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Abstract  
 
Policymakers make decisions about COVID-19 management in the face of considerable 

uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-

sized county in the United States, in a novel process designed to fully express scientific 

uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios 

considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 

months of reopening, unless schools and non-essential workplaces remain closed. Up to half the 

population could be infected with full workplace reopening; non-essential business closures 

reduced median cumulative infections by 82%. Intermediate reopening interventions identified 
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no win-win situations; there was a trade-off between public health outcomes and duration of 

workplace closures. Aggregate results captured twice the uncertainty of individual models, 

providing a more complete expression of risk for decision-making purposes. 

 

Main text 

Uncertainty is pervasive during any emerging infectious disease outbreak. There is limited 

scientific understanding about epidemiological processes, public health and economic goals may 

be varied, unclear, conflicting, or not stated at all, and the potential effects of possible 

interventions are uncertain given the novel circumstances. As illustrated by recent outbreaks of 

Ebola and Zika viruses, and the COVID-19 pandemic, the complexity of an outbreak motivates 

quantitative modeling, but a profusion of models often produces conflicting forecasts, 

projections and intervention recommendations (Thomson et al. 2006, Li et al. 2017, Viboud et al. 

2018, Carlson et al. 2018, Kobres et al. 2019, Ray et al. submitted). This poses a challenge for 

decision makers. To support sound, evidence-based decision making, we believe it is critical to 

develop an efficient framework for collaborative modeling and for synthesizing results and 

recommendations from ensemble modeling efforts (Tetlock et al. 2014, den Boon et al. 2019).  

 

We previously proposed a method to harness the power of multiple independent research 

groups and models (Shea et al. 2020) by drawing from tools in decision analysis (Gregory et al. 

2012), expert elicitation (Murphy et al. 1998, Burgman 2015, Mukherjee 2015, Tetlock and 

Gardner 2016), and model aggregation for decision making (Probert et al. 2016, Li et al. 2017). 

Our approach is designed to reduce unwanted cognitive biases and linguistic uncertainty (e.g., 

about the interpretation of the problem setting), while characterizing and preserving genuine 
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scientific uncertainty (e.g., about epidemiological processes or parameters, or intervention 

efficacy, given limited data) that is relevant to policy development and decision making. In this 

framework, insights can be shared across modeling groups to inform the collective projections, 

while retaining the perspective of individual groups. The process involves multiple steps (Fig. 1), 

including two rounds of modeling with an intervening structured discussion to eliminate 

unwanted biases and uncertainty (including semantic or linguistic uncertainty), increase 

consistency in modeling of interventions, share critical insights, and generate a comprehensive 

picture of relevant uncertainty (loop B in Fig. 1). The projections from the second round of 

modeling are then used to generate aggregate results under different interventions that 

encapsulate scientific uncertainty about epidemiological processes and management 

interventions (Li et al. 2019). We stress that this process is designed primarily to inform decision 

making, rather than to provide quantitative projections of epidemic trajectory (as in ongoing 

forecasting challenges; Ray et al. submitted), though such results are also obtained. The multi-

model, multi-step process is expected to generate better calibrated projections than individual 

models. That is, the aggregate distributional forecast will be more consistent with future 

observations than individual forecasts. More importantly, this process is also expected to produce 

more robust insights about the ranking of intervention options that improve management 

outcomes. The COVID-19 pandemic offers a unique opportunity to apply this structured 

framework.  

 

Based on this framework, we launched the Multiple Models for Outbreak Decision Support 

(MMODS) project to guide COVID-19 management in the United States, focusing on a generic 

mid-sized county of approximately 100,000 people that experienced a small outbreak in late 
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April and early May. Control of COVID-19 in such populations has received relatively little 

attention but is relevant to decisions faced by state and local officials. We solicited participation 

from multiple modeling groups via the Models of Infectious Disease Agent Study (MIDAS) 

network and via existing COVID-19 modeling collaborations with the U.S. Centers for Disease 

Control and Prevention (CDC) to project outcomes for five objectives related to SARS-CoV-2 

incidence, hospital resources, and local workplace and school restrictions over a 6-month period 

(see Materials and Methods for details). We presented information for a generic, mid-sized 

county with age structure representative of the U.S. population, that pre-emptively initiated, and 

adhered to, stringent social distancing guidelines (i.e., full stay-at-home orders with workplace 

and school closures) until May 15, 2020 (so that the 6-month prediction period ran from May 15-

November 15, 2020). We provided the modeling groups with baseline epidemiological and 

intervention information for the county (see Supplemental Material [SM] File 2 containing 

provided data); some groups incorporated additional data (see SM Table 1). We considered four 

possible interventions that mirror the responses of different countries, states, and counties to 

COVID-19. The four interventions addressed decreasingly stringent non-essential workplace re-

openings while assuming schools remained closed, and consisted of (1) closure throughout the 6-

month prediction period (“closed” intervention), (2) re-opening when cases decline below 5 

percent of the peak daily caseload, (3) re-opening two weeks after peak daily caseload, and (4) 

immediate re-opening (on May 15, “open” intervention). Each modeling group provided a 

probability distribution of health and economic outcomes for each intervention, from which 

aggregate results were generated. After the first round of projections, the aggregate results and 

anonymized individual results were shared with all groups and a discussion was held to clarify 
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terminology, share insights, and discuss differences. Following the discussion, the groups 

provided updated projections, from which the final results were generated. 

 

Aggregate results anticipate outbreaks for any level of reopening 

Sixteen modeling groups participated in this study, contributing 17 distinct models with a variety 

of structures and assumptions (see Materials and Methods, and SM Table 1) and two rounds of 

projections. Results are presented using projections from the second round only. The aggregate 

projections showed a consistent ranking of intervention performance (SM Figs. 1 and 8 and SM 

Video 1) across the four public health outcomes (cumulative infections, cumulative deaths, peak 

hospitalization, and probability of an outbreak), and a strong trade-off between public health and 

economic outcomes (number of days with non-essential workplaces closed over the 6-month 

period, Fig. 2). For all of the public health-related outcomes, the best intervention was to keep 

non-essential workplaces closed for the duration of the period investigated. Reopening at 5% of 

the peak and reopening 2 weeks after the peak were ranked second and third, respectively. 

Opening fully and immediately led to the greatest public health burden. Keeping restrictive 

measures in place for 6 months reduced median cumulative infections by 82%, from a median of 

48,100 (48.1% of the county population) in the open intervention to 8,527 in the closed 

intervention; the 5-percent and 2-week interventions reduced the cumulative infection by 66% 

and 46%, respectively, relative to the open intervention. The reduction in cumulative deaths 

followed a similar pattern (Fig. 2). Peak hospitalizations ranked the interventions in the same 

order as cumulative cases and deaths, but the largest decrease was achieved when going from the 

open intervention to the 2-week intervention.  
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We asked the modeling groups to estimate the probability of an outbreak after May 15 

(defined as a 7-day moving average of reported cases greater than 10 per day). Even under the 

fully closed intervention, the probability of an outbreak was high (aggregate median, 71%).  The 

median probability of an outbreak increased to 100% for all other interventions. Even relatively 

stringent re-opening guidelines were insufficient to guarantee success; complete cessation of 

community spread of the disease was unlikely even with long-term non-essential workplace 

closure (although widespread transmission has been pre-empted in some settings, such as New 

Zealand and Taiwan, with high compliance to a package of social distancing measures and travel 

restrictions). Either additional stay-at-home orders would be required, or other non-

pharmaceutical interventions (e.g., testing, contact tracing and isolation, or wearing masks) or 

pharmaceutical interventions (e.g., vaccination) would be needed to stop transmission while 

allowing workplace re-opening. 

 

Our results allowed us to examine trade-offs between economic and public health outcomes; 

how much economic activity might the decision maker be willing to forgo to gain public health 

improvements of a given magnitude? The number of days of non-essential workplace closure is a 

coarse and incomplete measure of short-term economic impact, but it highlights an important 

trade-off. The ranking of interventions in relation to projected days closed was reversed in 

comparison to the ranking for the public health outcomes (Fig. 2): under the closed intervention, 

non-essential workplaces were closed for 184 days (May 15 to November 15); under the 5-

percent and 2-week interventions, non-essential workplaces were closed for a median of 129 and 

96 days (a reduction of 29% and 48%), respectively. We had hypothesized that the 5-percent 

intervention might be an attractive alternative relative to remaining closed, permitting a 
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reduction in days closed with little or no difference in public health outcomes. However, 

cumulative infections, deaths, and peak hospitalizations were further reduced under the closed 

intervention relative to the 5-percent intervention by 48% (8,527 vs. 16,510), 39% (73 vs. 119), 

and 40% (36 vs. 60), respectively (Fig. 2). This starkly illustrates the tensions between economic 

and public health goals seen worldwide and suggests that strategies that only consider the timing 

of re-opening, or focus on a single type of intervention, may not be nuanced enough to manage 

these trade-offs. 

