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Abstract 

Background:  Little is known about how normal variation in dietary patterns in humans affects the ageing process. 
To date, most analyses of the problem have used a unidimensional paradigm, being concerned with the effects of a 
single nutrient on a single outcome. Perhaps then, our ability to understand the problem has been complicated by 
the fact that both nutrition and the physiology of ageing are highly complex and multidimensional, involving a high 
number of functional interactions. Here we apply the multidimensional geometric framework for nutrition to data 
on biological ageing from 1560 older adults followed over four years to assess on a large-scale how nutrient intake 
associates with the ageing process.

Results:  Ageing and age-related loss of homeostasis (physiological dysregulation) were quantified via the integra-
tion of blood biomarkers. The effects of diet were modelled using the geometric framework for nutrition, applied to 
macronutrients and 19 micronutrients/nutrient subclasses. We observed four broad patterns: (1) The optimal level of 
nutrient intake was dependent on the ageing metric used. Elevated protein intake improved/depressed some ageing 
parameters, whereas elevated carbohydrate levels improved/depressed others; (2) There were non-linearities where 
intermediate levels of nutrients performed well for many outcomes (i.e. arguing against a simple more/less is better 
perspective); (3) There is broad tolerance for nutrient intake patterns that don’t deviate too much from norms (‘home-
ostatic plateaus’). (4) Optimal levels of one nutrient often depend on levels of another (e.g. vitamin E and vitamin C). 
Simpler linear/univariate analytical approaches are insufficient to capture such associations. We present an interactive 
tool to explore the results in the high-dimensional nutritional space.

Conclusion:  Using multidimensional modelling techniques to test the effects of nutrient intake on physiological 
dysregulation in an aged population, we identified key patterns of specific nutrients associated with minimal biologi-
cal ageing. Our approach presents a roadmap for future studies to explore the full complexity of the nutrition-ageing 
landscape.
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Background
How does what we eat affect our healthspan and lon-
gevity? The answer to this relatively concise question 
is unavoidably complex. Conventional approaches to 
understanding the effects of diet on health and ageing, 
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particularly in human nutrition, have usually focussed on 
single nutrients or a handful of dietary attributes/patterns 
[1–3]. Yet, nutrients have both individual and interactive 
effects. For example, at the most macro-level, protein, 
carbohydrate and fat energy sources interact to deter-
mine metabolic, physiological and cognitive functioning 
(e.g. [4–6]). Similarly, the numerous phenotypic changes 
that occur with age are increasingly recognised as inter-
connected and multidimensional [7–10]. Thus seemingly 
distinct physiological components of ageing likely reflect 
a broader loss of homeostasis in a complex dynamic sys-
tem rather than independent processes [11]. Such inter-
dependencies mean that the atomised interpretation of 
the effects of a single nutrient, diet, molecular mecha-
nism or biomarker is likely to be context-dependent [12–
15]; a consequence being that the results of univariate 
studies are spurious and/or more difficult to reproduce, 
leading to inconsistent conclusions between studies.

The Geometric Framework for Nutrition (GFN) is a 
state-space approach to nutrition that deals with dietary 

complexity by considering multiple dimensions of nutri-
ent intake simultaneously (Fig.  1) [16, 17]. Using fully 
factorial experiments, the GFN has shown that compo-
nents of biological ageing are affected by the ratio of die-
tary macronutrients independently of the effects of net 
energy intake. These effects have been observed across 
taxa [18–20]. For example, mice subjected to a lifetime 
of low-protein (within the boundaries of what can sup-
port growth and development) high-carbohydrate intake 
display improved cardiometabolic health and increased 
median age at death relative to animals with higher 
protein or fat intakes [4, 21]. Any such benefits seem-
ingly disappear in old age, though, when higher protein 
reduces late-life mortality [21]. These experimental find-
ings in mice are consistent with epidemiological stud-
ies in humans that emphasise the importance of dietary 
protein for the elderly (reviewed in [22, 23]). Ecological 
analyses of national-level data in humans have also found 
that even at this highest order level, the macronutrient 
composition of the food supply is a powerful predictor 

Fig. 1  The geometric framework for nutrition (GFN) provides a multi-dimensional perspective on nutrition, by considering the intake of multiple 
nutrients simultaneously. A A 2-dimensional nutrient space with intake of nutrient 1 on the x-axis and intake of nutrient 2 on the y-axis. B Each 
point within the nutrient space represents some level of intake of the two nutrients. The effects of the two nutrients on an outcome of interest 
can be estimated using a statistical model fitted from data gathered on intake of the nutrients and the outcome. Predictions from the model can 
then be shown as a coloured topology surface overlaid on the nutrient space. Here generalised additive models are used to look at nutrient intake 
and ageing/dysregulation in a cohort of people aged 67+. C An example surface showing a linear additive effect of intake of both nutrients on 
the outcome, where low intakes lead to low-value outcome (blue colour) and high intakes lead to a high value of the outcome (red colour). D An 
example surface showing a non-linear effect of intake of both nutrients on the outcome, where moderate intakes lead to low-value outcomes. 
These surfaces could be adjusted for other factors (e.g. age) by including covariates in the statistical model
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of international variation in patterns of mortality [24]. 
Collectively, these studies emphasise the importance of 
multi-dimensional thinking in nutrition.

The biological ageing process is no more tractable than 
nutrition. There is no clear consensus as to what ageing 
is [25], though most researchers now agree it is multi-
factorial [26, 27]. Different methods for quantifying age-
ing correlate poorly with one another after chronological 
age adjustment [28], implying that ageing is a compound 
process. An emerging approach is to measure the effects 
of ageing via the breakdown in homeostatic regulation 
(i.e. dysregulation) across physiological systems [10, 29], 
an approach complementary to ‘biological age’. A statis-
tical distance can be used to quantify how abnormal, or 
‘dysregulated’, an individual’s biomarker profile is, either 
globally or within specific systems. In this way, it is pos-
sible to generate dysregulation scores that are predictive 
of a wide array of health outcomes during ageing, includ-
ing mortality, frailty, and chronic diseases [10, 30–33]. 
Dysregulation scores thus simultaneously provide a 
proxy for the ageing process and general health state. In 
this sense, dysregulation may be a better metric of health 
than measures of the ageing process per se, if such a thing 
actually exists.

