
Copyright

by

Xi Ye

2024

1

The Dissertation Committee for Xi Ye
certifies that this is the approved version of the following dissertation:

Steering Textual Reasoning with Explanations

Committee:

Greg Durret, Supervisor

Raymond Mooney

Eunsol Choi

Jonathan Berant

2

Steering Textual Reasoning with Explanations

by
Xi Ye

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2024

3

Acknowledgments

I have been fortunate to pursue my PhD studies abroad at UT, and I have been

incredibly lucky throughout my doctoral journey.

First and foremost, I would like to thank my advisor, Greg Durrett. I wasn’t initially

admitted as his student but decided to take a turn to NLP after I joined UT. I am deeply

grateful that although I didn’t have much background in NLP, he let me join his group. Ever

since then, it has been an absolutely wonderful journey. Greg is so passionate, knowledge-

able, and creative as a researcher, as well as thoughtful and helpful as an advisor. He can

patiently answer my questions like “What is language modeling” during our meetings, and

he is willing to look at the lengthy, messy output examples and examine my figures at the

pixel level. He allows me almost complete flexibility in choosing the topics I am interested

in, and in taking internships and external collaborations. Even more incredibly, Greg is

always encouraging and supportive whenever I panic about projects or anything. Greg is my

role model not only as a leading researcher in NLP but also as a supportive mentor. I could

never express how fortunate I am to be his student.

I am also grateful to Qixing Huang, without whose support I would not have been

able to pursue my Ph.D. studies at UT. I first met with Qixing during his visit to Tsinghua

University. I am thankful that he hosted me for a summer visit at UT, even though I was not

particularly strong as a CV student. I found myself enjoying UT and the city even during

summer (probably the worst time to stay in Austin). The visiting experience definitely

played an important part in my admission to UT a year later. I also appreciate Qixing’s

advice and caring throughout my years at UT.

I would like to extend my gratitude to all the mentors who generously shared their

time and advice. Eunsol Choi has provided enormous help, offering insightful feedback on

my projects and papers, collaboration opportunities, and kind words of encouragement (as

well as recommendations for Korean restaurants which have become my go-to places for

celebrating paper acceptances). Eunsol has also been a fantastic example of how to be a

4

great advisor. I am sincerely grateful to Isil Dillig for her collaboration and mentorship on

many interesting interdisciplinary projects. From Isil, I have also learned a great deal about

formalizing problems and writing papers. I would like to express my sincere gratitude to

Eunsol Choi, Ray Mooney, and Jonathan Berant for serving on my committee and providing

valuable feedback on my dissertation. Thanks to Graham Neubig and Jonathan Berant,

whose work has been a great source of inspiration for my research, for their support on my

job search. I also thank Shixia Liu, my undergraduate advisor, for her continued guidance

and mentorship after my graduation. Thanks to my internship mentors: Semih Yavuz,

Yingbo Zhou, Ram Pasunuru, Srini Iyer, Ruoxi Sun, and Sercan Arik for their guidance.

I feel incredibly lucky to have my friends and fellow collaborators. Jocelyn Chen:

thank you for all the papers we’ve co-authored and all the good times we’ve had together. I

started my first NLP project working with Jocelyn, and we immediately started discussing

(and fighting) about projects. We’ve worked together so well, and I’m looking forward

to continuing our collaboration at our soon-to-be new school. Special thanks for putting

up with all my complaints about research projects and life. I’d also like to thank all the

members we overlapped with at TAUR and UT NLP. Jiacheng Xu: we had many interesting

conversations on stressful topics and I learned many practical tips for surviving the PhD.

Jifan Chen, Yasu Onoe, and Jialin Wu: chatting with you about all the random things has

always been fun. Tanya Goyal and Kaj Bostrom: it is a pleasure to discuss with you on

various topics. Fangcong Yin and Zeyu Liu: thank you for the chit-chats and the special

Guandan training. I would like to thank the junior students with whom I collaborated:

Prasann Singhal, Zayne Sprague, Weikai Yang, Yoonsang Lee, Fangcong Yin, and Zeyu Liu.

It was fantastic to work with you. I would also like to thank my friends from the broader

NLP community, Chenglei Si (special thanks for our many discussions), Jun Yan, Shiyang

Li, Xinlu Zhang, Man Luo, Yunmo Chen, Wenhao Yu, and Ansong Ni. Thanks to Lemeng

Wu, Zhen Chen, and Huancheng Chen for hanging out together in Austin. Thanks to Yu

Fang and Jiaoying Mu for being my friend since undergrad. Thanks to Julia, the sweetest

cat in the world, for her companionship and to an old friend for all the free therapy during

my difficult times.

5

Finally, I would like to thank my parents for their unconditional love and support.

Without them, I would not have been able to come this far.

6

Abstract

Steering Textual Reasoning with Explanations

Xi Ye, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Greg Durret

Recent breakthroughs in pretraining have significantly extended the boundaries of

language models’ (LMs’) potential applications, partially because of their increased ability

to do complex reasoning. However, LMs have well-documented reasoning failures, such

as hallucinations and inability to systematically generalize. In this dissertation, we aim to

steer LMs in reliably performing textual reasoning, with a particular focus on leveraging

explanations. We describe our work on steering textual reasoning with explanations in two

paradigms: 1) intervening on model predictions post-hoc by using explanations from LMs

to verify their predictions, and 2) teaching LMs to reason by demonstrating the reasoning

process of solving reasoning tasks to them.

We first introduce how to leverage post-hoc explanations for intervening on model

predictions. Past work has attempted to use post-hoc explanations for interpreting and

debugging model behavior but often heavily relies on human effort. We focus instead on

automating the process of using explanations to improve model predictions. Through a

case study on QA models, we show that pairwise interaction-based explanation techniques

align well with QA model behavior on counterfactuals, highlighting the connection between

explanations and model behavior. This motivates us to introduce a framework for automati-

cally assessing the robustness of black-box models using explanations. The framework first

extracts features to describe the “reasoning process” disclosed by the explanations, and then

7

uses a trained verifier to judge the reliability of predictions based on these features. Using

our framework, we successfully improve two classes of models on diverse tasks spanning

QA, NLI, and commonsense reasoning: BERT-based models, improved using attributions,

and GPT-3-based in-context learning, using free-text explanations.

We further study how to use explanations for teaching LMs to reason, especially

free-text explanations for large language models (LLMs). We show that the performance of

LLMs on downstream tasks is sensitive to the choice of explanations (among varied possible

explanations) provided to them. We therefore propose methods for constructing effective

explanations for LLMs. We introduce an approach that automatically optimizes explanations

using unlabeled data, reducing the requirement of heavy manual prompt engineering. We

also propose a framework that uses declarative formal specifications as explanations and

employs an SMT solver to amend the limited planning capabilities of LLMs, which scales

LLMs to handle problems requiring significantly deeper reasoning depth.

Lastly, we outline future directions for further enhancing LLMs to better aid humans

in challenging real-world applications demanding deep reasoning.

8

Table of Contents

List of Tables . 12
List of Figures . 15
Chapter 1: Introduction . 17

1.1 Contributions of This Dissertation . 18
Chapter 2: Connecting Attributions and QA Model Behavior 22

2.1 Introduction . 22
2.2 Motivation . 24
2.3 Behavior on Counterfactuals . 26
2.4 Explanation Techniques . 28

2.4.1 Token Attribution-Based . 28
2.4.2 Feature Interaction-Based . 29
2.4.3 Layer-wise Attention Attribution 30

2.5 Experiments . 31
2.5.1 Hotpot Yes-No Questions . 31
2.5.2 Hotpot Bridge Questions . 34
2.5.3 SQuAD Adversarial . 36
2.5.4 Discussion and Limitations . 37

2.6 Related Work . 38
2.7 Conclusion . 39

Chapter 3: Calibrating Black-box Models Using Explanations 40
3.1 Introduction . 40
3.2 Using Explanations for Black Box Model Calibration 43

3.2.1 Generating Explanations . 44
3.2.2 Extracting Features by Combining Explanations and Heuristics . . . 45
3.2.3 Calibrator Model . 46

3.3 Tasks and Datasets . 47
3.4 Experiments . 48

3.4.1 Main Results: QA . 50
3.4.2 Main Results: NLI . 52
3.4.3 Analysis . 53
3.4.4 Comparison to Finetuned Models 56

3.5 Selective QA Setting . 57
3.6 Related Work . 58
3.7 Discussion & Conclusion . 59

9

Chapter 4: Calibrating In-Context Learning Using Explanations 60
4.1 Introduction . 60
4.2 Does Prompting with Explanations Improve In-Context Learning? 62

4.2.1 Datasets . 63
4.2.2 Baselines . 64
4.2.3 Setup . 65
4.2.4 Results . 65

4.3 Can LLMs Generate Factual and Consistent Explanations? 67
4.3.1 Reliability of Explanations and Prediction Accuracy 69

4.4 Calibrating In-Context Learning using Explanations 70
4.4.1 Motivating Example: Improving SYNTH Dataset 71
4.4.2 Learning-based Calibration Framework 71
4.4.3 Calibrating E-SNLI . 73
4.4.4 Calibrating HOTPOTQA . 75

4.5 Related Work . 77
4.6 Discussion & Conclusion . 78

Chapter 5: Explanation Selection for Chain-of-Thought Prompting 80
5.1 Introduction . 80
5.2 Problem Formulation . 82

5.2.1 Problem Statement . 82
5.2.2 Performance Varies Across Explanations 83

5.3 Method Overview . 84
5.4 Proxy Metrics for Finding Promising Combinations 85

5.4.1 One-shot Silver Accuracy . 85
5.4.2 One-shot Log Likelihood . 86
5.4.3 Ensemble . 87

5.5 Experimental Setup . 87
5.5.1 Language Models . 87
5.5.2 Datasets . 88

5.6 Effectiveness of Proxy Metrics . 88
5.7 Effectiveness of Framework . 90

5.7.1 Main Results . 90
5.7.2 Analysis . 91

5.8 Related Work . 94
5.9 Discussion & Conclusion . 94

10

Chapter 6: Satisfiability-Aided Language Models Using Declarative Prompting . . 96
6.1 Introduction . 96
6.2 Overview . 98
6.3 SAT-Aided Language Models using Declarative Prompting 102

6.3.1 Declarative Prompting . 102
6.3.2 Solving with a SAT Solver . 102

6.4 Experiments . 104
6.4.1 Setup . 104
6.4.2 Main Results . 105
6.4.3 Impact of SAT Solver & Declarative Prompting 107
6.4.4 Advantages of SAT in Selective Prediction 109
6.4.5 Analysis . 110

6.5 Related Work . 112
6.6 Conclusion & Limitations . 114

Chapter 7: Conclusion and Future Work . 116
7.1 Future Directions . 118

Works Cited . 120
Vita . 154

11

List of Tables

2.1 Results on HOTPOTQA Yes-No type and Bridge questions. Our approach
can better predict the model behavior on realistic counterfactuals, surpassing
token attribution methods. 33

2.2 Simulation Accuracy and AUC scores for the SQuAD adversarial setting,
assessing whether model changes its prediction on an example when attacked. 37