 

Benefits of the structured MMODS process 

The MMODS process outlined here is focused on decision outcomes and, unless a rapid decision 

is required (necessitating the interim use of round 1 results), only round 2 results are considered. 

However, as this is a new approach to ensemble decision making for outbreak control (Shea et al. 

2020), results about the changes between the first and second rounds are pertinent. The group 

discussion after the first round identified numerous sources of linguistic uncertainty arising from 

different interpretations of the objectives and the nature of interventions (for example, the 

definition of ‘death’; see SM on Resolution of Linguistic Uncertainty for details). Clear 

guidelines developed during and after the group meeting removed this uncertainty from round 2 

projections, improving the comparability of intervention rankings across models.  The discussion 

also motivated the modification of one reopening intervention (Fig.1 loop A; see Materials and 

Methods). The discussion highlighted additional sources of available data, shared critical insights 

with all groups, and encouraged a broader expression of scientific uncertainty (including a 

discussion of different methods used for incorporating such uncertainty), all while maintaining 

anonymity of results to avoid pressure to conform where true scientific disagreement persisted. 
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As linguistic uncertainty was decreased at the same time as modeling groups were encouraged to 

more fully express their remaining uncertainty, there is no expectation of directionality in the 

relative magnitude of uncertainty expressed by models in the two rounds of projections.  

However, projections of days closed in the two extreme (open and closed) interventions were 

highly variable in round 1, but are entirely consistent in round 2 (compare Fig. 3 for open and 

closed interventions, top and bottom panels in column 5, with SM Fig. 9), demonstrating the 

complete removal of linguistic uncertainty that would have confounded results. 

 

Individual models are consistent in ranking of interventions, but projections are variable in 

magnitude and uncertainty 

The rankings of interventions from the individual models are generally consistent with each 

other and with the aggregate results (Fig. 3 and SM Video 1); however, there are some 

interesting differences. Three models ranked the closed and 5-percent interventions as identical 

for several metrics; 6 groups reported that for at least some simulations the 5-percent reopening 

criterion was never met in the 6-month period. Two models ranked the 5-percent intervention as 

better than the closed intervention based on the medians of health outcomes; both models had 

wide priors on parameters governing compliance with interventions. Three of the 17 models 

ranked the 5-percent intervention worse than the 2-week intervention for public health measures 

(Fig. 4A i-iii), a result that was driven by different timing in the triggering of re-opening (Fig. 4A 

iv). Another notable result is that the ranking of the 2-week intervention for the peak 

hospitalization metric spanned the gamut from worst rank (in submission M) to first-tied rank (in 

submission A) (Fig. 3). Otherwise, rankings were remarkably consistent overall. 
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Importantly, the individual models display considerable variation in terms of the magnitude 

and uncertainty of projections (Fig. 3).  Reliance on a single model, rather than an ensemble, is 

inherently less reliable for providing insights on the magnitude of differences between 

interventions, even if the ranking of interventions is relatively robust (SM Fig. 1). In fact, there 

are numerous examples where even the 90% prediction intervals (PIs) do not overlap for 

different models in the same intervention scenario (for example, see cumulative infections for the 

open intervention, where all models rank the intervention as worst, but the range of the 

population infected nearly covers 0 to 100%). The differences in model structure, 

parameterization, and assumptions that the groups were asked to provide did not explain 

differences in the results (see Materials and Methods and SM Tables 1, 2, Figs. 15, 16); such an 

evaluation, facilitated by a thorough model description checklist, would be impossible with 

individual experts. This pattern of consistent rankings across models despite a wide variation in 

projected outcomes was also seen for Ebola (Li et al. 2017). Estimating the relative difference in 

an outcome across different courses of action (a decision-making task) is almost always more 

straightforward than estimating an absolute value (a prediction task), as the former simply 

involves a rearrangement of ordinal rankings, while the latter has to account for many more 

factors. 

 

Aggregate results provide an integrated expression of uncertainty 

It is challenging for any individual model alone to fully account for uncertainty. The 

aggregate results provided a more comprehensive measure of uncertainty by integrating over the 

individual team assumptions about disease dynamics, population behavior, public health 

surveillance, and the effectiveness of interventions. Deploying multiple models in parallel also 
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speeds up the process of exploring relevant uncertainty. Individual models tended to capture less 

than 50% of the uncertainty of the aggregate (as measured by the relative interquartile range, 

IQR, Fig. 5). As a result, individual models were generally more confident than the ensemble, 

echoing findings from studies of expert judgment that individual experts tend to be over-

confident (Teigen and Jørgensen 2005). The importance of a well-calibrated expression of 

uncertainty in projections can be seen in the context of hospital planning, and the risk tolerance a 

hospital administrator needs to contemplate.  

For example, if the county has 200 hospital beds, while median peak hospitalization is 

comparable for the remain-closed and 2-week interventions, the 2-week intervention was three 

times as likely to exceed capacity as the remain-closed intervention (34% vs. 11% chance of 

exceedance based on the aggregate results, Fig. 2). These risk estimates allow the administrator 

to gauge how much to prepare for exceedance. If a local official or hospital administrator, 

however, had to rely on only a single model to estimate the exceedance risk, they may mis-

estimate the risk and possibly over- or under-prepare. 

 

Model projections are comparable with real-world data 

We identified 66 mid-sized (90,000 to 110,000 people) US counties that approximated the 

profile of the setting presented to the modeling groups and that have implemented and followed a 

closed intervention (e.g., a stay-at-home order) through October 15, 2020 (Dong et al. 2020) (see 

SM section: Comparison of county data with aggregate model results and MMODS code 

repository). The distribution of reported deaths due to COVID-19 in the closed counties (median 

31; 50% IQR, 16 to 56) was comparable to the aggregate projection of total deaths (both reported 

and undetected, median 73; 50% IQR, 12 to 228). The confidence intervals for projected deaths 
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were wider than the observed distributions, which is expected as the observations represent a 

subset of the possible paths that the outbreak might have taken (see SM Figs. 1, 3, 13 and text in 

SM section: Comparison of county data with aggregate model results). This analysis will be 

updated and posted to the SM after November 15, 2020 (once the prediction period is complete). 

If the MMODS decision process were used to guide decision making (Fig. 1, loop C), there is the 

opportunity to weight models in the ensemble as we learn about their performance, or for 

modeling teams to learn from data and improve their models in an adaptive management 

framework (Shea et al. 2014, Probert et al. 2018, Shea et al. 2020a, b). 

 

Discussion  

The abundance of uncertainty that accompanies pathogen emergence presents a uniquely 

difficult challenge for public health decision making. The multi-stage, multi-model process 

revealed some important epidemiological and policy insights about county re-openings. The 

aggregate results, and most individual models, ranked the interventions consistently for any 

given objective. While more stringent reopening rules generally performed better, public health 

strategies designed only around one-time re-opening guidelines were inadequate to control the 

COVID-19 epidemic at the county level, as reflected in the resurgence of COVID-19 over the 

summer of 2020 in the United States. Our results reinforce the importance of coupling these 

strategies with other pharmaceutical, non-pharmaceutical, and behavioral interventions (e.g. 

vaccine deployment, mask usage, and social distancing). 

 

The descriptions of the objectives and interventions for this elicitation were motivated by 

public discussions and guidance issued by federal and state governments in April 2020. 
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However, concepts presented in colloquial language can be difficult to precisely define 

mathematically. All groups found that the initial wording in the guidance provided was difficult 

to interpret and model, suggesting it could invite considerable discretion in implementation. For 

example, the wording on reopening ‘2 weeks after peak’ engendered considerable confusion in 

the first round of modeling. How is a peak defined? Is it in reported deaths or cases? Is it 

measured on a daily or a moving-average basis? Likewise, how should a model determine 

whether 2 weeks have passed since the peak? A continuous monotonic decline was never seen; 

should a moving average be used? And, if so, for 7 or 14 days? We provided a clear definition of 

such terms for the second round of projections (see Materials and Methods for definitions, and 

SM on Resolution of Linguistic Uncertainty for discussion). Even so, there was still considerable 

variation across modeling groups in how these openings were triggered, in part because the 

triggering events were sensitive to how daily variation in the projections was handled (Fig. 4B). 