Here, we apply the GFN to model the effects of nutrient 
intake on dysregulation and ageing scores in community-
dwelling older adults (>67 years old). We use data from 
the Quebec Longitudinal Study on Nutrition and Suc-
cessful Aging (NuAge) [34], which is extensive enough 
to permit the application of the GFN in an epidemiologi-
cal context. We show that combining these two methods 
provides a means to integrate the complexity inherent to 
nutrition and ageing physiology. We begin by testing the 
hypothesis, suggested by the mouse data, that higher pro-
tein intakes during old age are associated with markers 
of improved health. Simultaneously, we also test whether 
protein interacts with the intake of the other macronutri-
ents, notably whether an increase in the ratio of carbohy-
drate to protein reduces markers of ageing. We then show 
how the same approach can be used inductively to detect 
micronutrient interactions that have systemic effects.

Results
Overview
Briefly, NuAge participants were community-dwelling 
men and women, aged 67-84 years in the Montreal, Laval, 
or Sherbrooke areas in Quebec (Canada). They were 
selected randomly from the Quebec Medicare database 
(n=36,183), after stratification for age and sex. Individu-
als with good general health were recruited (n=1793) 
between November 2003 and June 2005 (T1) [34]. Par-
ticipants were re-examined annually for 3 years (T2, T3 
and T4). Dietary intake data were collected annually 

using 3 non-consecutive 24-h diet recalls. Of the original 
recruits, 1754 (98%) provided consent for the integration 
of their data and biological specimens into the NuAge 
Database and Biobank for future studies. Measured from 
serum/plasma samples, 30 biomarkers were used to cal-
culate dysregulation globally and for five systems that 
a previous study validated as being largely independ-
ent [10]: (1) oxygen transport; (2) liver/kidney function; 
(3) leukopoiesis; (4) micronutrients; and (5) lipids (see 
Table 1 for biomarkers in each score). We also calculated 
two other integrative, clinical-biomarker-based meas-
ures of biological ageing: phenotypic age (PhenoAge) and 
Klemera-Doubal biological age [35–37].

We assessed the effects of intakes of macronutrients 
and micronutrients, as well as their interactions, on 
measures of dysregulation and ageing. Our primary tool 
was the generalised additive model (GAM), a form of 
multiple regression. GAMs test for non-linear multidi-
mensional effects using ‘smooth’ terms, which can revert 
back to simple linear terms (identical to those  in linear 
regression) where the simpler effect gives the best fit to 
the data [38, 39]. GAMs are particularly useful in nutri-
tion research where there is now abundant evidence that 
nutrient intakes can have non-linear effects on health 
outcomes (e.g. [4, 16, 40]). We explored three-dimen-
sional effects of nutrient intake. Because GAMs can esti-
mate non-linear effects, qualitative interpretation of the 
sign of estimated effects comes through visualisation 
(rather than a single regression coefficient). Here effects 
were visualised using the nutrient intake surfaces com-
mon to the GFN (Fig. 1). Importantly, GAMs can be used 
to correct for factors (e.g. sociodemographic status) that 
might be expected to confound relationships, in the same 
way as standard linear regression can be used in epide-
miology. For each outcome, we fitted a series of eight 
models exploring different nutritional predictors and 
making statistical corrections for different factors. Fac-
tors explored were income, education level, age, physi-
cal activity, number of comorbidities, sex and current 
smoking status. Models 1 through 4 explored the effects 
of macronutrient intake with differing degrees of correc-
tion. Models 5 and 6 explored the 3-way effects of differ-
ent combinations of micronutrients, while models 7 and 
8 contained terms for both macronutrients and micro-
nutrients simultaneously (see Additional file  1, Text S1 
for a full description of all models) [41–46].

The main text contains a complete case analysis com-
prising 3569 observations from 1560 people. In Addi-
tional file  1 (Texts S2 and S3) we report sensitivity 
analyses, where we have imputed missing income data, 
and also analysed a more exclusive subset of the complete 
cases dataset (see Additional file 1: Table S1 for popula-
tion summaries; the exclusive dataset excluded diabetics, 
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individuals on prescribed diets, BMI <22 or >29.9, or 
with substantial weight fluctuation). These sensitivity 
analyses estimated similar effects to those in the main 
text. However, for the exclusive dataset, in many places, 
these effects (although qualitatively similar) do not meet 
the criteria for statistical significance. We interpret this 
latter point as evidence that the effects in the two data-
sets are similar, but that the power of the complete case 
analysis is required to detect statistical significance.

Dietary macronutrients
Our first model, model 1, tested for the effects of macro-
nutrient intake (in kJ/day) on outcomes without any 
statistical corrections (see Additional file  1: Text S1 for 
parameters of all models). Because this model does not 
make correction for any confounders its output shows 
the unadjusted association between macronutrient intake 

and dysregulation/ageing scores within the data. We 
detected statistically significant effects of macronutrient 
intake on liver/kidney and micronutrient system dys-
regulation scores, as well as biological age (Fig.  2A–C; 
see Additional file  1: Table  S2 for all statistical model 
output). Model 1 predicted a relatively minor effect of 
protein on liver/kidney function dysregulation, and non-
linear effects of all carbohydrates and fats on liver/kid-
ney function dysregulation. Individuals who consumed 
high (> 6000 kJ/day) or low (< 3000 kJ/day) levels of car-
bohydrates typically had slightly elevated (around 0.25 
SD above the population mean) dysregulation scores 
(Fig. 2A). Very high intakes of lipids (> 4000 kJ/day; note 
this is within 2SD above the mean lipid intake) had the 
highest liver/kidney function dysregulation (~0.4 SD 
above the mean; Fig. 2A). With regard to micronutrient 
dysregulation scores, individuals with moderately high 

