐻

𝜇
𝛼(𝑥(𝛼)) −

(
𝑥(𝛼) − 𝜎𝜇

𝛼(𝑧(𝛼))
)
𝐻

𝜇
𝛼(𝑧(𝛼)) = (𝑧(𝛼) − 𝑥(𝛼))𝐻𝜇

𝛼(𝑧(𝛼)) −
∫ 𝑧(𝛼)

𝑥(𝛼)
𝐻

𝜇
𝛼(𝑠)𝑑𝑠 ≥ 0

where the inequality holds regardless of 𝑧(𝛼) ≥ 𝑥(𝛼) or 𝑥(𝛼) ≥ 𝑧(𝛼). Furthermore, for 𝑧(𝛼) < 𝑟(𝛼),

we have

(
𝑥(𝛼) − 𝜎𝜇

𝛼(𝑥(𝛼))
)
𝐻

𝜇
𝛼 (𝑥(𝛼)))1 {𝑥(𝛼) ≥ 𝑟(𝛼)} ≥

(
𝑥(𝛼) − 𝜎𝜇

𝛼(𝑧(𝛼))
)
𝐻

𝜇
𝛼 (𝑧(𝛼)))1 {𝑧(𝛼) ≥ 𝑟(𝛼)} = 0

Hence, 𝑧(𝛼) = 𝑥(𝛼) is optimal, which completes the proof. □

In the rest of the sub-section, we build towards the proof of Proposition 6. Recall that the dual

objective function is given by

𝑞𝜇(𝑤, 𝐵, 𝑡) = (1 + 𝑡)E𝛼

[
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

]
+ 𝑡𝐵

We will prove Proposition 6 by first establishing the differentiability of the dual objective

function, and then invoking the first-order optimality conditions for the dual-optimal solution.

Lemma 38 will establish the differentiability of the dual objective function. To prove it, we will

need the convexity of the dual objective function (Part 1 of Lemma 36), the existence of a bounded
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dual-optimal solution (Part 2 of Lemma 36), and the differentiability of the indicator function

1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

}
as a function of 𝑡 almost surely w.r.t. (𝑤, 𝐵) ∼ 𝐺, which is implied by the continuity of the CDF

of 𝑤𝑇𝛼/𝑟(𝛼), when 𝛼 ∼ 𝐹 (Lemma 37).

Lemma 36. For 𝜇 : Θ→ R≥0 and (𝑤, 𝐵) ∈ Θ:

1. 𝑞𝜇(𝑤, 𝐵, 𝑡) is convex as a function of 𝑡.

2. min𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡) = min𝑡∈[0,𝜔/𝐵] 𝑞

𝜇(𝑤, 𝐵, 𝑡)

Proof.

1. The objective function of the dual problem of a maximization problem is convex.

2. As 𝐻𝜇
𝛼(𝑠) ≤ 1 for all 𝛼 ∈ 𝐴 and 𝑠 ∈ R, the following inequalities hold

0 ≤ 1
{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠 ≤ 𝜔 ∀ 𝑡 ≥ 0, 𝛼 ∈ 𝐴

If 𝑡 > 𝜔/𝐵, then, 𝑞𝜇(𝑤, 𝐵, 𝑡) ≥ 𝑡𝐵 > 𝜔 ≥ 𝑞𝜇(𝑤, 𝐵, 0). Hence, 𝑞𝜇(𝑤, 𝐵, 𝑡), as a function of 𝑡,

has its minimum in the interval [0, 𝜔/𝐵].

□

Let 𝐾 be the distribution of 𝛼/𝑟(𝛼) when 𝛼 ∼ 𝐹, assuming 1/𝑟(𝛼) = 1 when 𝑟(𝛼) = 0. For

𝑤 ∈ Θ𝑤, let 𝐾𝑤 be the distribution of 𝑤𝑇𝛾 when 𝛾 ∼ 𝐾 , i.e., 𝐾𝑤(B) B 𝐾({𝛾 | 𝑤𝑇𝛾 ∈ B}) for all

Borel sets B ⊂ R.

Lemma 37. 𝐾𝑤 has a continuous CDF almost surely w.r.t. 𝑤 ∼ 𝐺𝑤.

Proof. Let 𝑤1, 𝑤2 ∈ Θ𝑤 be linearly independent weight vectors and 𝑥1, 𝑥2 ∈ R≥0. We consider the

set of items 𝛼 which satisfy 𝑤𝑇1𝛼/𝑟(𝛼) = 𝑥1 and 𝑤𝑇2𝛼/𝑟(𝛼) = 𝑥2. Define

𝑆 B

{
𝛼 ∈ 𝐴

���� 𝑤𝑇1𝛼𝑟(𝛼)
= 𝑥1;

𝑤𝑇2𝛼

𝑟(𝛼)
= 𝑥2

}
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Observe that, for 𝛼 ∈ 𝑆 and 𝑐 B 𝑥1/𝑥2, we have 𝑤𝑇1𝛼 = 𝑐 · 𝑤𝑇2𝛼. Therefore, the set 𝑇 = {𝛼 ∈

𝐴 | (𝑤1 − 𝑐𝑤2)𝑇𝛼 = 0} is a superset of the set 𝑆. Hence, since 𝐹 has a density, we get 𝐹(𝑆) = 0.

Define 𝐽 =
{
𝑤/∥𝑤∥

��� ∃ 𝑥𝑤 > 0 s.t. 𝐹(𝑤𝑇𝛼/𝑟(𝛼) = 𝑥𝑤) > 0)
}
. Suppose 𝐽 is uncountable. Then,

by Lemma 35, there exists a countable sequence {𝑤𝑚}𝑚∈N and {𝑥𝑤𝑚
}𝑚∈N such that 𝑤𝑖/∥𝑤𝑖∥≠

𝑤 𝑗/∥𝑤 𝑗 ∥ for all 𝑖 ̸= 𝑗 and

∑︁
𝑚

𝐹(𝑤𝑇𝑚𝛼/𝑟(𝛼) = 𝑥𝑤𝑚
) = ∞.

Set 𝑆𝑚 B {𝛼 | 𝑤𝑇𝑚𝛼/𝑟(𝛼) = 𝑥𝑤𝑚
}. We have shown above that 𝐹(𝑆𝑖 ∩ 𝑆 𝑗 ) = 0 for all 𝑖 ̸= 𝑗 .

Therefore, for all 𝑚 ≥ 1, we have 𝐹(𝑆𝑚 ∩ (∪ 𝑗<𝑚𝑆 𝑗 )) = 0, which implies 𝐹(𝑆𝑚 ∩ (∪ 𝑗<𝑚𝑆 𝑗 )𝐶) =

𝐹(𝑆𝑚). This contradicts 𝐹(∪𝑚𝑆𝑚) ≤ 1 as 𝐹(∪𝑚𝑆𝑚) = ∑
𝑚 𝐹(𝑆𝑚 ∩ (∪ 𝑗<𝑚𝑆 𝑗 )𝐶) = ∑

𝑚 𝐹(𝛼𝑇𝑚𝑠 =

𝑥𝛼𝑚) = ∞. Hence, 𝐽 is countable. Observe that

{
𝑤

∥𝑤∥

���� 𝐾𝑤 has an atom
}
⊂ 𝐽

As 𝐺𝑤 has a density, we get 𝐺𝑤(cone(𝐽)) = 0. Therefore, 𝐾𝑤 has no atoms almost surely w.r.t.

𝑤 ∼ 𝐺𝑤, i.e., 𝐾𝑤 has a continuous CDF almost surely w.r.t. 𝑤 ∼ 𝐺𝑤. □

Definition 19. Define Θ′ ⊂ Θ to be the set of (𝑤, 𝐵) ∈ Θ for which 𝐾𝑤 has a continuous CDF.

The following lemma establishes differentiability of the dual objective function.

Lemma 38. For all pacing functions 𝜇 : Θ→ R≥0 and buyer types (𝑤, 𝐵) ∈ Θ′, the dual objective

𝑞𝜇(𝑤, 𝐵, 𝑡) is differentiable as a function of 𝑡 for 𝑡 > −1/2. Moreover,

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡)
𝜕𝑡

= 𝐵 − E𝛼
[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

}]
Proof. Fix a pacing function 𝜇 : Θ→ R≥0 and a buyer (𝑤, 𝐵) ∈ Θ′. Define

𝑔(𝑡, 𝛼) B 1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠 ∀ 𝑡 > −1/2, 𝛼 ∈ 𝐴
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Note that 𝑥 ↦→ 1(𝑥 ≥ 𝑟(𝛼))
∫𝑥
𝑟(𝛼) 𝐻

𝜇
𝛼(𝑠)𝑑𝑠 is a non-decreasing convex function because 𝐻𝜇

𝛼

is non-decreasing. Moreover, it is easy to verify using the second order sufficient condition that

𝑡 ↦→ 𝑤𝑇𝛼
1+𝑡 is convex. As 𝑡 ↦→ 𝑔(𝑡, 𝛼) is a composition of these aforementioned functions, it is convex

for each 𝛼.

Fix 𝑡0 > −1/2. Using Lemma 37 and the definition of Θ′, we can write

𝐹

({
𝛼 ∈ 𝐴 | 𝑤

𝑇𝛼

1 + 𝑡0
= 𝑟(𝛼)

})
= 𝐹

({
𝛼 ∈ 𝐴 | 𝑟(𝛼) > 0;

𝑤𝑇𝛼

𝑟(𝛼)
= 1 + 𝑡0

})
+ 𝐹

({
𝛼 ∈ 𝐴 | 𝑟(𝛼) = 0;𝑤𝑇𝛼 = 0

})
≤ 𝐾

({
𝛾 | 𝑤𝑇𝛾 = 1 + 𝑡0

})
+ 𝐹

({
𝛼 ∈ 𝐴 | 𝑤𝑇𝛼 = 0

})
= 𝐾𝑤(1 + 𝑡0) + 0

= 0

Using Theorem 7.46 of [SDR09], we get that E𝛼[𝑔(𝑡, 𝛼)] is differentiable w.r.t 𝑡 at 𝑡0 and

𝜕

𝜕𝑡
E𝛼[𝑔(𝑡0, 𝛼)] = E𝛼

[
𝜕𝑔(𝑡0, 𝛼)
𝜕𝑡

]
.

Therefore, the dual objective 𝑞𝜇(𝑤, 𝐵, 𝑡) is differentiable as a function of 𝑡 for 𝑡 > −1/2, and

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡0)
𝜕𝑡

= E𝛼 [𝑔(𝑡0, 𝛼)] + (1 + 𝑡)
𝜕

𝜕𝑡
E𝛼[𝑔(𝑡0, 𝛼)] + 𝐵

= E𝛼 [𝑔(𝑡0, 𝛼)] + (1 + 𝑡)E𝛼
[
𝜕𝑔(𝑡0, 𝛼)
𝜕𝑡

]
+ 𝐵

= E𝛼

[
1

{
𝑤𝑇𝛼

1 + 𝑡0
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡0

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

]
+ (1 + 𝑡)E𝛼

[
−𝑤𝑇𝛼

(1 + 𝑡0)2𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡0

)
1

{
𝑤𝑇𝛼

1 + 𝑡0
≥ 𝑟(𝛼)

}]
+ 𝐵

= 𝐵 − E𝛼

[{
𝑤𝑇𝛼

1 + 𝑡0
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡0

)
−

∫ 𝑤𝑇 𝛼
1+𝑡0

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

}
1

{
𝑤𝑇𝛼

1 + 𝑡0
≥ 𝑟(𝛼)

}]
□

Corollary 3. For all pacing functions 𝜇 : Θ → R≥0 and buyer types (𝑤, 𝐵) ∈ Θ′, 𝑞𝜇(𝑤, 𝐵, 𝑡) is

continuous as a function of 𝑡 for 𝑡 for 𝑡 > −1/2.
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Corollary 4. For all pacing functions 𝜇 : Θ→ R≥0 and buyer types (𝑤, 𝐵) ∈ Θ′,

argmin𝑡∈[0,𝜔/𝐵] 𝑞
𝜇(𝑤, 𝐵, 𝑡) is non-empty and compact.

Corollary 3 is a direct consequence of Lemma 38 and Corollary 4 follows from Weierstrass

Theorem. Finally, having established the required lemmas, we are ready to prove Proposition 6.

Proof of Proposition 6. Let 𝑡∗ ∈ argmin𝑡∈[0,𝜔/𝐵] 𝑞
𝜇(𝑤, 𝐵, 𝑡). According to Theorem 5.1.5 from

[BHM98], in order to prove Proposition 6, it suffices to show the following conditions:

(i) Primal feasibility:

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
≥ max (𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖)

}]
≤ 𝐵

(ii) Dual feasibility: 𝑡∗ ≥ 0

(iii) Lagrangian Optimality:

𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
∈ argmax𝑏(.) E𝛼,{ 𝜃𝑖 }𝑛−1

𝑖=1

[
(𝑤𝑇𝛼 − (1 + 𝑡)𝑏(𝛼)) 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {𝛽𝜇(𝜃𝑖 , 𝛼)}𝑖)}

]
+ 𝑡𝐵

(iv) Complementary slackness:

𝑡∗.

{
𝐵 − E𝛼,{𝜃𝑖}𝑛−1

𝑖=1

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
≥ max (𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖)

}]}
= 0

First, we simplify the expression for the expected expenditure used in the sufficient conditions

(i)-(iv) stated above:

E𝛼,{(𝜃𝑖)}𝑛−1
𝑖=1

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
≥ max (𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖)

}]
=E𝛼,{(𝑤𝑖 ,𝐵𝑖)}𝑛−1

𝑖=1

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
≥ max

(
𝑟(𝛼),

{
𝜎
𝜇
𝛼

(
𝑤𝑇
𝑖
𝛼

1 + 𝜇(𝑤𝑖, 𝐵𝑖)

)}
𝑖

)}]
=E𝛼,{(𝑤𝑖 ,𝐵𝑖)}𝑛−1

𝑖=1

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝑤𝑇𝛼

1 + 𝑡∗
≥ max

(
𝑟(𝛼),

{
𝑤𝑇
𝑖
𝛼

1 + 𝜇(𝑤𝑖, 𝐵𝑖)

}
𝑖

)}]
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=E𝛼
[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝑤𝑇𝛼

1 + 𝑡∗
≥ 𝑟(𝛼)

}]
In the rest of the proof, we establish the aforementioned sufficient conditions (i)-(iv). Note that

𝑡∗ satisfies the following first order conditions of optimality

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

≥ 0 𝑡∗ ≥ 0 𝑡∗ · 𝜕𝑞
𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

= 0 (C.1)

Using Lemma 38, we can write

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

= 𝐵 − E𝛼
[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡∗

)
1

{
𝑤𝑇𝛼

1 + 𝑡∗
≥ 𝑟(𝛼)

}]
To establish the sufficient conditions (i)-(iv), observe that (after simplification) conditions (i),

(ii) and (iv) are the same as (C.1), and condition (iii) is a direct consequence of Lemma 11, thereby

completing the proof of Proposition 6. □

C.2.3 Fixed Point Argument

Proof of Lemma 12.

1. First, observe that

𝑞𝜇(𝑤, 𝐵, 𝑡) = E𝛼

[
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
(1 + 𝑡)𝐻𝜇

𝛼(𝑠)𝑑𝑠 + 𝑡𝐵

]
= E𝛼

[
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫𝑤𝑇𝛼

(1+𝑡)𝑟(𝛼)
𝐻
𝜇
𝛼

( 𝑦

1 + 𝑡

)
𝑑𝑦 + 𝑡𝐵

]

Consider (𝑤𝐿 , 𝐵), (𝑤𝐻 , 𝐵) ∈ Θ′ such that 𝑤𝐿
𝑖
< 𝑤𝐻

𝑖
and 𝑤𝐿−𝑖 = 𝑤𝐻−𝑖, for some 𝑖 ∈ [𝑑].

Moreover, consider 𝑡𝐿 , 𝑡𝐻 ∈ [0, 𝜔/𝐵min] such that 𝑡𝐿 < 𝑡𝐻 . As 𝐻𝜇
𝛼 is a non-decreasing

function, it is straightforward to check that −𝑞𝜇(𝑤, 𝐵, 𝑡) has increasing differences w.r.t. 𝑤𝑖
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and 𝑡:

𝑞𝜇(𝑤𝐻 , 𝐵, 𝑡𝐿) − 𝑞𝜇(𝑤𝐿 , 𝐵, 𝑡𝐿) ≥ 𝑞𝜇(𝑤𝐻 , 𝐵, 𝑡𝐻) − 𝑞𝜇(𝑤𝐿 , 𝐵, 𝑡𝐻)

Theorem 10.7 of [Sun+96] in combination with the definition of ℓ𝜇 imply ℓ𝜇(𝑤𝐻 , 𝐵) ≥

ℓ𝜇(𝑤𝐿 , 𝐵).

2. Consider (𝑤, 𝐵𝐿), (𝑤, 𝐵𝐻) ∈ Θ′ such that 𝐵𝐿 < 𝐵𝐻 and and 𝑡𝐿 , 𝑡𝐻 ∈ [0, 𝜔/𝐵min] such that

𝑡𝐿 < 𝑡𝐻 . Then, −𝑞𝜇(𝑤, 𝐵, 𝑡) has increasing differences w.r.t. −𝐵 and 𝑡:

𝑞𝜇(𝑤, 𝐵𝐻 , 𝑡𝐻) − 𝑞𝜇(𝑤, 𝐵𝐿 , 𝑡𝐻) = (𝐵𝐻 − 𝐵𝐿)𝑡𝐻 ≥ (𝐵𝐻 − 𝐵𝐿)𝑡𝐿 = 𝑞𝜇(𝑤, 𝐵𝐻 , 𝑡𝐿) − 𝑞𝜇(𝑤, 𝐵𝐿 , 𝑡𝐿)

Theorem 10.7 of [Sun+96] and the definition of ℓ𝜇 imply ℓ𝜇(𝑤, 𝐵𝐻) ≤ ℓ𝜇(𝑤, 𝐵𝐿).

□

Proof of Lemma 13.

1. Theorem 1 of [Idc94] implies measurability of ℓ𝜇. Moreover, ℓ𝜇 is bounded by definition.

2. Consider 𝜙 ∈ 𝐶1
𝑐 (Θ,R𝑛) such that ∥𝜙∥∞≤ 1. Then,

𝑉(ℓ𝜇,Θ) =
∫
Θ

ℓ𝜇(𝜃)div𝜙(𝜃)𝑑𝜃

=
𝑑+1∑︁
𝑖=1

∫
Θ

ℓ𝜇(𝜃)
𝜕𝜙(𝜃)
𝜕𝜃𝑖

𝑑𝜃

=
𝑑+1∑︁
𝑖=1

∫
𝜃−𝑖

∫
𝜃𝑖

ℓ𝜇(𝜃)
𝜕𝜙(𝜃)
𝜕𝜃𝑖

𝑑𝜃𝑖𝑑𝜃−𝑖

=
𝑑+1∑︁
𝑖=1

∫
𝜃−𝑖

∫
𝜃𝑖

−𝜙(𝜃𝑖, 𝜃−𝑖)𝑑ℓ𝜇(𝜃𝑖)𝑑𝜃−𝑖

≤
𝑑+1∑︁
𝑖=1

∫
𝜃−𝑖

∫
𝜃𝑖

𝑑ℓ𝜇(𝜃𝑖)𝑑𝜃−𝑖

≤
𝑑+1∑︁
𝑖=1

∫
𝜃−𝑖

𝜔

𝐵min
𝑑𝜃−𝑖
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≤ (𝑑 + 1)𝑈𝑑+1 𝜔

𝐵min

where the third equality follows from Fubini’s Theorem. The sufficient conditions for Fu-

bini’s Theorem to hold are satisfied because |ℓ𝜇div𝜙 | is bounded. Moreover, the fourth

equality follows from the integration by parts for Lebesgue-Stieltjes integral and the fact

that 𝜙 evaluates to 0 at the boundaries of Θ because 𝜙 is compactly supported. □

Proof of Lemma 14. We start by noting that, as 𝐺 has a density, if a sequence converges almost

surely (or in 𝐿1) under the Lebesgue measure on Θ, then it converges almost surely (or in 𝐿1)

under 𝐺.