More precisely worded guidelines, and crucially, clear lines of communication and open 

collaboration between decision makers and modelers (Fig. 1, loop A), could reduce confusion, 

and would permit consistent evaluation and application of management interventions. Our 

process illuminated this issue and created a well-defined and timely opportunity to resolve it, 

ensuring more comparable results on which to base decisions.  

 

Balancing public health outcomes and economic considerations is an important aspect of 

pandemic decision making, but needs a more nuanced treatment, particularly on the economic 

side. If we compare each of our four interventions to a hypothetical “no disease” scenario, we 

can identify four broad groups of costs from multiple perspectives: (a) financial costs caused by 

the disease itself (e.g., reduced economic output due to absence from work due either to illness 
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or voluntary isolation, direct and indirect costs of medical treatment, or costs associated with 

funerals); (b) non-financial costs caused by the disease itself (e.g., mortality, morbidity, long-

term health impacts); (c) financial costs caused by the strategic response to the disease (e.g., 

reduced economic output due to a lockdown, costs of monitoring and enforcing a lockdown or of 

quarantining incoming travelers) or by individual responses that go beyond local policy; and (d) 

non-financial costs caused by strategic or personal responses (e.g., mental health challenges due 

to isolation, forgoing preventive medical care such as routine childhood vaccinations, 

relationship stressors, reduced access to opportunities for recreation). There may also be 

economic benefits associated with the mitigation activities. For example, some firms have found 

that having staff work from home can increase efficiency and reduce operational costs (OECD 

2020), which could have ongoing benefits. In principle, the optimal strategy would be that which 

minimizes the sum of all these costs, less any benefits. Our analysis does not quantify all of these 

costs and benefits but does provide evidence that could be used as key inputs to a comprehensive 

economic analysis. Feedback to decision makers from this process may lead to refined or multi-

criteria objectives (via loop A in Fig. 1). 

 

Running the models twice, with an intervening discussion, is essential. In our elicitation, we 

removed different interpretations of terminology that would have confounded the ensemble 

results. For example, the trade-off between days closed and public health outcomes would have 

been obscured by linguistic uncertainty surrounding “closure” (see SM Fig. 9). The importance 

of consultation and open collaboration between decision makers and modelers (Fig. 1, loop A) to 

clarify objectives and interventions is also strongly supported. Initially it might seem that adding 

a second step would delay decision-making; this is a valid concern in time-sensitive 
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circumstances. In an emergency, results from round 1 could be used to inform an interim 

decision. However, in practice, the two-round process generally can be more efficient. 

Clarification often happens on an ad hoc basis anyway as, despite best efforts, it is 

fundamentally difficult to anticipate everything that groups might interpret differently a priori 

(though it will be possible to learn and streamline across exercises), and uncertainties often arise 

as models are developed and implemented. Our process is deliberate in explicitly planning for 

and appropriately managing this process, so that all groups are equally informed and use the 

same interpretations. Formally building the discussion phase into the modeling and decision-

making process manages decision-maker expectations and saves time in the long run, by 

avoiding multiple, unplanned reassessments. This would be particularly valuable in situations 

where the same models are used to make repeated decisions. Modeling teams also commented 

that they found the well-defined structure in Fig. 1 to be valuable. We further note that resolution 

of unwanted linguistic uncertainty via facilitated group discussions would likely also improve 

forecasts outside the decision-making setting. 

 

Multiple model approaches such as MMODS come with challenges, not least of which is 

coordinating multiple, disparate groups’ efforts. Participating modeling groups refocused their 

efforts on COVID-19 during the past year, and contributed considerable, mostly unfunded, time 

and effort (see SM Table 1) to participate in this project on a voluntary basis. Not all models 

were initially structured to address the questions or interventions we considered, and the methods 

for handling uncertainty were novel for some of the groups. Additionally, we found some trade-

offs were necessary. A number of the models (e.g., those with substantial simulation time, or 

requiring extensive changes to implement new interventions) could not assess the impact of 
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many distinct interventions, so we limited our study to four workplace-related interventions to 

encourage participation. However, this need not constrain the number of interventions for critical 

decisions and situations; it is possible to augment computational resources, or different subsets of 

the contributing models could assess different subsets of interventions. Most of these challenges 

could be addressed via planning and preparedness efforts to build a community of 

epidemiological and decision-making experts in anticipation of need (Drake 2020, National 

Academies of Sciences, Engineering, and Medicine 2020, Rivers et al. 2020). The success of 

future collaborative efforts will depend on the sustained availability of financial and logistical 

support, for both the coordination of collaborations, and for the individual modeling groups. 

Such coordinated efforts could then provide rapid, informed support to decision makers at 

critical junctures, to enable effective decision making in the face of uncertainty, as well as the 

opportunity for rapid, focused learning through monitoring and model-weight updating (Shea et 

al. 2014). 

 

Our project is the first open study to use multiple models, instead of multiple individual 

experts, in a structured expert elicitation process focused on real-time disease mitigation 

decisions. As with well-designed expert elicitations, using multiple models produces a more 

complete description of uncertainty and provides more robust projections to decision makers. 

While we have drawn from the expert elicitation literature (Runge et al. 2011, Burgman 2015) to 

design this process, more work is needed to optimize the approach (Shea et al. 2020a). For 

example, a key question that has not yet been addressed in model elicitations is whether an open 

call for participation or a curated set of established models produces better results. Both 

approaches (open participation and careful selection) are used with expert panels, but often rely 
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on different analytical methods. Second, how many models are needed to produce stable and 

robust results? In individual expert judgment approaches, between 5 and 20 experts are 

recommended (Rowe and Wright 2001); however, it is not clear if the same guidance applies for 

models.  

 

We have outlined these methods, and their benefits and challenges, for reopening decisions 

in mid-sized US counties facing the COVID-19 pandemic. However, this approach can be 

applied to a wide range of other settings or to other critical decisions, such as: when to reimpose 

or relax interventions in a sequence; context-dependent state- and country-level interventions 

(including in low- and middle-income countries where constraints and available resources may 

differ markedly on a case-by-case basis, e.g., Walker et al. 2020); where best to trial vaccines 

and drugs; how to prioritize testing; and how to optimize the roll-out of other medical 

interventions. In all cases, the MMODS approach demonstrated here could reduce unnecessary 

uncertainty in terminology and interpretation, better characterize the remaining scientific 

uncertainty, reduce bias and minimize the temptation to rapidly reach premature consensus. This 

approach can also be used for critical management decisions for endemic diseases, and for 

elimination and eradication planning, as well as in any non-epidemiological setting where 

models are used to inform decision making (e.g., Milner-Gulland and Shea 2017). We also stress 

that our approach encourages an integration of science and policy-making – efforts that are often 

separated to the detriment of public health outcomes when semantic uncertainties cannot be 

clarified and may thus interfere with success. Modelers intend their forecasts to ‘inform 

management decisions,’ yet the common separation of model outputs from the decision context 

increases the chance of misunderstandings and errors. Continued efforts to foster collaboration 
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and streamline communication between modelers and decision makers, as well as to shift the 

focus from solely providing projections to evaluating proposed interventions, are essential steps 

towards effectively leveraging modeling efforts to inform decisions. Such advances will be 

essential to support real-time decision making on many critical problems.  
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Materials and Methods 

We solicited participation from multiple modeling groups via the Models of Infectious Disease 

Agent Study (MIDAS) network and via working groups involving modelers and the U.S. Centers 

for Disease Control and Prevention (CDC) facilitated by the MIDAS Coordination Center at the 

end of May 2020. Information about the collaboration opportunity was communicated via 

conference calls and listservs. This activity was reviewed by CDC and was conducted consistent 

with applicable federal law and CDC policy (45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. 

