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ABSTRACT

Vaccines developed against SARS-CoV-2 have
proven to be highly effective in preventing
symptomatic infection. Similarly, prior infec-
tion with SARS-CoV-2 has been shown to pro-
vide substantial protection against reinfection.
However, it has become apparent that the pro-
tection provided to an individual after either
vaccination or infection wanes over time.
Waning protection is driven by both waning
immunity over time since vaccination or initial
infection, and the evolution of new variants of
SARS-CoV-2. Both antibody and T/B-cells levels
have been investigated as potential correlates of

protection post-vaccination or post-infection.
The activity of antibodies and T/B-cells provide
some potential insight into the underlying
causes of waning protection. This review seeks
to summarise what is currently known about
the waning of protection provided by both
vaccination and/or prior infection, as well as
the current information on the respective anti-
body and T/B-cell responses.

Keywords: SARS-CoV-2; Waning immunity;
Breakthrough infection; Reinfection; Antibody
levels; Cellular immunity

N. Pooley (&) � M. Kisomi
Maverex Ltd, The Old Forge, Hoults Yard,
Newcastle-upon-Tyne NE6 2HL, UK
e-mail: nickpooley@maverex.com

S. S. Abdool Karim
Centre for the AIDS Programme of Research in
South Africa, Durban & Department of
Epidemiology, Columbia University, New York, USA

B. Combadière
Inserm U1135, Sorbonne Université, Centre
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Key Summary Points

The protection provided against SARS-
CoV-2 wanes over time post-vaccination
or post-initial infection.

Protection against severe disease is more
durable and takes longer to wane.

Waning protection is driven by both
waning immunity over time following
vaccination or initial infection and the
evolution of new variants of SARS-CoV-2.

The evidence supports the hypothesis that
protection is initially provided by
neutralising antibodies with the more
durable T-cell and B-cell responses,
providing a large amount of the
protection from severe infection.

Future studies should investigate the
impact of patient-specific variables, such
as age, ethnicity, comorbidities, and
concomitant medications, on the
effectiveness of the vaccines, as well as
prior infection.

An established process is needed to
evaluate the durability and protection
provided by new vaccines designed with
new variants so that they may be
evaluated and rolled out in time for peaks
in SARS-CoV-2-related burden.

INTRODUCTION

Randomised placebo-controlled trials showed
that the initial efficacy of vaccines in preventing
symptomatic SARS-CoV-2 infection ranges from
66 to 95% [1–9]. However, this high efficacy
wanes over time, resulting in substantive
reductions in vaccine protection [10, 11]. Simi-
larly, while prior infection with SARS-CoV-2 can
provide a high level of protection (87%) from
re-infection [12], this protection declines over
time. Despite waning protection against mild to

moderate SARS-CoV-2 infection, protection
against severe infection appears to be more
durable, for underlying reasons which are not
yet fully understood [10].

Waning protection is driven by both waning
immunity over time following vaccination or
initial infection and the evolution of new vari-
ants of SARS-CoV-2. Immunity is not a singular
state: a wide range of immune states now exist
globally, including those who are infection and
vaccination-naı̈ve, those who are fully vacci-
nated with or without booster shots, those
recovered from one or more prior infections,
and those who have both been vaccinated and
recovered from prior infection. This is quite
different from the context in which COVID-19
vaccines were first introduced.

Waning immunity is compounded by the
evolution of new SARS-CoV-2 variants with
greater immune escape. The first available vac-
cines for SARS-CoV-2 were developed against
the original D614 variant, but multiple new
variants of concern (VOC) have since arisen and
spread globally [13]. The Omicron variant
emerged at the end of November 2021, and the
current global epidemiology of SARS-CoV-2 is
characterised by the continued rapid global
spread of Omicron sub-lineages. Updated SARS-
CoV-2 vaccines, which incorporate the spike
protein of the variants Omicron BA.1, BA.4, and
BA.5 and the SARS-CoV-2 original strain, have
received regulatory approval [14, 15]. The
World Health Organization (WHO) has to date
named five of the genetically mutated SARS-
CoV-2 viruses as VOC, the Alpha, Beta, Gamma,
Delta and Omicron variants [13]. At the time of
publication, Omicron and its various sub-lin-
eages were the only currently recognised VOC
to be circulating [13]. Each VOC is designated
based on mutations compared to the ancestral
strain, with varying levels of immune escape
against both previous infection and
vaccination.

The aim of this review was to assimilate the
current knowledge on the waning of protection
by both vaccination and/or prior infection, as
well as antibody and T/B-cell responses. A
comprehensive understanding of these charac-
teristics is required to support future vaccine
products and programme development. This



article is based on previously conducted studies
and does not contain any new studies with
human participants or animals performed by
any of the authors. Ethics approval was not
required for this narrative review.