3.1 Main results on QA tasks. Our explanation-based methods (LIMECAL
and SHAPCAL) successfully calibrate a ROBERTA QA model trained on
SQUAD when transferring to three new domains, and outperform a prior
approach (KAMATH) as well as our ablation using only heuristic labels
(BOWPROP). In addition, we show the mean and standard deviation of the
deltas w.r.t. BOWPROP across multiple random seeds in ∆BOW. 50

3.2 Main results on NLI tasks. LIMECAL moderately improves the performance
of the base MNLI model on QNLI and MRPC, despite how different these
tasks are from the base MNLI setting. 52

3.3 Area under Coverage-F1 curve for cross-domain calibration results. The
numbers along the diagonal shows the MAXPROB performance. A better
performance than MAXPROB suggests the calibrator is able to usefully
generalize (colored cells). 53

3.4 AUC scores of the calibrators trained with varying training data size. Explanation-
based calibrators can still learn even with limited training resources, whereas
KAMATH and BOWPROP are not effective and underperform the MAXPROB
baseline on TRIVIAQA and HOTPOTQA. 54

3.5 Model performance and calibration performance of LIMECAL and glass box
methods. On QA tasks, LIMECAL is better than FINETUNING ROBERTA
and even outperforms ADAPT BASE QA/NLI on TRIVIAQA. LIMECAL
under-performs glass box methods on NLI due to its easy nature and the
poor base-model performance. 55

3.6 Area under Coverage-F1 curve in the Selective QA setting. Our explanation-
based approach is also strong in this setting, substantially outperforming
existing baseline and our own ablation. 57

4.1 Results of prompting with explanations on four large language models.
Using explanations leads to small to moderate improves performance on
OPT, GPT-3, and InstructGPT, and has more prominent effects on text-
davinci-002. 66

4.2 Left: factuality (Fac) and consistency (Con) of the generated explanations.
Right: the % of the examples whose explanation factuality/consistency is
congruent with the prediction accuracy. In general, LLMs tend to generate
consistent but less likely factual explanations. 68

12

4.3 Accuracy (meanstd dev) of various methods on E-SNLI under different data
conditions. L denotes number of labels (as well as the total number of exam-
ples); E denotes the number of explanations. Calibrating using explanations
successfully improves the performance of in-context learning. 73

4.4 AUC scores (meanstd dev) on HOTPOTQA under different data conditions.
L and E denotes the number of label annotations and explanation annota-
tions, respectively. Explanation-based calibration successfully improves the
performance on top of prompting with explanations. 76

5.1 Statistics of the performance of 16 different random combinations of expla-
nations on 4 datasets and the performance of the seed explanations from
crowdworkers. All tasks show substantial variation in performance. 83

5.2 Oracle maximum accuracies achievable with 8 or 16 candidate combina-
tions using different selection strategies. Using log likelihood-based or
silver accuracy-based proxy metrics can find more promising candidate
combinations than random candidates. 87

5.3 The performance of optimized explanations against seed explanations and
baselines derived from past work. Optimized explanations substantially
outperform other approaches on GSM, ECQA, and E-SNLI. 91

5.4 Performance of seed explanations and optimized (Optim) explanations using
self-consistency decoding with varying number of samples. 92

5.5 The performance of optimized explanations against seed explanations on
text-davinci-003 (⇑ and ↑ denote significant improvements with p ¡
0.05 and p ¡ 0.1, respectively). Our optimization approach is effective across
LLMs. 92

5.6 Explanations optimized on the GSM dataset (OPTIM-GSM) achieve better
performance on SVAMP and different settings of MAWPS compared
to the seed explanations. The performance improvements of optimized
explanations on one dataset can generalize to other out-of-domain datasets. 93

5.7 Results of searching with a reduced budget. Optimized explanations can
still improve the performance upon the seed explanations. 93

6.1 Comparison of our approach (SATLM) against standard prompting (directly
predicting the answer), COT and PROGLM. Certain settings are not applica-
ble (marked as −). With greedy decoding, SATLM outperforms COT and
PROGLM on all datasets by a substantial margin except for GSM, where
it is on par with PROGLM. With self-consistency decoding, SATLM is
consistently better than PROGLM, giving SoTA accuracy on LSAT and
BOARDGAMEQA. 106

6.2 The performance of variants of our approach that use CoT Solver or No
Solver. Using declarative prompting with CoT solver is more effective than
imperative CoT prompting. 107

6.3 Fraction of planning errors (incorrect reasoning chains) and execution errors
(numeric errors) made by COTSOLVER. 108

13

6.4 Log likelihood (unnormalized / normalized) of the generated sequences
(with greedy decoding) of PROGLM and SATLM on three datasets. Better
log likelihood indicates higher LLM confidence in the parsing stage. 108

6.5 Analysis of accuracy and execution status of SATLM and PROGLM. We
present the fraction of tasks solved correctly or incorrectly in GSM-SYS,
GSM, and CLUTRR, along with the breakdown of feedback from the solver.
SATLM generally makes fewer predictions than PROGLM (ANSWERED),
but more frequently makes correct predictions when it returns an answer
(SELECTIVE ACC) and gives a higher absolute number of correct predictions
on GSM-SYS and CLUTRR. 110

6.6 Results on gpt-3.5-turbo, text- davinci-003, and code-davinci-001.
The effectiveness of SATLM can generalize across LLMs. 111

6.7 The performance of PROGLM and SATLM with varying exemplar sets.
SATLM consistently outperforms PROGLM on GSM-SYS and CLUTRR. . 112

14

List of Figures

2.1 A motivating example and explanations generated by several methods. We
profile the model behaviors with the predictions on realistic counterfactual
inputs, which suggests the model does not truly base its prediction on the
two movies being documentaries. We can evaluate explanations by seeing
whether they can be used in combination with heuristics to derive this same
conclusion about model behavior. 23

2.2 Steps of our Layer-wise Attention Attribution approach, where we only
intervene a single layer at step. E.g., to compute the attribution of attentions
at layer 2, we only intervene the attention matrix at that layer, and leave
other attentions computed as usual. 30

2.3 Examples (contexts are truncated for brevity) of our property annotations
on Hotpot base data points. The top two are yes/no questions and the third
is a bridge question. 31

2.4 Explanations generated by our approach for a bridge type question from
HOTPOTQA. The prediction can mostly be attributed to the primary ques-
tion, indicating the model is taking the reasoning shortcut, and the prediction
is flipped with an adversarial attack. 34

3.1 Calibrator pipeline and examples from the SQUAD-ADV dataset. A ROBERTA
model trained on SQUAD is correct on the first example but incorrect on
the second. Features that inspect attribution values produced by LIME can
differentiate these two on the basis of attributions to NNP in the question and
V* in the context. A calibrator using these features can predict whether the
original model was right or wrong. 42

3.2 Illustration of different settings in the experiments. In black box settings,
a calibrator is trained for improving model performance on OOD data; in
glass box settings, the model is finetuned on OOD data from a base model
or vanilla ROBERTA LM model. 47

3.3 Coverage-F1 curves of different approaches on SQUAD-ADV. As more
low-confidence questions are answered, the average F1 scores decrease. We
use AUC to evaluate calibration performance. 49

4.1 Prompting GPT-3 with explanations. By including explanations in the in-
context examples, we can cause GPT-3 to generate an explanation for the
test example as well. In this case, the generated explanation is nonfac-
tual, despite the simple reasoning involved here. However, we show this
nonfactuality actually provides a signal that can help calibrate the model. . 61

4.2 A SYNTH example and an E-SNLI example. See Figure 4.3 for HOTPOTQA
examples. 63

4.3 Explanations generated for HOTPOTQA. InstructGPT may generate nonfac-
tual explanations containing hallucination (red) or inconsistent explanations
contradicting the answer (red). 67

15

4.4 Explanations are more likely to be nonfactual than to be inconsistent, and a
nonfactual explanation usually indicates an incorrect prediction. 69

4.5 Coverage-Acc curves of various methods on HOTPOTQA. E-P+EXPLCAL
is better calibrated compared to uncalbrated E-P as well as the other ap-
proaches. 76

5.1 Optimizing explanations given a candidate set. We generate candidate
explanations in a leave-one-out fashion (not shown), prioritize combinations
of explanations using a surrogate score S, then evaluate them on silver data
to optimize accuracy. 81

5.2 Silver labeling of unlabeled test example given several sampled combina-
tions. This example is for a binary task with True or False labels (e.g.,
StrategyQA). 84

5.3 Gold test set accuracy (y-axis) vs. various surrogate proxy scores for expla-
nation sets. Points of three different colors denote combinations selected
using three metrics. Generally, there is a positive correlation between SOSAcc

(also SOSLL) and performance on these datasets. 89

6.1 Illustration of our Satisfiability-aided Language Modeling approach (right).
We first parse an NL input into a declarative task specification (a set of
logical constraints) using prompting (Section 6.3.1), then use a SAT solver
to solve the problem (Section 6.3.2). The chain-of-thought strategy in prior
work (left) yields imperative reasoning processes. 97

6.2 Exemplar specifications for arithmetic reasoning problems generated by dif-
ferent approaches. COT makes errors when parsing an equation; PROGLM
produces an incorrect reasoning chain (both errors are highlighted in red).
By only using the LLMs to generate declarative specifications and relying
on a solver to handle the reasoning, SATLM generates the correct answer. . 101

6.3 A variant of our approach which replaces the SAT solver with a “CoT solver”
that takes the SAT problem as input and solves it in natural language. 107

6.4 Examples outputs from GSM (left) and BOARDGAMEQA (right) show that
LLMs can perform commonsense reasoning while parsing. 111

16

Chapter 1: Introduction

Humans are capable of reasoning about information presented in language, when

seeking conclusions from news articles, planning out schedules for work, or just making

day-to-day small talk. Being able to reason over texts is also a key pursuit in natural language

processing (NLP). It is crucial in a diversity of NLP applications, spanning from reading

comprehension, scientific article summarization, to coding assistant. However, reasoning as

an inherent skill to humans has been a longstanding challenge for NLP systems. Traditional

NLP systems in the pre-pretraining era have struggled in scaling to even shallow reasoning

tasks such as answering straightforward questions over text (Rajpurkar et al., 2016) or

solving practical math problems involving only one or two steps (Patel et al., 2021).

Thanks to breakthroughs in pretraining, language models (LMs) have made remark-

able progress in reasoning capabilities. Finetuned BERT-based models are now able to

answer multi-hop questions (Yang et al., 2018). Large language models (LLMs) can even

learn to solve challenging math questions (Hendrycks et al., 2021) from just a few examples

(Lewkowycz et al., 2022). Despite the promising progress, LMs’ reasoning capabilities are

not robust. LMs often suffer from severe performance degradation under various adversarial

attacks (Jia and Liang, 2017; Jiang and Bansal, 2019; Wallace et al., 2019). LMs are also

susceptible to spurious correlations in the training data (Min et al., 2019; Chen and Durrett,

2019; McCoy et al., 2019; Bastings et al., 2021), which lead to generalization failures. At

the same time, the internal reasoning process of LMs often lacks interpretability, making it

hard to identify and debug the issues in the process.