§241(d); 5 U.S.C. §552a; 44 U.S.C. §3501 et seq). Full information for the elicitation, including 

the setting, epidemiological data, and intervention descriptors was posted at a dedicated website 

at https://midasnetwork.us/mmods/ (including daily reported cases, deaths, mobility, and testing 

data, State of Emergency and stay-at-home orders, and age structure). The initial conditions for 

the forecasts included cumulative cases and deaths within the county on a daily basis from 

January 22 to May 15, 2020. As of May 15, the county had recorded 180 confirmed cases and 6 

deaths due to COVID-19. Groups were also permitted to incorporate additional data sets, as they 

saw fit (e.g., national data on hospital, Intensive Care Unit and ventilator availability, household 

size data, and work, school, community, and home mixing data). We asked the modeling groups 

to assume that travel restrictions remained in place throughout (so that there was no international 

importation of cases and domestic importations were limited), and that there was no local contact 

tracing or isolation of infected individuals. We did not specify guidelines regarding mask use but 

specified that schools would remain closed through November 15 (just prior to the start of peak 

flu season). First round results were due on June 15, 2020 and the group discussion of 

preliminary results took place on June 24, 2020. Second round model results were due 12 July, 
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2020 and preliminary analyses of second round results were reported to the modeling groups and 

others on July 17, 2020.  

The five objective metrics were: (1) cumulative number of infected individuals (May 15 

to November 15); (2) cumulative number of COVID-related deaths over the same period; (3) 

peak hospitalizations during the period May 15 to November 15; (4) probability of a new local 

outbreak (more than 10 new reported cases per day); and (5) total number of days workplaces 

closed. The four interventions focused on strategies for re-opening non-essential workplaces, 

while assuming all involved schools remaining closed: (1) continue with current non-essential 

workplace closures at least through November 15 (“closed intervention”), (2) open non-essential 

workplaces when the number of new daily reported cases is at 5% of peak (“5-percent 

intervention”), (3) open non-essential workplaces two weeks after peak (“2-week intervention”), 

and (4) immediately relax all current restrictions on non-essential workplaces on May 15 (“open 

intervention”).  

All objective-intervention combinations were assessed for feasibility in an in-house 

model prior to developing the elicitation. However, intervention (2), which was set at 1% in 

round 1, was identified as too restrictive (i.e., the condition was never met) by several models 

during the discussion, and therefore changed accordingly (i.e., modeling groups provided 

feedback on interventions as anticipated in Fig. 1 loop A). In a single-round elicitation such a 

situation would have effectively reduced the number of interventions examined overall, as the 

1% trigger was essentially congruent with the fully-closed intervention. 

For the 5-percent and 2-week interventions (interventions 2 and 3), following the 

resolution of linguistic uncertainty in the discussion (see SM: Resolution of linguistic 

uncertainty), we asked all groups to use the same metric and method for calculating the peak, 
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acknowledging that this is only one of several metrics and methods that could be used to 

determine the peak. We chose a definition that could be implemented by a decision maker (as 

opposed to an omniscient approach). For both the 2-week and 5-percent interventions, all teams 

used the 7-day trailing moving average of the number of new daily reported cases (as opposed to 

all infections, which may or may not result in reported cases); the moving average smooths out 

noise due to reporting and low population size. Peak is then defined as the maximum 7-day 

moving average of daily reported cases. The trigger to open for the 2-week intervention is the 

first day for which the 7-day trailing moving average has been lower than the maximum for at 

least 14 days, and has shown a day-to-day decline in smoothed case data for at least 10 of the last 

14 days (or, there have been 7 days without any new cases).  The trigger to open for the 5-

percent intervention is the first day for which the 7-day trailing moving average of the number of 

new daily reported cases drops below 5% of the peak after May 15th. Note that the peak that 

triggers a 2-week intervention may not be the same peak that triggers a 5-percent intervention 

(e.g., if there is a second peak that is larger than the first one). 

Each group completed an extensive checklist (see SM File 3 and SM Table 1) for each 

round, to document a wide range of information on model structure and parameterization, the 

efficacy of interventions, additional setting information, assumptions and the associated 

uncertainty, as well as other sources of stochasticity (see SM Tables 1, 2 and SM Figs 15 to 17). 

Of the 17 models contributed by 16 scientific research groups, 10 were compartmental, 5 

individual-based, 3 spatially explicit, 1 neural network, and 1 fractional order model. Eleven 

models included age-structure explicitly for some model components. Models handled 

uncertainty using different methods for different components (e.g., expert judgment, likelihood-

based, or simulation methods). As part of the submission checklist, model groups were asked to 
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provide an estimate of the number of Full Time Equivalent (FTE) hours allocated to their 

modelling effort, so we could assess the resources required to undertake such a multi-model 

effort. Modeling groups allocated an estimated 64 median FTE hours (Q1: 40 FTE hours, Q3: 

100 FTE hours, Max: 1000 FTE hours). No groups dropped out between rounds. One group did 

not submit a model for round 1, but participated in the discussion and submitted to round 2. 

We requested 100 quantiles for each model-objective-intervention combination such that tail 

probabilities for the 2nd and 98th quantiles were relatively stable (i.e., we requested the 

probability distribution for each outcome for each intervention, via the cumulative distribution 

function (CDF) in 100 quantiles). Requesting quantiles (rather than, for example, 

epidemiological curves) enables all types of different models to participate and allows a better 

expression of uncertainty for decision making. Collecting 100 quantiles allows the tail 

probabilities to be estimated. We deliberately did not request information on the correlation 

structure between interventions within a model, as not all models were equipped to provide 

results for the same initial conditions or seed values.   

Submissions were received by the MIDAS Coordination Center through the MMODS 

website, verified for format compliance, transformed into a consistent format for analysis, and 

deposited in an internal project GitHub repository.  

Aggregate results were produced by taking a weighted average of the individual cumulative 

distribution functions (SM Fig. 7); this provides critical information about the mean as well as 

higher order moments. Each group received equal weight in the aggregate results. For research 

groups submitting more than one model, the group weight was divided equally among their 

models (one group submitted two models). Based on the detailed checklist information, we can 

explicitly document the differences between models and the CDFs reflect the full degree of 
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uncertainty considered.  This model-based approach presents two advantages over human 

experts, who generally provide 3 to 5 quantiles at most, and generally do not document explicit 

differences in their thought processes that might generate different rankings (Burgman 2015). 

While it is impossible to do a full analysis of every difference between all the models, we 

explored multiple potential correlates of model result rankings and magnitudes. Ancillary 

information was examined to assess whether model assumptions (e.g., model structure, 

assumptions about importations, etc.) predicted ranks or magnitudes of projections, or various 

other aspects of epidemic dynamics (e.g., projected number of people who are susceptible on 

November 15): nothing obvious emerged (see SM: Checklist data and SM Table 1). There also 

was no obvious uncertainty that would reverse the choice of optimal intervention (e.g., a factor 

whose inclusion or exclusion leads to different rankings); had such a factor arisen, this would be 

a top priority for research to improve decision-making outcomes. We also document where 

differences in magnitude between two strategies are not large; this is only the case for individual 

models, but not in the aggregate. In such cases, the decision maker may have flexibility of 

choice, and may choose to weigh other considerations (such as costs) that have not been 

explicitly included in the models. Magnitude was not our primary interest, but is important in 

determining whether the overall benefits of an intervention are sufficient to outweigh the overall 