WANING VACCINE EFFICACY
AND EFFECTIVENESS

Both the effectiveness and the efficacy of vac-
cines developed against SARS-CoV-2 have been
extensively studied. Efficacy refers to the per-
formance of the vaccines under ideal and con-
trolled circumstances, for example clinical
trials, compared with effectiveness, which
measures vaccine performance under real-world
conditions, such as observational trials. It is
now well-established that the vaccine effec-
tiveness of a primary series of SARS-CoV-2 vac-
cination wanes over time, resulting in an
increased risk of breakthrough infection. The
waning of vaccine efficacy and effectiveness
have been assessed in mRNA vaccines
(BNT162b2 [16–30] and mRNA-1273
[20, 25, 30, 31]), adenoviral vector vaccines
(ChAdOx1-S [16, 20, 28, 32] and Ad26.COV2.S
[20, 25, 27, 30]), and an inactivated virus vac-
cine (CoronaVac) [22]. Additionally, studies
have reported combined results [33, 34].

Overall, every vaccine platform studied has
shown reduced vaccine effectiveness against
symptomatic infection over time [18, 27, 28].
Two systematic reviews and meta-analyses have
summarised the rate at which protection
against infection (both asymptomatic and
symptomatic) waned in SARS-CoV-2 vaccines,
regardless of vaccine platform (Table 1). Feikin
et al.[10] found a 23% decrease in protection
over 6 months post-vaccination, while Ssen-
tongo et al.[11] found a decline in protection
from 83 to 21% over 5 months. It was noted
that the latter analysis relied on only two
studies for the latest timepoint [11].

Despite substantial waning protection
against symptomatic SARS-CoV-2 infection,
most vaccines are still highly efficacious in
preventing severe disease, hospitalisation, and
death over time [16, 19, 20, 22, 30, 32, 33]. In
the meta-analysis on severe infection by Feikin

et al. [10], vaccine effectiveness declined by
only 9.0% over the first 6 months post-full
vaccination (Table 1) [10]. When limited to
severe disease, Ssentongo et al. [11] found no
evidence of decline at 5 months post-vaccina-
tion (Table 1).

Both meta-analyses represent studies in
which multiple variants were circulating whilst
the studies were performed, and that were
conducted after the emergence of the Delta
variant but before Omicron [10, 11].

In some studies, high-risk groups, including
older people and persons with immunosup-
pression [16, 25, 35], have been observed to
have faster rates of waning protection [16].
However, reports on this observation have not
been consistent in their findings. For example,
there have been some studies which have not
found an impact of age on waning vaccine
effectiveness [18, 29], and no statistically sig-
nificant effect of age on the rate at which
immunity waned was found in the meta-anal-
ysis by Feikin et al. [10].

The emergence and broad circulation of a
potentially new VOC presents an additional
variable which should be accounted for when
discussing the durability of protection provided
by vaccines, particularly in the case of the
Omicron variant, where the virus-neutralizing
activity of vaccine-induced antibodies is sub-
stantially lower compared to the earlier VOCs
[18, 36]. Effectiveness as low as, - 2.7% (95%
CI - 4.2 to - 1.2), 8.8% (95% CI 7.0–10.5) and
14.9% (95% CI 3.9–24.7) against Omicron at
25 ? weeks post-full vaccination has been
reported for the ChAdOx1, BNT162b2, and
mRNA-1273 vaccines, respectively [37]. There
is, however, still evidence that, despite a
reduction in effectiveness against any Omicron
infections, vaccination continues to provide
substantial protection against severe infections.
A test-negative case–control study has shown
that the effectiveness against symptomatic
Omicron infections of 3 doses of mRNA vaccine
is 54% (95% CI 50.4, 57.3). Despite the reduced
level of protection against symptomatic infec-
tion, the effectiveness against severe, critical, or
fatal Omicron infections has remained remark-
ably high at 92.5% (95% CI 84.4, 96.3) [38].
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Table 1 Summarised results of meta-analyses of waning vaccine efficacy/effectiveness over time

Author year Vaccines evaluated Severity of
infection

Result

Feikin (2022)

[10]

BNT162b2 (n = 4); mRNA-1273 (n = 3);

Ad26.COV2.S (n = 2); ChAdOx1-S (n = 1)

Any

infectiona
Decrease % in VE (95% CE)

from 1 to 6 months

All ages: 23.3% (12.1–38.1)

p = 0.0003

BNT162b2 (n = 4); mRNA-1273 (n = 2) Decrease % in VE (95% CE)

from 1 to 6 months

C 50 years: 18.1% (7.5–35.1)

p = 0.003

BNT162b2 (n = 3); mRNA-1273 (n = 2);

Ad26.COV2.S (n = 2); ChAdOx1-S (n = 1)