1. If 𝜇(𝜃) = 0 for all 𝜃 ∈ Θ, then 𝜇 ∈ X0. Hence, X0 is non-empty. Consider 𝜇1, 𝜇2 ∈ X0 and

𝑎 ∈ [0, 1]. Then, 𝑎𝜇1 + (1 − 𝑎)𝜇2 ∈ [0, 𝜔/𝐵min] and for 𝜙 ∈ 𝐶1
𝑐 (Ω,R𝑛) s.t. ∥𝜙∥∞≤ 1, we

have

∫
Ω

{𝑎𝜇1 + (1 − 𝑎)𝜇2}(𝜃)div𝜙(𝜃)𝑑𝜃 = 𝑎
∫
Ω

𝜇1(𝜃)div𝜙(𝜃)𝑑𝜃 + (1 − 𝑎)
∫
Ω

𝜇2(𝜃)div𝜙(𝜃)𝑑𝜃

≤ (𝑑 + 1)𝑈𝑑+1𝜔

𝐵min

Hence, X0 is convex.

Consider a sequence {𝜇𝑛} ⊂ X0 and 𝜇 ∈ 𝐿1(Θ) such that 𝜇𝑛
𝐿1−−→ 𝜇. Then, there exists

a subsequence {𝑛𝑘 } such that 𝜇𝑛𝑘
a.s.−−→ 𝜇 as 𝑘 → ∞. Hence, range(𝜇) ⊂ [0, 𝜔/𝐵min].

Moreover, by the semi-continuity of total variation (Remark 3.5 of [AFP00]), we have

𝑉(𝜇,Θ) ≤ lim inf
𝑛→∞

𝑉(𝜇𝑛,Θ) ≤ (𝑑 + 1)𝑈𝑑+1𝜔/𝐵min

Therefore, X0 is closed. To see why X0 is compact, consider a sequence {𝜇𝑛} ⊂ X0. Then,

by Theorem 3.23 of [AFP00], there exists a subsequence {𝑛𝑘 } and 𝜇 ∈ 𝐵𝑉(Θ) such that

𝜇𝑛𝑘 converges to 𝜇 in the weak* topology, which implies convergence in 𝐿1(Θ) (Proposition

3.13 of [AFP00]). Combining this with the fact that X0 is closed, completes the proof of
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compactness of X0.

2. For contradiction, suppose 𝑓 is not continuous. Then, there exists 𝜖 > 0, a sequence

{(𝜇𝑛, �̂�𝑛)}𝑛 ⊂ X0 × X0 and (𝜇, �̂�) ∈ X0 × X0 such that lim𝑛→∞(𝜇𝑛, �̂�𝑛) = (𝜇, �̂�) and

| 𝑓 (𝜇𝑛, �̂�𝑛) − 𝑓 (𝜇, �̂�)|≥ 𝜖 for all 𝑛 ∈ N. As 𝜇𝑛
𝐿1−−→ 𝜇, there exists a subsequence {𝑛𝑘 }𝑘

such that 𝜇𝑛𝑘
𝑎.𝑠.−−→ 𝜇 when 𝑘 → ∞. Moreover, �̂�𝑛

𝐿1−−→ �̂� implies �̂�𝑛𝑘
𝐿1−−→ �̂�. Therefore,

there exists a subsequence {𝑛𝑘𝑙 }𝑙 such that �̂�𝑛𝑘𝑙
𝑎.𝑠.−−→ �̂� and 𝜇𝑛𝑘𝑙

𝑎.𝑠.−−→ 𝜇 as 𝑙 → ∞. Here,

we have repeatedly used the fact that 𝐿1 convergence implies the existence of a subsequence

that converges a.s. Hence, after relabelling for ease of notation, we can write that there exists

𝜖 > 0, a sequence {(𝜇𝑛, �̂�𝑛)}𝑛 ⊂ X0×X0 and (𝜇, �̂�) ∈ X0×X0 such that 𝜇𝑛
𝑎.𝑠.−−→ 𝜇, �̂�𝑛

𝑎.𝑠.−−→ �̂�

and | 𝑓 (𝜇𝑛, �̂�𝑛) − 𝑓 (𝜇, �̂�)|≥ 𝜖 for all 𝑛 ∈ N.

First, observe that 𝜇𝑛
𝑎.𝑠.−−→ 𝜇 implies 𝑤𝑇𝛼/(1 + 𝜇𝑛(𝑤, 𝐵)) 𝑎.𝑠.−−→ 𝑤𝑇𝛼/(1 + 𝜇(𝑤, 𝐵)) and hence,

𝜆
𝜇𝑛
𝛼

𝑑−→ 𝜆
𝜇
𝛼 for all 𝛼 ∈ 𝐴. As 𝜆𝜇𝛼 is continuous almost surely w.r.t. 𝛼, by the definition of

convergence in distribution, we get that lim𝑛→∞ 𝜆
𝜇𝑛
𝛼 (𝑠) = 𝜆𝜇𝛼(𝑠) for all 𝑠 ∈ R a.s. w.r.t. 𝛼 ∼ 𝐹.

Therefore, lim𝑛→∞ 𝐻
𝜇𝑛
𝛼 (𝑠) = 𝐻𝜇

𝛼(𝑠) for all 𝑠 ∈ R, a.s. w.r.t. 𝛼 ∼ 𝐹.

Also, note that 𝜆�̂�𝑛𝛼 and 𝜆�̂�𝛼 are atom-less almost surely w.r.t. 𝛼. Let �̄� ⊂ 𝐴 be the set of

𝛼 such that lim𝑛→∞ 𝐻
𝜇𝑛
𝛼 (𝑠) = 𝐻

𝜇
𝛼(𝑠) for all 𝑠 ∈ R and {𝜆�̂�𝑛𝛼 , 𝜆�̂�𝛼} are atom-less. Therefore,

𝐹(�̄�) = 1. For 𝑠 ∈ R and 𝛼 ∈ �̄�, we get

lim
𝑛→∞

1

{
𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
= 1

{
𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
a.s. w.r.t. (𝑤, 𝐵) ∼ 𝐺. Note that the set of measure zero on which the above equality doesn’t

hold may depend on 𝛼, 𝑠.

Fix 𝑠 ∈ [0, 𝜔] and 𝛼 ∈ �̄�. Combining these a.s. convergence statements, we get

lim
𝑛→∞

(1 + �̂�𝑛(𝑤, 𝐵))𝐻𝜇𝑛
𝛼 (𝑠)1

{
𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
=(1 + �̂�(𝑤, 𝐵))𝐻𝜇

𝛼(𝑠)1
{

𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
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a.s. w.r.t. (𝑤, 𝐵) ∼ 𝐺.

Furthermore, we can use the Dominated Convergence Theorem (as the sequence is bounded)

to show

lim
𝑛→∞
E(𝑤,𝐵)

[
(1 + �̂�𝑛(𝑤, 𝐵))𝐻𝜇𝑛

𝛼 (𝑠)1
{

𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]
=E(𝑤,𝐵)

[
(1 + �̂�(𝑤, 𝐵))𝐻𝜇

𝛼(𝑠)1
{

𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]
Keep 𝑠 ∈ [0, 𝜔] fixed and apply the Dominated Convergence Theorem for a second time to

obtain,

lim
𝑛→∞
E𝛼

[
E(𝑤,𝐵)

[
(1 + �̂�𝑛(𝑤, 𝐵))𝐻𝜇𝑛

𝛼 (𝑠)1
{

𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]]
=E𝛼

[
E(𝑤,𝐵)

[
(1 + �̂�(𝑤, 𝐵))𝐻𝜇

𝛼(𝑠)1
{

𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]]
Finally, apply the Dominated Convergence Theorem for the third time to obtain,

lim
𝑛→∞

∫𝜔
0
E𝛼

[
E(𝑤,𝐵)

[
(1 + �̂�𝑛(𝑤, 𝐵))𝐻𝜇𝑛

𝛼 (𝑠)1
{

𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]]
𝑑𝑠

=
∫𝜔

0
E𝛼

[
E(𝑤,𝐵)

[
(1 + �̂�(𝑤, 𝐵))𝐻𝜇

𝛼(𝑠)1
{

𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}]]
𝑑𝑠

As we are dealing with non-negative random variables, we can apply Fubini’s Theorem to

rewrite the above statement as

lim
𝑛→∞
E(𝑤,𝐵)E𝛼

[
(1 + �̂�𝑛(𝑤, 𝐵))1

(
𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑟(𝛼)

) ∫ 𝑤𝑇 𝛼
1+�̂�𝑛(𝑤,𝐵)

𝑟(𝛼)
𝐻
𝜇𝑛
𝛼 (𝑠)𝑑𝑠

]
= lim
𝑛→∞
E(𝑤,𝐵)E𝛼

[∫𝜔
0

(1 + �̂�𝑛(𝑤, 𝐵))𝐻𝜇𝑛
𝛼 (𝑠)1

{
𝑤𝑇𝛼

1 + �̂�𝑛(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
𝑑𝑠

]
= E(𝑤,𝐵)E𝛼

[∫𝜔
0

(1 + �̂�(𝑤, 𝐵))𝐻𝜇
𝛼(𝑠)1

{
𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑠 ≥ 𝑟(𝛼)

}
𝑑𝑠

]
= E(𝑤,𝐵)E𝛼

[
(1 + �̂�(𝑤, 𝐵))1

{
𝑤𝑇𝛼

1 + �̂�(𝑤, 𝐵)
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+�̂�(𝑤,𝐵)

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

]
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Moreover, applying Dominated Convergence Theorem to �̂�𝑛
𝑎.𝑠.−−→ �̂� yields

lim𝑛→∞ 𝐸(𝑤,𝐵)[�̂�𝑛(𝑤, 𝐵)𝐵] = 𝐸(𝑤,𝐵)[�̂�(𝑤, 𝐵)𝐵]. Together, the above statements imply

lim𝑛→∞ 𝑓 (𝜇𝑛, �̂�𝑛) = 𝑓 (𝜇, �̂�), which is a contradiction.

3. Part (2) allows us to invoke the Berge Maximum Theorem (Theorem 17.31 of [AB06]),

which implies that 𝐶∗0 is upper hemi-continuous with non-empty and compact values. Next,

we show that 𝐶∗0(𝜇) is also convex. Fix 𝜇 ∈ X. Consider �̂�1, �̂�2 ∈ 𝐶∗(𝜇) and 𝜆 ∈ [0, 1].

Then, by part (1) of Lemma 36, we have

𝑓 (𝜇, 𝜆�̂�1 + (1 − 𝜆)�̂�2) = E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, 𝜆�̂�1(𝑤, 𝐵) + (1 − 𝜆)�̂�2(𝑤, 𝐵))]

≤ 𝜆E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, �̂�1(𝑤, 𝐵))] + (1 − 𝜆)E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, �̂�2(𝑤, 𝐵))]

= 𝜆 𝑓 (𝜇, �̂�1) + (1 − 𝜆) 𝑓 (𝜇, �̂�2)

Hence, 𝜆�̂�1 + (1 − 𝜆)�̂�2 ∈ 𝐶∗(𝜇). □

Proof of Lemma 15. Recall that in, in Lemma 13, we showed that ℓ𝜇 ∈ X0. Therefore, as 𝜇 ∈

𝐶∗(𝜇),

E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, ℓ𝜇(𝑤, 𝐵))] ≥ E(𝑤,𝐵)[𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵))]

On the other hand, by the definition of ℓ𝜇, we get that

𝑞𝜇(𝑤, 𝐵, ℓ𝜇(𝑤, 𝐵)) ≤ 𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)) ∀ (𝑤, 𝐵) ∈ Θ

Hence, combining the two statements yields 𝑞𝜇(𝑤, 𝐵, ℓ𝜇(𝑤, 𝐵)) = 𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)) a.s. w.r.t.

(𝑤, 𝐵) ∼ 𝐺, which completes the proof. □
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C.3 Standard Auctions and Revenue Equivalence

In this section, we extend our results for first-price auctions to all anonymous standard auctions

and establish revenue equivalence among them by proving Theorem 9. To do this, we will show

that the dual of the optimization problem faced by each buyer type is identical for all anonymous

standard auctions, by exploiting the structure of the Lagrangian problem and the known revenue

equivalence results from the standard i.i.d. setting [Kri09]. This concurrence of the dual problems

for all anonymous standard auctions allows us to directly apply Theorem 8 to reduce the proof of

Theorem 9 to showing strong duality for the optimization problem faced by the buyer types.

For buyer type (𝑤, 𝐵) ∈ Θ, we will use 𝑅(𝑤, 𝐵) to denote the following optimization problem:

𝑅𝜇(𝑤, 𝐵) B max
𝑏:𝐴→R≥0

E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼 · 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)} − 𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)

]
s.t. E𝛼,{ 𝜃𝑖 }𝑛−1

𝑖=1
[𝑀𝛼 (𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)] ≤ 𝐵

Then the dual optimization problem (or simply the dual problem) of 𝑅𝜇(𝑤, 𝐵) is given by

min
𝑡≥0

max
𝑏:𝐴→R≥0

E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼 · 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖) − (1 + 𝑡)𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖) }

]
+ 𝑡𝐵

The following lemma characterizes the optimal solution to the Lagrangian problem.

Lemma 39. For all 𝑡 ≥ 0,

𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
∈ 𝑎𝑟𝑔max

𝑏(.)
E𝛼,{ 𝜃𝑖 }𝑛−1

𝑖=1

[
𝑤𝑇𝛼

1 + 𝑡
· 1(𝑏(𝛼) ≥ max (𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)) − 𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)

]
Proof. Consider an 𝛼 ∈ 𝐴 such that 𝜆𝜇𝛼 is atom-less. Then, using the assumptions on auction A,

we can write

𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
∈ 𝑎𝑟𝑔max

𝑡∈R
E{𝑋𝑖}𝑛−1

𝑖=1 ∼𝜆
𝜇
𝛼

[(
𝑤𝑇𝛼

1 + 𝑡
· 1(𝑡 ≥ max(𝑟(𝛼), {𝜓𝜇𝛼(𝑋𝑖)}𝑖)) − 𝑀𝛼

(
𝑡, {𝜓𝜇𝛼(𝑋𝑖)}𝑖

) ) ]
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Combining this with the definition of Ψ𝜇, we get

𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
∈ 𝑎𝑟𝑔max

𝑡∈R
E{𝜃𝑖}𝑛−1

𝑖=1

[
𝑤𝑇𝛼

1 + 𝑡
· 1(𝑡 ≥ max(𝑟(𝛼), {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)) − 𝑀𝛼(𝑡, {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)

]
To complete the proof, note that 𝜆𝜇𝛼 is atom-less a.s. w.r.t. 𝛼 by part (a) of Lemma 34. □

We take a short interlude to state and prove a lemma which will help us simplify the expression

for the dual optimization problem of 𝑅𝜇(𝑤, 𝐵).

Lemma 40. For 𝛼 ∈ 𝐴 such that 𝜆𝜇𝛼 is continuous,

1
{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), 𝜓𝜇𝛼(𝑌 ))

}
= 1 {𝑥 ≥ max(𝑟(𝛼), 𝑌 )} a.s. 𝑌 ∼ 𝐻𝜇

𝛼 , ∀ 𝑥 ∈ [0, 𝜔]

Proof. As 𝜓
𝜇
𝛼 is non-decreasing, 1

{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), 𝜓𝜇𝛼(𝑌 ))

}
≥ 1 {𝑥 ≥ max(𝑟(𝛼), 𝑌 )} al-

ways holds. Suppose there exists 𝛼 ∈ 𝐴 such that 𝜆𝜇𝛼 is continuous and 𝑥 ∈ [0, 𝜔] for which

1
{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), 𝜓𝜇𝛼(𝑌 ))

}
> 1 {𝑥 ≥ max(𝑟(𝛼), 𝑌 )} with positive probability w.r.t. 𝑌 ∼ 𝐻𝜇

𝛼 .

Observe that 𝜓𝜇𝛼(𝑥) ≥ 𝑟 implies 𝑥 ≥ 𝑟, by the assumptions made on 𝜓𝜇𝛼 . Therefore,

1
{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), 𝜓𝜇𝛼(𝑌 ))

}
> 1 {𝑥 ≥ max(𝑟(𝛼), 𝑌 )} =⇒ 𝑌 > 𝑥, 𝑥 ≥ 𝑟(𝛼), 𝜓𝜇𝛼(𝑥) ≥ 𝜓𝜇𝛼(𝑌 )

Hence, there exists 𝛼 ∈ 𝐴 such that 𝜆𝛼 is continuous and 𝑥 ∈ [𝑟(𝛼), 𝜔] for which

𝐻
𝜇
𝛼

(
{𝑦 ∈ [0, 𝜔] | 𝑦 > 𝑥, 𝜓𝜇𝛼(𝑦) ≤ 𝜓𝜇𝛼(𝑥)}

)
> 0

As 𝑦 > 𝑥 implies 𝜓𝜇𝛼(𝑦) ≥ 𝜓𝜇𝛼(𝑥), we get

𝐻
𝜇
𝛼

(
{𝑦 ∈ [0, 𝜔] | 𝜓𝜇𝛼(𝑦) = 𝜓𝜇𝛼(𝑥)}

)
> 0

which contradicts the assumption that 𝜓𝜇𝛼 has a atom-less distribution. Hence, the lemma holds. □

Next, we proceed to prove that the dual of 𝑅𝜇(𝑤, 𝐵) is the same as the dual of the optimization
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problem 𝑄𝜇(𝑤, 𝐵) associated to first-price auctions. Consider an 𝛼 for which 𝜆𝜇𝛼 is continuous.

Then, the expected utility 𝑈𝜇
𝛼 (𝑥) of a bidder with value 𝑥 in auction A, when the values of the

other agents are drawn i.i.d. from 𝜆
𝜇
𝛼 and every bidder employs strategy 𝜓𝜇𝛼 , is given by

𝑈
𝜇
𝛼 (𝑥) B E{𝑋𝑖}𝑛−1

𝑖=1 ∼𝜆
𝜇
𝛼

[
𝑥 · 1

{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), {𝜓𝜇𝛼(𝑋𝑖)}𝑖)

}
− 𝑀𝛼(𝜓𝜇𝛼(𝑥), {𝜓𝜇𝛼(𝑋𝑖)}𝑖)

]
= E{𝑋𝑖}𝑛−1

𝑖=1 ∼𝜆
𝜇
𝛼
[𝑥 1 {𝑥 ≥ max(𝑟(𝛼), {𝑋𝑖}𝑖)}] − 𝑚𝛼(𝑥)

= 𝑥𝐻𝜇
𝛼(𝑥)1{𝑥 ≥ 𝑟(𝛼)} − 𝑚𝜇

𝛼(𝑥)

where the second line follows from Lemma 40 and 𝑚𝜇
𝛼(𝑥) = E{𝑋𝑖}𝑛−1

𝑖=1 ∼𝜆
𝜇
𝛼

[
𝑀𝛼(𝜓𝜇𝛼(𝑥), {𝜓𝜇𝛼(𝑋𝑖)}𝑖)

]
.