costs. 
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Fig. 1: Multiple Models for Outbreak Decision Support (MMODS) framework, specifically 
for the elicitation in this project. The Problem is the decision context faced by state and local 
officials regarding local guidance and regulations concerning the operation of non-essential 
workplaces, in the face of the COVID-19 pandemic during the period May 15 to November 15, 
2020. The 5 Objectives addressed were to minimize: (1) cumulative infected individuals, (2) 
cumulative COVID-related deaths, (3) peak hospitalizations, (4) probability of a new local 
outbreak (more than 10 new reported cases/day), and (5) total days workplaces closed, all over 
the period May 15 to November 15. The four Interventions focused on strategies for re-opening 
non-essential workplaces, while assuming all schools remaining closed, between May 15 and 
November 15, 2020: (1) continue with current non-essential workplace closures, (2) open non-
essential workplaces when the number of new daily cases is at 5% of peak, (3) open non-
essential workplaces 2 weeks after peak, and (4) immediately relax all current restrictions on 
non-essential workplaces. Loop B coordinates modeling groups to reduce bias and linguistic 
uncertainty. First, loop B involves independent (round 1) model Projections of all objective-
interaction combinations. A structured, facilitated group discussion reduces unwanted 
uncertainty and also prompts information on additional sources of data used, methods used to 
incorporate uncertainty, and assumptions made by individual groups, so that the whole 
collaborative can improve their models. Retention of the remaining model differences allows for 
a more comprehensive expression of legitimate scientific uncertainty; consensus is not required. 
Modelling groups then provide updated (round 2) model projections. Loop A provides an 
opportunity for model groups to interact with decision makers to clarify or update objectives or 
interventions, i.e., to reduce linguistic uncertainty. Decision Analysis is used to aggregate and 
analyze the model outputs to rank interventions. If decisions are implemented, then there is also 
an opportunity for modeling teams to learn from Implementation data and results (loop C). 
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Fig. 2: Aggregate distribution for target objective and intervention scenario pairs of the 17 
models. Median, 50% prediction interval (PI), and 90% PI are indicated as points, thick lines, 
and thin lines respectively. The aggregate distribution was calculated as the weighted average of 
the individual cumulative distribution functions. Colors denote ranking of each intervention for a 
single objective, where dark blue signifies the lowest value (best performance) and dark red 
signifies the highest value (worst performance). The five panels show the results for: A) 
cumulative infections (rather than reported cases) between May 15 and November 15; B) 
cumulative deaths due to COVID-19 over the same period, with an inset displaying the results 
for a smaller range of values, beginning with zero and containing the 50% prediction intervals; 
C) the peak number of hospitalizations over the same period; D) the probability of an outbreak of 
greater than 10 new cases per day after May 15; and E) the number of days that non-essential 
workplaces are closed between May 15 and November 15. The interventions include: “closed”, 
workplace closure throughout the 6-month period; “5-percent”, non-essential workplace re-
opening when cases decline below 5% of the peak caseload; “2-weeks”, non-essential workplace 
re-opening two weeks after the peak; and “open”, immediate re-opening of all workplaces. The 
setting is a generic US county of 100,000 people that has experienced 180 reported cases and 6 
deaths as of May 15, 2020; all schools are assumed to be closed throughout the period. 
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Fig. 3: Individual model results for each objective and intervention scenario pair. Median, 
50% prediction interval (PI), and 90% PI are indicated as points, thick lines, and thin lines 
respectively. Colors denote ranking of each intervention by model for a single objective, where 
dark blue signifies the lowest value (best performance) and dark red signifies the highest value 
(worst performance). Ties in ranks are colored as intermediate values. Ties between ranks 1 and 
2 and ranks 3 and 4 are shown as an intermediate blue and red, respectively; yellow indicates a 
tie in ranks across all interventions. Each group was assigned a random, unique identification 
letter that is specified on the vertical axis. 
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Fig. 4: Comparison between the 2-week and 5-percent interventions. A) Medians (points) 
and 50% PIs (lines) displayed pairwise by intervention and for the following objectives:  i) 
cumulative infections, ii) cumulative deaths, iii) peak hospitalizations, and iv) days closed for 
each model. B) Comparison of intervention start dates for 2-week (grey) vs. 5-percent (black) 
interventions for each model, where the start date is computed as the number of days from May 
15 until the intervention is enacted. Intervention start times of 184 days indicate that the 
intervention was never triggered in that model. All plots display median (points) and 5th to 95th 
quantiles (lines) for each intervention. The 2-week intervention trigger to open is the first day for 
which the 7-day trailing moving average of the number of new daily reported cases has been 
lower than the maximum for at least 14 days, and has shown a day-to-day decline in smoothed 
case data for at least 10 of the last 14 days (or, there have been 7 days without any new cases). 
The 5-percent intervention trigger to open is the first day for which the 7-day trailing moving 
average of the number of new daily reported cases drops below 5% of the maximum. 
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Fig. 5: Comparison of individual model results to aggregate results. The y-axis shows the 
relative interquartile range (IQR)—the ratio of an individual model’s IQR to the aggregate IQR. 
The x-axis shows the ratio of an individual model’s median to the aggregate median. Both axes 
are presented on a log scale. Colors denote ranking of each intervention by models, where dark 
blue signifies the lowest value (best performance) and dark red signifies the highest value (worst 
performance). Ties between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue 
and red, respectively; yellow indicates a tie in ranks across all interventions.   
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Supplemental Material (SM) 

Supplemental Figures, Tables, Model Descriptions, and other materials 

 

Supplementary Material TOC: 

1. Setting data and original elicitation 

2. Submission checklist 

3. Anonymized results from round 2 (SM Figs 1 - 8) 

4. Video showing ranking of round 2 results across models (SM Video 1) 

5. Resolution of linguistic uncertainty in structured discussion between rounds 1 and 2 (SM Figs 
9 - 12) 

6. Comparison with U.S. county data (SM Figs 13 - 14) 

7. Checklist data, including contributed model descriptions and funding acknowledgments (SM 
Tables 1-2, SM Figs 15 - 17) 

8. MMODS code   
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Supplementary Material: Anonymized results from round 2 (Figs. S1 to S8 and Video 1). 

 

SM Fig. 1: Model results for each target objective and intervention scenario pair organized 
by model. Median, 50% prediction interval (PI), and 90% PI are indicated as points, thick lines, 
and thin lines, respectively. Colors denote ranking of each intervention by model for a single 
objective, where dark blue signifies the lowest value (best performance) and dark red signifies 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.20225409doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 
 

the highest value (worst performance). Ties in ranks are colored as intermediate values. A tie 
between ranks 1 and 2 and ranks 3 and 4 are shown as an intermediate blue and red, respectively; 
yellow indicates a tie in ranks across all interventions. Each group is assigned a random, unique 
identification letter that is specified on the vertical axis. 

 

SM Fig. 2: Cumulative infections. Medians (points) and 50% PIs (lines) displayed pairwise by 
intervention scenario. Each point represents one model.  
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SM Fig. 3: Cumulative deaths. Medians (points) and 50% PIs (lines) displayed pairwise by 
intervention scenario. Each point represents one model.  
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SM Fig. 4: Days closed for non-essential workplaces. Medians (points) and 50% PIs (lines) 
displayed pairwise by intervention scenario. Each point represents one model. 
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SM Fig. 5: Peak number of hospitalized cases. Medians (points) and 50% PIs (lines) displayed 
pairwise by intervention scenario. Each point represents one model. 
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SM Fig. 6: Probability of outbreak. Median (points) and 50% PI (lines) displayed pairwise by 
intervention scenario. Each point represents one model. 
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SM Fig. 7: Cumulative distribution functions (CDFs) across models and for the aggregate. 
Each colored line shows the quantile distribution for a single model. The aggregate CDF is 
shown in black with median, 50% PI, and 90% PI indicated as red points, thick lines, and thin 
lines respectively.  
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SM Fig. 8: Scatter plots of intervention ranks for a given pair of objectives. Rank ties are 
shown as intermediate numerical values (e.g. a tie between 1 and 2 is shown as 1.5). For visual 
clarity, shaded points are jittered around the discrete rank values.  
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Supplementary Material: Resolution of linguistic uncertainty in structured discussion 
between rounds 1 and 2. 

The group discussion between modeling rounds is an efficient method to reduce linguistic 
uncertainty resulting from differing interpretations of the problem setting. As well as allowing a 
common definition of “peak” and other terms, as described in the main text, other sources of 
unanticipated uncertainty were resolved. For example, one modeling group asked for 
clarification on the definition of ‘death.’ There was a thorough discussion of the options that 
different groups had considered or used (reported only; reported plus probable; reported, 
probable and co-morbidities; or, also indirect deaths, such as those from unrelated causes in 
patients choosing not to go to the ER during a pandemic). We agreed as a group to use all deaths 
due to COVID-19 disease-induced mortality, regardless of reporting. This way of counting 
deaths is based on infection status, not testing status, and can include comorbidities but not 
indirect deaths, as we are only focusing on people who have been infected with SARS-CoV-2 
and died from their infection. 

The first round also provided some important checks and balances on the consistency of 
objective and intervention interpretations across groups, i.e., were the same definitions of 
workplace closures used?  In the first round, some groups used the May 15 to Nov 15 timeframe, 
others based start dates on declarations of a State of Emergency or stay-at-home orders, and one 
group implemented a weighting for essential and non-essential business closures and associated 
compliance issues explicitly (SM Fig. 9). Including a metric that should be consistent across 
models allowed us to check for and remove linguistic uncertainty in round 2 submissions that 
would have limited our ability to compare the rankings of interventions between models and 
objectives. 

