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Abstract 

Background:  Genome-wide association studies do not always replicate well across 
populations, limiting the generalizability of polygenic risk scores (PRS). Despite higher 
incidence and mortality rates of prostate cancer in men of African descent, much of 
what is known about cancer genetics comes from populations of European descent. 
To understand how well genetic predictions perform in different populations, we 
evaluated test characteristics of PRS from three previous studies using data from the 
UK Biobank and a novel dataset of 1298 prostate cancer cases and 1333 controls from 
Ghana, Nigeria, Senegal, and South Africa.

Results:  Allele frequency differences cause predicted risks of prostate cancer to vary 
across populations. However, natural selection is not the primary driver of these dif‑
ferences. Comparing continental datasets, we find that polygenic predictions of case 
vs. control status are more effective for European individuals (AUC 0.608–0.707, OR 
2.37–5.71) than for African individuals (AUC 0.502–0.585, OR 0.95–2.01). Furthermore, 
PRS that leverage information from African Americans yield modest AUC and odds 
ratio improvements for sub-Saharan African individuals. These improvements were 
larger for West Africans than for South Africans. Finally, we find that existing PRS are 
largely unable to predict whether African individuals develop aggressive forms of pros‑
tate cancer, as specified by higher tumor stages or Gleason scores.
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Conclusions:  Genetic predictions of prostate cancer perform poorly if the study sam‑
ple does not match the ancestry of the original GWAS. PRS built from European GWAS 
may be inadequate for application in non-European populations and perpetuate exist‑
ing health disparities.

Keywords:  Africa, Health disparities, Genomic medicine, Polygenic risk scores, 
Population genetics, Prostate cancer

Background
Prostate cancer (CaP) has a complex etiology, with substantial contributions from 
inherited genetic factors [1–3]. Among men, CaP is the most commonly diagnosed 
cancer worldwide, but incidence and mortality rates vary across global populations. 
East Asians have the lowest observed rates of CaP, and Africans and men living in 
the Caribbean have the highest observed rates [4, 5]. African American men are 1.8 
times more likely to be diagnosed with CaP and 2.4 times more likely to die from the 
disease than European Americans [6, 7]. Some of these differences in risk may be due 
to genetic causes, including continental differences in allele frequencies at CaP-asso-
ciated loci [8]. CaP has a heritability of 58% [9, 10], and men who have a first-degree 
relative with CaP have a higher risk of CaP than men without a family history [9, 11].

Genome-wide association studies (GWAS) have identified hundreds of loci associ-
ated with increased risk of CaP [12–20], but most of these loci were discovered in 
individuals of European descent. Although genetic associations with CaP have been 
identified in men of African descent [21–24], this relative underrepresentation in 
GWAS suggests that many CaP-associated loci are as yet undiscovered [25]. Many 
genotyping arrays use markers that were largely ascertained in non-African popula-
tions, thus yielding a biased set of disease associations [26–28]. Moreover, effect sizes 
at cancer-associated loci can differ by ethnicity and ancestry [29, 30]. Collectively, 
these issues limit the generalizability of genetic predictions of cancer risk to non-
European populations [31–35].

GWAS results can be leveraged to generate polygenic risk scores (PRS), which quan-
tify an individual’s genetic propensity to develop disease [36, 37]. PRS have been effec-
tively used to classify whether individuals of European descent are more likely to develop 
complex diseases like breast or prostate cancer [38–41]. Future clinical applications of 
PRS include assisting in diagnosis and informing treatment options [42, 43]. Recently, 
a trio of well-powered GWAS have yielded risk scores for CaP. Schumacher et al. lever-
aged data from over 140,000 cases and controls of European ancestry to discover 63 new 
CaP-associated loci [38]. This led to the generation of a 147-marker PRS [38]. Conti et al. 
performed a multi-ancestry meta-analysis of over 234,000 cases and controls, finding 83 
novel CaP-associated variants and generating a 269 marker PRS [44]. Importantly, the 
PRS generated by Conti et al. contains ancestry-specific weights [44]. Age of diagnosis 
information can also be leveraged to generate polygenic hazard scores (PHS), which pre-
dict whether individuals are more likely to have early-onset CaP [45]. Karunamuni et al. 
combined 46 SNPs ascertained in men of European descent with three SNPs that were 
ascertained in men of African descent to generate the PHS46+African hazard score [46]. 
These three PRS are denoted here as the Schumacher, Conti, and PHS46+African PRS, 
respectively. Note that the multi-ancestry Conti PRS builds upon the Schumacher PRS.
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Here, we assess the generalizability of CaP PRS using European data from the UK 
Biobank (UKBB) and a novel African dataset from the Men of African Descent and Car-
cinoma of the Prostate (MADCaP) Network [47]. We investigate the following questions: 
(1) How much do allele frequencies of CaP-associated loci vary across continental popu-
lations? (2) Are these allele frequency differences driven by natural selection? (3) Are 
existing PRS generalizable to sub-Saharan African (SSA) populations? (4) How much 
does incorporating ancestry-matched information improve genetic prediction of CaP?