Table 1  Biomarkers used to calculate each dysregulation score, and their population mean ± standard deviation (SD)

a  Variable was log-transformed to meet assumptions of normality

Biomarker System Mean ± SD

Mean corpuscular haemoglobin, MCH (pg) Oxygen transport 31.0 ± 1.6

MCH concentration (g/L) Oxygen transport 340 ± 8

Mean corpuscular volume (fL) Oxygen transport 91.3 ± 4.3

Red blood cell count (1012/L) Oxygen transport 4.49 ± 0.43

Red cell distribution widtha Oxygen transport 0.136 ± 0.010

Haemoglobin (g/L) Oxygen transport 139 ± 13

Albumin (g/L) Liver/kidney function 43.2 ± 2.4

Creatinine (μmol/L)a Liver/kidney function 80.3 ± 21.1

Albumin-globulin ratio Liver/kidney function 1.52 ± 0.22

Bilirubin, total (μmol/L)a Liver/kidney function 10.2 ± 4.3

Alkaline phosphatase (U/L)a Liver/kidney function 78.3 ± 24.5

Alanine aminotransferase (U/L)a Liver/kidney function 12.5 ± 22.5

Aspartate aminotransferase (U/L)a Liver/kidney function 22.9 ± 22.8

γ-Glutamyltransferase (U/L)a Liver/kidney function 33.0 ± 32.5

Lactate dehydrogenase (U/L)a Liver/kidney function 158 ± 30

Proteins, total (g/L) Liver/kidney function 71.9 ± 4.1

Uric acid (μmol/L) Liver/kidney function 342 ± 82

Monocytes (differential count) Leukopoiesis 0.076 ± 0.029

Neutrophils (differential count) Leukopoiesis 0.616 ± 0.087

Leukocytes (109/L)a Leukopoiesis 6.36 ± 1.71

Lymphocytes (differential count) Leukopoiesis 0.294 ± 0.081

Folate (nmol/L)a Micronutrients 38.3 ± 12.5

Vitamin B12 (pmol/L)a Micronutrients 431 ± 183

β-Carotene (μmol/L)a Micronutrients 3.40 ± 5.55

α-Tocopherol (μmol/La Micronutrients 28.6 ± 16.0

γ-Tocopherol (μmol/L)a Micronutrients 3.36 ± 2.72

Triglycerides (mmol/L)a Lipids 1.63 ± 0.77

Cholesterol, total (mmol/L) Lipids 5.12 ± 1.02

Cholesterol, high-density (mmol/L) Lipids 1.44 ± 0.39

Platelet count (109/L)a - 237 ± 64
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carbohydrate (5000 to 6000 kJ/day) and low lipid (< 2000 
kJ/day) intake had minimal dysregulation. Again, high 
lipid intake was associated with maximal dysregulation 
(Fig. 2B). Subjects with protein intake of around 2000 kJ/
day were predicted by model 1 to have low dysregula-
tion (Fig. 2B). Biological age was predicted to be the low-
est for individuals with high levels of intake for all three 
macronutrients (Fig. 2C); note that in this analysis nutri-
ent intakes are not expressed relative to any measure of 
individual requirements.

Because model 1 shows unadjusted associations that 
may be confounded, in model 2 we considered dysregu-
lation score as a function of macronutrient intake rela-
tive to what we define as the typical energy intake given 
height, weight, age, sex and physical activity (Additional 
file 1: Text S4). We again detected effects of macronutri-
ent intake on liver/kidney function and micronutrient 
dysregulation and biological age score, but in addition, 

effects on PhenoAge were detected (Fig.  3A–D; Addi-
tional file  1: Table  S3). Again, this analysis indicated 
high protein intake relative to what is typical (100% 
above average) had low liver/kidney function dysregula-
tion scores (Fig.  3A). Interestingly, both PhenoAge and 
biological age were predicted to be low at elevated car-
bohydrate levels and typical levels of lipid and protein 
(Fig.  3C, D). These effects remained after making cor-
rections for potential confounders, both excluding and 
including the number of comorbidities (models 3 and 4; 
Additional file 1: Tables S4 and S5), and showed a similar 
trend within the exclusive dataset (see Additional File 1: 
Text S3 and Figure S3).

Dietary micronutrients and nutrient subclasses
Intakes of a number of the micronutrient and nutrient 
subclasses (hereafter referred to collectively as micro-
nutrients) explored were strongly correlated (Fig.  4). 

Fig. 2  Effects of total dietary intake (kJ/day) of protein, carbohydrates, and fats on A liver/kidney function dysregulation (GAM three-way smooth 
term: edf=9, Ref. df=9, F=2.66, p<0.01, Dev. Expl.=1.5%, n=1834), B micronutrient dysregulation (GAM three-way smooth term: edf=14.6, Ref. 
df=18.1, F=1.8, p<0.05, Dev. Expl.=2.21%, n=1750) and C biological age score as predicted by model 1 (GAM three-way smooth term: edf=9, Ref. 
df=9, F=4.06, p<0.001, Dev. Expl.=2.79%, n=1796). Surfaces across the top row show effects of protein (x-axis), and carbohydrate (y-axis) intake, 
those across the middle row protein and lipid, and the bottom row is carbohydrate and lipid. The third macronutrient is held at the values given on 
all panels (population median). Warm colours indicate high dysregulation, and cool colours low dysregulation. All scores were Z-transformed to one 
SD, and surfaces colours are scaled such that deep blue and red represent values of at least −0.8 and 0.8 (conventionally considered an effect of 
large biological magnitude [46])
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Hierarchical clustering based on correlation distance sug-
gested seven clusters of micronutrients with very highly 
correlated intakes (r > 0.65). The first principal compo-
nent (PC1) of intakes within each of the seven clusters 
explained between 90 and 100% of the variation of intake 
of micronutrients within that cluster (Additional file  1: 
Table  S6). PC1 estimates uniformly displayed positive 
correlations with intakes of micronutrients within the 
clusters. For subsequent analyses, cluster-specific PC1 
values were used as measures of intakes of micronutri-
ents within clusters.