Then, from the arguments given in section 5.1.2 of Krishna, we get

𝑈
𝜇
𝛼 (𝑥) =

∫ 𝑥
0
𝐻
𝜇
𝛼(𝑠)1{𝑠 ≥ 𝑟(𝛼)}𝑑𝑠 = 1{𝑥 ≥ 𝑟(𝛼)}

∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)𝑑𝑠

which further implies

𝑚
𝜇
𝛼(𝑥) = 𝑥𝐻𝜇

𝛼(𝑥)1{𝑥 ≥ 𝑟(𝛼)} −𝑈𝜇
𝛼 (𝑥) = 1{𝑥 ≥ 𝑟(𝛼)}

(
𝑥𝐻

𝜇
𝛼(𝑥) −

∫ 𝑥
𝑟(𝛼)

𝐻
𝜇
𝛼(𝑠)𝑑𝑠

)
Then, using Lemma 39 and Lemma 40, the value that the objective function of the dual problem

of 𝑅𝜇(𝑤, 𝐵) takes at 𝑡 ≥ 0 is given by:

max
𝑏:𝐴→R≥0

E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼 · 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)} − (1 + 𝑡)𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)

]
+ 𝑡𝐵

=(1 + 𝑡) max
𝑏:𝐴→R≥0

E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼

1 + 𝑡
· 1(𝑏(𝛼) ≥ max (𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)) − 𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)

]
+ 𝑡𝐵

=(1 + 𝑡)E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼

1 + 𝑡
· 1(𝑏(𝛼) ≥ max (𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)) − 𝑀𝛼

(
𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
, {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖

)
)
]

+ 𝑡𝐵

=(1 + 𝑡)E𝛼E{𝑋𝑖 }𝑛−1
𝑖=1 ∼𝜆

𝜇
𝛼

[
𝑤𝑇𝛼

1 + 𝑡
· 1

{
𝜓
𝜇
𝛼(𝑥) ≥ max(𝑟(𝛼), {𝜓𝜇

𝛼(𝑋𝑖)}𝑖)
}
− 𝑀𝛼

(
𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
, {𝜓𝜇

𝛼(𝑋𝑖)}𝑖
)]

+ 𝑡𝐵

=(1 + 𝑡)E𝛼
[
𝑈

𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)]
+ 𝑡𝐵

=(1 + 𝑡)E𝛼
1

{
𝑤𝑇𝛼

1 + 𝑡
≥ 𝑟(𝛼)

} ∫ 𝑤𝑇 𝛼
1+𝑡

𝑟(𝛼)
𝐻

𝜇
𝛼(𝑠)𝑑𝑠

 + 𝑡𝐵
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=𝑞𝜇(𝑤, 𝐵, 𝑡)

Hence, we have shown that, for every buyer type, all anonymous standard auctions have iden-

tical dual optimization problems. In light of this, to prove Theorem 9, it suffices to prove strong

duality for 𝑅𝜇(𝑤, 𝐵), where 𝜇 is a fixed-point which is guaranteed to exist by Proposition 7. We

give the full argument below.

Proof of Theorem 9 .

By Lemma 15, we know that if 𝜇 ∈ 𝐶∗0(𝜇), then 𝜇(𝑤, 𝐵) ∈ argmin𝑡∈[0,𝜔/𝐵] 𝑞
𝜇(𝑤, 𝐵, 𝑡) al-

most surely w.r.t. (𝑤, 𝐵) ∼ 𝐺. Moroeover, by part (b) of Lemma 36, we have 𝜇(𝑤, 𝐵) ∈

argmin𝑡∈[0,∞) 𝑞
𝜇(𝑤, 𝐵, 𝑡). Consider a 𝜃 = (𝑤, 𝐵) ∈ Θ′ (see Definition 19) for which 𝜇(𝑤, 𝐵) ∈

argmin𝑡∈[0,∞) 𝑞
𝜇(𝑤, 𝐵, 𝑡). Observe that such 𝜃 form a subset which has measure one under 𝐺.

According to Theorem 5.1.5 from [BHM98], in order to prove that Ψ𝜇(𝑤, 𝐵, 𝛼) (as a function of

𝛼) is an optimal solution for the optimization problem 𝑅𝜇(𝑤, 𝐵), it suffices to show the following

conditions:

(i) Primal feasibility:

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1
[𝑀𝛼 (Ψ𝜇(𝑤, 𝐵, 𝛼), {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)] ≤ 𝐵

(ii) Dual feasibility: 𝜇(𝑤, 𝐵) ≥ 0

(iii) Lagrangian Optimality: Ψ𝜇(𝑤, 𝐵) is an optimal solution for

max
𝑏:𝐴→R≥0

E𝛼,{ 𝜃𝑖 }𝑛−1
𝑖=1

[
𝑤𝑇𝛼 · 1{𝑏(𝛼) ≥ max(𝑟(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)} − (1 + 𝜇(𝑤, 𝐵))𝑀𝛼(𝑏(𝛼), {Ψ𝜇(𝜃𝑖 , 𝛼)}𝑖)

]
+ 𝜇(𝑤, 𝐵)𝐵

(iv) Complementary slackness:

𝜇(𝑤, 𝐵).
{
𝐵 − E𝛼,{𝜃𝑖}𝑛−1

𝑖=1
[𝑀𝛼 (Ψ𝜇(𝑤, 𝐵, 𝛼), {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)]

}
= 0
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First, we simplify the expression for the expected expenditure used in the sufficient conditions

(i)-(iv) stated above to show that it is equal to the expected payment made by buyer type (𝑤, 𝐵) in

the SFPE determined by pacing function 𝜇:

E𝛼,{𝜃𝑖}𝑛−1
𝑖=1
[𝑀𝛼 (Ψ𝜇(𝜃, 𝛼), {Ψ𝜇(𝜃𝑖, 𝛼)}𝑖)]

=E𝛼E{𝑋𝑖}𝑛−1
𝑖=1 ∼𝜆

𝜇
𝛼

[
𝑀𝛼

(
𝜓
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
, {𝜓𝜇𝛼(𝑋𝑖)}𝑖

)]
=E𝛼

[
𝑚
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)]
=E𝛼

[(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
−

∫ 𝑤𝑇 𝛼
1+𝜇(𝑤,𝐵)

𝑟(𝛼)
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

)
1

{
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)
≥ 𝑟(𝛼)

}]
=E𝛼

[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
1

{
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)
≥ 𝑟(𝛼)

}]
=E𝛼,{(𝜃𝑖)}𝑛−1

𝑖=1
[𝛽𝜇(𝜃, 𝛼) 1{𝛽𝜇(𝜃, 𝛼) ≥ max(𝑟(𝛼), {𝛽𝜇(𝜃𝑖, 𝛼)}𝑖)}]

Hence, Theorem 9 will follow if we establish the aforementioned sufficient conditions (i)-(iv).

Note that 𝜇(𝑤, 𝐵) satisfies the following first order conditions of optimality

𝜕𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵))
𝜕𝑡

≥ 0 𝜇(𝑤, 𝐵) ≥ 0 𝜇(𝑤, 𝐵) · 𝜕𝑞
𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵))

𝜕𝑡
= 0 (C.2)

Using Lemma 38, we can write

𝜕𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵))
𝜕𝑡

= 𝐵 − E𝛼
[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
1

{
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)
≥ 𝑟(𝛼)

}]
To establish the sufficient conditions (i)-(iv), observe that (after simplification) conditions (i),

(ii) and (iv) are the same as (C.2), and condition (iii) is a direct consequence of Lemma 39, thereby

completing the proof of Theorem 9. □
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C.3.1 Revenue Equivalence under Ex-Ante Budget Constraints

The argument developed in this section also applies to the setting with non-contextual i.i.d.

values and ex-ante budget constraints, which is the symmetric special case of the models studied

in [BBW15] and [Bal+21]. More precisely, consider a single-item auction setting with 𝑛 buyers,

and assume that the value of each buyer is drawn i.i.d. from a common atom-less distribution F

over the space of all possible values [0, 𝑉] ⊂ R≥0. Moreover, assume that every buyer has an ex-

ante budget of 𝐵, i.e., she is constrained to spend at most 𝐵 in expectation, where the expectation

is taken over her own value and the values of other buyers. Let A = (𝑟, 𝑀) be the anonymous

standard auction with reserve price 𝑟 and payment rule 𝑀 that the seller uses to sell the item.

In this simpler setting, a strategy 𝛽∗ : [0, 𝑉]→ R is a symmetric equilibrium if 𝛽∗ is the optimal

bidding strategy for a buyer when all other buyers employ 𝛽∗ to bid. Concretely, 𝛽∗ : [𝑉,𝑉]→ R

is a symmetric equilibrium if it is an optimal solution to the following optimization problem:

max
𝑏:[0,𝑉]→R≥0

E𝑣,{𝑣𝑖}𝑛−1
𝑖=1
[𝑣 · 1{𝑏(𝑣) ≥ max(𝑟, {𝛽∗(𝑣𝑖)}𝑖)} − 𝑀(𝑏(𝑣), {𝛽∗(𝑣𝑖)}𝑖)] (C.3)

s.t. E𝑣,{𝑣𝑖}𝑛−1
𝑖=1
[𝑀(𝑏(𝑣), {𝛽∗(𝑣𝑖)}𝑖)] ≤ 𝐵

When A is a second-price auction, the results of both [BBW15] and [Bal+21] imply that strong

duality holds for the optimization problem given in (C.3), and there exists a dual solution 𝜇∗ ≥ 0

such that 𝛽∗(𝑣) = 𝑣/(1 + 𝜇∗) is a symmetric equilibrium. With this existence result for second-price

auctions in hand, we can leverage the argument developed earlier to establish the existence of a

value-pacing-based equilibrium for all standard auctions and revenue equivalence.

LetH be the distribution of 𝑣/(1 + 𝜇∗) when 𝑣 ∼ F and 𝜓H be the single-auction equilibrium

for distribution H and auction A = (𝑟, 𝑀), as defined at the beginning of Section 4.3. Then, we

claim that the value-pacing-based strategy given by

Ψ(𝑣) = 𝜓H
(

𝑣

1 + 𝜇∗

)
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is a symmetric equilibrium (as defined in equation (C.3)). To see this, first observe that, when all

of the other buyers use 𝛽∗ = Ψ to bid, the dual of the optimization problem (C.3) is given by

min
𝜇≥0

max
𝑏:[0,𝑉]→R≥0

E𝑣,{𝑣𝑖}𝑛−1
𝑖=1
[𝑣 · 1{𝑏(𝑣) ≥ max(𝑟, {Ψ(𝑣𝑖)}𝑖)} − (1 + 𝜇)𝑀(𝑏(𝑣), {Ψ(𝑣𝑖)}𝑖)] + 𝜇 · 𝐵

= min
𝜇≥0

(1 + 𝜇) E𝑣
[

max
𝑏∈R≥0

E{𝑣𝑖}𝑛−1
𝑖=1

[
𝑣

1 + 𝜇
· 1{𝑏 ≥ max(𝑟, {Ψ(𝑣𝑖)}𝑖)} − 𝑀(𝑏, {Ψ(𝑣𝑖)}𝑖)

] ]
+ 𝜇 · 𝐵

Next, observe that the inner optimization problem over 𝑏 ∈ R≥0 is exactly the bidding problem

faced by a buyer with value 𝑣/(1 + 𝜇∗) who aims to maximize her utility in the single-auction

setting when the values of the other buyers are drawn from the distribution H . Since 𝜓H (·) is the

equilibrium strategy in the single-auction setting, Ψ(𝑣) = 𝜓H (𝑣/(1 + 𝜇∗)) is an optimal solution

to this bidding problem. Moreover, we know from [Mye81] that the interim expected utility of a

buyer under equilibrium strategies is independent of payment rule of the standard auction. Hence,

the dual optimization problem is the same for all standard auctions. In particular, 𝜇∗ is an optimal

solution for this common dual problem. Finally, using a proof similar to the one we provide for

Theorem 9 in Appendix C.3, it is possible to show that strong duality holds for the optimization

problem stated in (C.3) when 𝛽∗ = Ψ and Ψ(𝑣/(1 + 𝜇∗)) is an optimal solution of (C.3) as required.

C.4 Worst-Case Efficiency Guarantees

The following example demonstrates that the Price of Anarchy of social welfare can be arbi-

trarily small for value-pacing-based equilibria.

Example 8. Fix the number of buyers to 𝑛 = 2 and consider the second-price auction format. Let

the distribution of feature vectors 𝐹 be the uniform distribution over 𝐴 = [1, 2] × [1, 2]. Moreover,

assume that the buyer weight vectors are distributed uniformly over [1, 2]× [1, 2]∪ [𝑦4, 𝑦4 + 1/𝑦]×

[𝑦4, 𝑦4 + 1/𝑦] for some large 𝑦 ≥ 1. Also, suppose the budget of all buyer types with weight vector

𝑤 ∈ [1, 2] × [1, 2] is 10 and the budget of all buyer types with weight vector 𝑤 ∈ [𝑦4, 𝑦4 + 1/𝑦] ×

[𝑦4, 𝑦4 + 1/𝑦] is 1/𝑦2. By Theorem 8, we get that there exists a value-pacing-based equilibrium

for this instance. Let 𝜇 be the pacing function associated with it and 𝑥𝜇 be the corresponding
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allocation. First, observe that all of the buyer types with weight vectors in [1, 2] × [1, 2] are not

paced in equilibrium and bid their value on each item, i.e., 𝜇(𝑤, 10) = 1 for all 𝑤 ∈ [1, 2] × [1, 2].

This is because their budget far exceeds their expected value: even if they win every item, their

payments is as most 8, which is smaller than their budget of 10. Next, consider a buyer 𝑖 ∈ {1, 2}

with type 𝜃𝑖 = (𝑤, 1/𝑦2) for some 𝑤 ∈ [𝑦4, 𝑦4 + 1/𝑦] × [𝑦4, 𝑦4 + 1/𝑦]. Then, her expected payment

(expectation over competing buyer type and item type) is at least

𝑃(𝑤−𝑖 ∈ [1, 2]2) · E𝛼,𝜃−𝑖 [𝑥
𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖) · 1 | 𝑤−𝑖 ∈ [1, 2]2] =

1
1 + 𝑦−2 · E𝛼[𝑥𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)]

because, when 𝑤−𝑖 ∈ [1, 2] × [1, 2], buyer −𝑖 bids her value on each item and her value is always

at least 1. Moreover, the budget of the buyer with type 𝜃𝑖 is 1/𝑦2. Therefore, we get

1
1 + 𝑦−2 · E𝛼[𝑥𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)] ≤

1
𝑦2

Let 𝑥 be the allocation that always gives the item to a buyer with weight vector 𝑤 ∈ [𝑦4, 𝑦4 +1/𝑦]×

[𝑦4, 𝑦4 + 1/𝑦] when such a buyer type is present. We partition the space of buyer-type profiles into

4 regions, and bound the expected social welfare (expectation taken only over 𝛼 ∼ 𝐹) of 𝑥𝜇 and 𝑥:

1. 𝜃𝑖 = (𝑤𝑖, 1) with 𝑤𝑖 ∈ [1, 2] × [1, 2] for both buyers 𝑖 ∈ {1, 2}. This occurs with probability

at most 1 and the expected social welfare under 𝑥𝜇 when 𝛼 ∼ 𝐹 is bounded above by 8 for

each type profile in this region.

2. 𝜃𝑖 = (𝑤𝑖, 1/𝑦2) with 𝑤𝑖 ∈ [𝑦4, 𝑦4 + 1/𝑦] × [𝑦4, 𝑦4 + 1/𝑦] for both buyers 𝑖 ∈ {1, 2}. This

occurs with probability at most 1/𝑦4 and the expected social welfare under 𝑥𝜇 when 𝛼 ∼ 𝐹

is bounded above by 8𝑦4 for each type profile in this region.

3. 𝜃1 = (𝑤1, 1/𝑦2) with 𝑤1 ∈ [𝑦4, 𝑦4 + 1/𝑦]× [𝑦4, 𝑦4 + 1/𝑦] and 𝜃2 = (𝑤2, 10) with 𝑤2 ∈ [1, 2]×

[1, 2]. This occurs with probability 𝑦−2/(1 + 𝑦−2). As we argued earlier, E𝛼[𝑥𝜇1 (𝛼, 𝜃1, 𝜃2)] ≤

(1 + 𝑦−2)/𝑦2 in this case. Therefore, the expected social welfare under 𝑥𝜇 when 𝛼 ∼ 𝐹 is

bounded above by 8𝑦4 · {(1 + 𝑦−2)/𝑦2} + 8 ≤ 24𝑦2. On the other hand, the expected social
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welfare under 𝑥 when 𝛼 ∼ 𝐹 is at least 𝑦4 in this region since buyer 1 always gets the item.

4. 𝜃2 = (𝑤2, 1/𝑦2) with 𝑤2 ∈ [𝑦4, 𝑦4 + 1/𝑦] × [𝑦4, 𝑦4 + 1/𝑦] and 𝜃1 = (𝑤1, 10) with 𝑤1 ∈

[1, 2]×[1, 2]. This is the same as region 3 with the roles of buyer 1 and buyer 2 interchanged.

Combining the bounds for the different regions, we get that the total expected social welfare

under 𝑥𝜇 is bounded above by

8 + 8𝑦4 · 1
𝑦4 + 24𝑦2 · 𝑦−2

1 + 𝑦−2 + 24𝑦2 · 𝑦−2

1 + 𝑦−2 ≤ 64 ,

and the total expected social welfare under 𝑥 is bounded below by

0 + 0 + 𝑦4 · 𝑦−2

1 + 𝑦−2 + 𝑦4 · 𝑦−2

1 + 𝑦−2 ≥ 𝑦
2.

Hence, the Price of Anarchy of social welfare is at most 64/𝑦2, which tends to zero as 𝑦 →∞.

Proof of Theorem 10. We will focus on second-price auctions. Consider an allocation 𝑥, an equi-

librium pacing function 𝜇 with 𝜇 ∈ 𝐶∗0(𝜇) and the associated allocation 𝑥𝜇. Since 𝑥 and 𝜇 are

arbitrary, it suffices to show that LW(𝑥𝜇) ≥ LW(𝑥)/2.

Let 𝑝(𝛼, ®𝜃) denote the second-highest bid on item 𝛼 in the equilibrium parameterized by 𝜇

when the buyer-type profile is given by ®𝜃, i.e., it is the second largest element in the set {𝑤𝑇
𝑖
𝛼/(1 +

𝜇(𝑤𝑖, 𝐵𝑖)) | 𝑖 ∈ [𝑛]}. The following lemma is a key step in the proof of the theorem.

Lemma 41. For all 𝑖 ∈ [𝑛] and 𝜃𝑖 ∈ Θ, we have

min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
≥ min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
− E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] .

Proof. Fix 𝑖 ∈ [𝑛] and 𝜃𝑖 ∈ Θ. We will prove the lemma separately for paced and unpaced

buyer types. First, consider the case when 𝜃𝑖 is paced in equilibrium, i.e., 𝜇(𝜃𝑖) > 0. Then, since

𝜇(𝑤𝑖, 𝐵𝑖) ∈ argmin𝑡≥0 𝑞
𝜇(𝑤𝑖, 𝐵𝑖, 𝑡), complementary slackness (see proof of Theorem 9) implies
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that:

E𝛼,𝜃−𝑖
[
𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖)

]
= 𝐵𝑖 .