Results
Population genetics of MADCaP Network samples

African cases and controls were sampled from MADCaP study sites in Senegal, 
Ghana, Nigeria, and South Africa. Summary statistics of MADCaP samples are 
described in Table  1. African individuals were recruited from urban and suburban 
locales [47]. The primary languages spoken by MADCaP participants differ for Sen-
egal (Wolof, Pulaar, and French), Ghana (Akan, Ga-Dangme, Ewe, and English), Nige-
ria (Yoruba, Igbo, Hausa, and English), and South Africa (isiXhosa, isiZulu, Sesotho, 
Setswana, English, and Afrikaans). For each MADCaP study site, Fig. 1a shows that 
cases (blue) and controls (black) cluster together, indicating that cases and controls 
are ancestry-matched. West African individuals are found on the left of each multi-
dimensional scaling (MDS) plot, and South African individuals are found on the bot-
tom right of each MDS plot (Fig. 1a). This observed population structure is broadly 
consistent with a pilot study from the MADCaP Network [48]. An ADMIXTURE plot 

Table 1  Characteristics of SSA cases and controls from the MADCaP Network

MADCaP participant characteristics Cases (n=1298) Controls 
(n=1333)

African study site

  Hôpital Général de Grand Yoff 136 145

  37 Military Hospital 136 142

  Korle-Bu Teaching Hospital 144 136

  University College Hospital 135 130

  University of Abuja Teaching Hospital 91 88

  WITS Health Consortium 537 576

  Stellenbosch University 119 116

Age in years

  < 70 24.5% 24.3%

  70–79 30.2% 39.2%

  ≥ 80 45.3% 36.5%

Tumor stage

  T1 37.4% NA

  T2 44.6% NA

  T3 10.2% NA

  T4 7.8% NA

Gleason score

  ≤ 6 17.1% NA

  7 43.6% NA

  ≥ 8 39.2% NA
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reveals further population structure among MADCaP samples: Senegalese individ-
uals have a different mix of ancestries than Ghanaian, Nigerian, and South African 
individuals (compare different shades of green for each study site in Fig. 1b).

Evolutionary genetics of CaP‑associated loci

Using data from the 1000 Genomes Project (1KGP), we compared risk allele frequen-
cies at CaP-associated loci in Europe and SSA. Figure 2a shows that many CaP-asso-
ciated loci have large allele frequency differences between continents, the largest of 
which were observed for SNPs at Xq12 (rs5919393 and rs7888856, detected in multi-
ancestry and European cohorts [44, 46]) and 19q13.2 (rs61088131 and rs11672691, 
detected in European cohorts [38, 46]). Allele frequency differences between popula-
tions can be caused by neutral processes like genetic drift as well as local adaptation 
and genetic hitchhiking. Because of this, we tested whether CaP-associated loci are 
enriched for signatures of natural selection. Integrated haplotype score (iHS) statis-
tics quantify extended haplotype homozygosity, a pattern that arises when selection 
acts on new mutations (i.e., there is a hard selective sweep). Under a null hypoth-
esis of neutral evolution, disease-associated loci are expected to have iHS percentiles 
that are uniformly distributed. Few CaP-associated loci have large iHS statistics, and 
PRS variants have iHS distributions that resemble the rest of the genome (Fig.  2b). 