After using PCA to reduce dimensionality, we were 
left with 19 minimally correlated micronutrient/subclass 
variables (PC1 of clusters or individual micronutrients), 

making it feasible to run GAMs for all 969 3-way micro-
nutrient combinations for each dysregulation score 
(micronutrient-specific models; see Additional file 1: Text 
S1). For all scores except lipid dysregulation, there were 
a greater number of significant micronutrient smooth 
terms than would be expected under the null hypothesis 
(Fig. 5A–H). After correction for the false discovery rate 
(FDR), there were no significant effects of micronutrient 
intake on oxygen transport or lipid dysregulation scores. 
There were 905 models that detected significant effects 
for at least one score, although 363 of these were solely 
related to ageing scores (i.e. no significant effect on any 
dysregulation score; Additional file  1: Table  S7). There 
were 17 combinations for which we detected significant 

Fig. 3  Effects of relative dietary macronutrient intake (relative to the required intake based on age, weight, height, sex and physical activity level; 
see Additional file 1: Text S4) on A liver/kidney function dysregulation, (GAM three-way smooth term: edf=9, Ref. df=9, F=3.8, p<0.001, Dev. 
Expl.=1.8%, n=1834), B micronutrient dysregulation, (GAM three-way smooth term: edf=9, Ref. df=9, F=2, p<0.05, Dev. Expl.=0.9%, n=1750), C 
PhenoAge (GAM three-way smooth term: edf=9, Ref. df=9, F=2, p<0.05, Dev. Expl.=0.9%, n=1834) and D biological age (GAM three-way smooth 
term: edf=9, Ref. df=9, F=2, p<0.05, Dev. Expl.=0.9%, n=1796) score as predicted by model 2. Surfaces across the top row show effects of protein 
(x-axis), and carbohydrate (y-axis) intake, those across the middle row protein and lipid, and the bottom row is carbohydrate and lipid. The third 
macronutrient is held at the values given on all panels. Warm colours indicate high dysregulation, and cool colours low dysregulation. All scores 
were Z-transformed to one SD, and surface colours are scaled such that deep blue and red represent values of at least −0.8 and 0.8 (conventionally 
considered an effect of large biological magnitude [46]). Individuals with a relative intake value of 100, eat 100% more of that macronutrient per day 
(in kJ) than is predicted to be typical for the population given their age, sex, weight, height and level of physical activity level. Conversely, individuals 
with a relative intake value of 0 would eat the required amount of that macronutrient per day
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effects on all scores (except oxygen transport and lipid 
dysregulation). Interestingly all 17 models contained 
α-tocopherol (vitamin E) as one of the three micronu-
trients. Arguably any one of these micronutrient com-
binations may be of interest and could warrant further 
investigation in response to a priori hypotheses (results 
from all models can be found at https://​cohen​aging​lab.​
github.​io/​micro​nuage/). Here however we focus on the 
effects of α-tocopherol, vitamin C and trans-fatty acids 

because this combination had the highest mean per cent 
deviance explained across all scores.

In models 5 and 6 we tested for effects of these 
three micronutrients with correction for confounders, 
excluding and including comorbidities respectively. In 
these models, we detected the effects of micronutri-
ents on leukopoiesis, liver/kidney function, micronutri-
ents and global dysregulation (Additional file 1: Tables 
S8 and S9). The effects varied slightly across the four 

Fig. 4  Correlogram of the strength of correlations (Pearson’s correlation) between intakes of micronutrients (n=3569). Correlations have been 
clustered hierarchically based on correlation distance (dendrogram). On the basis of this clustering, we grouped micronutrients with highly 
correlated intakes (> 0.65) for subsequent dimension reduction using principle components analysis

https://cohenaginglab.github.io/micronuage/
https://cohenaginglab.github.io/micronuage/
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systems. (Fig. 6A–D for model 6). For example, elevated 
intakes of trans-fatty acids are predicted to be detri-
mental for liver/kidney dysregulation, but have a minor 
beneficial effect on leukopoiesis dysregulation. Never-
theless, consuming around 2SD of α-tocopherol above 
the population mean, while consuming vitamin C and 
trans-fatty acids at the population mean results in low 
dysregulation across the four scores, suggesting a sys-
temic benefit of high, but not excessive, α-tocopherol 
intake (Fig.  6). To ensure that increased α-tocopherol 
does not have detrimental interactions with other 

micronutrients, we screened the complete list of sig-
nificant micronutrient combinations (after FDR adjust-
ment) for those that included α-tocopherol intake; 153 
combinations were identified for at least one outcome 
score. Figure  5I shows the distribution of dysregula-
tion scores (all traits) predicted for a 2SD increase in 
α-tocopherol for any identified effects of micronutri-
ents (after inclusion for potential confounders). For all 
scores, intakes of α-tocopherol 2SD above our sample 
mean (mean ± SD = 4.75 ± 2.73) is predicted to lead to 
reductions in dysregulation or ageing Z-scores (below 

Fig. 5  Frequency histograms for the p-values for smooth terms for the 969 unique three-way combinations of micronutrient intakes as given by 
GAMs (micronutrient-specific models; see Additional file 1: Text S1) where A oxygen transport (n=3332), B leukopoiesis (n=3334), C liver/kidney 
function (n=1834), D lipids (n=1991), E micronutrients (n=1750), F global dysregulation (n=1718), G PhenoAge (n=1834) and H biological age 
(n=1796) score was treated as an outcome. The red horizontal line indicates the expected frequency under the null hypothesis (that the outcome 
is unaffected by micronutrient intake) and the blue vertical line demarks p=0.2. The percentage of p-values falling into the upper left quadrant 
is given. I Frequency histogram of the effects of an increase in α-tocopherol intake of 2 SD from the population average as predicted by different 
models. Predictions come from all models containing significant three-way micronutrient smooth terms involving α-tocopherol and make 
adjustments as per model 6. Predictions assume population average values for all other intakes (including alcohol), income, education level, age, 
physical activity level (PASE), number of comorbidities, men and non-smoker
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the population average) or changes close to 0 (the pop-
ulation average).

Macro, micro or both
We found statistical support for the effects of both macro 
and micronutrients on liver/kidney function and micro-
nutrient dysregulation. There can be strong covariances 
amongst macro and micronutrient intake owing to their 
co-occurrences in foods (see Additional file  1: Text S5). 
For example, vitamin C intake is often considered to be 
a marker of fruit and vegetable consumption [47], and 
unsurprisingly in this dataset high vitamin C intake coin-
cides with a high carbohydrate diet (Additional file  1: 
Text S5). One may thus question which of these two 
nutritional levels is a better predictor of dysregulation, 

or if both must be considered. We evaluated this by fit-
ting the two three-dimensional effects for macro and 
micronutrients simultaneously (models 7 and 8, exclud-
ing and including comorbidities respectively) and assess-
ing model fit relative to corresponding previous models 
using the Akaike information criterion (AIC; models 
with minimal AIC are favoured). For liver/kidney func-
tion dysregulation a model including macronutrients is 
favoured by AIC (Table 2). In contrast, for the micronu-
trient dysregulation score, a model including only micro-
nutrients is favoured by AIC (Table 2). We also note here 
that even the most complex models fitted, which include 
both macro and micronutrients, as well as other poten-
tial predictors of health status, explain less than 5% of the 