Symptomatic

diseasea
Decrease % in VE (95% CE)

from 1 to 6 months

All ages: 27.8% (13.0–51.5)

p = 0.0005

BNT162b2 (n = 1); mRNA-1273 (n = 1);

Ad26.COV2.S (n = 1)

Decrease % in VE (95% CE)

from 1–6 months

C 50 years: 36.1% (16.3–70.5)

p = 0.008

BNT162b2 (n = 7); mRNA-1273 (n = 4);

Ad26.COV2.S (n = 3)

Severe

diseasea
Decrease % in VE (95% CE)

from 1 to 6 months

All ages: 9.9% (4.8–17.1)

p = 0.0001

BNT162b2 (n = 5); mRNA-1273 (n = 3);

Ad26.COV2.S (n = 1)

Decrease % in VE (95% CE)

from 1 to 6 months

C 50 years: 7.7% (2.7–15.8)

p = 0.0032

Ssentongo

(2022) [11]

BNT162b2 (n = 9); mRNA-1273 (n = 6);

Ad26.COV2.S (n = 2)

Any

infectiona
VE% (95% CE) at 1 month

post-vaccination

All ages: 82.5% (74.8–90.2)

BNT162b2 (n = 3); mRNA-1273 (n = 1) VE% (95% CE) at 4 months

post-vaccination

All ages: 71.4% (52.3–90.39)

BNT162b2 (n = 2) VE% (95% CE) at 5 months

post-vaccination

All ages: 21.8% (- 24.2 to

67.8)
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WANING IN POST-INFECTION
PROTECTION

Multiple systematic and pragmatic literature
reviews have investigated the effectiveness of
natural post-infection protection [12, 39–43].
Published meta-analyses show consistently high
levels of protection (81.0–87.0%) provided by
prior infection, even over 7 months post-initial
infection (Table 2) [12, 41, 43]. One meta-
analysis assessed the estimated protection pro-
vided by prior infection from either any rein-
fection or symptomatic reinfection and found
similar levels of protection (* 87.0%) [12].
None of the three meta-analyses reported an
analysis by variant, which would be challenging
to study, since variants of both the initial
infection and the reinfection must be consid-
ered [12, 41, 43].

Five studies investigating the risk of reinfec-
tion over time found no statistically significant
waning in protection from reinfection (Table 3),
[28, 44–47] with the protection from reinfection
at the final study follow-up estimated to range
from 69.0 to 93.0%. The protection against
reinfection at[1 year was estimated to be
69.0% in the study with the longest follow-up
[28]. The estimated protection against milder
versus more severe infections was only com-
pared in two studies, which produced contra-
dictory results [45, 47].

Nordstrom et al. (2022) found the estimated
protection against hospitalisation (which the
study stated was not affected by limitations
associated with selection bias) was lower than
protection against any infection at both 3–-
6 months and C 9 months, although a larger
study should be performed to achieve a more
accurate result, as hospitalisation events in this
study were rare [45]. Sheehan et al. (2021) found

Table 1 continued

Author
year

Vaccines evaluated Severity of
infection

Result

BNT162b2 (n = 8); mRNA-1273 (n = 4) Symptomatic

infectiona
VE% (95% CE) at 1 month post-

vaccination

All ages: 93.7% (93.3–94.2)

BNT162b2 (n = 2) VE% (95% CE) at 4 months post-

vaccination

All ages: 63.6% (24.2–103.0)

BNT162b2 (n = 7); mRNA-1273 (n = 2);

Ad26.COV2.S (n2)
Severe diseasea VE% (95% CE) at 1 month post-

vaccination

All ages: 85.0% (71.6–98.3)

BNT162b2 (n = 3); mRNA-1273 (n = 1);

Ad26.COV2.S (n = 1)

VE% (95% CE) at 4 months post-

vaccination

All ages: 78.4% (63.4–93.5)

BNT162b2 (n = 2) VE% (95% CE) at 5 months post-

vaccination

All ages: 89.5 (89.5–89.5)

mRNA messenger ribonucleic acid, VE vaccine efficacy/effectiveness
aThe results represent studies in which there were a mixture of variants represented, all studies were performed before the
emergence of the omicron variant
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that the estimated protection against symp-
tomatic infection (71%) was higher than pro-
tection against any infection (60%) at
90–150 days post-infection, although statistical
significance was not assessed [47]. This was not
seen at either the 151–210- or C 210-day time-
points, where estimated protection was * 90%
against both types of infection [47].

Only one study, Hall et al. (2022), took place
during a time period in which the Delta VOC
predominated [28]. The original infections
included in the study occurred prior to the
emergence and spread of Delta, which could
explain the substantial, but not statistically
significant, reduction in protection (Table 3)
[28]. The other studies all took place prior to the
widespread prevalence and predominance of
VOC [44–47].