Fig. 1  Population structure of MADCaP Network samples reveals shared genetic ancestries among urban 
and suburban African study sites. A Two-dimensional MDS plots of 2631 MADCaP individuals. Subpanels 
focus on specific study sites, with controls colored black, CaP cases colored blue, and samples from other 
study sites colored grey. B ADMIXTURE plot of 2631 MADCaP individuals. Abbreviations of MADCaP Network 
study sites are listed in the “Methods” section
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Collectively, this indicates that CaP-associated loci are not enriched for signatures of 
hard selective sweeps (p-values ≥ 0.2189, Kolmogorov-Smirnov tests).

Tests of polygenic adaptation for each set of PRS variants were conducted using Pol-
ygraph [49]. Note that output from Polygraph includes a p-value for selection on the 
entire admixture graph as well as selection parameters for each branch (Fig. 2c). Over-
all, there are negligible signatures of polygenic selection acting on CaP-associated loci: 
Schumacher p-value = 0.252, Conti p-value = 0.414, and PHS46+African p-value = 
0.672. Compared to neutral expectations there appears to have been a decrease in the 
predicted risk of CaP on the branch leading to Japan (JPT).

Allele frequency differences contribute to how well PRS are able to distinguish 
between case/control status in different populations and existing PRS are more likely to 
contain European polymorphisms than African polymorphisms [50]. Because SNP her-
itability is maximized at intermediate allele frequencies [51], PRS variants in the shaded 
region of Fig. 2a are more informative about CaP risks in Europe than Africa, assuming 
equivalent effect sizes in both populations. For each PRS, there is an excess of variants in 
the shaded region (Schumacher p-value = 4.098 × 10−8, Conti p-value = 1.343 × 10−6, 
PHS46+African p-value = 6.575 × 10−5, two-sided binomial tests). Note that this novel 
population genetic approach does not require individual-level phenotype data. Focusing 

Fig. 2  Evolutionary genetics of CaP-associated variants. A Joint site frequency spectrum of risk allele 
frequencies in Europe and Africa (1KGP data). Minor allele frequencies are larger for Europe than Africa in the 
shaded region. Schumacher PRS variants are denoted by light blue points, Conti PRS variants are denoted by 
dark blue points, and PHS46+African PRS variants are denoted by green points. B Stacked strip charts reveal 
that PRS variants are not enriched for high iHS statistics in Great Britain or Nigeria when compared to the rest 
of the genome. One sample Kolmogorov-Smirnov goodness of fit tests were used to obtain p-values (null 
hypothesis: iHS percentiles are uniformly distributed). CPolyGraph results. For each PRS, p-values refer to tests 
of polygenic adaptation acting over the entire admixture graph. 1KGP population codes are described in the 
“Methods” section
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on CaP, PRS variants are more likely to have African allele frequencies that are close to 
zero or one than European allele frequencies that are close to zero or one (compare the 
left and right sides of Fig. 2a to the top and bottom). This suggests that SNP ascertain-
ment bias contributes to the limited transferability of PRS between Europeans and other 
populations [50].

We examined how predicted risks of CaP vary across the world by applying the Schu-
macher, Conti, and PHS46+African PRS to 1KGP data (Fig. 3). Recall that these poly-
genic predictors are nested: the multi-ancestry Conti PRS builds upon the Schumacher 
PRS, and the PHS46+African PRS builds upon a prior PRS by including three SNPs that 
were ascertained in men of African descent. Rank orders of continents are consistent 
with epidemiological data; predicted risks of CaP are highest for Africans and lowest for 
East Asians, and PRS differences between African genomes and non-African genomes 
are statistically significant (p-values < 2.2 × 10−16, Mann-Whitney U tests). However, 
continental differences in risk score distributions are smaller for the PHS46+African 
PRS than the Schumacher and Conti PRS. This suggests that at least some of the right-
ward PRS shifts observed for Africans may be due to ascertainment bias. An alternative 
possibility is that differences in PRS shifts are due to the numbers of variants in each risk 
score.