Our work aims to leverage explanations to enable robust and complex textual rea-

soning with LMs. Explanations can be beneficial in multiple aspects. Most directly, faithful

explanations can aid humans in interpreting model predictions, which facilitates identifying

potential issues of models’ reasoning process. In addition, explanations can be used for

verifying model predictions, as they can be used to assess the reliability of a prediction.

Furthermore, explanations can be used for teaching the reasoning process, when we are

17

able to supervise LMs in following human-annotated correct reasoning process as specified

in explanations.

Past work on using explanations before the widespread adoption of LLMs largely

focuses on interpreting model predictions (Sundararajan et al., 2017; Ribeiro et al., 2016;

Lundberg and Lee, 2017; Guan et al., 2019; De Cao et al., 2020). There has been some

effort contributed to leveraging explanations for debugging models (Bastings et al., 2021;

Adebayo et al., 2022) or incorporating explanations as additional supervision (Zaidan et al.,

2007; Hancock et al., 2018; Rajani et al., 2019; Dua et al., 2020), but these typically rely

on heavy human intervention, requiring either domain expert involvement (Adebayo et al.,

2022) or substantial high-quality human annotations (Zaidan et al., 2007; Rajani et al., 2019;

Press et al., 2022). More recent work on LLMs finds that including a few explanations

for the in-context examples in prompts can improve LLMs’ reasoning capabilities (Brown

et al., 2020; Wei et al., 2022c). Nevertheless, different explanations for the same set of

in-context examples can lead to widely varying downstream performance; prior research

typically engineer explanation-infused prompts manually for various reasoning tasks (Zhou

et al., 2022a; Press et al., 2022; Zhou et al., 2022b; Jung et al., 2022). Moreover, even

with explanations, LLMs still exhibit reasoning failures such as hallucinations (discussed in

Chapter 4) and inability to systematically generalize (Dziri et al., 2023).

1.1 Contributions of This Dissertation

The bulk of this dissertation focuses on steering LMs to perform complex textual

reasoning reliably using explanations. We aim to improve model robustness and performance

on downstream tasks while minimizing the need for human involvement in inspecting or

annotating explanations. We introduce two paradigms of using explanations: the first

paradigm uses explanations from LMs to verify their predictions and intervene on the

predictions accordingly; the second paradigm provides explanations for LMs to demonstrate

the reasoning process for solving a task. Our exploration covers both encoder-decoder LMs

(such as BERT, RoBERTa) and decoder-only LLMs (like GPT-3) across various textual

18

reasoning tasks.

We first introduce how to leverage post-hoc explanations to intervene on model

predictions. In Chapter 2, we present a case study on QA models to investigate the

connection between explanations and model behavior. Given a base QA example and model

prediction, we may hypothesize how model predictions would differ if we changed a part of

the inputs. We can perturb that particular part in a meaningful way, yielding a set of realistic

counterfactuals. The model predictions on the counterfactuals can be used to verify whether

the hypothesis holds true. We evaluate several attribution methods, a prominent thrust of

explanation techniques, based on whether they correctly attend to the perturbed part in a way

that aligns with the model’s true behavior. Our work find that pairwise interaction-based

explanation techniques align well with QA model behavior on realistic counterfactuals.

In Chapter 3, we study the utility of explanations for verifying black-box models’

predictions. We propose a framework that can leverage attributions for calibrating RoBERTa

models (Liu et al., 2019). Our framework first extracts a set of features combining human

intuition about the task with model attributions generated by black box interpretation

techniques, then uses a simple calibrator, in the form of a classifier, to predict whether the

base model was correct or not. We experiment with our method on two tasks, extractive

question answering and natural language inference, covering adaptation from several pairs

of domains with limited target-domain data. Our evaluation establishes that explanations are

useful for verifying model predictions, boosting their performance in the selective prediction

setting.

In Chapter 4, we investigate how explanations can be used for improving the

performance of prompting large LM like GPT-3 with in-context learning. We study this

question on two NLP tasks that involve reasoning over text, namely question answering

and natural language inference. We test the performance of four LLMs on three textual

reasoning datasets using prompts that include explanations in multiple different styles.

For these tasks, we find that including explanations in the prompts generally only yields

small to moderate accuracy improvements over standard few-show learning on most of

19

these models. We further show that explanations generated by the LLMs may not entail

the models’ predictions nor be factually grounded in the input, even on simple tasks with

extractive explanations. However, these flawed explanations can still be useful as a way to

verify LLMs’ predictions post-hoc using the framework we described above. Again, we

train verifiers using automatically extracted scores that assess the reliability of explanations,

allowing us to improve performance post-hoc across datasets.

We further study how to use explanations for teaching LMs to reason, especially

using free-text explanations for large language models (LLMs). In Chapter 5, we show

explanations that have not been “tuned” for a task, such as off-the-shelf explanations written

by non-experts, may lead to mediocre performance. We therefore tackle the problem of

how to optimize explanation-infused prompts in a black-box fashion. We first generate sets

of candidate explanations for each example in the prompt using a leave-one-out scheme,

then find an effective combination of these explanations with a two-stage framework. We

first evaluate explanations for each in-context example in isolation according to two proxy

metrics, log likelihood and accuracy on new examples. Then, we search over combinations

of explanations to find one that yields high performance against a silver-labeled development

set. Through evaluation across four datasets, we show our method can effectively improve

prompts over crowdworker annotations and naive search strategies.

In Chapter 6, we propose a satisfiability-aided language modeling (SATLM) frame-

work. Our framework uses formal explanations and symbolic solvers to amend the fun-

damental planning limitations of LLMs, which cannot be addressed by simply optimizing

imperative chain-of-thought style explanations. By offloading the actual reasoning task to an

automated theorem prover, our approach can guarantee the correctness of the answer with

respect to the parsed specification and avoid planning errors in the solving process. We eval-

uate SATLM on a wide range of reasoning tasks and show that it consistently outperforms

baselines that use imperative explanations. The organic combination of the LLM and the

symbolic solver scales LLMs to handle problems requiring significantly deeper reasoning

depth.

20

Finally, Chapter 7 we briefly summarize our contributions and outline future direc-

tions for further enhancing LLMs to better aid humans in challenging real-world applications

demanding deep reasoning.

21

Chapter 2: Connecting Attributions and QA Model
Behavior1

2.1 Introduction

Interpreting the behavior of black-box neural models for NLP has garnered interest

for its many possible benefits (Lipton, 2018). Numerous post-hoc explanation techniques

have been proposed, including textual explanations (Hendricks et al., 2016) and token-level

attributions (Ribeiro et al., 2016; Sundararajan et al., 2017; Guan et al., 2019; De Cao et al.,

2020). These formats can be applied to many domains, including sentiment analysis (Guan

et al., 2019; De Cao et al., 2020), visual recognition (Simonyan et al., 2014), and natural

language inference (Camburu et al., 2018; Thorne et al., 2019). However, it is hard to

evaluate whether these explanations are faithful to the computation of the original model

(Wu and Mooney, 2019; Hase and Bansal, 2020; Wiegreffe et al., 2021; Jacovi and Goldberg,

2020), and they can even mislead users (Rudin, 2019). More critically, token attributions in

particular do not have a consistent and meaningful social attribution (Miller, 2019; Jacovi

and Goldberg, 2021): that is, when a user of the system looks at the explanation, they do not

necessarily draw a correct conclusion from it, making it hard to use for downstream tasks.

Our focus in this chapter is to investigate whether explanations for reading compre-

hension are capable of indicating the high-level behavior of models. That is, rather than a

vague conclusion like “this word was important,” we want to draw a conclusion like “the

model compared these two words to reach its decision;” this statement can be evaluated for

faithfulness and it helps a user draw meaningful conclusions about how system behaves. We

approach this evaluation from a perspective of simulatability (Hase and Bansal, 2020): can

we predict how the system will behave on new or modified examples? Doing so for RC

1An early version of this chapter has been published in Ye et al. (2021b). Xi Ye is the first author of Ye
et al. (2021b), where he developed the research idea with other author(s), implemented the code, designed and
performed the experiments and analysis, and wrote the paper.

22

Are Super High Me and All in This Tea both documentaries?

Super High Me is a 2008 documentary film about smoking.
All in This Tea is a 2007 documentary film. YES

Base Example

Counterfactual Example
Integrated Gradient

(Sundararajan et al., 2017)

DiffMask
(De Cao et al., 2020) LaAttrAttn

(Ours)

Explanations

I still predict YES even if
documentary tokens are replaced

<s> Are Super High Me and All in This Tea both
documentaries ? </s> </s> yes no </s> Super High
Me is a 2008 documentary film about smoking .
All in This Tea is a 2007 documentary film . </s>

<s> Are Super High Me and All in This Tea both
documentaries ? </s> </s> yes no </s> Super High
Me is a 2008 documentary film about smoking .
All in This Tea is a 2007 documentary film . </s>

RoBERTa looks at documentary

RoBERTa looks at documentary

documentary
barely contributes

Super High Me is a 2008 romance film about smoking.
All in This Tea is a 2007 documentary film. YES

Super High Me is a 2008 documentary film about smoking.
All in This Tea is a 2007 romance film. YES

Super High Me is a 2008 romance film about smoking.
All in This Tea is a 2007 romance film. YES

？

D0

D1

D2

D3

Figure 2.1: A motivating example and explanations generated by several methods. We
profile the model behaviors with the predictions on realistic counterfactual inputs, which
suggests the model does not truly base its prediction on the two movies being documentaries.
We can evaluate explanations by seeing whether they can be used in combination with
heuristics to derive this same conclusion about model behavior.

models is challenging due to the complex nature of the task, which fundamentally involves

a correspondence between a question and a supporting text context.

Our core technique is to assess how well various explanations can support or reject

hypotheses about the model’s behavior (i.e., simulate the model) on realistic counterfactuals,

which are perturbations of original data points (Figure 2.1). These resemble several prior

“stress tests” used to evaluate models, including counterfactual sets (Kaushik et al., 2020),

contrast sets (Gardner et al., 2020), and checklists (Ribeiro et al., 2020). We first semi-

automatically curate these sets to answer questions like: if different facts were shown in

the context, how would the model behave? If different amounts of text or other incorrect

paragraphs were retrieved by an upstream retrieval system, would the model still get the

right answer? Then, given attributions from various techniques, can we recover the answers

to these questions and give usable insights about the QA system?

We investigate two paradigms of explanation techniques, token attribution-based

(Simonyan et al., 2014; Ribeiro et al., 2016; De Cao et al., 2020) and feature interaction-

based (Tsang et al., 2020; Hao et al., 2020), which attribute decisions to sets of tokens or

pairwise/higher-order interactions. We show that token-level attribution is not sufficient

for analyzing QA, which naturally involves more complex reasoning over multiple clues.

23

For both techniques, we devise methods to bridge from these explanations to high-level

conclusions about counterfactual behavior. This enables comparing different formats of

explanations in a unified way.

We apply our methodology to automatically compare these attribution techniques on

two types of questions from HOTPOTQA (Yang et al., 2018) and questions from adversarial

SQUAD (Rajpurkar et al., 2016).