The relative protection provided by natural
immunity compared to vaccination has been
assessed in a systematic review and meta-anal-
ysis [42], which categorised studies into ran-
domised controlled trials (RCTs) (3 studies)
[48–50] and observational studies (4 studies)
[51–54]. In the RCTs, no statistically significant
difference [overall RR of 0.59 (95% CI
0.04–8.28, P = 0.69)] between vaccination and
natural immunity was found, while in the
observational studies, natural immunity pro-
vided better protection [3.71 (95% CI 1.75–7.86;
P = 0.0006)] against any infection [42].

Some preliminary clinical trial evidence casts
doubt on the ability of prior infection with an
earlier variant of SARS-CoV-2 to provide pro-
tection against a different, newer VOC [55]. A
trial assessing the efficacy of NVX-CoV2373
against the B.1.351 variant found that prior
infection with a pre-B.1.351 virus did not
appear to reduce the risk of Covid-19 due to
subsequent infection with B.1.351 variants
among placebo recipients during the initial
2 months of follow-up [55]. Data from a test-
negative, case–control study from Qatar found
that the effectiveness of previous infection in
preventing reinfection ranged from 90.2% (95%
CI 60.2–97.6) against the alpha variant, 85.7%
(95% CI 75.8–91.7) against the beta variant and
92.0% (95% CI 87.9–94.7) against the delta
variant, while against the Omicron variants,
protection was reduced to 56.0% (95% CI

50.6–60.9). Prior infection did provide robust
protection against hospitalisation or death
regardless of variant, including 87.8% protec-
tion against hospitalisation due to the Omicron
variant [56]. A separate analysis found that prior
infection and a median interval of 324 days
prior to reinfection, provided 50.8% (45.4–55.7)
protection against symptomatic infections and
71.6% (15.7–90.4) protection against severe,
critical, or fatal infections with the Omicron
variant [38].

BOOSTED AND HYBRID IMMUNITY

Several studies have demonstrated that a single
booster dose restores protection to the levels
seen soon after either full vaccination or
recovery from SARS-CoV-2 infection, including
against the Omicron variant [18, 29, 57, 58].
However, protection against symptomatic
infection provided by current mRNA boosters,
compared to no booster dose, was higher
against Delta (93.5–97.0%) than Omicron
(62.4–67.3%) [18, 37].

Heterologous booster doses, in which the
booster vaccine is different to the original vac-
cine series, may in some cases provide superior
protection to homologous boosters [37]. Vacci-
nation with a primary two-dose series of ChA-
dOx1, followed by a booster dose of ChAdOx1,
provided protection against Omicron of only
46.7% (95% CI 34.3–56.7) at 5–9 weeks post-
booster vaccination versus 52.9% (95% CI
52.1–53.7) and 60.9% (95% CI 59.7–62.1) at the
same timepoint post-booster with BNT162b2
and mRNA-1273, respectively [37]. No benefit
of a heterologous booster was observed when
the two mRNA vaccines were given sequentially
[37].

The advantages of a fourth booster dose of
BNT162b2 against Omicron were investigated
in a recent observational study in Israel [59].
While a two-fold increase in protection against
confirmed SARS-CoV-2 infection was seen at
4 weeks post-booster vaccination, the effect had
waned by 8 weeks. However, against severe
cases of SARS-CoV-2, the fourth dose provided a
four-fold increase in effectiveness at 6 weeks
with no results provided for 8 weeks [59].
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Table 2 Summary of meta-analyses of protection from reinfection provided by prior infection

Author year Studies in meta-
analysis

Time to reinfection Severity of
reinfection

Estimated protection (%,
95% CI)

Mao (2022)

[12]

10 C 90 days (C 45 days with

likely exposure)

Any reinfectiona 87.0% (83.2–90.0%)

4 Symptomatic

reinfectiona
87.2% (83.1–90.3%)

Chivese (2022)

[43]

5 C 7 months Any reinfectiona 81.0% (68.0–89%)

Petras (2021)

[41]

15 Mean days: 234 (180–360) Any reinfectiona 87.0% (82.0–91.0%)

aNo analysis by variant of concern was possible, most studies represent an initial infection by the wild-type SARS-CoV-2

Table 3 Estimated protection from reinfection over time from published studies

Author, year Measure of initial
infection

Severity of reinfection Estimated protection by time (%, 95%
CI)

Hansen (2021) [44] Any PCR positive Any PCR positivea 3–6 months: 79.3 (74.4–83.3)

C 7 months: 77.7 (70.9–82.9)

Nordstrom (2022)

[45]

Any documented infection Any document infectionb 3–6 months: 96.0 (95.0–96.0)

C 9 months: 93.0 (92.0–94.0)

Hospitalisationb 3–6 months: 89 (86.0–91.0)

C 9 months: 78 (66.0–85.0)

Spicer (2022) [46] Any PCR positive Any PCR positivea 91–120 days: 70.1 (65.6–74.0)