Prostate cancer risk prediction in sub‑Saharan Africa: case vs. control status

Using British samples from the UKBB and SSA samples from the MADCaP Network, 
we tested how well PRS are able to distinguish between case/control status after cor-
recting for covariates such as age and principal components. Summary statistics 
of these comparisons can be found in Table  2. Note that proxy variants were used 
when CaP-associated loci were not directly genotyped and that the relative propor-
tion of proxy variants was larger for MADCaP data than UKBB data (Additional file 1: 
Table S1). Here we focus on the optimal sets of PRS variants for European and African 

Fig. 3  PRS distributions for continental populations from the 1000 Genomes Project. Higher standardized 
PRS values indicate higher predicted risks of CaP. Colored bars indicate the median PRS for each continental 
population. Note that admixed African American (ASW) and African Caribbean (ACB) individuals were 
included in the African group, as opposed to the American group
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populations (see “Methods” section for details). Similar results arise if shared sets of 
PRS variants are used for both continental populations (Additional file 2: Table S2). 
The receiver operating characteristic (ROC) curves shown in Fig. 4a–c illustrate that 
predictions of case/control status perform better among men of European descent 
than among men of African descent. These differences were statistically significant for 
each PRS. Area under the curve (AUC) statistics for the Schumacher PRS were 0.678 
for UKBB samples and 0.538 for MADCaP samples (p-value < 2.2 × 10−16, DeLong’s 
test); AUC statistics for the multi-ancestry Conti PRS were 0.703 for UKBB samples 
and 0.579 for MADCaP samples (p-value < 2.2 × 10−16, DeLong’s test); and AUC sta-
tistics for the PHS46+African PRS were 0.614 for UKBB samples and 0.547 for MAD-
CaP samples (p-value < 4.785 × 10−6, DeLong’s test).

Odds ratios (OR) can also be used to quantify the effectiveness of PRS. Note that 
the OR described here do not refer to the relative risks of CaP in Europe and Africa. 
Instead, they refer to the ability of each PRS to distinguish between case and control 
status within each continental dataset, after correcting for age and principal compo-
nents. We calculated covariate-adjusted ORs using generalized linear models, com-
paring individuals with high risk scores (population-specific PRS percentiles above 
90%) to individuals with moderate risk scores (population-specific PRS percentiles 
between 40% and 60%). In general, European ORs were larger than African ORs 
(Table 2). This indicates that existing CaP PRS were more effective at distinguishing 
between cases and controls for European samples. For example, the multi-ancestry 
weights from the Conti PRS yielded an OR of 5.29 for individuals from the UKBB and 
an OR of 1.86 for individuals from the MADCaP Network. Collectively, these results 

Table 2  Ability of PRS to distinguish between case and control status using the optimal set of 
variants for European and African datasets. Area under the curve (AUC) statistics and covariate-
adjusted odds ratios (OR) are shown for each PRS. These odds ratios involve comparisons between 
individuals who have a PRS in the top decile to individuals who have a PRS in the middle 20%—i.e., 
they quantify the how well a risk score is able to distinguish between cases and controls for different 
parts of a PRS distribution after correcting for age and first 10 principal components

PRS source PRS ancestry AUC​UKBB (95% 
CI)

ORUKBB (95% CI) AUC​MADCaP (95% 
CI)

ORMADCaP (95% 
CI)

Schumacher European 0.675 (0.662–
0.689)

3.59 (2.89–4.49) 0.538 (0.516–
0.56)

1.23 (0.91–1.67)

Conti Multi-ancestry 0.703 (0.694–
0.713)

5.29 (4.26–6.59) 0.579 (0.558–
0.601)

1.86 (1.41–2.47)

Conti European 0.707 (0.698–
0.717)

5.71 (4.59–7.14) 0.541 (0.519–
0.563)

1.60 (1.20–2.12)

Conti African 0.671 (0.662–
0.681)

4.00 (3.17–4.95) 0.585 (0.563–
0.607)

2.01 (1.52–2.67)

Conti Asian 0.662 (0.652–
0.672)

3.32 (2.67–4.14) 0.533 (0.511–
0.555)

1.83 (1.38–2.45)

Conti Hispanic 0.678 (0.668–
0.688)

3.93 (3.17–4.91) 0.527 (0.505–
0.549)

1.65 (1.24–2.21)

PHS46 European 0.612 (0.598–
0.627)

2.37 (1.90–2.96) 0.502 (0.48–
0.524)

0.95 (0.70–1.28)

PHS46+African European + 
African

0.608 (0.594–
0.622)

2.50 (2.00–3.15) 0.547 (0.525–
0.569)

1.58 (1.20–2.11)
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reveal that existing PRS are better at distinguishing between case/control status in 
European populations than African populations.