Moreover, note that 𝑤𝑇
𝑖
𝛼/(1 + 𝜇(𝑤𝑖, 𝐵𝑖)) ≥ 𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) whenever 𝑥𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖) > 0 because only

the highest bidder(s) win the item in a second-price auction. This allows us to establish the lemma

for paced buyers:

min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
≥ min

{
E𝛼,𝜃−𝑖

[
𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖)

]
, 𝐵𝑖

}
= 𝐵𝑖

≥ min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
≥ min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
− E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] ,

where the first inequality follows because 𝑤𝑇
𝑖
𝛼 ≥ 𝑤𝑇

𝑖
𝛼/(1 + 𝜇(𝑤𝑖, 𝐵𝑖)) since 𝜇(𝑤𝑖, 𝐵𝑖) ≥ 0, the first

equality because budgets binds, the second inequality because 𝐵𝑖 ≥ min(𝑎, 𝐵𝑖) for every 𝑎 ∈ R,

and the last inequality because payments are non-negative.

Next, consider the case when 𝜃𝑖 is unpaced in equilibrium, i.e., 𝜇(𝜃𝑖) = 0. Then, by definition

of a pacing-based strategy for second-price auctions, buyer type 𝜃𝑖 bids her value 𝑤𝑇
𝑖
𝛼 on item

𝛼 in equilibrium, for all items 𝛼 ∈ 𝐴. As a consequence, if 𝑥𝜇
𝑖

(𝛼, 𝜃𝑖, 𝜃−𝑖) < 1, then we have

𝑤𝑇
𝑖
𝛼 ≤ 𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖). In other words,

E𝛼,𝜃−𝑖 [(𝑤
𝑇
𝑖 𝛼 − 𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖)) · (1 − 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖)) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] ≤ 0 . (C.4)

Moreover, observe that

E𝛼,𝜃−𝑖 [𝑤
𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)] ≥ E𝛼,𝜃−𝑖 [(𝑤𝑇𝑖 𝛼 − 𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖)) · 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] , (C.5)
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because payments are non-negative and 𝑥𝑖 ∈ [0, 1]. Combining (C.4) and (C.5) yields

E𝛼,𝜃−𝑖 [𝑤
𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)]

≥ E𝛼,𝜃−𝑖 [(𝑤𝑇𝑖 𝛼 − 𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖)) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)]

≥ min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
− E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] , (C.6)

where the last inequality follows because 𝑎 ≥ min(𝑎, 𝐵𝑖) for every 𝑎 ∈ R. Furthermore, note the

trivial inequality

𝐵𝑖 ≥ min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
≥ min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
− E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)] , (C.7)

where we used again that 𝐵𝑖 ≥ min(𝑎, 𝐵𝑖) for every 𝑎 ∈ R and that payments are non-negative.

Finally, combining (C.6) and (C.7) yields the lemma for unpaced buyers

min
{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
≥ min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}
− E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)], (C.8)

since (C.6) and (C.7) show the inequality separately for each of the two terms in the minimum on

the left-hand side of (C.8). This establishes the lemma for all 𝑖 ∈ [𝑛] and 𝜃𝑖 ∈ Θ. □

Continuing the proof of Theorem 10, next, we sum over 𝑖 ∈ [𝑛] and take expectation w.r.t. 𝜃𝑖

for the inequality in Lemma 41. First, we study the effect of summing and taking expectations on

the second term in the RHS. We have

𝑛∑︁
𝑖=1
E𝜃𝑖

[
E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)]

]
= E

𝛼,®𝜃

[
𝑝(𝛼, ®𝜃) ·

𝑛∑︁
𝑖=1

𝑥𝑖(𝛼, 𝜃𝑖, 𝜃−𝑖)

]
= E

𝛼,®𝜃

[
𝑝(𝛼, ®𝜃)

]
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= E
𝛼,®𝜃

[
𝑝(𝛼, ®𝜃) ·

𝑛∑︁
𝑖=1

𝑥
𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)

]
=

𝑛∑︁
𝑖=1
E𝜃𝑖

[
E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖)]

]
≤

𝑛∑︁
𝑖=1
E𝜃𝑖

[
min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖, 𝜃−𝑖)], 𝐵𝑖

}]
= LW(𝑥𝜇) , (C.9)

where the first and fourth equalities follow from Fubini’s theorem, the second and third because

allocations sum up to one (i.e., there no reserve prices), and the last inequality follows from the

budget-feasibility of the pacing-based equilibrium strategy given by 𝜇 for buyer type 𝜃𝑖, which

implies

E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) · 𝑥𝜇𝑖 (𝛼, 𝜃𝑖, 𝜃−𝑖)] ≤ 𝐵𝑖

and the winning criteria of second-price auctions, which implies

𝑝(𝛼, 𝜃𝑖, 𝜃−𝑖) ≤
𝑤𝑇
𝑖
𝛼

1 + 𝜇(𝑤𝑖, 𝐵𝑖)
≤ 𝑤𝑇𝑖 𝛼

whenever 𝑥𝜇
𝑖

(𝛼, 𝜃𝑖, 𝜃−𝑖) > 0.

Using (C.9), we obtain by summing over 𝑖 ∈ [𝑛] and integrate over 𝜃𝑖 the inequality in the

statement of Lemma 41:

LW(𝑥𝜇) =
𝑛∑︁
𝑖=1
E𝜃𝑖

[
min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥

𝜇

𝑖
(𝛼, 𝜃𝑖 , 𝜃−𝑖)], 𝐵𝑖

}]
≥

𝑛∑︁
𝑖=1
E𝜃𝑖

[
min

{
E𝛼,𝜃−𝑖 [𝑤

𝑇
𝑖 𝛼 · 𝑥𝑖(𝛼, 𝜃𝑖 , 𝜃−𝑖)], 𝐵𝑖

}]
−

𝑛∑︁
𝑖=1
E𝜃𝑖

[
E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖 , 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖 , 𝜃−𝑖)]

]
= LW(𝑥) −

𝑛∑︁
𝑖=1
E𝜃𝑖

[
E𝛼,𝜃−𝑖 [𝑝(𝛼, 𝜃𝑖 , 𝜃−𝑖) · 𝑥𝑖(𝛼, 𝜃𝑖 , 𝜃−𝑖)]

]
≥ LW(𝑥) − LW(𝑥𝜇) .

Therefore, we have shown that LW(𝑥𝜇) ≥ LW(𝑥)/2 as required. □
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C.5 Structural Properties

Before proceeding with the proof of Proposition 8, we establish the following Lemma, which

is informative in its own right.

Lemma 42. The pacing function 𝜇 : Θ→ [0, 𝜔/𝐵min] is continuous.

Proof. We start by observing that the following function is continuous for all 𝛼 ∈ 𝐴:

(𝑤, 𝐵, 𝑡) ↦→
∫ 𝑤𝑇 𝛼

1+𝑡

0
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

Therefore, Dominated Convergence Theorem implies (𝑤, 𝐵, 𝑡) ↦→ 𝑞𝜇(𝑤, 𝐵, 𝑡) is continuous.

Finally, applying Berge Maximum Theorem (Theorem 17.31 of [AB06]) yields the continuity of

(𝑤, 𝐵) ↦→ 𝜇(𝑤, 𝐵) because of our assumption that 𝜇(𝑤, 𝐵) is the unique minimizer of 𝑞𝜇(𝑤, 𝐵, 𝑡).

□

We now state the proof of Proposition 8.

Proof of Proposition 8. Consider a unit vector �̂� ∈ R𝑑+ and budget 𝐵 > 0 such that 𝑤/∥𝑤∥= �̂�, for

some (𝑤, 𝐵) ∈ 𝛿(𝑋). If 𝜇(𝑤, 𝐵) = 0 for all buyers (𝑤, 𝐵) ∈ 𝛿(𝑋) with 𝑤/∥𝑤∥= �̂�, then the theorem

statement holds trivially. So assume that there exists 𝑥 > 0 such that 𝑥�̂� ∈ 𝛿(𝑋) and 𝜇(𝑥�̂�, 𝐵) > 0.

Define 𝑥0 B inf{𝑥 ∈ (0,∞) | (𝑥�̂�, 𝐵) ∈ 𝛿(𝑋); 𝜇(𝑥�̂�, 𝐵) > 0}. Then, as a consequence of the

complementary slackness condition established in Proposition 6, for 𝑥 > 𝑥0, we have

𝐸𝛼

[
𝜎
𝜇
𝛼

(
𝑥�̂�𝑇𝛼

1 + 𝜇(𝑥�̂�, 𝐵)

)
𝐻
𝜇
𝛼

(
𝑥�̂�𝑇𝛼

1 + 𝜇(𝑥�̂�, 𝐵)

)]
= 𝐵.

Recall that, in Lemma 34, we established the continuity of 𝜎𝜇𝛼 and 𝐻𝜇
𝛼 almost surely w.r.t. 𝛼 ∼ 𝐹.

Combining this with the continuity of 𝜇 established in Lemma 42, we can apply the Dominated

Convergence Theorem to establish

𝐸𝛼

[
𝜎
𝜇
𝛼

(
𝑥0�̂�

𝑇𝛼

1 + 𝜇(𝑥0�̂�, 𝐵)

)
𝐻
𝜇
𝛼

(
𝑥0�̂�

𝑇𝛼

1 + 𝜇(𝑥0�̂�, 𝐵)

)]
= 𝐵.
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As 𝐵 > 0, we get 𝑥0 > 0. Next, observe that if 𝑡∗ ≥ 0 satisfies 𝑥0(1 + 𝑡∗) = 𝑥(1 + 𝜇(𝑥0�̂�, 𝐵), then

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡∗)
𝜕𝑡

= 𝐵 − 𝐸𝛼
[
𝜎
𝜇
𝛼

(
𝑥�̂�𝑇𝛼

1 + 𝑡∗

)
𝐻
𝜇
𝛼

(
𝑥�̂�𝑇𝛼

1 + 𝑡∗

)]
= 0

Therefore, by our uniqueness assumption on 𝜇, we get 1 + 𝜇(𝑥�̂�, 𝐵) = (𝑥/𝑥0)(1 + 𝜇(𝑥0�̂�, 𝐵)) for all

𝑥 ≥ 𝑥0. Hence, for all 𝑥 ≥ 𝑥0, we get

𝑥�̂�𝑇𝛼

1 + 𝜇(𝑥�̂�, 𝐵)
=

𝑥0�̂�
𝑇𝛼

1 + 𝜇(𝑥0�̂�, 𝐵)

Part (1) of Proposition 8 follows directly. Part (2) considers the case when there exists 𝑦 ≥ 0 such

that (𝑦�̂�, 𝐵) ∈ 𝛿(𝑋) and 𝜇(𝑦�̂�, 𝐵) = 0. In this case, Lemma 42 and the connectedness of 𝛿(𝑋)

imply that 𝜇(𝑥0�̂�, 𝐵) = 0, with part (2) of Proposition 8 following as a direct consequence. □

Next, we state the proof of Proposition 9.

Proof of Proposition 9. First, note that

𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)) = min
𝑡≥0

𝑞𝜇(𝑤, 𝐵, 𝑡)

= min
𝑡≥0

(1 + 𝑡) E𝛼

[∫ 𝑤𝑇 𝛼
1+𝑡

0
𝐻
𝜇
𝛼(𝑠)𝑑𝑠

]
+ 𝑡𝐵.

Next, define 𝑔 : Θ × 𝐴 × R≥0 → R as

𝑔(𝑤, 𝐵, 𝛼, 𝑡) = (1 + 𝑡)
∫ 𝑤𝑇 𝛼

1+𝑡

0
𝐻
𝜇
𝛼(𝑠)𝑑𝑠 + 𝑡𝐵.

Since 𝐻𝜇 is continuous (Lemma 34), we get that 𝑔 is differentiable w.r.t. 𝑤 and the derivative

satisfies

∥∇𝑤𝑔(𝑤, 𝐵, 𝛼, 𝑡)∥=
𝛼 · 𝐻𝜇

𝛼

(
𝑤𝑇𝛼

1 + 𝑡

) ≤ max
𝛼∈𝐴
∥𝛼∥.
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Therefore, dominated convergence theorem implies that

∇𝑤E𝛼[𝑔(𝑤, 𝐵, 𝛼, 𝑡)] = E𝛼 [∇𝑤𝑔(𝑤, 𝐵, 𝛼, 𝑡)] = E𝛼
[
𝛼 · 𝐻𝜇

𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)]
.

Note that the dual function 𝑞𝜇 is convex in 𝑡 and at least one dual optimal solution always lies

in the compact set [0, 𝜔/𝐵min] (Lemma 36). Moreover, if 𝑡1, 𝑡2 ∈ argmin𝑡≥0 𝑞
𝜇(𝑤, 𝐵, 𝑡), then the

optimality conditions discussed in the proof of Proposition 6 imply

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡1)
𝜕𝑡

=
𝜕𝑞𝜇(𝑤, 𝐵, 𝑡2)

𝜕𝑡
= 0.

Without loss of generality, assume 𝑡1 < 𝑡2. Moreover, suppose

𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡1

)
> 𝐻

𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡2

)
.

In the proof of Lemma 34, we showed that the above equation implies

𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡1

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡1

)
> 𝜎

𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡2

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡2

)
∀ 𝛼 ∈ 𝐴.

This contradicts Lemma 38 because

𝜕𝑞𝜇(𝑤, 𝐵, 𝑡)
𝜕𝑡

= E𝛼
[
𝜎
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡

)]
Hence, we have shown that

𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝑡1

)
= 𝐻𝜇

𝛼

(
𝑤𝑇𝛼

1 + 𝑡2

)
∀ 𝑡1, 𝑡2 ∈ argmin𝑡≥0 𝑞

𝜇(𝑤, 𝐵, 𝑡)

This allows us to invoke Danskin’s Theorem, which yields

∇𝑤𝑞𝜇(𝑤, 𝐵, 𝜇(𝑤, 𝐵)) = 𝐵 − ∇𝑤E𝛼[𝑔(𝑤, 𝐵, 𝛼, 𝑡)]
����
𝑡=𝜇(𝑤,𝐵)

= E𝛼
[
𝛼 · 𝐻𝜇

𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)]
,
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thereby completing the proof. □

C.6 Analytical and Numerical Examples

Proof of Claim 1. Note that 𝑤/(1 + 𝜇(𝑤, 𝐵)) = 𝑤/∥𝑤∥ for all (𝑤, 𝐵) ∈ Θ. Therefore, 𝑤/(1 +

𝜇(𝑤, 𝐵)) is distributed uniformly on the unit ring restricted to the positive quadrant {(𝑥, 𝑦) ∈ R2
≥0 |

𝑥2 + 𝑦2 = 1}. Hence,

𝐻
𝜇
𝛼(𝑠) = 𝑃(𝑤,𝐵)

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)
≤ 𝑠

)
=

arcsin(𝑠)
𝜋/2

for 𝛼 ∈ 𝐴 = {𝑒1, 𝑒2}

Observe that 𝐻𝜇
𝛼 is continuous for all 𝛼 ∈ 𝐴. This implies that, for all (𝑤, 𝐵) ∈ Θ, strong duality

holds for the optimization problem𝑄𝜇(𝑤, 𝐵), because the proof of the results given in Section 4.2.2

only relied on continuity of 𝐻𝜇
𝛼 . Therefore, to prove the claim, it suffices to show that each buyer

(𝑤, 𝐵) exactly spends her budget. The total payment made by buyer (𝑤, 𝐵) ∈ Θ, when everyone

uses 𝛽𝜇, is given by

E𝛼

[
𝛽
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)
𝐻
𝜇
𝛼

(
𝑤𝑇𝛼

1 + 𝜇(𝑤, 𝐵)

)]
=

2∑︁
𝑖=1

1
2

[
�̂�𝑖𝐻

𝜇
𝑒𝑖 (�̂�𝑖) −

∫ �̂�𝑖

0
𝐻
𝜇
𝑒𝑖 (𝑠)𝑑𝑠

]
=

2 − �̂�1 − �̂�2
𝜋

=
2∥𝑤∥−𝑤1 − 𝑤2

𝜋∥𝑤∥ .

Hence, the claim holds. □

C.7 Extension to Non-linear Response Functions

In this section, we discuss extensions of our results beyond linear valuation functions. Let

𝑓 : R → R be a (potentially non-linear) monotonically increasing function. We assume that

the value a buyer with weight vector 𝑤 has for item with feature vector 𝛼 is given by 𝑓 (𝑤𝑇𝛼).

Moreover, we relax the assumption that Θ, 𝐴 ⊂ R+ and only require that 𝑓 (𝑤𝑇𝛼) is non-negative

for all 𝑤 ∈ Θ, 𝛼 ∈ 𝐴. For example, the logistic function 𝑓 (𝑡) = 𝑒𝑡/(1 + 𝑒𝑡) is a non-linear
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increasing response function commonly used in practice which satisfies the above assumptions.

Moreover, the linear function 𝑓 (𝑡) = 𝑡 yields our original linear model. Before proceeding further,

we appropriately modify the terms defined earlier to accommodate this more general valuation

model given by 𝑓 .

Consider a pacing function 𝜇 : Θ → R≥0. We define the paced value of a buyer type (𝑤, 𝐵)

for item 𝛼 as 𝑓 (𝑤𝑇𝛼)/(1 + 𝜇(𝑤, 𝐵)). For item 𝛼 ∈ 𝐴, let 𝜆𝜇𝛼 denote the distribution of paced

values 𝑓 (𝑤𝑇𝛼)/(1 + 𝜇(𝑤, 𝐵)) when (𝑤, 𝐵) ∼ 𝐺. Let 𝐻𝜇
𝛼 denote the distribution of the highest value

𝑌 := max{𝑋1, . . . , 𝑋𝑛−1} among 𝑛 − 1 buyers, when each 𝑋𝑖 ∼ 𝜆𝜇𝛼 is drawn independently for

𝑖 ∈ {1, . . . , 𝑛 − 1}. Observe that 𝐻𝜇
𝛼((−∞, 𝑥]) = 𝜆𝜇𝛼((−∞, 𝑥])𝑛−1 for all 𝛼 ∈ 𝐴 because the random

variables are i.i.d.

To better understand how our results can be extended to this more general valuation model, it is

important to understand how the linearity assumption was employed in our derivations. A careful

analysis of the derivations would reveal that the linearity was only employed exactly once, and

that was to prove part (a) of Lemma 34. In the following lemma, we prove the analogue of part

(a) of Lemma 34. The analysis for the rest of our results remains the same for this more general

non-linear valuation model.

Lemma 43. 𝜆𝜇𝛼 and 𝐻
𝜇
𝛼 (as defined above) have a continuous CDF for every pacing function

𝜇 : Θ→ R≥0.

Proof. Consider a pacing function 𝜇 : Θ → R≥0. Let 𝛼1, 𝛼2 ∈ 𝐴 be linearly independent feature

vectors and 𝑥1, 𝑥2 ∈ [0, 𝜔] be two possible item values. We consider the set of buyer types which

have paced value 𝑥1 for 𝛼1 and paced value 𝑥2 for 𝛼2. Define

𝑆 B

{
(𝑤, 𝐵) ∈ Θ

���� 𝑓 (𝑤𝑇𝛼1)
1 + 𝜇(𝑤, 𝐵)

= 𝑥1;
𝑓 (𝑤𝑇𝛼2)

1 + 𝜇(𝑤, 𝐵)
= 𝑥2

}
Observe that, for (𝑤, 𝐵) ∈ 𝑆 and 𝑐 B 𝑥1/𝑥2, we have 𝑓 (𝑤𝑇𝛼1) = 𝑐 𝑓 (𝑤𝑇𝛼2). Therefore, the

set 𝑇 = {𝑤 | 𝑓 (𝑤𝑇𝛼1) = 𝑐 𝑓 (𝑤𝑇𝛼2)} is a superset of the set 𝑆𝑤. Next, define 𝑇(𝑠) = {𝑤 |

𝑤𝑇𝛼1 = 𝑓 −1(𝑐 𝑓 (𝑠)); 𝑤𝑇𝛼2 = 𝑠}. Then, it immediately follows that 𝑇 = ∪𝑠: 𝑓 (𝑠)≥0𝑇(𝑠). Due
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to their linear independence, we can find a basis that contains 𝛼1, 𝛼2, call it {𝛼1, 𝛼2, . . . , 𝛼𝑛}.