241–270 days: 79.8 (65.0–88.4)

Sheehan (2021) [47] Any PCR positive Any PCR positivea 90–150 days: 60.0

C 210 days: 93.9

Any PCR positive Symptomatic PCR

positivea
90–150 days: 71.0

C 210 days: 91.5

Hall (2022) [28] Any PCR positive Any PCR positivec B 1 year: 86.0 (0.81 to 0.89)

[1 year: 69.0 (0.38 to 0.84)

aStudy performed prior to widespread VOC
bStudy performed during three waves of SARS-CoV-2: prior to widespread sequencing, prior to alpha variant becoming
dominant, and after the alpha variant became dominant
cThe initial infections occurred prior to widespread VOC, while the follow-up occurred during a period when the delta
variant was predominant
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Hybrid immunity, in which people are either
vaccinated after a prior SARS-CoV-2 infection or
have a breakthrough infection after vaccina-
tion, is an increasingly common immune status
[28]. The combination effect seems to provide
greater protection than natural immunity on its
own ([90.0%), with no waning C 1 year after
infection or[6 months after vaccination [28].

Relative protection provided by hybrid
immunity versus natural immunity was inves-
tigated in a meta-analysis. In the three RCTs, no
statistically significant difference between
hybrid immunity and natural immunity was
found, whereas in the four observational stud-
ies, hybrid immunity provided statistically sig-
nificantly better protection against infection
(risk ratio 1.94 95% CI (1.17–3.21), P = 0.01]
[42].

Two additional observational studies sup-
ported the conclusion that hybrid immunity
gives greater protection than natural immunity.
One study found that one-dose hybrid immu-
nity with either ChAdOx1, BNT162b2, or
mRNA-1273, was associated with a 58.0% lower
risk of SARS-CoV-2 reinfection than natural
immunity for up to 2 months, with evidence of
attenuation thereafter up to the 9-month fol-
low-up. Two-dose hybrid immunity improved
this further to a 66.0% lower risk of SARS-CoV-2
reinfection than natural immunity, with no
statistically significant attenuation up to
9 months [45]. In the second study, the patients
who had recovered from SARS-CoV-2 and

received one or two doses of the BNT162b2
vaccine had a significantly lower risk of recur-
rent infection. Vaccine effectiveness in this
previously infected population was estimated to
be 82% (95% CI 80–84) in patients between 16
and 64 years old and 60% (95% CI 36–76)
among those who were over 65 years old [60].

ANTIBODY DYNAMICS OVER TIME

Levels of neutralising antibodies have been
shown to correlate with protection from symp-
tomatic infection [61, 62]. Understanding the
antibody dynamics after initial SARS-CoV-2
infection and vaccination is crucial for esti-
mating the potential levels of protection
provided.

Post-Initial Infection

In a systematic review and meta-analysis of
adaptive immunity and reinfection after recov-
ery from SARS-CoV-2 over the first 6–8 months
post-infection by Chivese et al., 90.0% of indi-
viduals had evidence of SARS-CoV-2 specific
immunological memory [43].

Anti-receptor binding domain (RBD)
immunoglobulins (Ig) IgM and IgA are the main
contributors to neutralization in the early phase
of SARS-CoV-2 infection, while anti-RBD IgG
represents most of the neutralising activity in

Table 4 Summary of data synthesis from Chivese et al. (2022)

Author, year Timepoint T-cell subset Prevalence of detectable T-cells

Chivese et al. (2022) [43] B 1 month CD4 100% (95% CI 83.9, 100.0)

1–2 months 93.3% (95% CI 70.2, 98.8)

4.5 months 78.8% (95% CI 65.1, 88.0)

6–8 months 91.7% (95% CI 78.2, 97.1)

B 1 month CD8 70.0% (95% CI 48.1, 85.5)

1–2 months 86.7% (95% CI 62.1, 96.3)

4.5 months 57.4% (95% CI 43.3, 70.5)

6–8 months 50.0% (95% CI 34.5, 65.5)
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the late phase of infection and during conva-
lescence [63–65].

Levels of neutralising antibodies decline over
the first 4 months post-initial SARS-CoV-2
infection, especially for IgA and IgM, with less
evidence of a substantial decline over the same
time period for IgG [66]. Despite these initial
declines in some antibodies, the neutralising
antibody response after natural infection per-
sists for up to 18 months, even following mild
infection [63, 67].

However, the initial levels and durability of
the neutralising antibody response depended
upon the severity of the initial SARS-CoV-2
infection. Mild SARS-CoV-2 infections gave
heterogeneous neutralising antibody titres and
patients with asymptomatic SARS-CoV-2 had
low titres or no measurable response at all
[63, 68].