In addition to resolving linguistic uncertainty, the first round provided information on the 
utility of the interventions themselves. We initially requested results for reopening after 
declining to 1% of peak – round 1 results suggested this condition would rarely, if ever, be met, 
and thus we altered the intervention to trigger at 5% of peak, instead.  Typically, such changes in 
interventions would be made in consultation with decision makers (as part of Fig. 1, loop A). 

Deliberately, consensus on scientific uncertainty was not required. In fact, model results were 
presented anonymously to reduce the pressure to conform to other groups’ expectations and 
hence to avoid ‘groupthink,’ and other cognitive biases, engendering a more comprehensive 
expression of legitimate scientific uncertainty. We thus encouraged modeling groups to adjust 
their models to reflect unknown aspects of the transmission and intervention implementation 
process to more fully express genuine scientific and logistical uncertainty.  

Due to the opposing effects of decreasing linguistic uncertainty and maintaining or increasing 
expression of scientific uncertainty, it was difficult to draw conclusions about the source of 
model-level changes in expressions of uncertainty between rounds 1 and 2. To begin to assess 
model-level changes, we compared the lengths of inter-quartile ranges (IQRs) (SM Figs 10-12) 
within groups by round as well as the ratio of IQR length between each model and the 
corresponding aggregate distribution. The clearest examples of model incorporation of additional 
scientific uncertainty in round 2 were the models that provided point estimates in round 1 (length 
of IQR = 0) that subsequently expanded these estimates to distributions in round 2. Requiring 
distributions rather than point estimates necessarily increased the degree of expressed 
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uncertainty. However, even in these models, we observed decreases in uncertainty (presumably 
in linguistic uncertainty) as the point estimates account for the majority of outliers in round 1 
(SM Fig. 10). 

For each objective-intervention pair considered in both rounds, the length of the aggregate 
IQR was greater than the median length of the corresponding model IQRs (SM Fig. 11).  The 
degree of uncertainty (as measured by IQR lengths) for the majority of models increased towards 
that of the corresponding objective-intervention aggregate distribution from round 1 to round 2 
(see the clustering of points near the orange dashed line in SM Fig. 11 round 2). 

Implementation of the open and closed interventions did not rely on a definition of “peak”. In 
SM Fig. 12, we observed that the ratio of IQRs (IQR(model)/IQR(aggregate)) between rounds 
tended to be closer to one than the 2-week intervention, which required a definition of peak (SM 
Fig. 12). We also note that decreases in the IQR length for the aggregate distribution were 
observed for all objectives in the 2-week scenario (i.e. aggregate ratio of IQRR2/IQRR1 <1). 
Changes observed in the open scenario (cumulative infections, cumulative deaths, and peak 
hospitalization ratios observed are 1.20, 1.02, and 0.949 respectively) were moderate compared 
to those in the closed scenario (cumulative infections, cumulative deaths, and peak 
hospitalization ratios observed are 1.93, 1.92, and 1.54 respectively). Note that an analogous 
comparison for the alternative peak intervention was not possible, given the change from 1-
percent of the peak to 5-percent of the peak between rounds.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.20225409doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44 
 

 

 

SM Fig. 9: Resolution of linguistic uncertainty about the number of days non-essential 
workplaces are closed in the discussion following round 1 of modeling (note that model IDs 
changed between rounds); figure is of a slide from the group discussion after round 1.  See main 
text Fig. 3 column 5 for days of non-essential workplace closure results from round 2.  Ovals 
highlight points of discussion about different ways of capturing uncertainty for days workplaces 
are closed and unusual results about intermediate interventions.  
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SM Fig. 10: Team and aggregate values for each intervention and objective pair. Round 1 
and round 2 results displayed in red and blue respectively. Since the 1-percent intervention from 
round 1 was updated to a 5-percent intervention in round 2, results for these interventions have been 
omitted from this comparison. Also note that two models were excluded from this analysis, as they 
submitted incomplete results in round 1. After the discussion between rounds 1 and 2, these groups were 
able to provide complete and comparable results. Additionally, in at least one case, some of the 
differences can be attributed to model error fixes between rounds.  
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SM Fig. 11: Comparison between model-specific IQR lengths and the length of the IQR for the 
aggregate distribution (i.e. length(IQR_team)/length(IQR_aggregate)) shown on a logarithmic 
scale. Results are grouped by round, intervention, and objective. Round is indicated on the left 
axis.  Columns indicate the objective and rows indicate the intervention. The dashed orange line 
highlights the point at which there is no difference between the model-specific IQR lengths 
between rounds 1 and 2 (points to the left indicate a model IQR less than that of the 
corresponding aggregate and vice versa for points to the right).  
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SM Fig. 12: Round comparison of IQR length by team, calculated as the ratio of the length of 
IQRs between rounds 1 and 2 (i.e. length(IQRR2) / length(IQRR1)) shown on a logarithmic scale. 
Note that in the first round, two models (G.1 and G.2) submitted point estimates for each 
intervention and metric. Since point estimates are such that length(IQR) = 0, the relative IQR 
(compared to round 1) is infinity and thus not shown here. Similarly, there is not a point 
representing cumulative deaths in the closed scenario for group K since the corresponding 
length(IQR) = 0. Because the 1-percent intervention from round 1 was changed to a 5-percent 
intervention in round 2, the corresponding results have been omitted from this comparison. The 
dashed orange line highlights the point at which there is no difference between the model-
specific IQR lengths between rounds 1 and 2 (points to the left indicate a lower R2 IQR than that 
of the corresponding group’s R1 submission, and vice versa for points to the right). 
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Supplementary Material: Comparison of county data with aggregate model results 

The modeling exercise was motivated by a U.S. county representative of mid-sized counties with 
populations of approximately 100,000 people, with limited mobility and stay at home orders in 
place until at least May 15, 2020. Here, we compare aggregate model results with reported data 
from counties meeting the target county description. 

We first selected the 99 U.S. counties with population sizes between 90,000 and 110,000 using 
data from the Johns Hopkins University COVID-19 dashboard (Dong, Du, and Gardner 2020). 
From this subset, we then selected counties with stay at home orders in place until at least May 
15, 2020 (data from Killeen et al. (2020), Keystone Strategy (2020), and NACO county 
emergency declarations (2020)), and changes in mobility in line with stay at home orders, i.e., 
less than 50% increase from baseline retail mobility, less than 25% increase in baseline work 
mobility, and less than 5% decline from baseline residential mobility (data from Google COVID-
19 Community Mobility Reports). This resulted in a subset of 84 counties. Finally, from this 
subset, we determined the set of counties implementing a fully ‘closed’ intervention (with stay at 
home orders in place from May 15, 2020 to present day (October 15, 2020 as of submission) and 
mobility patterns suggesting those orders were followed). We found 66 counties that met these 
criteria. No counties were found to be fully open during this period, and it was not possible to 
determine if any counties implemented the ‘2-week’ or ‘5-percent’ interventions. We compared 
aggregate cumulative deaths (reported deaths only) with modeled cumulative deaths (all 
COVID-19 deaths) under the closed intervention for the 66 counties following the ‘closed’ 
intervention. Cumulative reported deaths for the 66 counties under the closed intervention were 
summarized in 100 quantiles, the same format requested from model groups (See SM Figs 13 - 
14, below).  

Note that model results were for the entire period May 15, 2020 to November 15, 2020 and data 
were only available through the present day (October 15, 2020 as of submission). Further, we are 
comparing reported deaths (from data) with all COVID-19 deaths, not just reported deaths (from 
model results).  We did not assume a reporting rate, but expect a higher number of model 
predicted cumulative deaths. Crucially, our results represent the realization of one pandemic 
across 66 counties in comparison to multiple model realizations across a wide range of 
uncertainty. Thus, the model uncertainty will necessarily be higher than the observed 
uncertainty.  The model mean will likely also be higher, as the right-skewed uncertainty will 
increase the mean. 