Fig. 6  Effects of total dietary micronutrient (α-tocopherol, vitamin C and trans-fatty acid intake) intake on A leukopoiesis (GAM three-way smooth 
term: edf=9, Ref. df=9, F=3.8, p<0.001, Dev. Expl.=6.7%, n=3334), B liver/kidney function (GAM three-way smooth term: edf=9, Ref. df=9, F=1.9, 
p<0.05, Dev. Expl.=3.7%, n=1834), C micronutrients (GAM three-way smooth term: edf=9, Ref. df=9, F=2.3, p=0.01, Dev. Expl.=3.8%, n=1750) 
and D global (GAM three-way smooth term: edf=9.2, Ref. df=9.5, F=2.5, p<0.01, Dev. Expl.=7.5%, n=1718) dysregulation score as predicted by 
model 6. Intakes have been Z-transformed and are thus in units of SD. In all cases, predictions assume the micronutrient not displayed on either 
the x- or y-axis is held at the population mean. Numeric confounding variables included in model 6 were alcohol intake, income, education level, 
age, physical activity level (PASE) and the number of comorbidities, and predictions assume population mean values. Predictions are for men and 
assume a non-smoker
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deviance in these dysregulation scores for this population 
(Table 2).

Discussion
Here we used multidimensional modelling techniques to 
test for associations between nutrient intake and physi-
ological dysregulation in an aged population. We find 
that consuming above-average protein and α-tocopherol 
intake, which is the most active form of ‘vitamin E’, is 
associated with lower levels of physiological dysregula-
tion. In contrast, individuals with above-average carbo-
hydrates (given what is typical for height, weight, age sex 
and physical activity) coupled with typical protein and 
lipid intakes had minimal measures of biological ageing.

Analysis of the effects of dietary macronutrients on 
age-specific mortality in mice has shown that protein 
restriction when coupled with increased carbohydrate 
intake, extends median lifespan through reduced mor-
tality in middle life, but that higher protein in late life 
may reduce mortality [21]. Given that our study popula-
tion consisted entirely of older adults, our findings with 
regard to physiological dysregulation are consistent with 
this experimental literature. Our results are also con-
cordant with numerous studies highlighting the need 
for increased protein intake in older people, in particu-
lar, to offset sarcopenia and decreased physical perfor-
mance associated with ageing (reviewed in [22, 23]). It is 
interesting to speculate, though, whether reapplying our 
methods to middle-aged cohorts would detect similar 
benefits of elevated protein intake; the experimental lit-
erature, and some data in humans, suggests perhaps not 
[20, 21, 48].

Numerous micronutrient interactions have been dem-
onstrated in the experimental absorption literature (e.g. 
calcium-iron and vitamin C-iron [49]). Our analysis 
indicates that such interactions may have strong enough 
effects on health in old age to be detected at the level of 

the population. For example, elevated vitamin E intake 
can produce either low or high micronutrient dysregula-
tion scores, depending upon the level of vitamin C intake 
(Fig. 6C). In vitro and in vivo studies, including a supple-
mentation trial in healthy adults, have detected vitamin 
C-E absorption interactions, including where simultane-
ous supplementation leads to elevated circulating lev-
els, and where vitamin C can reduce oxidised vitamin-E 
recovering its role as an antioxidant [50–52]. Thus, there 
is a mechanistic basis for what we have detected, and it 
is certainly worth testing for interactions between these 
micronutrients in other epidemiological cohorts.

We found that consuming α-tocopherol at 2SD above 
the population average is associated with benefits; in the 
subject population, this level corresponds to 10.21mg/
day of α-tocopherol. The World Health Organisation rec-
ommended intake of α-tocopherol for those aged 65+ is 
7.5mg/day in females and 10mg/day in males, thus the 
value we highlight is not substantially beyond current 
guidelines [53]. Highlighting the importance of consider-
ing non-linearity, more extreme intake patterns (e.g. >4 
SDs above average) were associated with harm (Fig.  5). 
This finding accords with the results of RCTs suggesting 
excessive vitamin E supplementation may increase all-
cause mortality [54]. We also detected a non-linear effect 
of carbohydrate intake on dysregulation, which suggests 
individuals at the upper/lower extremes of the observed 
carbohydrate intakes suffer poor health. Epidemiological 
and meta-analytic study of the effects of carbohydrates 
on all-cause mortality in humans has found identical 
patterns [40], possibly moderated by carbohydrate qual-
ity. Generally speaking, our study therefore provides fur-
ther support to the importance of looking beyond ‘single 
nutrient at a time’ and monotonic ‘more is better’ analy-
ses [1, 55], to detect the interactive effects of nutrients. 
For space reasons, we have not presented and discussed 
the full range of results for all micronutrient intake inter-
actions detected here. However, we have illustrated an 

Table 2  Akaike information criterion (AIC) and deviance explained (%) by models 4, 6, and 8 for liver/kidney and micronutrient 
dysregulation. These models contained sex, smoking status, alcohol intake, income, education level, age, physical activity (PASE) and 
the number of comorbidities, alongside the nutritional predictors stated. See Additional file 1: Table S10 for model variants excluding 
the number of comorbidities

Dysregulation score Model number Nutrient predictors AIC Deviance 
explained

Liver/kidney function Model 4 Macronutrients 5172 4.1%

Model 6 Micronutrients 5179 3.69%

Model 8 Macro + micronutrients 5177 4.82%

Micronutrients Model 4 Macronutrients 4946 3.63%

Model 6 Micronutrients 4943 3.81%

Model 8 Macro + micronutrients 4945 4.66%
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approach that can be used to study the effects of multi-
ple micronutrient intakes on health. The GAM-based 
approach can either be used for discovery (i.e. as means 
to detect micronutrient interactions) or as a targeted 
mechanism-driven paradigm to test specific hypotheses 
about micronutrient interactions derived from experi-
mental biology or nutrition science [49, 56]. We encour-
age readers to explore http://​cohen​aging​lab.​github.​io/​
micro​nuage where the effects of micronutrient intakes on 
dysregulation and ageing scores in this population can be 
visualised interactively, a priori hypotheses explored, and 
complete models downloaded.