For each concrete high-level hypothesis we formulate, we automatically assess

the extent to which our low-level explanation techniques can usefully produce the same

answer as our counterfactuals. Our experimental results show moderate success of this

approach overall, and that explanations in form of feature interactions better align with

model behaviours. We further propose a modification to an existing interaction technique

from Hao et al. (2020) and show improved performance on our datasets.

Our main contributions are: (1) We propose a new goal for attributions, namely

automatically simulating model behavior on realistic counterfactuals. (2) We describe a

technique for connecting low-level attributions (token-level or higher-order) with high-level

model hypotheses. (3) We improve an attention-based pairwise attribution technique with a

simple but effective fix, leading to strong empirical results. (4) We analyze a set of QA tasks

and show that our approach can derive meaningful conclusions about counterfactuals on

each.

2.2 Motivation

We start by going through a detailed example of how model attributions can be used

for our proposed goal, and consequently how to use our methodology to compare several

attribution techniques. Figure 2.1 shows an example of a multi-hop yes/no question from

HotpotQA. The QA model correctly answers yes in this case. Given the original example,

the explanations produced using INTGRAD (Sundararajan et al., 2017) and DIFFMASK

(De Cao et al., 2020) (explained in Section 2.4) both assign high attribution scores to the two

documentary tokens appearing in the context: a user of the system is likely to impute that

24

the model is comparing these two values, as it’s natural to assume this model is using the

highlighted information correctly. By contrast, our pairwise attribution approach primarily

attributes the prediction to interactions with the question, suggests the interaction related to

documentary do not matter.

We manually curate a set of contrastive examples to test this hypothesis. If the model

truly recognizes that both movies are documentaries, then replacing either or both of the

documentary tokens with romance should change the prediction. To verify that, we perturb

the original examples to obtain another three examples (left side of Figure 2.1). These four

examples together form a contrastive local neighborhood (Ribeiro et al., 2016; Kaushik

et al., 2020; Gardner et al., 2020) consisting of realistic counterfactuals.2

However, unlike what’s suggested by the token attribution based techniques, the

model always predicts “yes” for every example in the neighbourhood, casting doubt on

whether the model is following the right reasoning process. Although the pairwise attribution

seemed at first glance much less plausible than that generated by the other techniques, it

was actually better from the perspective of simulating the model’s behavior on these new

examples.

Our main assumption in this chapter can be stated as follows: an explanation

should describe model behavior with respect to realistic counterfactuals, not just look

plausible. Past work has evaluated along plausibility criteria (Lei et al., 2016; Strout

et al., 2019; Thorne et al., 2019), but as we see from this example, faithful explanations

(Subramanian et al., 2020; Jacovi and Goldberg, 2020, 2021) are better aligned with our

goal of simulatability. We argue that a good explanation is one that aligns with the model’s

high-level behaviors, and from which we can understand how the model generalizes to new

data.

2One could argue that these counterfactuals are not entirely realistic: a romance film about smoking is
fairly unlikely. Generating perfect counterfactuals is a very hard problem (Qin et al., 2019), requiring deep
world knowledge of what scenarios make sense or what properties hold for certain entities. Nevertheless, we
believe that these examples are realistic enough that robust models should still behave well on them.

25

Discussion: Realistic Counterfactuals Many counterfactual modifications are possible:

past work has looked at injecting non-meaningful triggers (Wallace et al., 2019), deleting

chunks of content (Ribeiro et al., 2016), or evaluating interpolated input points as in

INTGRAD, all of which violate assumptions about the input distribution. In RC, masking

out a fact in the question often turns the question into a nonsense one.3 Focusing on

realistic counterfactuals, by contrast, illuminates fundamental problems with our RC models’

reasoning capabilities (Jia and Liang, 2017; Chen and Durrett, 2019; Min et al., 2019; Jiang

and Bansal, 2019). This is the same motivation as that behind contrast sets (Gardner et al.,

2020), but our work focuses on benchmarking explanations, not models themselves.

2.3 Behavior on Counterfactuals

We seek to formalize the reasoning we undertook on Figure 2.1. Using the model’s

explanation on a “base” data point, can we predict the model’s behavior on the perturbed

instances of that point?

Definitions Given an original example D0 (e.g., the top example in Figure 2.1), we con-

struct a set of perturbations based on {D1, ..., Dk} (e.g., the three counterfactual examples

in Figure 2.1), which together with D0 form a local neighborhood D. These perturbations

are realistic inputs derived from existing datasets or which we construct.

We formulate a hypothesis H about the neighborhood. In Figure 2.1, H is the

question “is the model comparing the target properties?” (documentary in this case).

Based on the model’s behavior on the set D, we can derive a high-level behavioral label

z corresponding to the truth of H. We form our local neighborhood to check the answer

empirically and compute a ground truth for z. Since the model always predicts “yes” in this

neighborhood, we label set D with z = 0 (the model is not comparing the properties). We

label D as z = 1, when the model does predict “no” for some perturbations.

3The exception is in adversarial settings; however, many adversarial attacks do not draw on real-world
threat models (Athalye et al., 2018), so we consider these less important.

26

Procedure Our approach is as follows:

1. Formulate a hypothesis H about the model

2. Collect realistic counterfactuals D to answer it empirically for some base examples

3. Use the explanation of each base example to predict z. That is, learn the mapping

D0 → z based on the explanation of D0 so we can simulate the model on D without

observing the perturbations.

Note that this third step only uses the explanation of the base data point: explanations

should let us make conclusions about new counterfactuals without having to do inference on

them.

Simulation In our experiments on HOTPOTQA and SQUAD, we compute a scalar factor

f for each attribution representing the importance of a specific part of the inputs (e.g.,

the “documentary” tokens in Figure 2.1), which we believe should correlate with model

predictions on the counterfactuals. If an attribution assigns higher importance to this

information, it suggests that the model will actually change its behavior on these new

examples.

Given this factor, we construct a simple classifier where we predict z = 1 if the factor

f is above a threshold. We expect the factors extracted using better attribution methods

should better indicate the model behavior. Hence, we evaluate the explanation using the

best simulation accuracy it can achieve and the AUC score (S-ACC and S-AUC).4

Our evaluation resembles the human evaluation in Hase and Bansal (2020), which

asks human raters to predict model’s decision given an example together with its explanations

and also reports simulatability. Our method differs in that (1) we predict the behavior

on unseen counterfactuals given the explanation of a single base data point, and (2) we

automatically extract a factor to predict model behavior instead of asking humans to do so.

4We do not collect large enough datasets to train a simulation model, but given larger collections of
counterfactuals, this is another approach one could take.

27

2.4 Explanation Techniques

Compared to classification tasks like sentiment analysis, QA much more fundamen-

tally involves interaction between input features, especially between a question and a context.

This chapter will directly compare feature interaction explanations with token attribution

techniques that are more common for other tasks.5

2.4.1 Token Attribution-Based

These techniques all return scores si for each token i in both the question and context

that are fed into the QA system.

LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) both compute the

attribution values for individual input features by using a linear model to locally approximate

the model’s predictions on a set of perturbed instances around the base data point. The

attribution value for an individual input feature is the corresponding weight of the linear

model. LIME and SHAP are different in the way of specifying instance weights used to

train the linear model: LIME decides the weights heuristically, whereas SHAP specifies the

weights according to Shapley values.

Integrated Gradient (INTGRAD) (Sundararajan et al., 2017) computes an attribu-

tion for each token by integrating the gradients of the prediction with respect to the token

embeddings over the path from a baseline input (typically mask or pad tokens) towards the

designated input. Although a common technique, recent work has raised concern about the

effectiveness of INTGRAD methods for NLP tasks, as interpolated word embeddings do not

correspond to real input values (Harbecke, 2021).

Differentiable Mask (DIFFMASK) (De Cao et al., 2020) learns to mask out a subsets

of the input tokens for a given example while maintaining a distribution over answers as

5A potentially even more powerful format would be a program approximating the model’s behavior, as has
been explored in the context of reinforcement learning (Verma et al., 2018; Bastani et al., 2018). However,
beyond limited versions of this (Ribeiro et al., 2018), prior work does not show how to effectively build this
type of explanation for QA at this time.

28

close to the original distribution as possible. This mask is learned in a differentiable fashion,

then a a shallow neural model (a linear layer) is trained to recognize which tokens to discard.

2.4.2 Feature Interaction-Based

These techniques all return scores si for each pair of tokens (i, j) in both the question

and context that are fed into the QA system.

Archipelago (Tsang et al., 2020) measures non-additive feature interaction. Similar

to DIFFMASK, ARCHIP is also implicitly based on unrealistic counterfactuals which remove

tokens. Given a subset of tokens, ARCHIP defines the contribution of the interaction by the

the prediction obtained from masking out all the other tokens, only leaving a very small

fraction of the input. Applying this definition to a complex task like QA can result in a

completely nonsensical input.

Attention Attribution (ATATTR) (Hao et al., 2020) uses attention specifically to

derive pairwise explanations. However, it avoids the pitfalls of directly inspecting attention

(Serrano and Smith, 2019; Wiegreffe and Pinter, 2019) by running an integrated gradients

procedure over all the attention links within transformers, yielding attribution scores for

each link. The attribution scores directly reflect the attribution of the particular attention

links, making this model able to describe pairwise interactions.

Concretely, define the h-head attention matrix over input D with n tokens as A =

[A1, ..., Al], where Ai ∈ Rh×n×n is the attention scores for each layer. We can obtain the

attribution score for each entry in the attention matrix A as:

ATTR(A) = A⊙
∫ 1

α=0

∂F (D,αA)

∂A
dα, (2.1)

where F (D,αA) is the transformer model that takes as input the tokens and a matrix

specifying the attention scores for each layer. We later sum up the attention attributions

across all heads and layers to obtain the pairwise interaction between token (i, j), i.e.,

sij =
∑

m

∑
nATTR(A)mnij.

29

Are Super …

Transformer Layers

ln

Layer Attentions

l2

l1

Step 1 Step 2 Step n

…

Super High …

… … …

…

∫
∫

∫

Figure 2.2: Steps of our Layer-wise Attention Attribution approach, where we only intervene
a single layer at step. E.g., to compute the attribution of attentions at layer 2, we only
intervene the attention matrix at that layer, and leave other attentions computed as usual.

2.4.3 Layer-wise Attention Attribution

We propose a new technique LATATTR to improve upon ATATTR for the RC setting.

The ATATTR approach simultaneously increases all attention scores when computing the

attribution, which could be problematic. Since the attention scores of higher layers are

determined by the attention scores of lower layers, forcibly setting all the attention scores

and computing gradients at the same time may distort the gradients for the lower level links

and produce inaccurate attribution. When applying INTGRAD approach in other contexts,

we typically assume the independence of input features (e.g., pixels of an image and tokens

of an utterance), an assumption which does not hold here.

To address this issue, we propose a simple fix, namely applying the INTGRAD

method layer-by-layer. As in Figure 2.2, to compute the attribution for attention links of

layer i, we only change the attention scores at layer i:

ATTR(Ai) = Ai ⊙
∫ 1

α=0

∂F/i(D,αAi)

∂Ai

dα. (2.2)

F/i(D,αAi) denotes that we only intervene on the attention masks at layer i while leaving

other attention masks computed naturally via the model. We pool to obtain the final

attribution for pairwise interaction as sij =
∑

m

∑
nATTR(A)mnij.