County comparison results provided in the SM will be updated once data are available for the 
entire period May 15, 2020 to November 15, 2020, for counties that remain closed. 
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SM Fig. 13: Summary of cumulative reported deaths for counties similar to the model 
context and following the closed intervention. Median reported cumulative deaths (solid line), 
50% IQR (darker shaded area), and 90% IQR (lighter shaded area) for the subset of 66 counties 
following the closed intervention from May 15 to October 15. 
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SM Fig. 14: Comparison of aggregate reported county data to model results for the closed 
intervention. Boxplot of cumulative reported deaths from 66 U.S. counties from May 15 to 
October 15 (median: 31; 50% IQR: 16, 56; 90% IQR: 3, 59) and model results for cumulative 
deaths from May 15 to November 15 (median: 73; 50% IQR: 12, 228; 90% IQR: 2, 1568). Inset 
shows overlap of box area for the two plots. 
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Supplementary Material: Checklist Data 

SM Table 1: Contributed model descriptions. Name, description (including links to model code where available), diagram, 
calibration method, other non-pharmaceutical interventions (NPIs) included in the model, additional data sources used, previous use 
cases for the model (both for COVID-19 in other settings and other disease systems) and references for each of the 17 models. 
Categories which were not relevant were excluded. 

CoMo Collaborative COVID-19 Model 

Description Age-structured, SEIR compartmental model with infected compartments stratified by symptoms, severity and treatment seeking 
and access. Code available: https://github.com/ocelhay/como   

Additional NPIs included Social distancing, Isolation (post infection), Stay-at-home (voluntary), Handwashing, Travel ban 

Additional data sources 
used 

National data on hospital, ICU, and ventilator availability; Data on U.S. household size from the American Community Survey; Data 
from China and New York City for healthcare parameterization; Age-structure mixing matrices for Work, School, and Home from 
Prem, Cook, and Jit (2017); Vital surveillances from The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team 
(2020); NYS Governor Cuomo Daily presentation (April 23, 2020); List of countries by hospital beds (Wikipedia) 

Previous use cases RSV in Thailand 
References Covid-19 International Modelling Consortium 2020 
Co-authors Ricardo Agus, Lisa White, Nathaniel Hupert (PI) 

Acknowledgements Wirichida Pan-Ngun, PhD, Olivier Celhay, Vruj Patel, Lior Shtayer 
Covasim 

Description 

Stochastic agent-based model, including age-structured mixing, susceptibility to infection and health outcomes; transmission 
networks in different social layers; variable intrahost viral dynamics; presymptomatic, symptomatic, and asymptomatic 
transmission; hospitalizations (regular and intensive care); and multiple non-pharmaceutical and testing interventions. Code 
available: https://github.com/institutefordiseasemodeling/covasim 

Diagram See Kerr et al. 2020, Fig. 1 

Calibration Parameters were calibrated by optimizing the L1 relative error norm of positive diagnoses, number of deaths, and number of tests 
using global optimization package, Optuna 

Additional NPIs 
included 

Social distancing, Isolation (post infection), and school, workplace, and community closures based on stay-at-home and state-of-
emergency orders. 

Previous use cases COVID-19 in Africa, Europe, Oceania, and North America 
References Kerr et al. 2020 
Co-authors Rafael C. Nez, Katherine Rosenfeld, Gregory R. Hart, Daniel Klein, Cliff C. Kerr (PI) 

Acknowledgements Dina Mistry, Prashanth Selvaraj, Jamie A. Cohen, Michael Famulare, Robyn M. Stuart, Romesh Abeysuriya 
EvoNet SARS2 

Description Stochastic, place-based model in which agents travel to different locations within the community.  Agents can infect others within 
homes, schools, workplaces and other regular gathering spots, as well as during random walks within the community.  
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Calibration 
Created ~1000 parameter sets each with 52 uniformly distributed parameters.  For each parameter set, we considered a range of 
transmission probabilities.  Interventions were simulated for parameter sets for which case and death counts came within range 
of the county data up to May 15th. 

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Age-specific interventions (e.g., 
isolation of elderly) 

Previous use cases HIV 
Co-authors John Mittler (PI) 

Acknowledgements Joshua Herbeck, James Murphy, Neil Abernethy, Sarah Stansfield, Molly Reid, Steven Goodreau 
Funding NIH grants R01AI108490 and R01 GM125440 

JHU-CDDEP Bayesian Three-stage ODE Model 

Description 
Bayesian, mechanistic ODE-based compartmental model composed of three transmission stages with varied force of infection 
pre-lockdown, lockdown, post-lockdown. Each stage corresponds with lockdown phases and social distancing measures that 
might be imposed by public health policymakers. 

Calibration Bayesian inference was conducted using MCMC-based method was used to fit the model to confirmed cases and deaths. 
Parameter ranges were estimated form the posterior distribution. Prior distribution was assumed to be uniformly distributed 

References Lin et al. 2020 
Co-authors Gary Lin, Yupeng Yang, Eili Klein 

Acknowledgements Anindya Bhaduri, Max Pinz, and the U.S. Centers for Disease Control and Prevention (CDC) Modeling in Infectious Diseases 
Network 

LANL1-EpiCast 
Description Agent based model with communities, households, and workplaces 

Calibration 

Transmission rates were varied in burn in period (March to May) to try to model actual county statistics. Burn in transmission 
rates calculated by parameter testing the model were much higher than previous experience fitting covid-19 (0.43), and were 
thus scaled down to an assumptive 0.2. This is potentially due to very low testing rates in initial stages and the existence of many 
more cases than were validated, thus explaining apparent excessively rapid growth in case numbers.  

Additional NPIs 
included 

Social distancing, Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., 
government-ordered) 

Additional data sources 
used 

CDC disease statistics; past model calibration experience for COVID 

Previous use cases Flu and smallpox in the U.S. 
References Germann et al. 2006; Halloran et al. 2008; Germann et al. 2019 
Co-authors Chrysm Watson Ross, Tim Germann, Geoffrey Fairchild, Sara Del Valle (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
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necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. 

LANL2-Age Structured ODE 

Description Age-structured compartmental ODE model. Stochasticity is incorporated by selecting parameters randomly from uniform 
distributions for each run, where the parameter ranges are determined from literature. 

Diagram See Spencer 2020 
Previous use cases COVID-19 in New Mexico 

References Spencer 2020; Spencer et al. 2020 
Co-authors Rosalyn Cherie Rael, Julie Spencer, Isabel Crooker, Carrie Manore (PI) 

Funding 

The LANL team was partially funded by the Laboratory Directed Research Development Program at Los Alamos National 
Laboratory (20200698ER and 20200697ER) and was supported by the DOE Office of Science through the National Virtual 
Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by 
the Coronavirus CARES Act. Los Alamos National Laboratory is operated by Triad National Security, LLC under Contract No. 
89233218CNA000001 with the U.S. Department of Energy. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the sponsors. The funders had no role in study design, data collection, analysis, decision 
to publish, or preparation of manuscript. The publication is approved for release LA-UR-20-27777. 

MESALab-FOSP 
Description Integer order generalized SEIR compartmental models with power law infection rates and age structure 
References Guo et al. 2020 
Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

MESALab-FOSP2 
Description Fractional order generalized SEIR compartmental models with power law infection rates 
References Guo et al. 2020 
Co-authors Lihong Guo, Yanting Zhao, YangQuan Chen (PI) 

NEU-MOBS 

Description Stochastic, age-structured, compartmental model, including symptomatic and asymptomatic transmissions, as well as 
hospitalizations. 

Calibration Calibration of R0 and initial date performed using reported deaths 
Additional NPIs 

included 
Social distancing, Stay-at-home (mandatory, e.g., government-ordered) 

Additional data sources 
used 

Age structure contact patterns from highly detailed macro (census) and micro (survey) data on key socio-demographic features 

References Mistry et al. 2020 
Co-authors Kunpeng Mu, Ana Pastore y Piontti, Alessandro Vespignani (PI) 

Acknowledgements Matteo Chinazzi, Jessica T. Davis, Xinyue Xiong 
Funding AV, APyP, KM acknowledge the support of the McGovern Foundation,  Google Cloud and Google Cloud Research Credits program. 