Ancestry‑matched polygenic predictions of CaP risk

We assessed the impact of applying ancestry-specific weights from the Conti PRS to 
case and control data from Europe and Africa. For British individuals from the UKBB, 
multi-ancestry and European PRS weights performed the best (Table 2). Other ances-
try-specific PRS weights (African, Asian, and Hispanic) yielded lower AUC scores 
and odds ratios for British individuals. For individuals from the MADCaP Network, 
genetic predictions performed best when we used African weights (AUC = 0.585, 95% 
CI 0.563–0.607; OR = 2.01, 95% CI 1.52–2.67). Other ancestry-specific PRS weights 
(Asian, European, and Hispanic) yielded lower AUC scores and OR for African individu-
als (Table 2). Combining MADCaP data from Senegalese, Ghanaian, and Nigerian study 
sites, we found that African weights from the Conti PRS yielded an AUC of 0.611. By 
contrast, South African study sites yielded an AUC of 0.560 for the Conti PRS with Afri-
can weights. These findings reveal that genetic predictions of CaP risk perform better for 
West African men than South African men (p-value = 0.021, DeLong’s test).

We also examined the benefits of including ancestry-matched information in polygenic 
hazard scores (Table 2). The PHS46 predictor contains genetic variants that were ascer-
tained in men of European descent, and the PHS46+African predictor contains three 
additional variants that were ascertained in men of African descent. Including these 
additional variants resulted in improved AUC statistics (0.547 vs. 0.502) and odds ratios 
(1.58 vs. 0.95) for African individuals from the MADCaP Network. Taken together, these 

Fig. 4  Receiver operator characteristic (ROC) curves for different polygenic risk scores. A–C Ability of PRS 
to distinguish between cases and controls (European and African data). D–F Ability of PRS to distinguish 
between cases that have aggressive and non-aggressive forms of CaP (African data). CaP was classified as 
aggressive if tumor stage = T4 (opposed to T1, T2, or T3) or Gleason score ≥ 8 (as opposed to Gleason score 
≤7), and separate analyses were run for each classifier
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findings indicate that using ancestry-matched or multi-ancestry risk scores improve 
genetic predictions of cancer risk in Ghana, Nigeria, Senegal, and South Africa.

Prostate cancer risk prediction in sub‑Saharan Africa: disease severity

We also tested how well PRS can distinguish between individuals who have more severe 
forms of CaP. Here, we focused on two different ways of classifying CaP as aggressive: 
tumor stages and Gleason scores. Tumor stage data were available for 1002 MADCaP 
cases and Gleason score data were available for 1068 MADCaP cases. Neither of these 
clinical phenotypes were available for UKBB samples. We classified CaP as aggressive 
if tumor stage = T4 (opposed to T1, T2, or T3) or Gleason score ≥ 8 (as opposed to 
Gleason score ≤7). ROC curves for aggressive CaP are shown in Fig. 4d–f. When risk 
scores were used to distinguish between individuals with different tumor stages, the 
Schumacher PRS yielded an AUC statistic of 0.510 (95% CI 0.438–0.578), the Conti 
PRS yielded an AUC statistic of 0.505 (95% CI 0.435–0.574), and PHS46+African risk 
score yielded an AUC statistic of 0.568 (95% CI 0.494–0.631). When risk scores were 
used to distinguish between individuals with different Gleason scores, the Schumacher 
PRS yielded an AUC statistic of 0.511 (95% CI 0.475–0.547), the Conti PRS yielded an 
AUC statistic of 0.523 (95% CI 0.488–0.559), and PHS46+African risk score yielded an 
AUC statistic of 0.515 (95% CI 0.479–0.550). Comparisons of individuals in the top PRS 
decile to individuals in the middle 20% of each PRS distribution yielded only modest 
odds ratios. ORs ranged between 0.96 and 1.14 when tumor stages were used to classify 
CaP as aggressive, and ORs ranged between 1.13 and 1.26 when Gleason scores were 
used to classify CaP as aggressive (Additional file 3: Table S3). Overall, our findings indi-
cate that polygenic predictors provide only minimal insight into the histopathology of 
CaP in African men.