This technique does not necessarily satisfy the Completeness axiom commonly used

in this line of work (Sundararajan et al., 2017). Since our ultimate goal is a downstream

30

(a)

Question: Were Ulrich Walter and Léopold Eyharts both from Germany?
Context: Léopold Eyharts (born April 28, 1957) is a Brigadier General in the French Air Force, an engineer and ESA
astronaut.
Prof. Dr. Ulrich Hans Walter (born February 9, 1954) is a German physicist/engineer and a former DFVLR astronaut.
Substitutes: French, German

(b)

Question: Are the movies ”Monsters, Inc.” and ”Mary Poppins” both by the same company?
Context: Mary Poppins is a 1964 American musical-fantasy film directed by Robert Stevenson and produced by
Walt Disney , with songs written and composed by the Sherman Brothers.

Monsters, Inc. is a 2001 American computer-animated comedy film produced by Pixar Animation Studios and distributed by
Walt Disney Pictures.
Substitutes: Walt Disney, Universal

(c)

Question: What was the father of Kasper Schmeichel voted to be by the IFFHS in 1992?
Context: Peter Bolesław Schmeichel MBE (born 18 November 1963) is a Danish former professional footballer who was
voted the IFFHS World’s Best Goalkeeper in 1992 and 1993.
Kasper Peter Schmeichel (born 5 November 1986) is a Danish professional footballer. He is the son of former Manchester
United and Danish international goalkeeper Manuel Neuer.
AdvSent1: Robert Lewandowski was voted to be the World’s Best Striker in 1992.
AdvSent2: Michael Jordan was voted the IFFHS best NBA player in 1992.

Figure 2.3: Examples (contexts are truncated for brevity) of our property annotations on
Hotpot base data points. The top two are yes/no questions and the third is a bridge question.

empirical evaluation, we set aside any theoretical analysis of this technique for now.

2.5 Experiments

We assess whether the explanations can achieve our proposed goal following the

setup in Section 2.3 on the HOTPOTQA dataset (Yang et al., 2018), and the SQUAD dataset

(Rajpurkar et al., 2016), specifically leveraging examples from adversarial SQUAD (Jia and

Liang, 2017).

2.5.1 Hotpot Yes-No Questions

We first study a subset of comparison yes/no questions, which is a challenging

format despite the binary answer space (Clark et al., 2019). Typically, a yes-no comparison

type question requires comparing the properties of two entities (Figure 2.1). We base our

experiments on a ROBERTA (Liu et al., 2019) QA model achieving 77.2 F1 scores on

the development set in the distractor setting, comparable to other strong ROBERTA-based

models (Tu et al., 2020; Groeneveld et al., 2020).

31

Hypothesis & Counterfactuals The hypothesis H we investigate is as in Section 2.2: the

model compares the entities’ properties as indicated by the question. Most Hotpot Yes-No

questions follow one of two templates: Are A and B both ? (Figure 2.3a), and Are A and B

of the same ? (Figure 2.3b). We define the property tokens associated with each question

as the tokens in the context that match the blank in the template; that is, the values of the

property that A and B are being compared on. For example, in Figure 2.3a, French and

German are the property tokens, as the property of interest is the national origin.

To construct a neighborhood for a base data point, we take the following steps:

1) manually extract the property tokens in the context 2) replace the property token with

two substitutes, forming a set of four counterfactuals exhibiting nonidentical ground truths.

When the properties associated with the two entities differ from each other, we directly use

the properties extracted as the substitutes (Figure 2.3a); otherwise we add a new property

candidate that is of the same class (Figure 2.3b).

We set z = 0 (the hypothesis does not hold) if for each perturbed example Di ∈ D,

the model predicts the same answer as for the original example, indicating a failure to

compare the properties. We set z = 1 if the model’s prediction does change. The authors

annotate perturbations for 50 (D, z) randomly selected pairs in total, forming a total of 200

counterfactual instances. Full counterfactual set can be found in supplementary materials.

Connecting Explanation and Hypothesis To make a judgment about z, we extract a

factor f based on the importance of a set of property tokens P . For token attribution-based

methods, we define f as the sum of the attribution si of each token in P :
∑

i∈P si. For

feature interaction-based methods producing pairwise attribution sij , we compute f by

pooling the scores of all the interaction related to the property tokens, i.e.,
∑

i∈P∨j∈P sij .

Now we predict z = 1 if the factor f is above a threshold, and evaluate the capability

of the factor in indicating the model high-level behavior using the best simulation accuracy

it can achieve (S-ACC) and AUC score (S-AUC).6

6Note that for different attribution methods, the thresholds are different and set to achieve the best accuracy.

32

Approach Yes-No Bridge
S-ACC S-AUC S-ACC S-AUC

MAJORITY 52.0 − 56.0 −
CONF 64.0 49.8 66.0 65.9

LIME 72.0 73.6 74.0 71.4
SHAP 72.0 70.5 76.0 75.0

INTGRAD 72.0 75.2 72.0 77.9
DIFFMASK 66.0 60.2 68.0 62.3

ARCHIP 56.0 53.2 62.0 57.5
ATATTR 66.0 63.6 72.0 79.1
LATATTR 84.0 87.9 78.0 81.7

Table 2.1: Results on HOTPOTQA Yes-No type and Bridge questions. Our approach can
better predict the model behavior on realistic counterfactuals, surpassing token attribution
methods.

Results First, we show that using attributions can indeed help predict the model’s behavior.

In Table 2.1, our approach (LATATTR) is the best, achieving a simulation accuracy of

84%. That is, with a properly set threshold, we can successfully predict whether the model

predictions change when perturbing the properties in the original example 84% of the time.

The attributions therefore give us the ability to simulate our model’s behavior better than

the other methods here. Our approach also improves substantially over the vanilla ATATTR

method.

Token attribution based approaches obtain an accuracy around 72%. This indicates

token attribution based methods are not effective in the HOTPOTQA setting which engages

with interaction between tokens more intensively.

In this setting, DIFFMASK performs poorly typically because it assigns high at-

tribution to many tokens, since it determines which tokens need to be kept rather than

distinguishing fine-grained importance (examples in supplementary materials). It’s possi-

ble that other heuristics or models learned on large numbers of perturbations could more

meaningfully extract predictions from this technique.

33

Primary
Question

Figure 2.4: Explanations generated by our approach for a bridge type question from HOT-
POTQA. The prediction can mostly be attributed to the primary question, indicating the
model is taking the reasoning shortcut, and the prediction is flipped with an adversarial
attack.

2.5.2 Hotpot Bridge Questions

We also evaluate the explanation approaches on so-called bridge questions on the

HOTPOTQA dataset, described in Yang et al. (2018). Figure 2.4 shows a example explanation

of a bridge problem. From the attribution scores we find the most salient connection is

between the span “what government position” in the the question and the span “United

States Ambassador” in the context. This attribution directly highlights the reasoning shortcut

(Jia and Liang, 2017; Chen and Durrett, 2019; Min et al., 2019; Jiang and Bansal, 2019)

the model is using, where it disregards the second part of the question. If we inject an

additional sentence “Hillary Clinton is an American politician, who served as the United

States secretary of the state from 2009 to 2013”, into the context, the model will be misled

and predict “United States secretary” as the new answer. This sentence could easily have

been part of another document retrieved in the retrieval stage, so we consider its inclusion to

34

be a realistic counterfactual.

We further define the primary question, i.e., the primary part (containing wh-words)

of the entire question. (E.g., “What government position is held by the woman” in Figure 2.4),

following the decomposition principle from Min et al. (2019).

Hypothesis & Counterfactuals The hypothesis H we investigate is: the model is using

correct reasoning and not a shortcut driven by the primary question part.

We construct counterfactuals following the same idea applied in our example. We

view bridge questions as consisting of two single hop questions, the primary part and the

secondary part. The primary part is the main body of the question, whereas the secondary

part is usually a clause used to link the bridge entity (Min et al., 2019). For a given question,

we add an adversarial sentence based on the primary part of the question so as to alter the

model prediction. The added adversarial sentence contains context leading to a spurious

answer to only the primary question, but does not change the gold answer. We do this twice,

yielding a set D = {D0, D1, D2} consisting of the base example and two perturbations. We

define the label of D to be z = 0 in the case that model’s prediction does change when being

attacked, and z = 1 otherwise. We show one example in Figure 2.3c. More examples and

the full counterfactual set can be found in supplementary materials.

We randomly sample 50 base data points from the development set and two authors

each write an adversarial sentence, giving 150 data points total.

Connecting Explanation and Hypothesis For this setting, we use a factor describing the

importance of the primary question normalized by the importance of the entire question.

Namely, let P = {pi} be the set of tokens in the primary questions, and Q = {qi} be the

set of tokens in the entire question. We define the factor f as the the importance of P

normalized by the importance of Q, where the importance calculation is the same as in

Section 2.5.1. A higher factor means it is more heavily relying only on the primary question

and hence a better chance of being attacked.

35

Results According to the simulation AUC scores in Table 2.1, feature interaction based

techniques again outperform token attribution approaches. Our approach achieves a stimula-

tion accuracy of 78%, substantially higher than any other results.

2.5.3 SQuAD Adversarial

Hypothesis & Counterfactuals Our hypothesis H is: the model can resist adversarial

attacks of the addSent variety (Jia and Liang, 2017). For each of the original examples

D0 from a portion of the SQUAD-ADV development set, Jia and Liang (2017) creates 5

adversarial attacks, which are paraphrased and filtered by Turkers to give 0 to 5 valid attacks

for each example, yielding our set D. We define the label of D to be z = 1 if the model

resists all the adversarial attacks posed on D0 (i.e., predictions for D are the same). To

ensure the behavior is more precisely profiled by the counterfactuals, we only keep the base

examples with more than 3 valid attacks, resulting in a total number of 276 (D, z) pair

(1,506 data points).

Connecting Explanation and Hypothesis We use a factor p indicating the importance

of the essential keywords extracted from the question using POS tags (proper nouns and

numbers). E.g., for the question “What Florida stadium was considered for Super Bowl

50”, we extract “Florida”, “Super Bowl” , and “50”. If the model considers all the essential

keywords mentioned in the question, it should not be fooled by distractors with irrelevant

information. We show a set of illustrative examples in supplementary materials. We compute

the importance scores in the same way described in Section 2.5.1.

In addition to the scores provided by various explanation techniques, we also use the

model’s confidence on the original prediction as a baseline.

Results We show results in Table 2.2. The best approaches (ATATTR and LATATTR) can

achieve a simulation accuracy around 70%, 10% above the performance based on confidence.

This shows the model is indeed over-confident in its prediction; our assumption about the

36

Approach S-ACC S-AUC

MAJORITY 52.1 −
CONF 58.3 57.8

LIME 67.7 68.3
SHAP 65.9 68.3

INTGRAD 61.6 61.1
DIFFMASK 57.6 53.6

ARCHIP 58.6 56.2
ATATTR 68.4 72.5
LATATTR 70.0 72.1

Table 2.2: Simulation Accuracy and AUC scores for the SQuAD adversarial setting, assess-
ing whether model changes its prediction on an example when attacked.

robustness together with our technique can successfully expose the vulnerability in some of

the model predictions.