NIH-FDA SICR 
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Description 

Compartmental model with compartments for Susceptible, Infected, Case (C), case Recovered (R), and case Dead (D). The mean 
dynamics of the compartments are governed by an ODE system. The likelihood for the rate of appearance of C, R, and D are given 
by a negative binomial distribution where the dispersion parameter is a fitted parameter. Code available: 
https://github.com/ccc1685/covid-19 

Diagram See Fig. 1 in Chow et al. (2020) 
Calibration Priors were obtained from posteriors of fits to New York and Maryland 

Previous use cases COVID-19 globally, data permitting 
References Chow et al. 2020 
Co-authors Joshua C Chang, Richard C Gerkin, Shashaank Vattikuti, Artur Belov, Osman Yogurtcu, Carson C Chow (PI) 

Acknowledgements Hong Yang 

Funding CCC and SV were supported by the Intramural Program of the NIH, NIDDK. RCG was supported by NIDCD, NINDS, and NSF. This 
work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

Notre Dame-FRED 

Description 

Agent-based model, FRED (Framework for Reconstructing Epidemic Dynamics), with updated epidemiological parameters based 
on studies to date. FRED explicitly models transmission dynamics of a pathogen in a realistic population, and allows for the 
impacts of NPIs to be modeled explicitly (e.g., school closure results in agents representing children staying home). Code 
available: https://github.com/confunguido/covid19_ND_forecasting 

Calibration 

Disease specific parameters were calibrated to the number of daily deaths in PA. Adams County was then simulated to estimate 
the rate of importations from the state incidence and a scaling factor to google mobility trends. Parameters were uniformly 
sampled for each step of the calibration using a sobol design sequence (pomp package in R). Then, the likelihood based on the 
daily number of deaths was calculated. 

Additional NPIs 
included 

Isolation (post infection) 

Additional data sources 
used 

NY times data to match the daily deaths of the state of PA as a pre-fitting step (https://github.com/nytimes/covid-19-data); 
Google mobility trends 

Previous use cases Several diseases; originally developed by University of Pittsburgh to model the 2009 influenza pandemic 
References Grefenstette et al. 2013 
Co-authors Guido España, Sean Cavany, Rachel Oidtman, T. Alex Perkins (PI) 

Acknowledgements Alan Costello, Annaliese Wieler, Anita Lerch, Carly Barbera, Marya Poterek, Quan Tran 

Funding 
This work was supported by an NSF RAPID grant to TAP (DEB 2027718), an Arthur J. Schmitt Fellowship and Eck Institute for 
Global Health Fellowship to RJO. We thank the University of Notre Dame Center for Research Computing for computing 
resources. 

UCLA-SuEIR 

Description 
New epidemic compartmental model (SuEIR) based on the standard SEIR model that also takes into account untested/unreported 
cases. The model is trained by machine learning algorithms based on reported historical data. Project website: 
https://covid19.uclaml.org/ 

Diagram See Fig. 1 in Zou et al. (2020) 
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Additional NPIs included Quarantine (post exposure), Isolation (post infection), Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-
ordered), Age-specific interventions (e.g., isolation of elderly) 

References Zou et al. 2020 
Co-authors Difan Zou, Weitong Zhang, Lingxiao Wang, Pan Xu, Jinghui Chen, Quanquan Gu (PI) 

UF COVID-ABM 

Description 

Spatially explicit, agent-based model simulating a community of individuals based on census, workplace, and school data. The 
movement of each person during a simulated day takes place among a set of pre-assigned local places. Pathogen exposure events 
occur probabilistically when a susceptible person co-localizes with an infectious person and exposures can be resisted, or result in 
asymptomatic, mild, severe and/or critical infection 

Additional NPIs included Social distancing, Stay-at-home (voluntary), School closures 

Additional data sources 
used 

The American Community Survey 5-year dataset; geographical coordinates and the business type from the National Corporation 
Directory;  North American Industry Classification System to identify essential vs non-essential businesses; University of Florida 
GeoPlan Center shapefile and data from the National Center for Education Statistics to locate schools 

Previous use cases Dengue in Yucatan, Mexico 
References Hladish et al. 2020; Hladish et al. 2018; Hladish et al. 2016; Flasche et al. 2016 
Co-authors Kok Ben Toh, Arlin Stoltzfus, Carl Pearson, Dianela Perdomo, Alexander Pillai, Sanjana Bhargava, Thomas Hladish (PI) 

UNCC LSTM 

Description 
Data-driven, stochastic SI model utilizing a deep learning recurrent neural network with multivariate LSTM architecture. The 
model was calibrated using COVID-19 epidemic data in another region with ending of the epidemic to guide the model to learn 
how the epidemic could eventually phase out. 

Calibration Transfer learning was used to let the LSTM learn how the epidemic would eventually end from another region, explore the RNN 
structure and hyperparameters, and apply them to tune the model for the modeled region 

Additional data sources 
used 

COVID-19 data from another region where the epidemic has (presumably) ended. 

Co-authors Daniel Janies, Rajib Paul, Shi Chen (PI) 
Acknowledgements Tinghao Feng 

UT-SEPAYHR 

Description 
Stochastic, age- and risk-structured compartmental model that includes susceptible, exposed, presymptomatic, asymptomatic, 
symptomatic, hospitalized, and recovered states (SEPAYHR). The model is simulated using a hybrid approach with a deterministic 
initial phase (up to 20 total symptomatic cases) followed by a stochastic phase.  

Diagram See Fig. A1 in Duque et al. (2020) 

Calibration 

Basic reproductive number (Rt) was estimated using provided and transmission probability was estimated using a next-generation 
matrix approach based on the model structure and Rt. Epidemic start date was based on the time to first death implied by the 
estimated Rt and transmission probability. Transmission reduction due to social distancing was estimated with a nonlinear least 
squares fitting procedure in the SciPy/Python package. Detection rate was estimated using the provided data and published 
estimates of age-structured infection fatality ratios. 
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Additional NPIs 
included 

Social distancing, Stay-at-home (voluntary), Stay-at-home (mandatory, e.g., government-ordered) 

References Duque et al. 2020 
Co-authors Kelly Pierce, Remy Pasco, Lauren Ancel Meyers (PI) 

Acknowledgements Spencer Fox, Zhanwei Du, Ethan Ho, Greg Zynda, Jawon Song 
Funding CDC contract 75D-301-19-C-05930, and NIH grant 3R01AI151176-01S1 

UW-THINKLAB-SEIQRD 

Description 
Compartmental model, consisting of 6 compartments: Susceptible (S), Exposed (E), Infectious (I), Quarantined (Q), Recovered (R) 
and Dead (D). Transitions between compartments are formulated using deterministic functions in discrete time steps and 
parameters governing transitions are assumed to change stochastically on a daily basis (except for predetermined parameters). 

Calibration Particle filtering is used to update the distribution of parameter estimates on a daily basis while case and death data is available 
(i.e. by May 15). 

Additional data sources 
used 

National average hospital beds per capita from World Health Organization 
(https://www.who.int/data/gho/data/indicators/indicator-details/GHO/hospital-beds-(per-10-000-population) 

Co-authors Xiangyang Guan, Cynthia Chen (PI) 
VT Childs Lab 

Description Deterministic, compartmental ODE system. Parameter sets are chosen using Latin Hypercube Sampling and refined based on 
comparison to data. 

Calibration Parameters were chosen from given ranges via Latin Hypercube Sampling (LHS) 
Additional NPIs included Social distancing, Isolation (post hospitalization) 

Co-authors Lauren M Childs (PI) 
Acknowledgements Kate Langwig, Leah Johnson, Eyvindur Ari Palsson, Julie Blackwood 

Funding LMC acknowledges support from National Science Foundation grant No. 2029262. 
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SM Table 2: Importation rate. Most models did not include an importation rate after any initial 
seeding. Models that did maintained a relatively small importation rate, per the elicitation setting. 

Model ID Importation rate (or None) 
A None 
B None 
C None 
D None 
E 0.14 cases / day 
F 1 exposure / day (with a probability of resistance) 
G.1 None 
G.2 None 
H None 
I None (after initial seeding) 
J None (after initial seeding) 
K None 
L 0 – 0.5 cases / day 
M None 
N None 
O Varied 
P None 
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SM Fig. 15: Description of model components and structure by model. Participants were 
asked to indicate which model components were included in their model (from a given set) and 
whether any component was structured by age and/or gender and/or sex as part of the submission 
checklist. No model included any components structure by gender and/or sex. Twelve of the 17 
included at least one component structured by age.  
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SM Fig. 16: Data sources used for each model.  Participants were asked to indicate which of 
the provided datasets were used for any part of the model (e.g., for calibration, training, fitting 
etc.) as part of the submission checklist. All but one model used at least two of the provided data. 
Model F used only external data sources (provided data was used solely to better understand the 
intent of the exercise). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.20225409doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

60 
 

 

SM Fig. 17: Projected number of deaths, people who are susceptible, and new infections 
under each scenario for the final day of the forecast. Participants reported the 5th, 25th, 50th, 
75th, and 95th quantiles for the number of deaths, susceptibles, and new infections on the final 
day (November 15, 2020) under each scenario. All models started with similar initial 
susceptibles. 
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