Let 𝑀 be the invertible matrix whose rows are given by 𝛼1, 𝛼2, . . . , 𝛼𝑛. Now, note that the set

𝑈 B {( 𝑓 −1(𝑐 𝑓 (𝑠)), 𝑠) | 𝑠 ∈ R, 𝑓 (𝑠) ≥ 0} ⊆ R2 has Lebesgue measure zero because it is the graph

of a monotonic continuous real-valued function. As a consequence, the set𝑈 × R𝑛−2 also has zero

Lebesgue measure, which further implies that 𝑀−1(𝑈 ×R𝑛−2) has zero Lebesgue measure because

𝑀 is an invertible linear transformation.

Observe that, if 𝑤 ∈ 𝑇 = ∪𝑠: 𝑓 (𝑠)≥0𝑇(𝑠), then there exists 𝑠 such that 𝑓 (𝑠) ≥ 0, 𝛼𝑇1𝑤 = 𝑓 −1( 𝑓 (𝑠))

and 𝛼𝑇2𝑤 = 𝑠. Hence, the first two components of 𝑀𝑤 are 𝑓 −1( 𝑓 (𝑠)) and 𝑠 respectively, thereby

implying 𝑤 ∈ 𝑀−1(𝑈 × R𝑛−2). Therefore, we get that 𝑇 ⊂ 𝑀−1(𝑈 × R𝑛−2) and, as a consequence,

𝑇 has zero Lebesgue measure. Finally, this implies that 𝐺(𝑆) = 0 because 𝐺 has a density. The

rest of the analysis is analogous to the one given in the proof of Lemma 34. □
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Appendix D: Appendix to Chapter 5

D.1 Proof of Theorem 13

Consider a {0, 1}-cost 𝑛 × 𝑛 bimatrix game (𝐴, 𝐵) and let 𝜖 = 1/𝑛. Recall that an 𝜖-well-

supported Nash equilibrium is a pair (𝑥, 𝑦) ∈ Δ𝑛 × Δ𝑛 such that 𝑥𝑖 > 0 for any 𝑖 ∈ [𝑛] implies that∑
𝑗 𝐴𝑖 𝑗 𝑦 𝑗 ≤

∑
𝑗 𝐴𝑘 𝑗 𝑦 𝑗 + 𝜖 for all 𝑘 and 𝑦 𝑗 > 0 for any 𝑗 ∈ [𝑛] implies

∑
𝑖 𝑥𝑖𝐵𝑖 𝑗 ≤

∑
𝑖 𝑥𝑖𝐵𝑖𝑘 + 𝜖 for

all 𝑘 ∈ [𝑛].

In this section we show how to construct an SPP game 𝐺 with 4𝑛 + 1 buyers from the bimatrix

game (𝐴, 𝐵) in time polynomial in 𝑛 such that every (𝛿, 𝛾)-approximate PE of 𝐺, where 𝛿 = 𝛾 =

𝜖/𝑛6, can be mapped back to an 𝜖-well-supported Nash equilibrium of (𝐴, 𝐵) in polynomial time.

Theorem 11 follows from the PPAD-completeness of the problem of finding an 𝜖-well-supported

Nash equilibrium in a {0, 1}-cost bimatrix game with 𝜖 = 1/𝑛 [CTV07].

The SPP game 𝐺 contains the following goods:

• Normalization goods: 𝑛 goods {𝑁(𝑝, 𝑠)1, . . . , 𝑁(𝑝, 𝑠)𝑛} for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

• Expenditure goods: 𝑛 goods {𝐸(𝑝, 𝑠)1, . . . , 𝐸(𝑝, 𝑠)𝑛} for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

• Threshold goods 𝑇(𝑝, 𝑠) for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

Set 𝜈 = 1/(16𝑛). The set of buyers in 𝐺 is defined as follows:

• Buyer C(𝑝, 𝑠), 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛]: C(𝑝, 𝑠) has positive values for the following goods:

– Normalization goods: 𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑖) = 16 for all 𝑖 ∈ [𝑛] \ {𝑠};

𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑠) = 1; and 𝑉(C(𝑝, 𝑠), 𝑁(𝑝, 𝑡)𝑠) = 1 for all 𝑡 ∈ [𝑛] \ {𝑠}.
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– Threshold good 𝑇(𝑝, 𝑠): 𝑉(C(𝑝, 𝑠), 𝑇(𝑝, 𝑠)) = 2𝑛4.

– Expenditure goods: 𝑉(C(𝑝, 𝑠), 𝐸(𝑝, 𝑠)𝑖) = 1 for all 𝑖 ∈ [𝑛].

For 𝑝 = 1: 𝑉(C(1, 𝑠), 𝐸(2, 𝑡)𝑠) = 𝜈𝐵𝑠𝑡 for all 𝑡 ∈ [𝑛].

For 𝑝 = 2: 𝑉(C(2, 𝑠), 𝐸(1, 𝑡)𝑠) = 𝜈𝐴𝑡𝑠 for all 𝑡 ∈ [𝑛].

For 𝑝 = 1, the budget of buyer C(1, 𝑠) is 𝑛/2 + 𝑛4 + 1/4 + ∑
𝑡∈[𝑛] 𝜈𝐴𝑠𝑡/2;

For 𝑝 = 2, the budget of buyer C(2, 𝑠) is 𝑛/2 + 𝑛4 + 1/4 + ∑
𝑡∈[𝑛] 𝜈𝐵𝑡𝑠/2.

• Threshold Buyer T: T has positive values only for the following goods:

– Threshold goods: 𝑉(T, 𝑇(𝑝, 𝑠)) = (1 − 𝛿)𝑛4 for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

– Expenditure goods: 𝑉(T, 𝐸(1, 𝑠)𝑡) = 𝜈𝐴𝑠𝑡/2 and 𝑉(T, 𝐸(2, 𝑠)𝑡) = 𝜈𝐵𝑡𝑠/2 for all

𝑠, 𝑡 ∈ [𝑛].

Buyer T has budget 𝑛7.

• Dummy buyer D(𝑝, 𝑠), 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛]: The budget of D(𝑝, 𝑠) is 𝜈 and she only

values the normalization good 𝑁(𝑝, 𝑠)𝑠: 𝑉(D(𝑝, 𝑠), 𝑁(𝑝, 𝑠)𝑠) = 1.

Let E be a (𝛿, 𝛾)-approximate PE of the game 𝐺. We will use 𝛼(·) to denote pacing multipliers

of buyers in E. Observe that, from the definition of approximate pacing equilibria, we must have

𝛼(T) ∈ [1 − 𝛾, 1]. The following lemma establishes bounds on pacing multipliers of other buyers.

Lemma 44. For each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], we have

(1 − 𝛿)2

2
≤ 𝛼(C(𝑝, 𝑠)) ≤ 7

8
and (1 − 𝛿) · 𝛼(C(𝑝, 𝑠)) ≤ 𝛼(D(𝑝, 𝑠)) ≤ 𝛼(C(𝑝, 𝑠))

1 − 𝛿 .

Proof. Suppose for some 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], we have 𝛼(C(𝑝, 𝑠)) < (1 − 𝛿)2/2. Then C(𝑝, 𝑠)

doesn’t win any part of the threshold good 𝑇(𝑝, 𝑠). Observe that she has value at most 16 for every

other good. Given that there are only 𝑂(𝑛2) goods in 𝐺, she can not possibly spend all her budget
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(which is Ω(𝑛4)). This contradicts the assumption that E is an approximate PE. Therefore, we have

𝛼(C(𝑝, 𝑠)) ≥ (1 − 𝛿)2/2 for each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛].

Next we prove the inequality about 𝛼(D(𝑝, 𝑠)). Suppose (1 − 𝛿)𝛼(D(𝑝, 𝑠)) > 𝛼(C(𝑝, 𝑠)) for

some 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛]. Then, D(𝑝, 𝑠) wins all of good 𝑁(𝑝, 𝑠)𝑠 at price 𝛼(C(𝑝, 𝑠)) ≥

(1 − 𝛿)2/2. This violates her budget constraint and leads to a contradiction. Hence 𝛼(D(𝑝, 𝑠)) ≤

𝛼(C(𝑝, 𝑠))/(1−𝛿). Moreover, if 𝛼(D(𝑝, 𝑠)) < (1−𝛿)𝛼(C(𝑝, 𝑠)) (which implies 𝛼(D(𝑝, 𝑠)) < 1−𝛿 =

1 − 𝛾) then her expenditure is zero. This violates the no unnecessary pacing condition. Hence the

inequality about 𝛼(D(𝑝, 𝑠)) must hold. Observe that, in particular, this means that the price of

𝑁(𝑝, 𝑠)𝑠 is between (1 − 𝛿)𝛼(C(𝑝, 𝑠)) and 𝛼(C(𝑝, 𝑠))/(1 − 𝛿).

Finally suppose 𝛼(C(𝑝, 𝑠)) > 7/8 for some 𝑝 ∈ {1, 2}, 𝑠 ∈ [𝑛]. Then she wins:

• All of normalization good 𝑁(𝑝, 𝑠)𝑡 , for each 𝑡 ̸= 𝑠, by spending at least (1 − 𝛿)2/2 on each

of them because 𝛼(C(𝑝, 𝑡)) ≥ (1 − 𝛿)2/2 by the first part of the proof.

• Part of normalization good 𝑁(𝑝, 𝑠)𝑠 by spending at least (1 − 𝛿)(7/8) − 𝜈. This is because

𝑁(𝑝, 𝑠)𝑠 has price at least (1 − 𝛿)(7/8) and buyer D(𝑝, 𝑠) only has budget 𝜈.

• All of threshold good 𝑇(𝑝, 𝑠) by spending 𝛼(T)(1 − 𝛿)𝑛4 ≥ (1 − 𝛿)2𝑛4 (using 𝛾 = 𝛿).

• All of expenditure good 𝐸(𝑝, 𝑠)𝑡 , for each 𝑡 ∈ [𝑛], by spending at least 𝛼(T)𝜈𝐴𝑠𝑡/2 if 𝑝 = 1

and 𝛼(T)𝜈𝐵𝑡𝑠/2 if 𝑝 = 2.

Hence, the total expenditure of C(𝑝, 𝑠) when 𝑝 = 1 is at least

(1 − 𝛿)2 · 𝑛 − 1
2

+ (1 − 𝛿) · 7
8
− 𝜈 + (1 − 𝛿)2𝑛4 + (1 − 𝛿)

∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2

which is strictly higher the budget (using 𝛿 = 1/𝑛7). The same also holds for 𝑝 = 2. In both cases,

the budget constraint is violated, leading to a contradiction. Therefore, the lemma holds. □

In particular, the above lemma implies that the total expenditure of each buyer C(𝑝, 𝑠) is at least

(1 − 𝛾)-fraction of her budget (and of course is also bounded from above by her budget). We also

263



get the following corollary:

Corollary 5. For each 𝑝 ∈ {1, 2} and 𝑠 ∈ [𝑛], the expenditure of C(𝑝, 𝑠) on 𝑁(𝑝, 𝑠)𝑠 lies in the

following interval [(1 − 𝛿)𝛼(C(𝑝, 𝑠)) − 𝜈, 𝛼(C(𝑝, 𝑠)) − (1 − 𝛿)𝜈]

Next, we define two vectors 𝑥′ and 𝑦′ with

𝑥′𝑠 = {𝛼(1, 𝑠) − (𝛼(T)/2)}+ and 𝑦′𝑠 = {𝛼(2, 𝑠) − (𝛼(T)/2)}+

for each 𝑠 ∈ [𝑛], where 𝑎+ ddenotes max{𝑎, 0}. The following lemma will allow us to normalize

𝑥′ and 𝑦′ to obtain valid probability distributions.

Lemma 45. The following inequalities hold:
∑
𝑠 𝑥
′
𝑠 > 1/8 and

∑
𝑠 𝑦
′
𝑠 > 1/8.

Proof. We prove
∑
𝑠 𝑥
′
𝑠 > 1/8. The proof of

∑
𝑠 𝑦
′
𝑠 > 1/8 is analogous. Suppose that

∑
𝑠 𝑥
′
𝑠 ≤ 1/8.

Then, buyer B(1, 1) only wins a non-zero fraction of the following goods, and spends:

• At most 𝛼(C(1, 𝑡)) on each normalization good 𝑁(1, 1)𝑡 for each 𝑡 ∈ [𝑛]. The total expendi-

ture is ∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) ≤ 𝑛𝛼(T)/2 +
∑︁
𝑡∈[𝑛]

𝑥′𝑡 ≤ 𝑛/2 + 1/8.

• At most (1 − 𝛿)𝑛4 on the threshold good 𝑇(1, 1).

• At most 𝜈𝐴1𝑡 on each expenditure good 𝐸(1, 1)𝑡 , 𝑡 ∈ [𝑛].

Hence, the total expenditure of buyer C(1, 1) is at most 𝑛/2 + 1/8 + (1 − 𝛿)𝑛4 + ∑
𝑡 𝜈𝐴1𝑡 , which is

strictly less than her budget, a contradiction. □

Now, we are ready to define the mixed strategies (𝑥, 𝑦) for the bimatrix game (𝐴, 𝐵). Set player

1’s mixed strategy 𝑥 to be 𝑥𝑠 = 𝑥′𝑠/
∑
𝑖 𝑥
′
𝑖

and player 2’s mixed strategy 𝑦 to be 𝑦𝑠 = 𝑦′𝑠/
∑
𝑖 𝑦
′
𝑖
. These

are valid mixed strategies because of Lemma 16 and Lemma 17. The next lemma shows that (𝑥, 𝑦)

is indeed an 𝜖-well-supported Nash equilibrium of (𝐴, 𝐵).
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Lemma 46. (𝑥, 𝑦) is an 𝜖-well-supported Nash equilibrium of the bimatrix game (𝐴, 𝐵).

Proof. Assume there are 𝑠, 𝑠∗ ∈ [𝑛] such that 𝑥𝑠 > 0 but
∑
𝑡 𝐴𝑠𝑡𝑦𝑡 >

∑
𝑡 𝐴𝑠∗𝑡𝑦𝑡 + 𝜖 ; the proof for 𝑦

is analogous. Using 𝑥𝑠 > 0, buyer C(1, 𝑠) spends non-zero amounts on the following goods:

• 𝛼(C(1, 𝑡)) on the normalization good 𝑁(1, 𝑠)𝑡 for each 𝑡 ̸= 𝑠.

• at least (1 − 𝛿) · 𝛼(C(1, 𝑠)) − 𝜈 on the normalization good 𝑁(1, 𝑠)𝑠.

• 𝛼(T) · (1 − 𝛿)𝑛4 on the threshold good 𝑇(1, 𝑠).

• max{𝛼(C(2, 𝑡)), 𝛼(T)/2} · 𝜈𝐴𝑠𝑡 on the expenditure good 𝐸(1, 𝑠)𝑡 for each 𝑡 ∈ [𝑛].

Therefore, the total expenditure of buyer C(1, 𝑠) is at least

∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) − 𝛿 · 𝛼(C(1, 𝑠)) − 𝜈 + 𝛼(T) · (1 − 𝛿)𝑛4 +
∑︁
𝑡∈[𝑛]

max {𝛼(C(2, 𝑡)), 𝛼(T)/2} · 𝜈𝐴𝑠𝑡

=
∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) − 𝛿 · 𝛼(C(1, 𝑠)) − 𝜈 + 𝛼(T) · (1 − 𝛿)𝑛4 + 𝛼(T)
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 + 𝜈
∑︁
𝑡∈[𝑛]

𝑦𝑡𝐴𝑠𝑡 .

On the other hand, buyer C(1, 𝑠∗) spends (without assuming 𝑥𝑠∗ > 0):

• 𝛼(C(1, 𝑡)) on the normalization good 𝑁(1, 𝑠∗)𝑡 for each 𝑡 ̸= 𝑠∗.

• at most 𝛼(C(1, 𝑠∗)) − (1 − 𝛿)𝜈 on the normalization good 𝑁(1, 𝑠∗)𝑠∗ .

• at most 𝛼(T) · (1 − 𝛿)𝑛4 on the threshold good 𝑇(1, 𝑠∗).

• max{𝛼(C(2, 𝑡)), 𝛼(T)/2} · 𝜈𝐴𝑠∗𝑡 on the expenditure good 𝐸(1, 𝑠∗)𝑡 for each 𝑡 ∈ [𝑛].

Therefore, the total expenditure of buyer C(1, 𝑠∗) is at most

∑︁
𝑡∈[𝑛]

𝛼(C(1, 𝑡)) − (1 − 𝛿)𝜈 + 𝛼(T) · (1 − 𝛿)𝑛4 + 𝛼(T)
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2 + 𝜈
∑︁
𝑡∈[𝑛]

𝑦𝑡𝐴𝑠∗𝑡 .
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Using the assumption that
∑
𝑡 𝐴𝑠𝑡𝑦𝑡 >

∑
𝑡 𝐴𝑠∗𝑡𝑦𝑡+𝜖 , we have that the total expenditure of C(1, 𝑠)

minus that of C(1, 𝑠∗), denoted by (‡1), is at least

−𝛿 · 𝛼(C(1, 𝑠)) − 𝛿𝜈 + 𝛼(T) ·
(∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 −
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2

)
+ 𝜖𝜈

≥ 𝛼(T) ·
(∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 −
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2

)
+ 𝜖𝜈/2

using 𝜖𝜈 ≫ 𝛿. On the other hand, the budget of C(1, 𝑠) minus that of C(1, 𝑠∗), denoted (‡2), is

∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2 −
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠∗𝑡/2.

Using 𝛼(T) ≥ 1 − 𝛾 and 𝛾 = 1/𝑛7, we have (‡1) ≥ (‡2) + 𝜖𝜈/3. However, the total expenditure of

C(1, 𝑠) is at most her budget and the total expenditure of C(1, 𝑠∗) is at least (1 − 𝛾)-fraction of her

budget. Given that the budget of C(1, 𝑠∗) is 𝑂(𝑛4), we also have

(‡1) ≤ (‡2) + 𝛾 · 𝑂(𝑛4) = (‡2) +𝑂(1/𝑛3),

a contradiction because 𝜖𝜈 = Ω(1/𝑛2). □

Theorem 13 follows from the PPAD-hardness of finding an 𝜖-well-supported Nash equilibrium

in a {0, 1}-cost bimatrix game [CTV07].

D.2 Proof of Claim 2

Before stating the proof of Claim 2, we state and prove the following useful lemma.

Lemma 47. If 𝛽 ∈ 𝑆 is labelled 𝑖, then 𝛽𝑖 ≥ min
{

1
𝑛
,
𝐵min

2𝑛𝑣max

}
.