There is room to improve on these results; our simple heuristic cannot perfectly

connect the explanations to the model behavior in all cases. We note that there are other

orthogonal approaches (Kamath et al., 2020) to calibrate the confidence of QA models’

predictions by looking at statistics of the adversarial examples; here, our judgment is made

purely based on the original example, and does not exploit learning to refine our heuristic.

2.5.4 Discussion and Limitations

We show that feature attributions can reveal known dataset biases and reasoning

shortcuts in HotpotQA without having to perform a detailed manual analysis. This confirms

the suitability of our attribution methods for at least this use case: model designers can look

at them, either manually or automatically, and determine how robust the model is going to

be when faced with counterfactuals.

Our analysis also highlights limitations of current explanation techniques. We

experimented with other counterfactuals by permuting the order of the paragraphs in the

context, which often gave rise to different predictions. We believe the model prediction was

37

in these cases impacted by biases in positional embeddings (e.g., the answer tends to occur

in the first retrieved paragraph), which cannot be indicated by current attribution methods.

We believe this is a useful avenue for future investigation. By first thinking about what kind

of counterfactuals and what kind of behaviours we want to explain, we can motivate the

development of new explanation techniques to serve these needs.

2.6 Related Work

We focus on several prominent token attribution techniques, but there are other re-

lated methods as well, including Shapley Values (Štrumbelj and Kononenko, 2014; Lundberg

and Lee, 2017), contextual decomposition (Jin et al., 2020), and hierarchical explanations

(Chen et al., 2020). These formats can also be evaluated using our framework if being

connected with model behavior with proper heuristic. Other work explores “concept-based”

explanations (Mu and Andreas, 2020; Bau et al., 2017; Yeh et al., 2019). These provide

another pathway towards building explanations of high-level behavior; however, they have

been explored primarily for image recognition tasks and cannot be directly applied to QA,

where defining these sorts of “concepts” is challenging.

Probing techniques aim to discover what intermediate representations have been

learned in neural models (Tenney et al., 2019; Conneau et al., 2018; Hewitt and Liang, 2019;

Voita and Titov, 2020). Internal representations could potentially be used to predict behavior

on contrast sets similar to the work of this chapter; however, this cannot be done heuristically

and larger datasets are needed to explore this.

Other work considering how to evaluate explanations is primarily based on how

explanations can assist humans in predicting model decisions for a given example (Doshi-

Velez and Kim, 2017; Chandrasekaran et al., 2018; Nguyen, 2018; Hase and Bansal, 2020);

We are the first to consider building contrast sets for this. Similar ideas have been used in

other contexts (Kaushik et al., 2020; Gardner et al., 2020) but our work focuses on evaluation

of explanations rather than general model evaluation.

38

2.7 Conclusion

We have presented a new methodology of using explanations for understanding

model behavior on realistic counterfactuals. We show explanations can indeed indicate

model behavior, and therefore we can compare explanations to understand which ones

truly give us insight about high-level model behavior. Feature interaction-based techniques

perform the best in our analysis, especially our LATATTR method; we believe that this could

be a useful evaluation paradigm if extended and formalized across a range of tasks.

39

Chapter 3: Calibrating Black-box Models Using
Explanations1

3.1 Introduction

In Chapter 2, we have established the connection between explanations and model

behavior, showcasing that explanations produced by a proper technique can provide useful

information for indicating model behavior. In this chapter, we show how such a connection

can be used for building a framework that can automatically assess model robustness based

on explanations.

We study how post-hoc explanations can be used for improving black-box models,

which are more and more prevalent throughout the Internet. NLP models are showing

increasingly promising performance on real-world tasks, leading to their deployment at scale

for translation, sentiment analysis, and question answering. These models are sometimes

used as black boxes, especially if they are only available as a service through APIs2 or if end

users do not have the resources to fine-tune the models themselves. This black-box nature

poses a challenge when users try to deploy models on a new domain that diverges from the

training domain, usually resulting in performance degradation.

We investigate the task of domain adaptation of black box models: given a black

box model and a small number of examples from a new domain, how can we improve the

model’s generalization performance on the new domain? In this setting, note that we are not

able to update the model parameters, which makes transfer and few-shot learning techniques

inapplicable. However, we can still make the model more effective in practice by learning a

calibrator, or a separate model to make a binary decision of whether the black box model

1An early version of this chapter has been published in Ye and Durrett (2022a). Xi Ye is the first author of
Ye and Durrett (2022a), where he developed the research idea with other author(s), implemented the framework,
designed and performed the experiments and analysis, and wrote the paper.

2Google Translate, the Perspective API https://perspectiveapi.com/, and MonkeyLearn
https://monkeylearn.com/monkeylearn-api/ being three examples.

40

https://perspectiveapi.com/
https://monkeylearn.com/monkeylearn-api/

is likely to be correct or not on a given instance. While not fully addressing the domain

adaptation problem, calibrating the model can make it more useful in practice, as we can

recognize when it is likely to make mistakes (Guo et al., 2017; Kamath et al., 2020; Desai

and Durrett, 2020) and modify our deployment strategy accordingly.

This chapter explores how explanations can help address this task. We leverage

black box feature attribution techniques (Ribeiro et al., 2016; Lundberg and Lee, 2017) to

identify key input features the model is leveraging, even without access to model internal

representations. As shown in Figure 3.1, we perform calibration by connecting model inter-

pretations with hand-crafted heuristics to extract a set of features describing the “reasoning”

of the model. For the question answering setting depicted in the figure, answers turn out

to be more reliable when the tokens of a particular set of tags (e.g., proper nouns) in the

question are strongly considered. We extract a set of features describing the attribution

values of different tags. Using a small number of examples in the target domain, we can

train a simple calibrator for the black box model.

Our approach is closely related to the recent line of work on model behavior and

explanations. Chandrasekaran et al. (2018); Hase and Bansal (2020) shows explanations can

help users predict model decisions in some ways and Chapter 2 show how these explanations

can be semi-automatically connected to model behavior based on manually crafted heuristics.

Our approach goes further by using a model to learn these heuristics, instead of handcrafting

them or having a human inspect the explanations.

We test whether our method can improve model generalization performance on

two tasks: extractive question answering (QA) and natural language inference (NLI). We

construct generalization settings for 5 pairs of source and target domains across the two

tasks. Compared to existing baselines (Kamath et al., 2020) and our own ablations, we find

explanations are indeed helpful for this task, successfully improving calibrator performance

among all pairs. We even find settings where explanation-based calibrators outperform

fine-tuning the model on target domain data, which assumes glass-box access to the model’s

parameters. Our analysis further demonstrates generalization of the calibrator models

41

Question

Context

Who did the Panthers face in the NFC Championship Game ?

The Panthers then blew out the Arizona Cardinals in the NFC

Championship Game , forcing seven turnovers . The Vikings faced

the Packers in the 1st round of the NFC Playoffs .

Attributions to NNP
in Question: 0.32

Attributions to V*

in Context: 0.02

Answer PredictionArizona Cardinals Arizona Cardinals

Question

Context

Where was the practice place the Panthers used for the Super Bowl ?

The Panthers used the San Jose State practice facility and stayed at

the San Jose Marriott . The Vikings used Stark Industries to practice

for the Champ Bowl .

Attributions to NNP
in Question: 0.10

Attributions to V*
in Context: 0.25

Answer PredictionSan Jose Stark Industries

Example

Explanation

Features Calibrator
prediction is

correct / incorrect

Lower attributions to NNP indicates a prediction is likely to be wrong

Figure 3.1: Calibrator pipeline and examples from the SQUAD-ADV dataset. A ROBERTA

model trained on SQUAD is correct on the first example but incorrect on the second. Features
that inspect attribution values produced by LIME can differentiate these two on the basis of
attributions to NNP in the question and V* in the context. A calibrator using these features
can predict whether the original model was right or wrong.

42

themselves: our calibrator trained on one domain can transfer to another new domain in

some cases. Moreover, our calibrator can also substantially improves model performance in

the Selective QA setting.

3.2 Using Explanations for Black Box Model Calibration

Let x = x1, x2, ..., xn be a set of input tokens and ŷ = f(x) be a prediction from

our black box model under consideration. Our task in calibration3 is to assess whether the

model prediction on x matches its ground truth y. We represent this with the variable t,

i.e., t ≜ 1{f(x) = y}.

We explore various calibrator models to perform this task, with our main focus

being on calibrator models that leverage explanations in the form of feature attribution.

Specifically, an explanation ϕ for the input x assigns an attribution score ϕi for each

input token xi, which represents the importance of that token. Next, we extract features

u(x, ϕ) depending on the input and explanation, and use the features to learn a calibrator

c : u(x, ϕ) → t for predicting whether a prediction is valid. We compare against baselines

that do not use explanations in order to answer the core question posed by our paper’s title.

Our evaluation focuses on binary calibration, or classifying whether a model’s initial

prediction is correct. Following recent work in this setting (Kamath et al., 2020), we

particularly focus on domain transfer settings where models make frequent mistakes. A

good calibrator can identify instances where the model has likely made a mistake, so we can

return a null response to the user instead of an incorrect one.

In the remainder of this section, we’ll first introduce how we generate the explana-

tions and then how to extract the features u for the input x.

3We follow Kamath et al. (2020) in treating calibration as a binary classification task. Devising a good
classifier is connected to the goal of accurate estimation of posterior probabilities that calibration has more
historically referred to (Guo et al., 2017), but our evaluation focuses on binary accuracy rather than real-valued
probabilities.

43

3.2.1 Generating Explanations

Since we are calibrating black box models, we adopt LIME (Ribeiro et al., 2016) and

SHAP (Lundberg and Lee, 2017) for generating explanations for models instead of other

techniques that require access to the model details (e.g., integrated gradients (Sundararajan

et al., 2017)).

The rest of this chapter only relies on LIME and SHAP to map an input sequence x

and a model prediction y to a set of importance weights ϕ. We will briefly summarize the

unified framework shared by both methods, and refer readers to the respective papers for

additional details.

LIME and SHAP generate local explanations by approximating the model’s predic-

tions on a set of perturbations around the base data point x. In this setting, a perturbation x′

with respect to x is a simplified input where some of the input tokens are absent (replaced

with a <mask> token). Let z = z1, z2, ..., zn be a binary vector with each zi indicating

whether xi is present (using value 1) or absent (using value 0), and hx(z) be the function that

maps z back to the simplified input x′. Both methods seek to learn a local linear classifier g

on z which matches the prediction of original model f by minimizing:

g(z) = ϕ0 +
n∑

i=1

ϕizi

ξ = argmin
g

∑
z∈Z

πx(z)[f(hx(z))− g(z)]2 + Ω(g)

where πx is a local kernel assigning weight to each perturbation z, and Ω is the

L2 regularizer over the model complexity. The learned feature weight ϕi for each zi then

represents the additive attribution (Lundberg and Lee, 2017) of each individual token xi.

LIME and SHAP differ in the choice of the local kernel πx. Please refer to the supplementary

materials for details of the kernel.