Antibodies elicited by initial SARS-CoV-2
variants show reduced activity against the RBD
proteins of new variants of concern, which
correlates with the reduction in protection
provided by prior infection with an initial
variant [67, 69]. One small study found that sera
and plasma collected within 2 months of con-
valescence from mild or severe SARS-CoV-2
inhibited entry driven by the Omicron viral
spike protein 80-fold less efficiently as com-
pared with the B.1 spike (which is identical to
the S protein of the Wuhan-Hu-1 isolate, except
for the presence of mutation D614G), and
44-fold less efficiently compared with the Delta
spike [69].

Post-Vaccination

Antibody dynamics post-vaccination depend on
the vaccine used. The mRNA vaccines,
BNT162b2 and mRNA-1273, produce a high
peak neutralising antibody response which then
rapidly declines within 6–8 months post-vacci-
nation [70–73], while the adenoviral vector
vaccines have a lower initial antibody response
[74]. The inactivated virus vaccine, CoronaVac,
also produces a lower initial antibody response
than mRNA vaccines, and this level falls below
the positive cut-off by 4 months post-vaccina-
tion [75, 76].

Multiple factors, including age and underly-
ing conditions, can affect post-vaccination
antibody levels and their longer-term dynamics
[35]. The impact of age on post-vaccination
levels have been seen to vary by vaccine with
age over 50 years, being associated with lower
IgG levels in people receiving BNT162b2 but
not in those receiving mRNA-1273 [77]. The
impact of various immunocompromised indi-
viduals and associated factors have been inves-
tigated in a prospective study. Seropositivity in
participants with various immunocompromis-
ing conditions was statistically significantly
lower than in healthcare workers [78]. Factors
associated with poor seropositivity included
age, greater immunosuppression, time since
vaccination, anti-CD20 monoclonal antibody
levels, and type of vaccination, with mRNA-
1273 being superior to BNT162b2 or adenovirus
vector vaccines [78].

Antibodies generated by the currently avail-
able vaccines, designed against the original
D614 SARS-CoV-2 strain, produce antibodies
with a substantially reduced recognition of, and
activity against, new variants of concern, par-
ticularly Omicron [69, 79]. Sera and plasma
collected mostly within 1 month post-vaccina-
tion with BNT162b2 has been seen to inhibit
entry by the Omicron spike protein, with
34-fold lower efficiency than the B.1. spike, and
with 12-fold lower efficiency than the Delta
spike [69]. Furthermore, sera and plasma col-
lected 1 month after heterologous vaccination
with a first dose of ChAdOx1 and a second dose
of BNT162b2 was 14-fold less efficient when
compared with the B.1. spike, but only three-
fold less efficient relative to the Delta spike [69].

Booster doses of homologous and heterolo-
gous vaccines seem to be effective in recovering
the neutralising antibody response in both fully
vaccinated people and those with prior SARS-
CoV-2 infections against variants of SARS-CoV-
2, including the Omicron variant
[58, 69, 80–86]. A recent meta-analysis con-
cluded that heterologous immunisation was
more effective than homologous immunisation
in increasing antibody levels [87].
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T-CELL AND MEMORY B-CELL
RESPONSE OVER TIME

Although the contribution of T-cells and
memory B-cells to protection against SARS-CoV-
2 is still to be fully established, there is good
evidence to support important roles of CD4 and
CD8 virus-specific T-cells, as well as memory
B-cells, in their response to SARS-CoV-2 infec-
tion [43, 88–94]. It must be noted that there is
currently a lack of data on the tissue-associated
(lung, lymph node, mucosa) T- and B-cell
memory in response to SARS-CoV-2.

Post-Initial Infection

A cellular response has been shown to occur
without an antibody response, although the
overall relationship between the two response
types is not fully understood. The concept of
‘‘cellular sensitization without seroconversion’’
refers to people who have developed a virus-
specific cellular response, while not exhibiting
the presence of neutralizing antibodies post-in-
fection with SARS-CoV-2 [93, 95–98]. However,
a study in healthcare workers found that only
1.5% (16/1076) of seronegative individuals
responded to a SARS-CoV-2-specific peptide
pool, which argues against widespread genera-
tion of T-cell immunity in the absence of sero-
conversion [99].

A recent systematic literature review and
meta-analysis has combined available studies
reporting the prevalence of T-cells and memory
B-cells after SARS-CoV-2 infection [43]. Synthe-
sis of the four reported studies, with a total of
118 participants [100–103], showed the preva-
lence of CD4 ? T-cells reduced slightly after
6–8 months to 91.7%, while the prevalence of
CD8 ? T cells fell significantly to 50% (Table 4)
[43]. Two additional studies reported a preva-
lence of SARS-CoV-2-specific memory B-cells of
92.9% (95% CI 68.5–98.7) for anti-spike-RBD
class-switched memory B-cells at 2–3 months
post-recovery and 80.6% (95% CI 65.0–90.2)
having RBD-specific memory B-cells at 4–-
5 months [43].