Discussion
Distributions of PRS vary across continental populations. Despite appreciable allele fre-
quency differences between continents, PRS variants are not enriched for signatures of 
selection acting on new mutations (i.e., hard selective sweeps). This suggests that allele 
frequency differences at CaP-associated loci are largely driven by genetic drift and other 
neutral evolutionary processes (e.g., founder effects and population bottlenecks). Allele 
frequency differences also contribute to the relative effectiveness of PRS in different 
populations.

Using British data from the UKBB and SSA data from the MADCaP Network, we 
examined how well genetic predictions of CaP generalize across populations. PRS were 
much more effective at predicting case vs. control status in men of European descent 
than in men of African descent. SNP ascertainment bias incurred by using genetic vari-
ants discovered in European populations likely contributes to these differences in PRS 
[26, 31, 50]. In agreement with recent findings [52], our results indicate that ancestry-
matched risk scores outperform risk scores that are not ancestry-matched. There is 
increasing evidence that the generalizability of polygenic predictions drops off in pro-
portion to the genetic distance between populations [53]. Consistent with the major 
geographic sources of African American DNA [54, 55], inclusion of genetic informa-
tion from African Americans improved PRS performance more for West Africans than 
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South Africans. Although genetic predictions of CaP risk are improved by using ances-
try-matched PRS weights, we note that these improvements do not raise AUC statistics 
beyond 0.611 for SSA data. Because of this, we caution that existing PRS have only a 
modest ability to predict CaP risks in African men. Genetic architectures of diseases like 
CaP can differ between populations [56], and many genetic variants that contribute to 
risks of CaP in SSA remain undiscovered.

Additional factors may contribute to the observed differences in PRS performance. 
First, genotype data comes from arrays (i.e., SNP ascertainment bias exists) [26]. Sec-
ond, imputation accuracy varies across populations and the use of proxy variants can 
reduce the effectiveness of each PRS [57]. Third, clinical diagnosis of CaP cases can differ 
across study sites [47]. Fourth, the studies used to generate each PRS have different sam-
ple sizes, and this affects the weightings of individual PRS variants [58].

PRS performance was poorer for tumor stage and Gleason score than for case/con-
trol status. This finding is not surprising, given the relative paucity of GWAS loci that 
have been associated with aggressive or early-onset CaP [59]. Importantly, published 
PRS use germline variants, most of which have European minor allele frequencies that 
are above 5% (Fig.  2a). Somatic mutations in prostate tissue also contribute to cancer 
risk [60], but their effects are generally not included in PRS calculations. Because of this, 
the relatively low AUC statistics and ORs shown in Additional file 3: Table S3 suggest 
that rare germline variants and/or somatic mutations may be important drivers of CaP 
aggressiveness.

Conclusions
Here, we found that genetic predictions of CaP risks perform poorly if the study sample 
does not match the ancestry of the original GWAS. In a clinical setting, predictions are 
likely to benefit from the inclusion of additional factors (e.g., family history, age, and PSA 
levels). Going forward, transferability of genetic risk scores can be improved by incorpo-
rating evolutionary [50] as well as linkage disequilibrium [61] information to better infer 
effect sizes of risk alleles in understudied populations. Unless well-powered GWAS are 
undertaken in diverse populations, the accuracy and utility of PRS will be sub-optimal, 
exacerbating disparities in risk prediction and subsequent disease management [62].