Even in our most complex models, the deviance 
explained remains at around 5%. This is within the 
bounds of what analyses of other outcomes in this 
cohort have found (e.g. [57]). Nevertheless, the surfaces 
we present here show relatively large effects of nutri-
tion on dysregulation levels, which is potentially impor-
tant as nutrition is readily modifiable. The low deviance 
explained may be due to a number of factors including 
the reporting errors, and systematic reporting biases 
inherent in epidemiological studies of nutrition [58–60]; 
the fact we consider additive effects of macro and micro-
nutrients rather than interactions (more complex mod-
els are theoretically possible but are limited by sample 
size and visualisation beyond three-dimensions); and 
the rarity of the extreme dietary profiles at the edges of 
the surfaces, where the strongest effects are found (the 
standard error of the surface is a proxy for sample den-
sity; e.g. Additional file 1: Fig. S6). An implication of this 
latter point is that some of the largest effects of nutrient 
intake we report will only apply to a small proportion of 
the population and that our physiology is often robust 
enough to tolerate relatively wide variation without much 
consequence. Similar patterns are observed when using 
the GFN to map evolutionary fitness to organisms that 
ecologists pre-define as dietary ‘generalists’ [16, 61–63]. 
This is consistent with an understanding of nutrition 
in which our ancestors evolved to tolerate an array of 
dietary patterns [64]. Accordingly, homeostasis can be 
maintained across a wide array of nutritional states, with 
the caveat that when diet becomes too extreme dysreg-
ulation can increase very rapidly (‘falling off a dietary 
cliff ’). The tolerance for different diets—the size of the 
plateau in this analogy—could of course vary as a func-
tion of genetic or environmental factors that predispose 
us to greater risk [65].

In contrast to dysregulation, we found that PhenoAge 
and biological age were minimised on relatively high 
carbohydrate and lower to moderate protein intakes. 
Similar results have been observed in numerous experi-
mental studies on the effects of protein to carbohydrate 
ratio on ageing in model organisms [20]. The somewhat 

discordant results between dysregulation measures 
and PhenoAge/Biological Age are not necessarily that 
surprising. Increasingly, the literature shows that age-
ing is multivariate and heterogeneous [10, 28]. In this 
context, our results imply that different dietary patterns 
come with their own benefits and drawbacks in their 
effects on the different facets of ageing. A practical con-
sequence of this specificity is that dietary recommen-
dations could be tailored to slow the most advanced 
ageing processes based on an individual’s biological 
profile. Given the strength of the apparent trade-off 
between different ageing/dysregulation scores, it seems 
unlikely that any one intake pattern can simultaneously 
minimise all scores. However, once a key target score 
of interest is identified, multi-criteria optimisation may 
help define a set of ‘non-dominated’ dietary intakes 
that maximally improve that score without degrading 
other outcomes unnecessarily. Regardless of the meth-
ods used to advance these findings, replication in other 
cohorts is needed to confirm the precise patterns we 
report, and even then, context-specific clinical recom-
mendations will be essential.

An important next step for analyses of this nature will 
be to complement them with analyses of the effects of 
food/broad dietary patterns on physiological dysregu-
lation [66]. The intakes of individual nutrients are often 
markers for broader dietary patterns. High vitamin 
C/E intake can reflect a diet rich in fresh fruit and veg-
etables [47], whereas a high trans-fatty acid intake may 
reflect a diet comprised of processed foods. Such analy-
ses may help to elucidate why, for example, we detect a 
minor beneficial effect of trans-fatty acids on leukopoie-
sis dysregulation, where other studies have detected the 
opposite [67]; it is possible that in this population high 
trans-fatty acid intakes represent a diet high in dairy, as 
opposed to processed foods.

Conclusions
Previously, studies have applied GFN thinking to experi-
mental and observational contexts in humans. They have 
shown that the macronutrient composition of the diet 
is associated with biomarkers of cardiovascular health, 
energy intake, obesity and specific chronic diseases [68–
73]. Important as they are, these analyses were concerned 
with unidimensional measures of health and healthspan. 
Here, for the first time, we have used the GFN to model 
holistic measures of systemic functioning during ageing. 
How results from experimental nutrition and gerosci-
ence map onto humans living in the community remains 
unclear. In part, our understanding has been hampered 
by a lack of techniques that cut across the complexity 
inherent to nutrition and biological ageing in real-world 

http://cohenaginglab.github.io/micronuage
http://cohenaginglab.github.io/micronuage
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contexts; the approach we present here is a promising 
start. Future applications could include personalised 
approaches to aid in healthy ageing, and screening of at-
risk older adults to ensure they do not fall off the ‘dietary 
cliff ’. Finally, our results advocate against the popular 
practice of eating to maximise or minimise certain nutri-
ents. The dose-response relationship is often U-shaped, 
and highly dependent on context (e.g. age, other aspects 
of diet); targeting in the absence of clear evidence is likely 
to do more harm than good.

Methods
Participant information and dietary intake data
The NuAge Database and Biobank and the present study 
have been approved by the Research Ethics Board (REB) 
of the CIUSSS-de-l’Estrie-CHUS (Quebec, Canada; pro-
jects 2019-2832 and 2015-868/14-141, respectively). 
The original sample includes 1587 individuals recruited 
between November 2003 and June 2005 (T1) to which 
206 volunteers were added [34]. They were community-
dwelling men and women, aged 67–84 years, able to 
speak English or French, and in good general health at 
recruitment. Notably, they had to be free of disabilities 
in activities of daily living, not cognitively impaired and 
able to walk 300 metres or to climb 10 stairs without rest. 
A structured interview was conducted annually in the 
NuAge Study at baseline (T1) and for the next 3 years 
(T2, T3 and T4) to gather the following data. Sociodemo-
graphic (actual income, education) and lifestyle (smok-
ing, alcohol) information was obtained using a general 
study questionnaire developed from standard health sur-
vey questions [74]. The number of self-reported chronic 
health conditions (i.e. comorbidities) was computed from 
an adaptation of the Older Americans Resources and Ser-
vices (OARS) Multidimensional Functional Assessment 
questionnaire [75]. Chronic health conditions considered 
were self-reported cancer (within the last 5 years); hyper-
tension; self-reported liver or gallbladder disease; self-
reported surgery of the digestive system; self-reported 
heart trouble; self-reported circulation trouble in arms or 
legs; self-reported thrombosis, cerebral haemorrhage, or 
cerebrovascular accident; self-reported transient cogni-
tive impairment; self-reported Parkinson’s disease; self-
reported diabetes; self-reported emphysema or chronic 
bronchitis; self-reported asthma; rheumatoid arthritis, 
arthritis, or rheumatism; self-reported osteoporosis; 
self-reported kidney diseases; self-reported thyroid and 
gland problems; self-reported surgery of the circulatory 
system; and mini-mental state examination (MMSE) 
total score between 22 and 26. Usual physical activity was 
assessed using the Physical Activity Scale for the Elderly 
(PASE) questionnaire, with higher scores corresponding 
to higher physical activity levels [76]. Weight and height 

were measured, and body mass index (BMI = weight 
[kg]/height [m]2) calculated for each participant [34].