Proof. Without loss of generality, we will prove the lemma for 𝑖 = 1. Suppose 𝛽 ∈ 𝑆 is labelled 1

according to the above procedure. First, 𝛽1 > 0 follows as a direct consequence. Furthermore, as

max𝑖 𝛽𝑖 ≥ 1/𝑛 and
∑
𝑖 𝛽𝑖 = 1, we get 𝑡∗(𝛽) = 𝑡1 ≤ 𝑛. We consider the two possible binding cases
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which can define 𝑡1. If 𝑡1 = 1/𝛽1, then 𝛽1 ≥ 1/𝑛, and thus the lemma holds. On the other hand, if

𝑡1 = 𝐵1∑
𝑗 𝑥1 𝑗 𝑝 𝑗 (𝛽) , then

∑
𝑗 𝑥𝑖 𝑗 𝑝 𝑗 (𝛽) > 0 and

𝐵1 = 𝑡1
∑︁
𝑗

𝑥1 𝑗 𝑝 𝑗 (𝛽) ≤ 𝑛
∑︁

𝑗 : 𝑥𝑖 𝑗>0
max
𝑖
𝛽𝑖𝑣𝑖 𝑗 ≤ 𝑛

∑︁
𝑗 : 𝑥𝑖 𝑗>0

𝛽1𝑣1 𝑗

(1 − 𝛿)
≤ 𝑛

∑︁
𝑗

𝛽1𝑣1 𝑗

(1 − 𝛿)

where the second inequality follows from the definition of (𝛿, 𝛾)-approximate pacing equilibrium.

Therefore, 𝛽1 ≥ min
{

1
𝑛
,

(1−𝛿)𝐵1∑
𝑗 𝑣1 𝑗

}
. □

Proof of Claim 2. Let 𝐵min = min𝑖∈[𝑛] 𝐵𝑖, 𝐵max = max𝑖∈[𝑛] 𝐵𝑖, 𝑣max = max𝑖, 𝑗 𝑣𝑖 𝑗 and 𝑣min =

min𝑖, 𝑗 :𝑣𝑖 𝑗>0 𝑣𝑖 𝑗 . In this proof, we will use the following facts: if 𝑓 , 𝑔 are Lipschitz functions with

Lipschitz constants 𝐿 𝑓 , 𝐿𝑔, then

(a) 𝑓 + 𝑔 is Lipschitz with constant 𝐿 𝑓 + 𝐿𝑔

(b) max{ 𝑓 , 𝑔} is Lipschitz with constant max{𝐿 𝑓 , 𝐿𝑔}.

(c) If | 𝑓 |, |𝑔 |≤ 𝑀 , then 𝑓 𝑔 is Lipschitz with constant 𝑀(𝐿 𝑓 + 𝐿𝑔).

Define 𝑦𝑖 𝑗 : 𝑆 → R as 𝑦𝑖 𝑗 (𝛽) = [𝛽𝑖𝑣𝑖 𝑗 − (1 − 𝛿) max𝑘 𝛽𝑘𝑣𝑘 𝑗 ]+. Using facts (a) and (b), we can

write

|𝑦𝑖 𝑗 (𝛽) − 𝑦𝑖 𝑗 (𝛽′)|≤ 2𝑣max∥𝛽 − 𝛽′∥∞

Consider 𝛽 ∈ 𝑆0 and 𝑖 ∈ [𝑛]. As 𝑆0 is panchromatic, there exists 𝛽′ ∈ 𝑆0 such that 𝑇(𝛽′) = 𝑖.

By Lemma 47, we get

𝛽′𝑖 ≥ min
{

1
𝑛
,
𝐵min

2𝑛𝑣max

}
Then, using the definition of 𝜔, we get the following equivalent statements:

𝛽𝑖 ≥
1
2

min
{

1
𝑛
,
𝐵min

2𝑛𝑣max

}
⇐⇒ 1

𝛽𝑖
≤ 𝑈 B 2 max

{
𝑛,

2𝑛𝑣max
𝐵min

}
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Hence, for 𝛽, 𝛽′ ∈ 𝑆0, we have����� 1∑
𝑟 𝑦𝑟 𝑗 (𝛽)

− 1∑
𝑟 𝑦𝑟 𝑗 (𝛽′)

����� =

�����∑𝑟 𝑦𝑟 𝑗 (𝛽′) −
∑
𝑟 𝑦𝑟 𝑗 (𝛽)∑

𝑟 𝑦𝑟 𝑗 (𝛽) ∑𝑟 𝑦𝑟 𝑗 (𝛽′)

�����
≤ 2𝑛𝑣max𝑈

2

𝛿2𝑣2
min

· ∥𝛽 − 𝛽′∥∞

Using fact (c), for 𝛽, 𝛽′ ∈ 𝑆0, we can write

|𝑥𝑖 𝑗 (𝛽) − 𝑥𝑖 𝑗 (𝛽′)| ≤ max
{
𝑣max,

𝑈

𝛿𝑣min

} [
2𝑣max +

2𝑛𝑣max𝑈
2

𝛿2𝑣2
min

]
· ∥𝛽 − 𝛽′∥∞

Set �̄� = max
{
𝑣max,

𝑈
𝛿𝑣min

} [
2𝑣max + 2𝑛𝑣max𝑈

2

𝛿2𝑣2
min

]
. Also, note that for 𝛽, 𝛽′ ∈ 𝑆,

|𝑝 𝑗 (𝛽) − 𝑝 𝑗 (𝛽′)|≤ 𝑣max∥𝛽 − 𝛽′∥∞

For 𝛽, 𝛽′ ∈ 𝑆0, combining the above Lipschitz conditions using facts (a) and (c) yields����∑︁
𝑗

𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽) −
∑︁
𝑗

𝑥𝑖 𝑗 (𝛽′)𝑝 𝑗 (𝛽′)
���� ≤ 𝑚𝑣max(�̄� + 𝑣max)∥𝛽 − 𝛽′∥∞

Set𝑊 B 𝑚𝑣max(�̄� + 𝑣max). Define

𝑃∗ B

{
𝑖 ∈ [𝑛]

����∃𝛽 ∈ 𝑇 s.t.
𝐵𝑖∑

𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽)
<

1
𝛽𝑖

}
For 𝑖 ∈ 𝑃∗ and 𝛽 ∈ 𝑆0, we can write 𝐵𝑖∑

𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽) <
1
𝛽𝑖
≤ 𝑈, which implies 1∑

𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽) ≤
𝑈
𝐵min

.

Therefore, for 𝛽, 𝛽′ ∈ 𝑆0 and 𝑖 ∈ 𝑃∗, we have���� 𝐵𝑖∑
𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽)

− 𝐵𝑖∑
𝑗 𝑥𝑖 𝑗 (𝛽′)𝑝 𝑗 (𝛽′)

���� ≤ 𝐵max
𝑈2

𝐵2
min
𝑊 ∥𝛽 − 𝛽′∥∞≤

𝐵max𝑈
2𝑊

𝐵2
min

∥𝛽 − 𝛽′∥∞
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Also, for 𝛽, 𝛽′ ∈ 𝑆0 and 𝑖 ∈ [𝑛], we have���� 1
𝛽𝑖
− 1
𝛽′
𝑖

���� ≤ 𝑈2∥𝛽 − 𝛽′∥∞

Note that for 𝛽 ∈ 𝑇 , we can rewrite 𝑡∗(𝛽) as follows

𝑡∗(𝛽) = min
{
min
𝑖∈[𝑛]

1
𝛽𝑖
,min
𝑖∈𝑃∗

min
{

1
𝛽𝑖
,

𝐵𝑖∑
𝑗 𝑥𝑖 𝑗 (𝛽)𝑝 𝑗 (𝛽)

}}
Using fact (b), for 𝛽, 𝛽′ ∈ 𝑇 ,

|𝑡∗(𝛽) − 𝑡∗(𝛽′)|≤ 2𝑛max

{
𝑈2,

𝐵max𝑈
2𝐿

𝐵2
min

}
∥𝛽 − 𝛽′∥∞

Therefore, for 𝑖 ∈ [𝑛], total payment made by buyer 𝑖 is Lipschitz for 𝛽 ∈ 𝑆0:����∑︁
𝑗

𝑥𝑖 𝑗 (𝛽)𝑡∗(𝛽)𝑝 𝑗 (𝛽) −
∑︁
𝑗

𝑥𝑖 𝑗 (𝛽′)𝑡∗(𝛽′)𝑝 𝑗 (𝛽′)
����

≤ max{𝑛𝑣max, 𝑛}
(
𝑊 + 2𝑛max

{
𝑈2,

𝐵max𝑈
2𝑊

𝐵2
min

})
∥𝛽 − 𝛽′∥∞

Hence, the claim holds because

max{𝑛𝑣max, 𝑛}
(
𝑊 + 2𝑛max

{
𝑈2,

𝐵max𝑈
2𝑊

𝐵2
min

})
≤ 𝐿 =

(
2|𝐺 |

𝛿

)10,000

□

D.3 Incorporating Reserve Prices

Consider the setting in which each item 𝑗 has a reserve price 𝑟 𝑗 . Now, a buyer wins a good 𝑗

only if her bid is the highest bid ℎ 𝑗 (𝛼) and it is greater than or equal to the reserve 𝑟 𝑗 . Moreover,

the price of good 𝑗 is the maximum of the second highest bid 𝑝 𝑗 (𝛼) and its reserve price 𝑟 𝑗 .

In the presence of reserve prices, we will use 𝐻 𝑗 (𝛼) B max{ℎ 𝑗 (𝛼), 𝑟 𝑗 } to denote the winning
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threshold of good 𝑗 and 𝑃 𝑗 (𝛼) B max{𝑝 𝑗 (𝛼), 𝑟 𝑗 } to denote the price of good 𝑗 . The next example

illustrates that one needs to be careful in the way one extends the definition of pacing equilibrium

(Definition 9) to model the presence of reserves.

Example 9. There is one buyer and one good. The buyer values the good at 4 and has a budget

of 1. The goods has a reserve price of 2. If she bids strictly less than 1/2, then she does not win

any part of the good. On the other hand, if we assume that she wins the entire good upon bidding

1/2 or higher, then she violates her budget upon doing so. This suggests that a pacing equilibrium

might not even exist if we extend it naively to the setting with reserves. Instead, we will take the

approach that, in a pacing equilibrium, the seller may decide to not sell a fraction of a good if the

highest bid is equal to the reserve price of that good. With this new definition, we can see that a

pacing equilibrium does in fact exist, namely, when the buyer has a pacing multiplier of 1/2 and

wins 1/2 of the item.

Inspired by the above example, we define pacing equilibrium for the setting with reserves.

Definition 20 (Pacing Equilibria with reserves). Given an SPP game with reserves𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ),

(𝐵𝑖), (𝑟 𝑗 )), we say (𝛼, 𝑥) with 𝛼 = (𝛼𝑖) ∈ [0, 1]𝑛, 𝑥 = (𝑥𝑖 𝑗 ) ∈ [0, 1]𝑛𝑚 and
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 ≤ 1 for all

𝑗 ∈ [𝑚] is a pacing equilibrium if

(a) Only buyers above the winning threshold win the good: 𝑥𝑖 𝑗 > 0 implies 𝛼𝑖𝑣𝑖 𝑗 = 𝐻 𝑗 (𝛼).

(b) Full allocation of each good for which the highest bid exceeds the reserve price: ℎ 𝑗 (𝛼) > 𝑟 𝑗

implies
∑
𝑖∈[𝑛] 𝑥𝑖 𝑗 = 1.

(c) Budgets are satisfied:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗𝑃 𝑗 (𝛼) ≤ 𝐵𝑖.

(d) No unnecessary pacing:
∑
𝑗∈[𝑚] 𝑥𝑖 𝑗𝑃 𝑗 (𝛼) < 𝐵𝑖 implies 𝛼𝑖 = 1.

Next, we extend our PPAD-membership result to the setting with reserves.

Theorem 26. Finding a pacing equilibrium in a SPP game with reserves is in PPAD.
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Proof. Consider a pacing game with reserve prices 𝐺 and the corresponding pacing game without

reserve prices 𝐺′. Add an auxiliary buyer 𝑎 to 𝐺′ who values good 𝑗 at 𝑟 𝑗 for all 𝑗 ∈ [𝑚] and has

a budget large enough to ensure that her pacing multiplier is always 1 in every pacing equilibrium

(this can be achieved by setting her budget to be the sum of all values {𝑣𝑖 𝑗 } and reserve prices

{𝑟 𝑗 }). We will call this updated game 𝐺′+. The theorem follows from the simple observation

that if we find a pacing equilibrium (𝛼, 𝑥) for 𝐺′+ and disregard the terms corresponding to the

auxiliary buyer, then we get a pacing equilibrium (𝛼−𝑎, 𝑥−𝑎) for 𝐺. This is because, in any pacing

equilibrium of 𝐺′+, the auxiliary buyer has a multiplier of 1 and hence bids 𝑟 𝑗 on good 𝑗 for all

𝑗 ∈ [𝑚]. Moreover, any amount that the auxiliary buyer wins in (𝛼, 𝑥) can be thought of as being

not sold by the seller. As (𝛼, 𝑥) satisfies Definition 9, it is straightforward to check that (𝛼−𝑎, 𝑥−𝑎)

satisfies Definition 20. □

We conclude this section by noting that our hardness results extend directly to the setting with

reserves because it reduces to the setting without reserves when 𝑟 𝑗 = 0 for all goods 𝑗 ∈ [𝑚].

D.4 Perturbed Second-Price Pacing Games

Before stating and proving the results, we define the relevant equilibrium notions. For a per-

turbed pacing game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿), let 𝑝′
𝑖 𝑗

(𝛼) denote the expected payment made by buyer 𝑖

on good 𝑗 when the buyers use multipliers 𝛼 ∈ [0, 1]𝑛. Moreover, let 𝑥𝑖 𝑗 (𝛼) be the probability of

buyer 𝑖 winning good 𝑗 when the buyers use the multipliers 𝛼.

Definition 21. Consider a perturbed SPP game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿). Then, 𝛼 ∈ [0, 1]𝑛 is a pacing

equilibrium of the perturbed SPP if:

• Budgets are satisfied:
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) ≤ 𝐵𝑖

• No unnecessary pacing: If
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) < 𝐵𝑖, then 𝛼𝑖 = 1

Moreover, 𝛼 ∈ [0, 1]𝑛 is an 𝛾-approximate pacing equilibrium of the perturbed SPP if:

• Budgets are satisfied:
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) ≤ 𝐵𝑖
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• Not too much unnecessary pacing: If
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) < (1 − 𝛾)𝐵𝑖, then 𝛼𝑖 ≥ (1 − 𝛾)𝑣𝑖 𝑗

Theorem 27. Computing a 𝛾-approximate pacing equilibrium of a perturbed SPP game

(𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿) is PPAD-hard when 𝛿 = 𝛾 = 1/𝑛8.

Proof. First observe that

(1 − 𝛾)(1 − 𝛿) = (1 − 𝑛−8)2 = 1 + 𝑛−16 − 2𝑛−8 ≥ 1 − 𝑛−7

We will prove the theorem by reducing from the problem of computing approximate pacing equi-

libria of SPP games. Consider an SPP game 𝐺 = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖)). Define a perturbed SPP game

𝐺′ = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵′𝑖), 𝛿) such that 𝐵′
𝑖

= (1 − 𝛿)𝐵𝑖. Let 𝛼 be a 𝛾-approximate pacing equilibrium of

the perturbed SPP game 𝐺′. Then, as 𝜖𝑖 𝑗 ∈ [1 − 𝛿, 1], we get that

(1 − 𝛿)𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) ≤ 𝑝′𝑖 𝑗 (𝛼) ≤ 𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) ∀ 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] (D.1)

where, as earlier, 𝑝 𝑗 (𝛼) denotes the second highest bid in an SPP game when the buyers use

multipliers 𝛼). To complete the proof, it suffices to show that (𝛼, 𝑥(𝛼)) is a (𝛿, 𝛾′)-approximate

pacing equilibrium of the SPP game 𝐺 for 𝛾′ = 1/𝑛7. We establish the required properties below:

(a) As 𝜖𝑖 𝑗 ∈ [1 − 𝛿, 1], 𝑥𝑖 𝑗 (𝛼) > 0 only if 𝛼𝑖𝑣𝑖 𝑗 ≥ (1 − 𝛿) max𝑘∈[𝑛] 𝛼𝑘𝑣𝑘 𝑗

(b) Full allocation of each good with positive bid: This follows directly from the allocation rules

of a second-price auction.

(c) Budgets are satisfied: 𝛼 being bugdet feasible for the perturbed SPP game 𝐺 implies

𝑚∑︁
𝑗=1

𝑝′𝑖 𝑗 (𝛼) ≤ 𝐵′𝑖 = (1 − 𝛿)𝐵𝑖

for all 𝑖 ∈ [𝑛]. As 𝑝′
𝑖 𝑗

(𝛼) ≥ (1 − 𝛿)𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼), we get
∑𝑚
𝑗=1 𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) ≤ 𝐵𝑖 as required.

(d) Not too much unnecessary pacing: Suppose
∑𝑚
𝑗=1 𝑥𝑖 𝑗 (𝛼)𝑝 𝑗 (𝛼) < (1 − 𝛾′)𝐵𝑖 for some buyer
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𝑖 ∈ [𝑛]. Then, using (D.1), we get

𝑚∑︁
𝑗=1

𝑝′𝑖 𝑗 (𝛼) <
(1 − 𝛾′)
(1 − 𝛿)

· (1 − 𝛿)𝐵𝑖 =
(1 − 𝛾′)
(1 − 𝛿)

𝐵′𝑖 ≤ (1 − 𝛾)𝐵′𝑖

where we have used (1 − 𝛾)(1 − 𝛿) ≥ (1 − 𝑛−7) = (1 − 𝛾′). Now, as 𝛼 is a 𝛾-approximate

equilibrium of the perturbed SPP game 𝐺′, we get 𝛼𝑖 ≥ 1 − 𝛾 ≥ 1 − 𝑛−7 = 1 − 𝛾′.

Hence, we have shown that (𝛼, 𝑥(𝛼)) is a (𝛿, 𝛾′)-approximate pacing equilibrium for the SPP game

𝐺, where 𝛿 ≤ 𝑛−7 and 𝛾′ = 𝑛−7. As the perturbed SPP game 𝐺′ can be constructed from the SPP

game 𝐺 in polynomial time, the theorem follows from Theorem 13. □

Let the expected utility of buyer 𝑖 in a perturbed SPP game under multipliers 𝛼 be denoted by

𝑢𝑖(𝛼), i.e.,

𝑢𝑖(𝛼) = E{𝜖𝑖 𝑗 }𝑖, 𝑗

[
𝑚∑︁
𝑗=1

(𝑣𝑖 𝑗𝜖𝑖 𝑗 −max
𝑘 ̸=𝑖

𝛼𝑘𝑣𝑘 𝑗𝜖𝑘 𝑗 )1(𝛼𝑖𝑣𝑖 𝑗𝜖𝑖 𝑗 ≥ max
𝑘 ̸=𝑖

𝛼𝑘𝑣𝑘 𝑗𝜖𝑘 𝑗 )

]
Definition 22. Consider a perturbed SPP game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿). A vector of pacing multipliers

𝛼 is called a Nash equilibrium of this game if for each 𝑖 ∈ [𝑛] and 𝛼′
𝑖

such that
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼′
𝑖
, 𝛼−𝑖) ≤

𝐵𝑖, we have 𝑢𝑖(𝛼𝑖, 𝛼−𝑖) ≥ 𝑢𝑖(𝛼′𝑖 , 𝛼−𝑖).

Lemma 48. Consider a perturbed SPP game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿) and let 𝛼 be a Nash equilibrium

of this game. If
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) < 𝐵𝑖 and 𝛼𝑖 < 1, then
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) = ∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(1, 𝛼−𝑖).

Proof. Suppose 𝛼 is a Nash equilibrium of the game but not a pacing equilibrium, and buyer 𝑖

satisfies
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) < 𝐵𝑖 and 𝛼𝑖 < 1. For contradiction, suppose
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) < ∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(1, 𝛼−𝑖).