Methods
Population genetic datasets

We extracted genotype and phenotype data for 191,941 British males of European 
descent from the UKBB [63, 64] (3049 CaP cases and 188,892 controls, self-reported 
code 1044 in data field 20001). African men aged 40 years or older were recruited in a 
multicenter, hospital-based case-control study from seven MADCaP sites between 2016 
and 2019 [47]: the Hôpital Général de Grand Yoff/Institut de Formation et de Recherche 
en Urologie in Dakar, Senegal (HOGGY); 37 Military Hospital in Accra, Ghana (37 Mili-
tary); Korle-Bu Teaching Hospital in Accra, Ghana (KBTH); University College Hospi-
tal in Ibadan, Nigeria (UCH); University of Abuja Teaching Hospital in Abuja, Nigeria 
(UATH); Wits Health Consortium/National Health Laboratory Services in Johannes-
burg, South Africa (NHLS/WITS); and Stellenbosch University in Cape Town, South 
Africa (SU). Many African cases first present with symptoms, which may account for 
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the high proportions of aggressive CaP shown in Table 1. CaP cases and controls were 
frequency matched by age and study site. African individuals were genotyped using the 
MADCaP Array, a custom genotyping platform optimized for detecting genetic associa-
tions with prostate cancer in sub-Saharan African populations [48]. Details about sam-
ple accrual can be found in Andrews et al. [47], and details about SNP calling and QC 
filtering be found in Harlemon et  al. [48]. MADCaP samples were excluded if marker 
missingness exceeded 5%. A total of 2631 MADCaP samples were analyzed in down-
stream analyses (1298 CaP cases and 1333 controls, Table  1). Two-dimensional MDS 
and ADMIXTURE [65] plots were used to visualize the population structure of MAD-
CaP samples (optimal K = 3, as per [48]). Self-reported British cases and controls from 
the UKBB cohort were analyzed. We excluded UKBB individuals who were outliers in 
PCA space (i.e., all UKBB individuals were required to be within two standard deviations 
of the mean for both of the first two principal components). To avoid artifacts, UKBB 
data were randomly downsampled to yield similar ratios of cases to controls as MAD-
CaP Network data. After filtering, this yielded 5387 samples from the UKBB (2700 CaP 
cases and 2687 controls).

Polygenic risk score (PRS) calculations

PRS were generated using sets of CaP-associated loci as per Schumacher et  al. [38], 
Conti et al. [44], and Karunamuni et al. [46]. Proxy SNPs were imputed for PRS variants 
that were not directly genotyped in the UKBB and MADCaP Network datasets using the 
LDproxy function of LDlink [66] to identify genotyped SNPs in linkage disequilibrium 
with PRS variants. PRS variants that lacked proxies (r2 < 0.4) were excluded. The indel 
rs11293876 is absent from dbSNP, causing the Schumacher PRS to shrink to a total of 
146 markers. As per [67], genotypes at rs72725854 were inferred using a pair of closely 
linked markers (rs114798100 and rs1119069), as opposed to a single proxy, causing the 
Conti PRS to expand to a total of 270 markers. Details about PRS variants and proxies are 
listed in Additional file 1: Table S1. Note that the ideal proxy for one continental dataset 
need not be the ideal proxy for another continental dataset. Two different approaches 
were used to obtain PRS variants. First, we obtained the optimal set of PRS variants 
for each continental dataset (i.e., the best set of predictors for Europe and Africa). Sec-
ond, we obtained a shared set of PRS variants for both continental populations (i.e., an 
identical set of variants for both datasets). Focusing on optimal sets of PRS variants for 
Europe and Africa, UKBB genotype data were available for 93% of Schumacher variants, 
91% of Conti variants, and 91% of PHS46+African variants (including proxies). Simi-
larly, MADCaP genotype data were available for 94% of Schumacher variants, 83% of 
Conti variants, and 98% of PHS46+African variants (including proxies). Focusing on 
shared variants found in both continental datasets: genotype data were available for 89% 
of Schumacher variants, 82% of Conti variants, and 86% of PHS46+African variants 
(including proxies). All original PRS variants were used when risk scores were calculated 
for males from the 1KGP.

Standard approaches were used to generate PRS for each individual [68]. For each 
PRS variant, risk alleles were counted for each individual; i.e., the allele dose at locus i in 
individual j (di,j) ranges from 0 to 2. Mean counts of risk alleles for each study site were 
used to fill any missing genotype data. This was done to avoid biases whereby individuals 
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with more missing data have lower polygenic scores. In practice, missing data had lit-
tle effect, as overall missingness rates of PRS variants were low for each sample (0.67% 
on average). For each risk score, allele doses were weighted using adjusted effect sizes: 
βi = ln (ORi)× r2i  (where r2i  indicates how well proxy SNPs tag PRS variants). PRS were 
generated for each individual by summing across L loci: PRSj = L

i=1 di,jβi . As per [50], 
raw risk scores were converted to a standardized scale across all samples (mean of 0 
and a standard deviation of 1). PRS were calculated for 1233 males from phase 3 of the 
1KGP [69], 5387 British males from the UKBB, and 2631 African males from the MAD-
CaP Network. Note that the Conti PRS contains ancestry-specific weights (i.e., different 
effect sizes for individuals of European, African, Asian, and Hispanic descent), as well as 
multi-ancestry PRS weights. Additional details about these weights can be found in Sup-
plementary Table S4 of [44].