44

3.2.2 Extracting Features by Combining Explanations and Heuristics

Armed with these explanations, we now wish to connect the explanations to the

reasoning we expect from the task: if the model is behaving as we expect, it may be

better calibrated. A human might look at the attributions of some important features and

decide whether the model is trustworthy in a similar fashion (Doshi-Velez and Kim, 2017).

Chapter 2 has explored such a technique to compare explanation techniques. Past work also

explored running studies with human users on this task (Chandrasekaran et al., 2018; Hase

and Bansal, 2020).

Our method in this chapter automates this process by learning what properties

of explanations are important. We first assign each token xi with one or more human-

understandable properties V (xi) = {vj}mi
j=1. Each property vj ∈ V is an element in the

property space, which includes indicators like POS tags and is used to describe an aspect

of xi whose importance might correlate with the model’s robustness. We conjoin these

properties with aspects of the explanation to render our calibration judgment. Figure 3.1

shows examples of properties such as whether a token is a proper noun (NNP).

We now construct the feature set for the prediction made on x. For every property

v ∈ V, we extract a single feature F (v, x, ϕ) by aggregating the attributions of the tokens

associated with v:

F (v, x, ϕ) =
n∑

i=1

∑
v̄∈V (xi)

1{v̄ = v}ϕi

where 1 is the indicator function, and ϕi is the attribution value. An individual feature

represents the total attribution with respect to property v when the model is making the pre-

dictions for x. The complete feature set u for x, given as u = {F (v, x, ϕ)}v∈V, summarizes

model rationales from the perspective of the properties in V.

Properties We use several types of heuristic properties for calibrating QA and NLI models.

Segments of the Input (QA and NLI): In both of our tasks, an input sequence can

naturally be decomposed into two parts, namely a question and a context (QA) or a premise

45

and a hypothesis (NLI). We assign each token with the corresponding segment name, which

yields features like Attributions to Question.

POS Tags (QA and NLI): We use tags from the English Penn Treebank (Marcus

et al., 1993) to implement a group of properties. We hypothesize that tokens of some specific

tags should be more important, like proper nouns in the questions of the QA tasks. If a model

fails to consider proper nouns of a QA pair, it is more likely to make incorrect predictions.

Overlapping Words (NLI): Word overlap between a premise and a hypothesis

strongly affects neural models’ predictions (McCoy et al., 2019). We assign each token with

the Overlapping property if a token appears in both the premise and the hypothesis, or

Non-Overlapping otherwise.

Conjunction of Groups: We can further produce higher-level properties by taking

the Cartesian product of two or more groups. We conjoin Segment and Pos-Tags, which

yields higher-level features like Attributions to NNP in Question. Such a feature

aggregates attributions of tokens that are tagged with NNP and also required to be in the

question (marked with orange).

3.2.3 Calibrator Model

We train the calibrator on a small number of samples in our target domain. Each

sample is labeled using the prediction of the original model compared to the ground truth.

Using our feature set F (v, x, ϕ), we learn a random forest classifier, shown to be effective

for a similar data-limited setting in Kamath et al. (2020), to predict t (whether the prediction

is correct). This classifier returns a score, which overrides the model’s original confidence

score with respect to that prediction.

In Section 3.4, we discuss several baselines for our approach. As we vary the features

used by the model, all the other details of the classifier and setup remain the same.

46

cBl
ac

k-
Bo

x
C

al
ib

ra
tio

n

Base Model Calibration Test

Se
le

ct
iv

e
Q

A

A
A C

A
B

?

Black Box Setting (This Work)

B ?

?

A B ?

?

c

Glass Box Setting

Base Model Finetune Test
Ad

ap
t

Ba
se

Fi
ne

tu
ne

R

oB
ER

Ta

A B
B

B
B

A B CGeneralizeTask Source Domain Target Domain

Figure 3.2: Illustration of different settings in the experiments. In black box settings, a
calibrator is trained for improving model performance on OOD data; in glass box settings,
the model is finetuned on OOD data from a base model or vanilla ROBERTA LM model.

3.3 Tasks and Datasets

Our task setup involves transferring from a source domain/task A to a target do-

main/task B. Figure 3.2 shows the data conditions we operate in. Our primary experiments

focus on using our features to either calibrate or selectively answer in the black box setting

(right side in Figure 3.2). In this setting, we have a black box model trained on a source

domain A and a small amount of data from the target domain B. Our task is to train a

calibrator using data from domain B to identify instances where the model potentially fails

in the large unseen test data in domain B. We contrast this black box setting with glass box

settings (left side in Figure 3.2), where we directly have access to the model parameters and

can fine-tune on domain B or train on B from scratch.

English Question Answering We experiment with domain transfer from SQUAD (Ra-

jpurkar et al., 2016) to three different settings: SQUAD-ADV (Jia and Liang, 2017), HOT-

POTQA (Yang et al., 2018), and TRIVIAQA (Joshi et al., 2017).

SQUAD-ADV is an adversarial setting based on SQUAD, which constructs adversarial

47

QA examples based on SQUAD by appending a distractor sentence at the end of each

example’s context. The added sentence contains a spurious answer and usually has high

surface overlapping with the question so as to fool the model. We use the ADDSENT setting

from Jia and Liang (2017).

Similar to SQUAD, HOTPOTQA also contains passages extracted from Wikipedia,

but HOTPOTQA asks questions requiring multiple reasoning steps, although not all questions

do (Chen and Durrett, 2019). TRIVIAQA is collected from Web snippets, which present

a different distribution of questions and passages than SQUAD. For HOTPOTQA and

TRIVIAQA, we directly use the pre-processed version of dataset from the MRQA Shared

Task (Fisch et al., 2019).

English NLI For the task of NLI, we transfer a model trained on MNLI (Williams et al.,

2018) to MRPC (Dolan and Brockett, 2005) and QNLI (Wang et al., 2019), similar to

the settings in Ma et al. (2019). QNLI contains a question and context sentence pair from

SQUAD, and the task is to verify whether a sentence contains the answer to the paired

question. MRPC is a paraphrase detection dataset presenting a binary classification task

to decide whether two sentences are paraphrases of one another. Note that generalization

from MNLI to QNLI or MRPC not only introduces shift in terms of the distribution of the

input text, but in terms of the nature of the task itself, since QNLI and MRPC aren’t strictly

NLI tasks despite sharing some similarity. Both are binary classification tasks rather than

three-way.

3.4 Experiments

Baselines We compare our calibrator against existing baselines as well as our own abla-

tions.

MAXPROB simply uses the thresholded probability of the predicted class to assess

whether the prediction is trustworthy.

48

Coverage

A
ve

ra
ge

 F
1

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100

MaxProb Kamath BowProp LimeCal ShapCal

Coverage-F1 Curve on Squad-Adv

Figure 3.3: Coverage-F1 curves of different approaches on SQUAD-ADV. As more low-
confidence questions are answered, the average F1 scores decrease. We use AUC to evaluate
calibration performance.

KAMATH (Kamath et al., 2020) (for QA only) is a baseline initially proposed to

distinguish out-of-distribution data points from in-domain data points in the selective QA

setting (see Section 3.5), but it can also be applied in our settings. It trains a random

forest classifier to learn whether a model’s prediction is correct based on several heuristic

features, including the probabilities of the top 5 predictions, the length of the context, and

the length of the predicted answer. Since we are calibrating black box models, we do not

use dropout-based features in Kamath et al. (2020).

CLSPROBCAL (for NLI only) uses more detailed information than MAXPROB: it

uses the predicted probability for Entailment, Contradiction, and Neutral as

the features for training a calibrator instead of only using the maximum probability.

BOWPROP adds a set of heuristic property features on top of the KAMATH method.

These are the same as the features used by the full model excluding the explanations. We use

this baseline to give a baseline for using general “shape” features on the inputs not paired

with explanations.

Implementation of Our Method We refer our explanation-based calibration method

using explanations produced by LIME and SHAP as LIMECAL and SHAPCAL respectively.

We note that these methods also take advantages of the bag-of-word features in BOWPROP.

49

SQUAD-ADV
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 62.6 − 70.9 − 72.4 − 72.1 − 70.4 −
KAMATH 63.2 − 76.8 − 81.4 − 75.2 − 71.2 −
BOWPROP 63.6 0 77.4 0 82.9 0 76.1 0 71.7 0
LIMECAL 70.3 6.7±1.6 83.9 6.4±1.4 92.3 9.4±2.3 84.2 8.1±1.6 75.9 4.2±1.0
SHAPCAL 69.3 5.6±1.8 82.9 5.5±1.3 91.2 8.2±2.2 82.8 6.7±1.4 75.0 3.3±0.9

TRIVIAQA
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 67.0 − 76.7 − 82.1 − 76.3 − 71.0 −
KAMATH 70.6 − 76.6 − 82.1 − 77.9 − 71.1 −
BOWPROP 71.2 0 77.6 0 84.2 0 79.1 0 71.6 0
LIMECAL 72.0 0.8±0.4 78.7 1.1±0.2 85.4 1.2±0.8 79.6 0.5± 0.3 72.3 0.8±0.2
SHAPCAL 71.8 0.6±0.4 78.2 0.6±0.3 84.7 0.5±0.8 79.4 0.3± 0.4 72.3 0.8±0.3

HOTPOTQA
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 63.1 − 75.7 − 79.7 − 75.9 − 72.2 −
KAMATH 64.5 − 76.8 − 80.8 − 77.2 − 72.8 −
BOWPROP 64.7 0 76.6 0 80.3 0 76.9 0 72.4 0
LIMECAL 65.7 1.0±0.4 78.2 1.6±0.4 82.6 2.2±0.8 78.4 1.5±0.6 73.8 1.4±0.3
SHAPCAL 65.3 0.7±0.4 77.8 1.2±0.3 82.0 1.6±0.7 78.0 1.0±0.5 73.5 1.1±0.4

Table 3.1: Main results on QA tasks. Our explanation-based methods (LIMECAL and SHAP-
CAL) successfully calibrate a ROBERTA QA model trained on SQUAD when transferring to
three new domains, and outperform a prior approach (KAMATH) as well as our ablation using
only heuristic labels (BOWPROP). In addition, we show the mean and standard deviation of
the deltas w.r.t. BOWPROP across multiple random seeds in ∆BOW.

For QA, the property space is the union of low-level Segment and Segment × Pos-Tags.

For NLI, we use the union of Segment and Segment × Pos-Tags × Overlapping

Words to label the tokens. Detailed numbers of features can be found in the Appendix.

3.4.1 Main Results: QA

Setup We train a ROBERTA (Liu et al., 2019) QA model on SQUAD as the base model,

which achieves 85.5 exact match and 92.2 F1 score. For the experiments on HOTPOTQA

and TRIVIAQA, we split the dev set, sample 500 examples for training, and leave the rest

50

for testing. For experiments on SQUAD-ADV, we remove the unmodified data points in the

ADD-SENT setting and also use 500 examples for training. For the experiments across all

pairs, we randomly generate the splits, test the methods 20 times, and average the results to

alleviate the influence of randomness.