Dietary intake data were collected annually (T1 to T4) 
using 3 non-consecutive 24-h diet recalls [77–79]. Each 
set included 2 weekdays and 1 weekend day, with the 
first administered during the annual face-to-face inter-
view and the others by telephone interviews without 
prior notice. Based on the USDA 5-step multiple-pass 
method [80], interviewers recorded a detailed descrip-
tion and portion sizes of all foods and beverages con-
sumed by each participant the day before the interview. 
Only energy and nutrients coming from foods were con-
sidered (i.e. excluding supplements). All interviewers 
were trained registered dietitians. Energy and nutrient 
intake were computed from the 24-h diet recalls using 
the CANDAT-Nutrient Calculation System (version 10, 
©Godin London Inc.) based on the 2007b version of the 
Canadian Nutrient File (CNF) from Health Canada and 
a database of 1200 additional foods that were developed 
on site [81]. This software produced intakes of the three 
macronutrients, as well as a full suite of micronutrients 
and several nutrient subclasses (principally lipid sub-
classes). We assessed the effects of intakes of all nutrient 
dimensions available to us.

Biomarker data and dysregulation score
Biomarkers were chosen based on our previous study [10, 
82], their clinical use, and according to their availability 
in NuAge. Biomarkers were not chosen for their a priori 
expected relationship to either diet or ageing; indeed, our 
previous work has shown that dysregulation measures 
are largely robust to the choice of component markers, 
reflecting instead an emergent property of the system as a 
whole. Accordingly, while future work will look at mark-
ers of specific interest such as FGF-21, this study does 
not use markers that are expected individually to inte-
grate metabolism (fatty acids, hydroxybutyrate, insulin, 
adiponectin, etc.). In total, 30 biomarkers were used to 
calculate dysregulation globally and for five systems that 
a previous study validated as being largely independent 
[10]: (1) oxygen transport; (2) liver/kidney function; (3) 
leukopoiesis; (4) micronutrients; and (5) lipids (Table 1).

Not all individuals had complete data on biomarkers 
and nutrition, so sample size depended on the physio-
logical system and the analysis. For the oxygen transport 
and leukopoiesis systems, the sample size varied between 
1224 and 1331. For the other systems, the sample size 
varied between 654 and 730. The difference in sample 
size is due to a more extensive serum biomarker analy-
sis conducted in 2016 on a subsample of ~750 individu-
als that were selected at random amongst the 904 of the 
1754 participants who met the following criteria: (1) the 
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individual needed to have blood sampling conducted 
without any missing intermediate visits; (2) the individ-
ual needed at least two visits with blood samples; and (3) 
there had to be a sufficient number of stored aliquots at 
all visits to analyse the selected biomarkers.

Dysregulation was calculated using the Mahalanobis 
distance (DM), a statistical distance which measures how 
deviant or aberrant an individual’s biomarker profile is 
compared to a reference population. Using DM, a global 
dysregulation score (‘Global’) was calculated with all 30 
biomarkers and by the physiological system for each par-
ticipant at each visit, as previously described [10]. Higher 
scores indicate higher dysregulation. Age at recruitment 
in NuAge is restricted from 67 to 84 years, thus, to con-
struct our reference population we used data from the 
first visit, which represents a population in general good 
health, according to the inclusion and exclusion criteria 
(22). Some biomarkers were log- or square-root- trans-
formed as necessary to approach normality. All bio-
markers were then centred at the mean of the reference 
population and divided by the standard deviation of the 
reference population to standardise them before calcula-
tion of dysregulation scores (i.e. UV scaled).

Alongside the 6 measures of physiological dysregula-
tion, we also included two other measures of biological 
ageing: phenotypic age (PhenoAge) and Klemera-Doubal 
biological age. PhenoAge measures the predicted age of 
the individual based on the individual’s mortality risk as 
assessed via 9 biomarkers and calibrated in NHANES IV. 
Biological age measures the age of an individual as pre-
dicted based on linear projections of a set of age-associ-
ated biomarkers. We calculated PhenoAge as described 
elsewhere [36, 37], although because CRP (C-reactive 
protein) is not available in the NuAge cohort, we used 
the mean CRP value from NHANES IV 1999–2010 [37] 
for all individuals. Validation with individually-imputed 
values showed a very strong correlation (r=0.99) with 
PhenoAge scores using this mean value; we chose the 
mean value as the more conservative option and sim-
pler model. PhenoAge showed a weaker correlation with 
chronological age in our population than previously 
reported (r=0.67 vs 0.96 [37];). Exploratory analysis of 
other datasets in our possession indicated the discrep-
ancy was likely due to the limited age range rather than 
the absence of CRP (data not shown). Calculation of bio-
logical age was based on previous work by Levine [35]. 
We first searched for biomarkers that correlated with 
chronological age and found 13 with r > 0.1 (p ≤ 0.05). 
After removing three biomarkers with numerous missing 
values (non-HDL cholesterol, LDL, and estimated glo-
merular filtration rate), we were left with the following 
list: haemoglobin, haematocrit, red blood cell count, red 
cell distribution width, monocyte count, albumin, folate, 

creatinine, blood urea nitrogen, and lymphocyte percent-
age. Using these biomarkers, we calculated biological age 
as previously described [35, 83].