Durability up to 1 year post-infection has
been demonstrated in some patients by the

maintained prevalence and induction of virus-
specific CD4 ? and CD8 ? T-cells, and memory
B-cells [104–106].

The severity of the original SARS-CoV-2
infection can affect the cellular response; T-cell
responses are significantly higher at 1-year post-
in patients with severe infection compared to
patients with milder infections [99, 104]. How-
ever, one study showed that, even when the
magnitudes of both humoral and cellular
immune responses were dependent on disease
severity, asymptomatic to mild infection was
still associated with a substantially reduced risk
of reinfection C 9 months [99].

Post-Vaccination

All available SARS-CoV-2 vaccines produce
T-cell and B-cell responses, with differing
responses depending on the vaccine used [107].
Both mRNA vaccines elicit a robust T-cell and
B-cell response, although studies comparing the
two show that the mRNA-1273 vaccine appears
to produce a stronger T-cell and B-cell response
than the BNT162b2 vaccine [108–111].

One study which directly compared mRNA
vaccines and the adenoviral vector vaccine
Ad26.COV2.S showed a similar magnitude of
response [112]. However, other studies have
indicated that the T-cell and B-cell responses of
mRNA vaccines, especially mRNA-1273, are
superior to adenoviral vector vaccines. One
study analysed the T-cell responses in the
mRNA vaccines, BNT162b2 and mRNA-1273,
versus the adenoviral vector vaccine,
Ad26.COV2.S. Superior bulk T-cell response and
anti-spike cytotoxic T-cell response in recipients
of mRNA-1273 or BNT162b2 was observed
compared to recipients given Ad26.COV2.S
[113]. Another study evaluated BNT162b2,
mRNA-1273, Ad26.COV2.S, and NVX-CoV2373
vaccination-induced immune responses longi-
tudinally for 6 months [114]. The magnitude of
the CD4 ? T cell responses was greatest with
mRNA-1273, BNT162b2 and NVX-CoV2373
vaccination, which were equivalent, whereas
Ad26.COV2.S-vaccinated subjects had the
smallest response. Additionally, both mRNA
and Ad26.COV2.S vaccines induced comparable
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acute and memory CD8 ? T cell frequencies,
with NVX-CoV2373 having the lowest
response, which was in line with previous
findings for a protein-based vaccine [114].
Finally, a study on the SARS-CoV-2–specific
T-cell response elicited by the ChAdOx1 and
BNT162b2 vaccines over a 3-month period
indicated that the BNT162b2 vaccine caused the
more durable response of the two comparators
[115].

The inactivated vaccine, CoronaVac, has
been shown to cause a response in CD4 ? and
CD8 ? T-cells, and in memory B-cells, in a study
of up to 8–10 weeks [76], but the studies iden-
tified in this review comparing inactivated
vaccines to other vaccine platforms do not
provide details regarding the relative levels of
T-cells and B-cells [75, 116].

As discussed, the antibody response to all
available vaccines shows signs of waning with
time since vaccination. However, there is evi-
dence that T-cell and B-cell immunity produced
by vaccination is more durable than the anti-
body response in studies of up to 8 months
[71, 114, 117–120].

Additionally, while the antibodies produced
by current SARS-CoV-2 vaccines have been
shown to have a greatly reduced neutralising
effect against new variants, most significantly
Omicron, this has not been the case for T-cell
responses [121–126]. Effective T-cell responses
have been shown against both the Delta and
Omicron variants, which could partially explain
why current vaccines still provide significant
protection against severe infection, hospitalisa-
tion, and death, despite an observed fall in
protection against infection [127, 128]. Reten-
tion of the T-cell response can likely be ascribed
to the ability of vaccine-induced T-cells to
recognise spike proteins regardless of variant, as
evidenced in both mRNA [122, 129, 130] and
adenovirus-based vaccine responses [131].

As well as T-cells, memory B-cells elicited by
the currently available vaccines are able to
recognise variants of concern up to, and
including, Delta [124, 132]. Unfortunately, this
ability has been reduced in the case of Omicron,
with, in one study, recognition of the RBD
being reduced to 42.0% compared to other
variants [124].

Some evidence suggests that T-cell and B-cell
responses may be impacted by the timing of
vaccination. For instance, a longer dosing
interval of the BNT162b2 vaccine can give rise
to more typical helper T-cells and long-term
memory T-cells, indicating greater promotion
of immune memory and generation of anti-
bodies [117, 133]. In a separate study, extending
the dosing interval of the BNT162b2 vaccine
also led to an increase in peak B-cells and a skew
in the T-cells produced towards S-specified
CD4 ? T cells [134].