Now, as the distribution of 𝜖𝑖 𝑗 is continuous, 𝑥 ↦→ 𝑝𝑖 𝑗 (𝑥, 𝛼−𝑖) is a continuous non-decreasing

function. By the Intermediate Value Theorem, there exists 𝛼∗
𝑖
∈ (𝛼𝑖, 1) such that

𝑚∑︁
𝑗=1

𝑝′𝑖 𝑗 (𝛼
∗
𝑖 , 𝛼−𝑖) ≤ 𝐵𝑖 .
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Now, observe that buyer 𝑖 wins good 𝑗 if and only if

𝛼∗𝑖 𝑣𝑖 𝑗𝜖𝑖 𝑗 ≥ max
𝑘 ̸=𝑖

𝛼𝑘𝑣𝑘 𝑗𝜖𝑘 𝑗

Therefore, 𝑣𝑖 𝑗𝜖𝑖 𝑗 ≥ 𝑝′𝑖 𝑗 (𝛼∗𝑖 , 𝛼−𝑖)/𝛼∗𝑖 . As 𝛼∗
𝑖
< 1, we get that

𝑢𝑖(𝛼∗𝑖 , 𝛼−𝑖) − 𝑢𝑖(𝛼𝑖, 𝛼−𝑖) ≥
1
𝛼∗
𝑖

·
[
𝑚∑︁
𝑗=1

𝑝′𝑖 𝑗 (𝛼
∗
𝑖 , 𝛼−𝑖) −

𝑚∑︁
𝑗=1

𝑝′𝑖 𝑗 (𝛼𝑖, 𝛼−𝑖)

]
> 0

This contradicts the fact that 𝛼 is a Nash equilibrium. Hence, the Lemma holds. □

Corollary 6. Consider a perturbed SPP game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿) and let 𝛼 be a Nash equilibrium

of this game. If
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(1, 𝛼−𝑖) >
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼), then we have
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) = 𝐵𝑖. Furthermore, as a

consequence, if
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(1, 𝛼−𝑖) > 𝐵𝑖, then
∑𝑚
𝑗=1 𝑝

′
𝑖 𝑗

(𝛼) = 𝐵𝑖.

Theorem 28. Computing a Nash equilibrium of a perturbed SPP game (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵𝑖), 𝛿) is

PPAD-hard when 𝛿 = 1/𝑛8.

Proof. Let 𝐺 be the SPP game constructed in Appendix D.1 for the proof of Theorem 13. Like

the proof of Theorem 27, define a perturbed SPP game 𝐺′ = (𝑛, 𝑚, (𝑣𝑖 𝑗 ), (𝐵′𝑖), 𝛿) such that 𝐵′
𝑖

=

(1 − 𝛿)𝐵𝑖. Moreover, define an auxiliary perturbed SPP game 𝐺′′ = (𝑛 + 1, 𝑚 + 1, (𝑣𝑖 𝑗 ), (𝐵′𝑖), 𝛿) by

adding one more buyer and one more good to𝐺′. We denote the new buyer by T∗ and the new good

by 𝑆. Buyer T∗ has value 1 for good 𝑆, i.e., 𝑉(T∗, 𝑆) = 1 and does not value any other good. She

has a budget of 𝑛7 (large enough to never be binding). The only other buyer who has a non-zero

value for 𝑆 is the Threshold buyer T, who has a value of 1, i.e, 𝑉(T, 𝑆) = 1.

We begin by showing that every Nash equilibrium of 𝐺′′ is also a pacing equilibrium. Let 𝛼 be

a Nash equilibrium of 𝐺′′. As a first step, we show that 𝛼(T) = 𝛼(T∗) = 1. We do so by ruling out

the other cases:

1. If 𝛼(T) < 𝛼(T∗), then buyer T can strictly increase her utility by setting 𝛼(T) = 1 as this

allows her to win a strictly larger fraction of good 𝑆.
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2. Similarly, if 𝛼(T∗) < 𝛼(T), then buyer T∗ can strictly increase her utility by setting 𝛼(T∗) = 1

as this allows her to win a strictly larger fraction of good 𝑆.

3. If 𝛼(T) = 𝛼(T∗) < 1, then buyer T can strictly increase her utility by setting 𝛼(T) = 1 as this

allows her to win a strictly larger fraction of good 𝑆.

For every other buyer in 𝐺′′, we use Corollary 6 to show that they exactly spend their budget.

If 𝛼(C(𝑝, 𝑠)) ≤ (1− 𝛿)/2, then the buyer C(𝑝, 𝑠) wins no part of the threshold good 𝑇(𝑝, 𝑠) and

spends strictly less than her budget because she has value at most 16 for all of the other goods and

there are at most 𝑂(𝑛2) such goods compared to her budget which is Ω(𝑛2). On the other hand, she

can win all of the threshold good 𝑇(𝑝, 𝑠) by setting 𝛼(C(𝑝, 𝑠)) = 1 and spend strictly more. Hence,

by Corollary 6, we get that she exactly spends her budget, which is a contradiction. Therefore,

𝛼(C(𝑝, 𝑠)) ≥ (1 − 𝛿)/2.

Consider a dummy buyer D(𝑝, 𝑠). If we set 𝛼(D(𝑝, 𝑠)) = 1, then she wins at least half of the

normalization good 𝑁(𝑝, 𝑠)𝑠 at a price of at least 𝛼(C(𝑝, 𝑠)) which violates her budget of 1/(16𝑛).

Thus, Corollary 6 implies that she exactly spends her budget under the Nash equilibrium 𝛼.

Consider buyer C(𝑝, 𝑠). If we set 𝛼(C(𝑝, 𝑠)) = 1, she she wins:

• All of normalization good 𝑁(𝑝, 𝑠)𝑡 , for each 𝑡 ̸= 𝑠, by spending at least (1 − 𝛿)/2 on each of

them because 𝛼(C(𝑝, 𝑡)) ≥ (1 − 𝛿)/2 by the earlier part of the proof.

• Part of normalization good 𝑁(𝑝, 𝑠)𝑠 by spending at least (1 − 𝛿) − 𝜈. This is because

𝑁(𝑝, 𝑠)𝑠 has price at least (1 − 𝛿) and buyer D(𝑝, 𝑠) only has budget 𝜈.

• All of threshold good 𝑇(𝑝, 𝑠) by spending at least 𝛼(T)(1 − 𝛿)𝑛4 = (1 − 𝛿)𝑛4.

• All of expenditure good 𝐸(𝑝, 𝑠)𝑡 , for each 𝑡 ∈ [𝑛], by spending at least 𝛼(T)𝜈𝐴𝑠𝑡/2 if 𝑝 = 1

and 𝛼(T)𝜈𝐵𝑡𝑠/2 if 𝑝 = 2.
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Hence, the total expenditure of C(𝑝, 𝑠) when 𝑝 = 1 is at least

(1 − 𝛿) · 𝑛 − 1
2

+ (1 − 𝛿) · −𝜈 + (1 − 𝛿)𝑛4 +
∑︁
𝑡∈[𝑛]

𝜈𝐴𝑠𝑡/2

which is strictly higher than her budget. Similar statement holds for 𝑝 = 2. Therefore, Corollary 6

implies that buyer C(𝑝, 𝑠) exactly spends her budget.

Hence, we have shown that every buyer either has her multiplier equal to 1 or exactly spends

her budget, which means that 𝛼 is a pacing equilibrium. Moreover, from our construction of 𝐺′′

from 𝐺′, we get that the restriction of 𝛼 to the buyers other than T∗ is a pacing equilibrium for the

game 𝐺′. This is because only the Threshold buyer T is affected by this change and her multipliers

satisfies 𝛼(T) = 1 and she spends strictly less than her budget. Finally, as we showed in the proof

of Theorem 27, (𝛼, 𝑥(𝛼)) is a (𝛿, 𝛾)-approximate pacing equilibrium of the SPP game 𝐺 where

𝛿 = 𝛾 = 1/𝑛7. Invoking Theorem 13 completes the proof. □
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Appendix E: Appendix to Chapter 6

E.1 Appendix: Examples of Irrational Throttling Equilibria

First-Price Auctions: First, we give an example for which the unique first-price throttling equi-

librium is irrational.

Example 10. Define a throttling game as follows: There are 2 goods and 2 buyers, i.e., 𝑚 = 2

and 𝑛 = 2; 𝑏11 = 𝑏12 = 2 and 𝑏21 = 1, 𝑏22 = 3; 𝐵1 = 2 and 𝐵2 = 1. Suppose, in equilibrium,

the buyers use the throttling parameters 𝜃1 and 𝜃2. Then the payment of buyer 1 and buyer 2 are

given by 2𝜃1 + 2(1 − 𝜃2)𝜃1 and 3𝜃2 + (1 − 𝜃1)𝜃2 respectively. Therefore, for this game, in any

throttling equilibrium, we have 0 < 𝜃1, 𝜃2 < 1 and 𝜃3 = 1, which implies 2𝜃1 + 2(1− 𝜃2)𝜃1 = 2 and

3𝜃2 + (1 − 𝜃1)𝜃2 = 1. Substituting 𝜃1 = 1/(2 − 𝜃2) from the first equation into the second yields

3𝜃2 + 𝜃2 ·
1 − 𝜃2
2 − 𝜃2

= 1

which implies 4𝜃2
2 − 7𝜃2 + 1 = 0. As 𝜃2 < 1, Solving the quadratic gives 𝜃2 = (7 −

√
33)/8.

Second-Price Auctions: Next, we give an example for which all second-price throttling equilib-

ria are irrational.

Example 11. Define a throttling game as follows:

• There are 4 goods and 3 buyers, i.e., 𝑚 = 4 and 𝑛 = 3

• 𝑏11 = 𝑏12 = 2, 𝑏14 = 1, 𝑏23 = 𝑏24 = 4, 𝑏22 = 1, 𝑏31 = 1 and 𝑏33 = 2

• 𝐵1 = 𝐵2 = 1 and 𝐵3 = ∞
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For this game, in any throttling equilibrium, we have 0 < 𝜃1, 𝜃2 < 1 and 𝜃3 = 1. Hence, if 𝜃 is a

throttling equilibrium, then it satisfies 𝜃1 +𝜃1𝜃2 = 1 and 2𝜃2 +𝜃2𝜃1 = 1. Substituting 𝜃1 = 1/(1+𝜃2)

from the first equation into the second equation yields

2𝜃2 + 𝜃2 ·
1

1 + 𝜃2
= 1

which further implies 2𝜃2
2 + 2𝜃2 − 1 = 0. As 𝜃2 > 0, solving the quadratic gives 𝜃2 = (

√
3 − 1)/2.

E.2 Appendix: Missing Proofs

E.2.1 Proof of Theorem 20

Consider a throttling game
(
𝑛, 𝑚, (𝑏𝑖 𝑗 ), (𝐵𝑖)

)
and an approximation parameter 𝛿 ∈ (0, 1/2).

Define 𝑓 : [0, 1]𝑛 → [0, 1]𝑛 as

𝑓𝑖(𝜃) = min
{

(1 − 𝛿/2)𝐵𝑖∑
𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗

, 1
}

= min
{

(1 − 𝛿/2)𝐵𝑖
max{∑ 𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗 , 𝐵𝑖/2}

, 1
}
∀𝜃 ∈ [0, 1]𝑛

First, we prove that 𝑓 is 𝐿-Lipschitz continuous with Lipschitz constant 𝐿 = 2𝑚𝑛𝐵𝐵−2𝑏,

where 𝑏 = max𝑖, 𝑗 𝑏𝑖 𝑗 , 𝐵 = max𝑖 𝐵𝑖. To achieve this, we will repeatedly use the following facts

about Lipschitz functions. For Lipschitz continuous functions 𝑓 and 𝑔 with Lipschitz constants 𝐿1

and 𝐿2 respectively,

• 𝑓 + 𝑔 is 𝐿1 + 𝐿2-Lipschitz continuous

• If 𝑓 and 𝑔 are bounded above by 𝑀 , then 𝑓 · 𝑔 is 𝑀(𝐿1 + 𝐿2)-Lipschitz continuous

• If 𝑓 is bounded below by 𝑐, then 1/ 𝑓 is 𝐿1/𝑐
2-Lipschitz continuous

• For a constant 𝐶, max{ 𝑓 , 𝐶} and min{ 𝑓 , 𝐶} are both 𝐿1-Lipschitz continuous

Observe that

𝑝(1, 𝜃−𝑖)𝑖 𝑗 =
∑︁

ℓ:𝑏ℓ 𝑗<𝑏𝑖 𝑗
𝑏ℓ 𝑗𝜃ℓ

∏
𝑘 ̸=𝑖:𝑏𝑘 𝑗>𝑏ℓ 𝑗

(1 − 𝜃𝑘 )
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Therefore, for all 𝑖 ∈ [𝑛], 𝜃 ↦→ 𝑝(1, 𝜃−𝑖)𝑖 𝑗 is (2𝑛𝑏)-Lipschitz continuous, which further implies

that 𝜃 ↦→ ∑
𝑗 𝑝(1, 𝜃−𝑖)𝑖 𝑗 is 2𝑚𝑛𝑏-Lipschitz continuous. Finally, due to the second equality in the

definition of 𝑓 , we get that 𝑓 is (2𝑚𝑛𝐵𝐵−2𝑏)-Lipschitz continuous.

Since BROUWER is in PPAD [CD06], to complete the proof, it suffices to show that a

(𝛿𝐵/4𝑚𝑏)-approximate fixed point 𝜃∗ of 𝑓 , i.e, 𝜃∗ such that ∥ 𝑓 (𝜃∗) − 𝜃∗∥∞≤ 𝛿𝐵/4𝑚𝑏, is a 𝛿-

approximate throttling equilibrium. First, note that 𝑝(1, 𝜃−𝑖)𝑖 𝑗 ≤ 𝑏 for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚].

Therefore, 𝑓 (𝜃)𝑖 ≥ 𝐵/2𝑚𝑏 for all 𝑖 ∈ [𝑛]. Hence, for 𝑖 ∈ [𝑛], we have����1 − 𝜃∗
𝑖

𝑓𝑖(𝜃∗)

���� ≤ 𝛿𝐵

𝑓𝑖(𝜃∗) · 4𝑚𝑏
≤ 𝛿

2

As a consequence, we get 𝜃∗
𝑖
≤ (1+𝛿/2) 𝑓𝑖(𝜃∗) and 𝜃∗ ≥ (1−𝛿/2) 𝑓𝑖(𝜃∗). The first inequality implies

which in turn implies

∑︁
𝑗

𝑝(𝜃∗)𝑖 𝑗 = 𝜃∗𝑖 ·
∑︁
𝑗

𝑝(1, 𝜃∗)𝑖 𝑗 ≤ (1 + 𝛿/2)(1 − 𝛿/2)𝐵𝑖 ≤ 𝐵𝑖

and the second one implies that if 𝜃∗
𝑖
< 1 − 𝛿/2, then

∑︁
𝑗

𝑝(𝜃∗)𝑖 𝑗 = 𝜃∗𝑖 ·
∑︁
𝑗

𝑝(1, 𝜃∗)𝑖 𝑗 ≥ (1 − 𝛿/2)2𝐵𝑖 ≥ (1 − 𝛿)𝐵𝑖

Hence, 𝜃∗ is a 𝛿-approximate throttling equilibrium, thereby completing the proof. □

E.2.2 Proof of Theorem 21

Consider an instance of 3-SAT with variables {𝑥1, . . . , 𝑥𝑛} and clauses {𝐶1, . . . , 𝐶𝑚}. Our goal

is to define an instance I of REV (a throttling game 𝐺 and a target revenue 𝑅) which always has

the same solution (Yes or No) as the 3-SAT instance, and has a size of the order poly(𝑛, 𝑚). We

do so next, starting with an informal description to build intuition. To better understand the core

motivations behind the gadgets, we will restrict our attention to exact throttling equilibria (𝛿 = 0)

in the informal discussion that follows. As we will see in the formal proof, the target revenue 𝑅
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can be chosen carefully to ensure that only exact throttling equilibria can achieve the revenue 𝑅.

Reciprocal Gadget: Fix 𝑖 ∈ [𝑛]. Corresponding to variable 𝑥𝑖, there are two goods A𝑖 and B𝑖,

and two buyers 𝑉+
𝑖

and 𝑉−
𝑖

in the throttling game 𝐺. Each buyer bids 1 for one of the goods and

bids 2 for the other, with both buyers bidding differently on each good. Furthermore, we set the

budgets of both buyers to be 1/2, and ensure that they do not spend any non-zero amount on goods

other than A𝑖 and B𝑖. In equilibrium, this forces the throttling parameter of 𝑉+
𝑖

(which we denote

by 𝜃+
𝑖
) to be half of the reciprocal of the throttling parameter of 𝑉−

𝑖
(which we denote by 𝜃−

𝑖
) and

vice-versa. As a consequence, both throttling parameters lie in the interval [1/2, 1].

Binary Gadget: For each variable 𝑥𝑖, there are two additional goods S𝑖 and T𝑖, which receive a

bid of 1 from buyers 𝑉+
𝑖

and 𝑉−
𝑖

respectively. The throttling game 𝐺 also has one unbounded buyer

𝑈 who has an infinite budget, and bids 2 on both goods S𝑖 and T𝑖. By the definition of throttling

equilibria (Definition 12), the throttling parameter of 𝑈 is always 1 in equilibrium. Therefore,

buyer 𝑈 wins both S𝑖 and T𝑖 with probability one, and pays 𝜃+
𝑖

+ 𝜃−
𝑖

= 𝜃+
𝑖

+ 1/2𝜃+
𝑖

for it. Finally,

observe that 𝑡 ↦→ 𝑡 + 1/2𝑡, when restricted to 𝑡 ∈ [1/2, 1], is maximized at 𝑡 = 1 or 𝑡 = 1/2.

Therefore, by appropriately choosing the target revenue 𝑅, we can ensure that revenue 𝑅 is only

achieved by throttling equilibria in which exactly one of the following holds: (𝜃+
𝑖

= 1, 𝜃−
𝑖

= 1/2) or

(𝜃+
𝑖

= 1/2, 𝜃−
𝑖

= 1). This allows us to interpret 𝜃+
𝑖

= 1 as setting 𝑥𝑖 = 1 and 𝜃−
𝑖

= 1 as setting 𝑥𝑖 = 0.

Clause Gadget: For each clause 𝐶 𝑗 , there is a good C 𝑗 . If 𝐶 𝑗 contains a non-negated literal

𝑥𝑖, then buyer 𝑉+
𝑖

bids 1 on good C 𝑗 , and if it contains a negated literal ¬𝑥𝑖, then buyer 𝑉−
𝑖

bids

1 on good C 𝑗 . Furthermore, the unbounded buyer 𝑈 bids 2 on good C 𝑗 , thereby always winning

it. Hence, the total payment on good C 𝑗 is 1 if some literal is satisfied (corresponding throttling

parameter is 1), and is 1/2 if no literal is satisfied (corresponding throttling parameters are 1/2).

The rest of the reduction boils down to choosing 𝑅 appropriately.

Proof of Theorem 21. Guided by the informal intuition described above, we proceed with the for-

mal definition of the instance I, which involves specifying the throttling game 𝐺 and the target

revenue 𝑅. The throttling game 𝐺 consists of the following goods:
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• Reciprocal Gadget: For each variable 𝑥𝑖, there are two goods A𝑖 and B𝑖.

• Binary Gadget: For each variable 𝑥𝑖, there are two binary goods S𝑖 and T𝑖.

• Clause Gadget: For each clause 𝐶 𝑗 , there is a good C 𝑗 .