Scans of selection

Integrated haplotype scores (iHS) quantify signatures of recent natural selection [70]. 
PRS variants from the Conti, Schumacher, and PHS46+African PRS were merged with 
hapbin [71] iHS data from Great Britain (GBR) and Nigeria (YRI). iHS statistics were 
available for autosomal SNPs with minor allele frequencies > 0.05. To test whether PRS 
variants were enriched for signatures of selection, we compared iHS statistics at CaP-
associated loci to genome-wide distributions of iHS statistics.

Signals of polygenic adaptation for sets of CaP-associated loci were also tested using 
PolyGraph [49]. PolyGraph infers branch-specific selection parameters on admixture 
graphs using a Markov Chain Monte Carlo (MCMC) algorithm. Data requirements of 
PolyGraph are summary statistics from GWAS for a trait, a set of neutral SNPs, ancestral 
state information, and an admixture graph of the populations being studied. SNPSnap 
[72] was used to obtain frequency-matched neutral SNPs. MixMapper [73] was used to 
build the admixture graph. Phase 3 data from the 1KGP [69] was used as a reference 
for building admixture graphs. 1KGP population codes are as follows: British in England 
and Scotland (GBR), Iberian in Spain (IBS), Yoruba in Nigeria (YRI), Mende in Sierra 
Leone (MSL), Bengali from Bangladesh (BEB), Sri Lankan Tamil (STU), Han Chinese in 
Beijing (CHB), Japanese in Tokyo (JPT), and Peruvian from Lima (PEL).

Tumor stages and Gleason scores

Standardized procedures were used to collect clinical data on CaP and quantify the 
aggressiveness of CaP in MADCaP samples [47]. Clinical tumor stages refer to whether 
cancers are restricted to the prostate gland [74], and biopsy Gleason scores indicate 
whether biopsies reveal abnormal histology patterns [75]. Using recently published 
guidelines [76], we classified CaP as aggressive if tumor stage = T4 or Gleason score ≥ 8. 
Analyses were run separately for tumor stage and Gleason score classifiers. Tumor stage 
and Gleason score data were available for 1002 and 1068 MADCaP CaP cases, respec-
tively. Tumor stage and Gleason score data were not available for UKBB cases.

Statistical analyses

Two-sided binomial tests were used to infer whether European or SSA allele frequen-
cies are closer to 0.5 (note that SNP heritabilities are maximized at intermediate allele 
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frequencies [35]). This novel approach involved comparing counts of SNPs in the 
shaded bow-tie region of Fig. 2a to counts of SNPs lying outside the shaded region. 
PRS distributions for continental populations were compared using Mann-Whitney 
U tests. Using R, one-sample Kolmogorov-Smirnov goodness of fit tests were used 
to infer whether iHS percentiles of PRS variants are uniformly distributed. Sets of 
frequency-matched SNPs were used to infer p-values via PolyGraph [49]. ROC curves 
and AUC statistics were used to quantify how well PRS predict case/control status 
and CaP aggressiveness using logistic regression. Perfect classifiers have AUC statis-
tics of 1, and classifiers that are no better than chance have AUC statistics of 0.5. The 
pROC package in R was used to calculate 95% confidence intervals for AUC statistics, 
and DeLong’s test was used to test whether differences in AUC statistics were statis-
tically significant [77]. For each PRS and population combination, odds ratios were 
calculated using covariate-adjusted generalized linear models in R. Covariates used 
were age and the first 10 principal components for each continental dataset. Median 
values were used when age covariates were missing. All odds ratio calculations were 
population-specific (i.e., they focused on either the PRS distributions of UKBB or the 
PRS distributions of MADCaP samples, rather than a pooled PRS distribution).
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