CORRELATES OF PROTECTION

There is an urgent need to establish correlates of
protection against SARS-CoV-2 infection, as
proxy measurements for vaccine effectiveness
and duration of immunity against emerging
variants, and to help in the development of new
vaccines [135]. Neutralising antibodies have
been considered the prime candidate as a cor-
relate of protection against clinical infection
[61, 62], but, with novel variants emerging, the
extent to which these antibody levels still cor-
relate to a good level of protection is diminished
in those who have received vaccines based on
wild-type SARS-CoV-2 [69, 79].

Emerging evidence shows that different
components of the immune system are
involved in protection against asymptomatic or
mild SARS-CoV-2 infection compared with sev-
ere SARS-CoV-2 infection [107]. For example,
studies note that protection is seen against
severe disease in vaccinated people with a
robust T-cell response despite reduced neutral-
ising antibody levels. This may lead to a need to
stratify correlates of protection by disease
severity [135].

Many potential correlates of protection have
yet to be assessed and further study will be
required [136].

CONCLUSIONS

The protection provided against SARS-CoV-2
infection wanes with time from vaccination or
prior infection. The protection provided by
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vaccination against symptomatic SARS-CoV-2
infection wanes over time, diminishing by a
quarter to a third in 6 months. The protection
from symptomatic reinfection provided by pre-
vious infection wanes at a slower rate, with only
slight declines seen at 12 months. With both
vaccination and prior infection, protection
against symptomatic disease wanes more
rapidly than protection against severe, critical,
or fatal disease. Booster vaccinations have been
shown to recover protection levels of primary
vaccination series, and hybrid immunity may
provide more robust protection than either
vaccination or primary infection; however, in
both cases, the protection provided still wanes
over time.

The emergence of new VOC has reduced the
levels of protection provided by vaccination
and prior infection with an earlier variant.
However, while protection against symptomatic
infection/reinfection is greatly reduced, espe-
cially with the Omicron variant, protection
against severe, critical, or fatal infection/rein-
fection remains robust.

The antibody and T/B-cell dynamics post-
vaccination or reinfection provides some
potential insights into understanding why pro-
tection from severe, critical, and fatal infection/
reinfection are more robust against waning with
time and new VOC. Antibody dynamics post-
vaccination are dependent upon multiple fac-
tors, including the vaccine used, the number of
doses, the presence of hybrid immunity, age
and whether the individual is immunocom-
promised. However, in all cases, circulating
antibody levels provided by vaccination are
greatly reduced by 6–8 months post-vaccina-
tion. This aligns with the time period over
which protection against symptomatic infec-
tion declines. Post-infection antibody dynamics
show a slower decline than post-vaccination
titres, which matches the longer-lasting pro-
tection seen. However, the initial antibody
levels provided by an infection are heavily
dependent upon the severity of the initial
infection, implying that asymptomatic or mild
infections may not provide robust protection.
Antibodies elicited by currently available vac-
cines and prior infections with older variants

are not as effective at neutralising new VOC,
especially Omicron.

The T/B-cell response to both vaccination
and prior infection are more long lasting than
the antibody response. Additionally, T/B-cells
elicited from current vaccinations and prior
infections with older variants show a reduced
but still robust ability to recognise new VOC,
including Omicron.

The current evidence supports the hypothe-
sis that the initial protection provided by SARS-
CoV-2 vaccination or prior infection is initially
provided by neutralising antibodies, with the
more durable T-cell and B-cell responses pro-
viding a large amount of the protection from
severe infection. Additionally, antibodies from
both vaccines or prior infections seem to lose
neutralising activity against new variants more
rapidly. T-cells and B-cells provide more robust
protection against severe, critical, and fatal
infection/reinfection.

While a large amount of research has been
performed on the topic of waning protection
provided by vaccination and prior infection,
many topics still require investigation. These
include the impact of patient-specific variables,
such as age, ethnicity, comorbidities, and con-
comitant medications, on the effectiveness of
the vaccines, as well as prior infection. Other
topics for further investigation should also
include the definition of a standardised anti-
body test and the timepoint of testing. Such
studies should be the focus of future investiga-
tions. An established process is needed to eval-
uate the durability and protection provided by
new vaccines designed with new variants (e.g.
Beta or Omicron) so that they may be evaluated
and rolled out in time for peaks in SARS-CoV-2-
related disease burden. To date, vaccine roll-out
has been conducted in more of an ad hoc
manner: it is recognised that high antibody
levels are required to prevent breakthrough
infection, especially when a new variant of
concern arises, so that booster vaccinations are
administered as antibody titres wane. Peak
antibody levels are typically reached after three
vaccine doses, then further doses boost levels
back to this peak following waning. There is
substantial debate on whether maintaining a
saw-tooth level of antibody titres through
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repeated vaccinations, as is being done in Israel,
is a sustainable public health strategy in the
long term. Further research is required to
develop vaccines that produce a more durable
response or an immune response that is not
variant-dependent.
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