Analyses
All analyses were performed in the statistical program-
ming environment R [84]. In all cases, dysregulation 
scores were first log-transformed and then Z-trans-
formed (mean centred and divided by one SD) prior to 
model fitting. Analysis was performed using GAMs [38, 
85]. GAMs are a form of the generalised linear (mixed) 
models (GLMs, and GLMMs) that allow the user to 
model complex non-linear effects through the inclusion 
of non-parametric ‘smooth’ terms (usually implemented 
as a spline). These terms can be specified alongside the 
conventional linear parametric terms in a linear model. 
Smooth terms can be additive in a single dimension, or 
multi-dimensional to test for synergistic interactions. 
The statistical significance of smooth terms can be inter-
preted via a p-value, but their effect must be interpreted 
visually (as opposed to numerically via a regression coef-
ficient). GAMs were implemented using the ‘gam’ func-
tion in the R package mgcv, and terms estimated by 
restricted maximum likelihood [38, 39].

We first tested the hypothesis that increased protein is 
associated with improved health in old age. We estimated 
the effects of daily intake of macronutrients (protein, 
carbohydrate and fat, in kJ) on each dysregulation/age-
ing score using GAMs. In all models, dysregulation/age-
ing score at an observation was the outcome. In model 
1, macronutrient intakes at those observations were fit-
ted as a three-dimensional smooth term (thin-plate 
spline), and individual subject ID was fitted as a random 
effect (there are multiple observations per individual). 
However, the dataset is made up of individuals whose 
energy requirements likely vary due to height, weight, 
age, sex and physical activity level. Thus, we also esti-
mated macronutrient intakes relative to what is typical 
for an individual in this population given the aforemen-
tioned variables (estimated from the residuals of a model 
of intake; see Additional file 1: Text S4). In model 2, we 
modelled dysregulation scores as a function of relative 
macronutrient intake using a GAM as above.

In model 3, we tested for the effects of confounders 
by refitting model 2 to include potential confounders as 
additive effects; sex (men/women), smoking status (cur-
rent/not current), current income, number of years of 
education, alcohol intake (g/day), physical activity level 
(PASE) and age were included. We ran a separate model 
with comorbidities as an additional potential confounder 
(model 4). Numeric predictors were Z-transformed prior 
to fitting and were included in the model as smooth 
terms, and categorical predictors as parametric terms.
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In the second part of our analyses, we considered the 
effects of those micronutrients for which intake data 
were available. Micronutrient intakes are likely to be 
highly correlated. Therefore, we performed hierarchical 
clustering on correlations (using 1—correlation coef-
ficient) of micronutrient intakes based on correlation 
distance using the ‘hclust’ function in the stats package 
in base R. For any clusters of highly correlated micro-
nutrients, we performed a principal component analy-
sis (PCA; ‘prcomp’ function in base R) and used the first 
principal component (PC1) as our measure of intake 
for the nutrients within that cluster. The number of 
micronutrients adds complexity to understating their 
interactive effects because (1) the estimation of multidi-
mensional smooth terms in GAMs becomes challenging 
as the number of dimensions grows and (2) the smooth 
terms in GAMs must be interpreted visually. For these 
reasons, we restricted ourselves to considering 3 micro-
nutrient dimensions at a time. For each three-way com-
bination of micronutrient intake (PC1 for clusters) we 
fitted a GAM with a three-dimensional smooth term 
for the three micronutrients and a random effect for the 
individual. We then identified those models with signifi-
cant effects after correction for the false discovery rate 
(FDR, q < 0.05 [86];). We note that correction by FDR 
assumes that p-values are independent, which is not the 
case here. However, overlooking this non-independence 
is conservative in that it will result in fewer significant 
effects rather than more, and thus we proceeded with-
out correction. In the main text, we interpret specific 
cases of interest, however, all results and models can be 
accessed at http://​cohen​aging​lab.​github.​io/​micro​nuage. 
We also tested for effects of micronutrients alongside 
correction for the potential confounders discussed above 
(models 5 and 6), and by modelling micro and macronu-
trient intakes simultaneously (models 7 and 8). Note that 
including two three-dimensional smooth terms (one for 
micronutrients and one for macronutrients) is not the 
same as a six-dimensional smooth term; this approach 
is substantially less power-hungry but still allows us to 
adjust micronutrient models for macronutrient intake, 
and vice-versa. See Additional file 1 (Text S1) for a con-
cise list of all models implemented.

Statistical significance was inferred for terms in GAMs 
based on α of 0.05. Where we found it necessary to com-
pare amongst models containing different predictors 
we used the Akaike Information Criterion (AIC), where 
smaller values (beyond a margin of two points) indicate 
a better model fit [44]. Smooth terms from GAMs were 
interpreted from model predictions. For three-dimen-
sional effects of nutrient intake, we present two-dimen-
sional surface plots, where intakes of nutrients are given 
on the x- and y-axes, while the intake of the third nutrient 

is held constant at a value stated on the figure panel. On 
all surfaces deep blue/red areas indicate low/high Z bio-
scores (i.e. good/bad health), respectively.

The main text contains a complete cases analysis where 
we report results from analyses on all observations for 
which relevant predictor and dysregulation score data 
were available (i.e. inclusive dataset with missing income 
data excluded). Additional file  1, Supplementary Texts 
S2 and S3 contain the results of two sets of sensitivity 
analyses. In the first, we have imputed missing income 
data (31%) as the participant-specific mean value to 
increase our sample size. In the second we have analysed 
a subset of the data (<50% of the total data) where we 
have excluded any observation at which the subject was 
recorded as either; diabetic (type-1 or 2), reported as 
being on a medically prescribed diet, having a BMI out-
side the range of 22 to 29.9, or that came from a subject 
with a coefficient of variation of weight > 0.04 over the 
course of all the observations (i.e. for whom weight fluc-
tuated substantially).

Key analyses were performed by two separate members 
of the team, using broadly the same approach but with no 
consultation on the detailed analytical decisions (i.e. what 
might be inferred from seeing the Results but not the 
Methods). Discrepancies leading to qualitative changes in 
the conclusions were flagged and resolved. VL performed 
this validation, with AMS as primary data analyst. Data-
sets containing all participants’ variables used in this 
study and those from dietary intakes estimated from 24-h 
dietary recalls were transmitted by the NuAge team in 
November–December 2018 and October 2019, respec-
tively. Data for some biomarkers were obtained in a pre-
vious secondary project [82].
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