Moreover, 𝐺 has the following set of buyers:

• Corresponding to each variable 𝑥𝑖, there are two buyers 𝑉+
𝑖

and 𝑉−
𝑖

with non-zero bids only

for the following goods:

– 𝑏(𝑉+
𝑖
,A𝑖) = 2 and 𝑏(𝑉+

𝑖
,B𝑖) = 1

– 𝑏(𝑉−
𝑖
,A𝑖) = 1 and 𝑏(𝑉−

𝑖
,B𝑖) = 2

– 𝑏(𝑉+
𝑖
, S𝑖) = 1

– 𝑏(𝑉−
𝑖
,T𝑖) = 1

– 𝑏(𝑉+
𝑖
,C 𝑗 ) = 1 if 𝑥𝑖 is a literal in 𝐶 𝑗

– 𝑏(𝑉−
𝑖
,C 𝑗 ) = 1 if ¬𝑥𝑖 is a literal in 𝐶 𝑗

Moreover, the budget of both 𝑉+
𝑖

and 𝑉−
𝑖

is 1/2 for all 𝑖 ∈ [𝑛].

• There is one unbounded buyer𝑈 with 𝑏(𝑈,C 𝑗 ) = 2 for all 𝑗 ∈ [𝑚] and 𝑏(𝑈, S𝑖) = 𝑏(𝑈,T𝑖) =

2 for all 𝑖 ∈ [𝑛]. Moreover,𝑈 has a budget of∞.

Set the target revenue to be 𝑅 = 𝑛+𝑚 + (3𝑛/2). Suppose there exists a 𝛿-approximate throttling

equilibrium Θ, for some 𝛿 ∈ [0, 1), with revenue greater than or equal to 𝑅. Let 𝜃+
𝑖

and 𝜃−
𝑖

denote

the throttling parameters of 𝑉+
𝑖

and 𝑉−
𝑖

in Θ. Then, 𝜃+
𝑖
𝜃−
𝑖
≤ 1/2 by virtue of the budget constraints.

Therefore, the revenue from goods {A𝑖}𝑛𝑖=1 ∪ {B𝑖}
𝑛
𝑖=1 is at most 𝑛. Furthermore, it is easy to see

that the revenue from goods {C 𝑗 }𝑚𝑗=1 is at most 𝑚. Additionally, the total payment by buyer 𝑈 on

goods S𝑖 and T𝑖 is at most 𝜃+
𝑖

+ 𝜃−
𝑖
≤ 𝜃+

𝑖
+ (1/2𝜃+

𝑖
). Note that 𝜃+

𝑖
+ (1/2𝜃+

𝑖
) is maximized at 𝜃+

𝑖
= 1/2

or 𝜃+
𝑖

= 1, with a value of 𝜃+
𝑖

+ (1/2𝜃+
𝑖
) = 3/2. Therefore, the revenue from goods {S𝑖}𝑛𝑖=1 ∪ {T𝑖}

𝑛
𝑖=1

is at most 3𝑛/2. Hence, the total payment made on all the goods is at most 𝑅.
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For the total revenue under Θ to be greater than or equal to 𝑅, the revenue from {S𝑖}𝑛𝑖=1∪{T𝑖}
𝑛
𝑖=1

must be at least 3𝑛/2 and the revenue from {C 𝑗 }𝑚𝑗=1 must be at least 𝑚. Hence, under Θ, buyer 𝑈

has a throttling parameter of 1, and for each 𝑖 ∈ [𝑛], either (𝜃+
𝑖

= 1, 𝜃−
𝑖

= 1/2) or (𝜃+
𝑖

= 1/2, 𝜃−
𝑖

= 1).

Furthermore, the payment made by buyer 𝑈 on C 𝑗 is 1 for every 𝑗 ∈ [𝑚]. This allows us to assign

values to the variables as follows: set 𝑥𝑖 = 1 if 𝜃+
𝑖

= 1 and 𝑥𝑖 = 0 if 𝜃−
𝑖

= 1. With this assignment of

the variables, each clause is satisfied since the payment made by buyer𝑈 on C 𝑗 is 1 for all 𝑗 ∈ [𝑚].

Hence, we have shown that if there exists a 𝛿-approximate throttling equilibrium with revenue 𝑅

or greater, then there exists a satisfying assignment for the 3-SAT instance.

Conversely, note that if there exists a satisfying assignment for the 3-SAT instance, then setting

𝜃+
𝑖

= 1, 𝜃−
𝑖

= 1/2 if 𝑥𝑖 = 1 and 𝜃+
𝑖

= 1/2, 𝜃−
𝑖

= 1 if 𝑥𝑖 = 0 yields a throttling equilibrium with revenue

equal to 𝑅. To complete the proof, observe that the size of the instance |I |= poly(𝑛, 𝑚). □

E.2.3 Proof of Theorem 22

In this appendix, we analyze the correctness and runtime of Algorithm 7. To do so, we will

make repeated use of the following crucial observation:

𝑝(𝜃)𝑖 𝑗 =


𝜃𝑖𝜃𝑘𝑏𝑘 𝑗 if 𝑏𝑖 𝑗 > 𝑏𝑘 𝑗 > 0 for some 𝑘 ∈ [𝑛]

0 otherwise
(E.1)

In particular, this observation implies that 𝑝(1, 𝜃𝑖) is a linear function of 𝜃.

The following lemma makes a step towards the proof of correctness of the algorithm by show-

ing that the budget constraints are always satisfied.

Lemma 49. At the start of each iteration of the while loop, we have
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑛].

Proof. We will use induction on the number of iterations of the while loop to prove this lemma.

By our choice of initialization of 𝜃, the budget constraints are satisfied before the first iteration of

the while loop. Suppose the constraints are satisfied before the start of the 𝑡-th iteration and the

value of 𝜃 at that stage is 𝜃(0). We will use 𝜃(1) and 𝜃(2) to the denote the value of 𝜃 after step 1
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and step 2 of the 𝑡-th iteration respectively. Consider a buyer 𝑖 such that
∑
𝑗 𝑝(𝜃(1))𝑖 𝑗 > 𝐵𝑖. By

equation E.1, we get

𝐵𝑖 <
∑︁
𝑗

𝑝(𝜃(1))𝑖 𝑗 ≤
(∑︁
𝑗

𝑝(𝜃(0))𝑖 𝑗

)
/(1 − 𝛾)2

which further implies
∑
𝑗 𝑝(𝜃(0))𝑖 𝑗 > (1− 𝛾)2𝐵𝑖. Therefore, the throttling parameter of buyer 𝑖 was

not changed in step 1 of the 𝑡-th iteration, i.e., 𝜃(0)
𝑖

= 𝜃(1)
𝑖

. As a consequence, we get

∑︁
𝑗

𝑝(𝜃(1))𝑖 𝑗 ≤
(∑︁
𝑗

𝑝(𝜃(0))𝑖 𝑗

)
/(1 − 𝛾)

After step 2 of the 𝑡-th iteration, we get 𝜃(2) = (1 − 𝛾)𝜃(1). Hence,

∑︁
𝑗

𝑝(𝜃(2))𝑖 𝑗 ≤ (1 − 𝛾)
∑︁
𝑗

𝑝(𝜃(1))𝑖 𝑗 ≤
(∑︁
𝑗

𝑝(𝜃(0))𝑖 𝑗

)
≤ 𝐵𝑖

where the last inequality follows from our inductive hypothesis. As 𝜃(2) is the value of 𝜃 after the

𝑡-th iteration, the lemma follows by induction. □

The next lemma establishes that the algorithm never loses any progress, i.e., any buyer who

satisfies the ‘Not too much unnecessary throttling condition’ of Definition 13 at the beginning of

some iteration of the while loop continues to do so at the end of it.

Lemma 50. If
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≥ (1− 𝛾)3𝐵𝑖 or 𝜃𝑖 ≥ 1− 𝛾 at the start of some iteration of the while loop,

then
∑
𝑗 𝑝(𝜃)𝑖 𝑗 ≥ (1 − 𝛾)3𝐵𝑖 or 𝜃𝑖 ≥ 1 − 𝛾 at the end of that iteration.

Proof. Consider an iteration of while loop which starts with 𝜃 = 𝜃(0). We will use 𝜃(1) and 𝜃(2) to

the denote the value of 𝜃 after step 1 and step 2 of this iteration. If
∑
𝑗 𝑝(𝜃(0))𝑖 𝑗 ≥ (1 − 𝛾)2𝐵𝑖 at the

beginning of the iteration, then
∑
𝑗 𝑝(𝜃(2))𝑖 𝑗 ≥ (1 − 𝛾)3𝐵𝑖 because

∑︁
𝑗

𝑝(𝜃(1))𝑖 𝑗 ≥ (1 − 𝛾)2𝐵𝑖 and
∑︁
𝑗

𝑝(𝜃(2))𝑖 𝑗 ≥ (1 − 𝛾)
∑︁
𝑗

𝑝(𝜃(1))𝑖 𝑗

Suppose (1 − 𝛾)3𝐵𝑖 ≤
∑
𝑗 𝑝(𝜃(0))𝑖 𝑗 < (1 − 𝛾)2𝐵𝑖 and 𝜃(0)

𝑖
< 1 − 𝛾 at the start of the iteration. Then,
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after step 1, we have (1 − 𝛾)2𝐵𝑖 ≤
∑
𝑗 𝑝(𝜃(1))𝑖 𝑗 ≤ 𝐵𝑖. Hence, after step 2, we get (1 − 𝛾)3𝐵𝑖 ≤∑

𝑗 𝑝(𝜃(3))𝑖 𝑗 .

Finally, suppose (1 − 𝛾)3𝐵𝑖 ≤
∑
𝑗 𝑝(𝜃(0))𝑖 𝑗 < (1 − 𝛾)2𝐵𝑖 and 𝜃

(0)
𝑖
≥ 1 − 𝛾 at the start of

the iteration. Then, after step 1, we have
∑
𝑗 𝑝(𝜃(1))𝑖 𝑗 ≤ 𝐵𝑖. Hence, after step 2, we still have

𝜃
(2)
𝑖
≥ (1 − 𝛾). This completes the proof of the lemma. □

Finally, we combine the above lemmas to establish the correctness and polynomial-runtime of

the algorithm.

Proof of Theorem 22. Let 𝜃∗ be the vector of throttling parameters returned by the algorithm.

Lemma 49 implies that 𝜃∗ satisfies the budget constraints of every buyer. Furthermore, upon

combining (1 − 𝛾)3 ≥ 1 − 3𝛾 with the termination condition of the while loop, we get that ei-

ther 𝜃∗
𝑖
≥ 1 − 𝛾 or

∑
𝑗 𝑝(𝜃∗)𝑖 𝑗 ≥ (1 − 3𝛾)𝐵𝑖 for all 𝑖 ∈ [𝑛], which makes 𝜃∗ a (1 − 3𝛾)-approximate

throttling equilibrium.

Next, we bound the running time of the algorithm. Define 𝑐 = min𝑖 min{𝐵𝑖/(2
∑
𝑗 𝑏𝑖 𝑗 ), 1}.

Note that 𝑐 ≤ 𝜃𝑖 ≤ 1 for all 𝑖 ∈ [𝑛] for the entire run of the algorithm. Based on Lemma 50, we

define

𝐴(𝜃) B {𝑖 ∈ [𝑛] |
∑︁
𝑗

𝑝(𝜃)𝑖 𝑗 ≥ (1 − 𝛾)3𝐵𝑖 or 𝜃𝑖 ≥ 1 − 𝛾

Then Lemma 50 simply states that if 𝑖 ∈ 𝐴(𝜃) at the start of iteration 𝑇 of the while loop, then

𝑖 ∈ 𝐴(𝜃) at the start of all future iterations 𝑡 ≥ 𝑇 . Moreover, recall that the while loop terminates

when 𝐴(𝜃) = [𝑛].

Observe that, in each iteration of the while loop, 𝜃𝑖 ← 𝜃𝑖/(1− 𝛾) for some 𝑖 /∈ 𝐴(𝜃). Hence, the

total number of iterations of the while loop 𝑇 satisfies the following equivalent statements:

𝑐

(1 − 𝛾)𝑇/𝑛
≤ 1 ⇐⇒ 𝑇 ≤ 𝑛 log(1/𝑐)

log(1/(1 − 𝛾))
≤ 𝑛 log(1/𝑐)

𝛾

This completes the proof because each iteration takes polynomially many steps. □
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E.2.4 Proof of Theorem 24

Fix a throttling equilibrium 𝜃 ∈ Θ. Recall that we use 𝑋 = (𝑋1, . . . , 𝑋𝑛) to capture the random

profile of buyers who participate in the auctions, where 𝑋𝑖 = 1 if and only if buyer 𝑖 participates

in the auctions, and Pr(𝑋𝑖 = 1) = 𝜃𝑖. Let 𝑦𝑖 𝑗 (𝑋) be the indicator random variable which equals 1

if and only if good 𝑗 is allocated to buyer 𝑖 under the participation profile 𝑋 = (𝑋1, . . . , 𝑋𝑛), and

is zero otherwise. Moreover, let 𝑝 𝑗 (𝑋) denote the price of item 𝑗 under the participation profile

𝑋 = (𝑋1, . . . , 𝑋𝑛). Here, the price is the highest/second-highest bid for first-price/second-price

auctions respectively, and is interpreted to be 0 if no buyers bid in an auction. Observe that

𝑝𝑖 𝑗 (𝜃) = E
[
𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
.

Fix a benchmark allocation 𝑦 = {𝑦𝑖 𝑗 }. We begin by establishing the following lemma, which

will play a critical role in the proof of the theorem.

Lemma 51. For all 𝑖 ∈ [𝑛], we have

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
.

Proof. We consider two cases. First assume that 𝜃𝑖 < 1. Then, the no-unnecessary-throttling

condition implies that
∑𝑚
𝑗=1 𝑝𝑖 𝑗 (𝜃) = 𝐵𝑖. Now, observe that 𝑦𝑖 𝑗 (𝑋) > 0 only if 𝑏𝑖 𝑗 ≥ 𝑝 𝑗 (𝑋).

Consequently, we have

E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
≥ E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
=

𝑚∑︁
𝑗=1

𝑝𝑖 𝑗 (𝜃) = 𝐵𝑖 .

Hence, we get

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
= 𝐵𝑖

≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
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≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
,

thereby establishing the required lemma statement for a buyer 𝑖 such that 𝜃𝑖 < 1.

Next, consider a buyer 𝑖 such that 𝜃𝑖 = 1, i.e., buyer 𝑖 always participates. Since 𝑝 𝑗 (𝑋) > 𝑏𝑖 𝑗

whenever 𝑦𝑖 𝑗 (𝑋) < 1, we have

0 ≥ E
[
(𝑏𝑖 𝑗 − 𝑝 𝑗 (𝑋))(1 − 𝑦𝑖 𝑗 (𝑋))𝑦𝑖 𝑗

]
.

Moreover, we also have

E
[
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
≥ E

[
(𝑏𝑖 𝑗 − 𝑝 𝑗 (𝑋))𝑦𝑖 𝑗 (𝑋)𝑦𝑖 𝑗

]
Adding the two inequalities, we get

E
[
𝑏𝑖 𝑗 𝑦𝑖 𝑗(𝑋)

]
≥ E

[
(𝑏𝑖 𝑗 − 𝑝 𝑗(𝑋))(1 − 𝑦𝑖 𝑗(𝑋))𝑦𝑖 𝑗

]
+ E

[
(𝑏𝑖 𝑗 − 𝑝 𝑗(𝑋))𝑦𝑖 𝑗(𝑋)𝑦𝑖 𝑗

]
= E

[
(𝑏𝑖 𝑗 − 𝑝 𝑗(𝑋))𝑦𝑖 𝑗

]
.

Summing over all goods 𝑗 ∈ [𝑚] yields

E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
≥

𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 − E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
Additionally, we also have

𝐵𝑖 ≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
Therefore,

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
≥ min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
.
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This concludes the lemma by establishing it for buyers 𝑖 with 𝜃𝑖 = 1. □

With Lemma 51 in hand, we are ready to prove the theorem. First, note that

𝑚∑︁
𝑖=1

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
≥

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
−

𝑚∑︁
𝑖=1
E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗

]
=

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)
𝑚∑︁
𝑖=1

𝑦𝑖 𝑗

]
=

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)

]
≥

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
− E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)
𝑚∑︁
𝑖=1

𝑦𝑖 𝑗 (𝑋)

]
=

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
−

𝑚∑︁
𝑖=1
E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
where the second inequality follows from the observation that a good is always allocated whenever

it has a positive bid, i.e.,
∑𝑚
𝑖=1 𝑦𝑖 𝑗 (𝑋) = 1 whenever 𝑝 𝑗 (𝑋) > 0. Hence, if we can show that

𝑚∑︁
𝑖=1

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
≥

𝑚∑︁
𝑖=1
E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
, (E.2)

we will get

𝑚∑︁
𝑖=1

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗(𝑋)

]
, 𝐵𝑖

}
≥

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}
−

𝑚∑︁
𝑖=1

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗(𝑋)

]
, 𝐵𝑖

}
⇐⇒

𝑚∑︁
𝑖=1

min

{
2 · E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗(𝑋)

]
, 𝐵𝑖

}
≥

𝑚∑︁
𝑖=1

min

{
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 , 𝐵𝑖

}

and thereby complete the proof, because the benchmark allocation 𝑦 and the throttling equilibrium

𝜃 are both arbitrary. In the remainder, we establish (E.2).

Since 𝑦𝑖 𝑗 (𝑋) > 0 only when 𝑏𝑖 𝑗 ≥ 𝑝 𝑗 (𝑋), we have

E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
≥ E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
.

287



Moreover, the budget constraint of buyer 𝑖 implies

𝐵𝑖 ≥ E
[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
.

Combining the two inequalities, we get:

min

{
E

[
𝑚∑︁
𝑗=1
𝑏𝑖 𝑗 𝑦𝑖 𝑗 (𝑋)

]
, 𝐵𝑖

}
≥ E

[
𝑚∑︁
𝑗=1

𝑝 𝑗 (𝑋)𝑦𝑖 𝑗 (𝑋)

]
.

Summing over all buyers 𝑖 ∈ [𝑛] yields (E.2), as required.

E.3 Appendix: Examples for Section 6.4

First, we provide an example to show that the inequality REV(TE) ≤ 2 × REV(TE) is tight.

Example 12. Consider the throttling game in which there is 1 good and 2 buyers. The bids are

given by 𝑏11 = 1/𝜖 , 𝑏21 = 1 − 𝜖 for 𝜖 > 0 and the budgets are given by 𝐵1 = 1, 𝐵2 = ∞. Then,

in the unique pacing equilibrium, we have 𝛼1 = 𝜖 and 𝛼2 = 1, whereas in the unique throttling

equilibrium, we have 𝜃1 = 𝜖 and 𝜃2 = 1. Hence, REV(PE) = 1 and REV(TE) = 1 + (1 − 𝜖)2. Since,

this is true for arbitrarily small 𝜖 , we get that the inequality REV(TE) ≤ 2 × REV(TE) is tight

established in Theorem 23 is tight.

Next, we give a family of examples for which REV(PE) is arbitrarily close to (4/3)×REV(TE).

Example 13. Consider a throttling game with 2 goods and 2 buyers. Fix 𝜖 > 0. The bids are given

by 𝑏11 = 1 + 𝜖 , 𝑏12 = 1 and 𝑏21 = 1. Moreover, the budgets are given by 𝐵1 = 1 − 𝜖 and 𝐵2 = ∞.

Then, the unique pacing equilibrium is given by 𝛼1 = 1 − 𝜖 , 𝛼2 = 1, and the unique throttling

equilibrium is given by 𝜃1 = (1 − 𝜖)/(2 + 𝜖), 𝜃2 = 1. Since 𝜖 was arbitrary, we can take it to be

arbitrarily small. In which case, we get REV(PE) ≃ 2 and REV(PE) ≃ 1.5, as desired.
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