Metrics In addition to calibration accuracy (ACC) that measures the accuracy of the

calibrator, we also use the area under coverage-F1 curve (AUC) to evaluate the calibration

performance for QA tasks in particular. The coverage-F1 curve (Figure 3.3) plots the average

F1 score of the model achieved when the model only chooses to answer varying fractions

(coverage) of the examples ranked by the calibrator-produced confidence. A better calibrator

should assign higher scores to the questions that the models are sure of, thus resulting in

higher area under the curve; note that AUC of 100 is impossible since the F1 is always

bounded by the base model when every question is answered. We additionally report the

average scores when answering the top 25%, 50%, and 75% questions, for a more intuitive

comparison of the performance.

Results Table 3.1 summarizes the results for QA. First, we show that explanations are

helpful for calibrating black box QA models out-of-domain. Our method using LIME

substantially improves the calibration AUC compared to KAMATH by 7.1, 2.1 and 1.4 on

SQUAD-ADV, TRIVIAQA, and HOTPOTQA, respectively. In particular, LIMECAL achieves

an average F1 score of 92.3 at a coverage of 25% on SQUAD-ADV, close to the performance

of the base model on original SQUAD examples. Our explanation-based approach is effective

at identifying the examples that are robust with respect to the adversarial attacks.

Comparing LIMECAL against BOWPROP, we find that the explanations themselves

do indeed help. On SQUAD-ADV and HOTPOTQA, BOWPROP performs on par with or

only slightly better than KAMATH. These results show that connecting explanations with

annotations is a path towards building better calibrators.

Finally, we compare the performance of our methods based on different explanation

51

QNLI MRPC
Approach Acc ∆BOW AUC ∆BOW Acc ∆BOW AUC ∆BOW

MAXPROB 50.5 − 41.2 − 57.0 − 50.0 −
CLSPROBCAL 56.7 − 59.5 − 71.5 − 77.9 −

BOWPROP 74.0 0 82.0 0 71.8 0 79.3 0
LIMECAL 75.0 1.0±0.4 82.6 0.7±0.4 73.6 1.8±1.3 81.0 1.7±0.9
SHAPCAL 74.2 0.2±0.4 81.9 0.0±0.4 73.5 1.7±1.2 80.7 1.4±0.8

Table 3.2: Main results on NLI tasks. LIMECAL moderately improves the performance of
the base MNLI model on QNLI and MRPC, despite how different these tasks are from the
base MNLI setting.

techniques. LIMECAL slightly outperforms SHAPCAL in all three settings. As discussed in

Section 3.2.1, SHAP assigns high instance weights to those perturbations with few activated

features. While such a choice of the kernel is effective in tasks involving tabular data

(Lundberg and Lee, 2017), this might not be appropriate for the task of QA when such

perturbations may not yield meaningful examples.

3.4.2 Main Results: NLI

Setup Our base NLI model is a ROBERTA classification model trained on MNLI, which

achieves 87.7% accuracy on the development set. We collapse contradiction and

neutral into non-entailment when evaluating on QNLI and MRPC. We continue

using random forests as the calibrator model. We evaluate the generalization performance

on the development sets of QNLI and MRPC. Similar to the settings in QA, we use 500

examples to train the calibrator and test on the rest for each of the 20 random trials.

Metrics Because QNLI and MRPC are binary classification tasks, predicting whether a

model is correct (our calibration setting) is equivalent to the original prediction task. We can

therefore measure calibrator performance with standard classification accuracy and AUC.

Results We show results on NLI tasks in Table 3.2. The base MNLI model utterly

fails when transferring to QNLI and MRPC and achieves an accuracy of 49% and 57%,

respectively, whereas the majority class is 50% (QNLI) and 65% (MRPC). With heuristic

52

Source \ Target SQ-ADV TRIVIA HOTPOT

S
Q

-A
D

V ADAPT

70.9

76.1 65.8
KAMATH 73.3 75.1
BOWPROP 71.9 74.1
LIMECAL 72.9 71.4

T
R

IV
IA

ADAPT 64.2

76.7

77.2
KAMATH 70.5 76.7
BOWPROP 67.1 75.0
LIMECAL 69.3 77.0

H
O

T
P

O
T ADAPT 56.6 74.0

75.7KAMATH 70.6 77.0
BOWPROP 69.1 76.9
LIMECAL 68.8 77.9

Table 3.3: Area under Coverage-F1 curve for cross-domain calibration results. The numbers
along the diagonal shows the MAXPROB performance. A better performance than MAX-
PROB suggests the calibrator is able to usefully generalize (colored cells).

annotations, BOWPROP is able to solve 74% of the QNLI instances and 72% of the MRPC

instances. Our heuristic itself is strong for QNLI compared to MAXPROB. LIMECAL is still

the best in both settings, moderately improving accuracy by 1% and 2% over BOWPROP

using explanations. The results on NLI tasks suggest our method can still learn useful

signals for indicating model reliability even if the underlying tasks are very different.

3.4.3 Analysis

Cross-Domain Generalization of Calibrators Our calibrators so far are trained on

individual transfer settings. Is the knowledge of a calibrator learned on some initial domain

transfer setting, e.g., SQuAD → TRIVIAQA, generalizable to another transfer setting, e.g.

→ HOTPOTQA? This would enable us to take our basic QA model and a calibrator and

apply that pair of models in a new domain without doing any new training or adaptation.

We explore this hypothesis on QA.4

For comparison, we also give the performance of a ROBERTA-model first finetuned

4We also tested the hypothesis on the NLI-paraphrase transfer, but did not see evidence of transferability
there, possibly due to the fact that these tasks fundamentally differ.

53

QA 100 300 500

S
Q

-A
D

V MAXPROB 70.9
KAMATH 72.7 75.6 76.8
BOWPROP 75.0 76.0 77.4
LIMECAL 78.7 82.7 83.9

T
R

IV
IA

MAXPROB 76.7
KAMATH 74.8 76.2 76.6
BOWPROP 76.1 77.4 77.6
LIMECAL 77.2 78.2 78.7

H
O

T
P

O
T MAXPROB 75.7

KAMATH 75.2 76.5 76.8
BOWPROP 74.9 76.3 76.6
LIMECAL 76.5 77.7 78.2

NLI 100 300 500

Q
N

L
I

MAXPROB 41.2
KAMATH 56.4 58.1 59.5
BOWPROP 79.0 81.5 82.0
LIMECAL 79.1 81.8 82.8

M
R

P
C

MAXPROB 50.0
KAMATH 73.7 76.8 77.9
BOWPROP 69.4 77.5 79.3
LIMECAL 76.1 79.9 81.0

Table 3.4: AUC scores of the calibrators trained with varying training data size. Explanation-
based calibrators can still learn even with limited training resources, whereas KAMATH and
BOWPROP are not effective and underperform the MAXPROB baseline on TRIVIAQA and
HOTPOTQA.

on SQUAD and then finetuned on domain A (ADAPT, Figure 3.2). ADAPT requires access to

the model architecture and is an unfair comparison for other approaches.

We show the results in Table 3.3. None of the approaches generalize between

SQUAD-ADV and the other domains (either trained or tested on SQUAD-ADV), which is

unsurprising given the synthetic and very specific nature of SQUAD-ADV.

Between TRIVIAQA and HOTPOTQA, both the LIMECAL and KAMATH calibrators

trained on one domain can generalize to the other, even though BOWPROP is not effective.

Furthermore, our LIMECAL exhibits a stronger capability of generalization compared to

KAMATH. We then compare LIMECAL against ADAPT. ADAPT does not always work

54

SQUAD-ADV TRIVIAQA HOTPOTQA QNLI MRPC

Model Performance Ex F1 Ex F1 Ex F1 Acc Acc
BASE QA/NLI 62.1 68.0 53.2 62.1 50.7 66.3 50.5 57.2
FINETUNE ROBERTA 32.3 42.0 28.5 34.8 39.5 54.8 81.2 79.8
ADAPT BASE QA/NLI 77.3 84.3 56.2 64.0 54.3 70.8 80.7 79.1
INDOMAIN QA/NLI − − 62.1 68.1 59.7 77.2 92.0 87.2

Calibration Results Acc AUC Acc AUC Acc AUC Acc Acc
FINETUNE ROBERTA + MAXPROB − 41.1 − 37.6 − 67.0 81.2 79.8
ADAPT BASE QA/NLI + MAXPROB − 92.7 − 77.6 − 82.5 80.7 79.1
LIMECAL 69.3 82.9 72.0 78.7 65.7 78.2 74.9 73.6

Table 3.5: Model performance and calibration performance of LIMECAL and glass box
methods. On QA tasks, LIMECAL is better than FINETUNING ROBERTA and even outper-
forms ADAPT BASE QA/NLI on TRIVIAQA. LIMECAL under-performs glass box methods
on NLI due to its easy nature and the poor base-model performance.

well, which has also been discussed in Kamath et al. (2020); Talmor and Berant (2019).

ADAPT leads to a huge drop in terms of performance when being trained on HOTPOTQA

and tested on TRIVIAQA, whereas LIMECAL is the best in this setting. From TRIVIAQA to

HOTPOTQA, ADAPT works well, but LIME is almost as effective.

Overall, the calibrator trained with explanations as features exhibits successful

generalizability across the two realistic QA tasks. We believe this can be attributed to

the features used in the explanation-based calibrator. Although the task is different, the

calibrator can rely on some common rules to decide the reliability of a prediction.

Impacts of Training Data Size Calibrating a model for a new domain becomes cumber-

some if large amounts of annotated data are necessary. We experiment with varying the

amount of training data the calibrator is exposed to, with results shown in Table 3.4. Our

explanation-based calibrator is still the best in every setting with as few as 100 examples.

With 100 examples, KAMATH and BOWPROP perform worse than the MAXPROB baseline

on TRIVIAQA and HOTPOTQA, indicating that more data is needed to learn to use their

features.

55

3.4.4 Comparison to Finetuned Models

Throughout this chapter, we have assumed a black box model that cannot be fine-

tuned on a new domain. In this section, we compare calibration-based approaches with

glass-box methods that require access to the model architectures and parameters. We

evaluate two glass-box methods in two different settings (Figure 3.2): (1) finetuning a base

ROBERTA model (FINETUNE ROBERTA), which needs access to the model’s architecture

but not parameters; and (2) finetuning a base QA/NLI model, which requires both model

architectures as well as parameters. All these models are finetuned with 500 examples, the

same as LIMECAL. We also give the performance of a model trained with full in-domain

training data for different tasks as references (INDOMAIN QA/NLI).

We present the model performance (measured with Exact Match and F1 for QA and

Acc for NLI) and calibration results in Table 3.5. Note that there are no calibrators for glass

box methods, so we only report AUC scores for calibration performance.

On QA tasks, the limited training data is not sufficient for successfully finetun-

ing a ROBERTA model. Consequently, FINETUNE ROBERTA does not achieve credible

performance. Finetuning a base QA model greatly improves the performance, surpass-

ing LIMECAL on SQUAD-ADV and HOTPOTQA. However, we still find that on TRIVI-

AQA, LIMECAL slightly outperforms ADAPT. This is a surprising result, and shows that

explanation-based calibrators can still be beneficial in some scenarios, even if we have full

access to the model.

On NLI tasks that are substantially easier than QA, finetuning either a ROBERTA

LM model or a base NLI model can reach an accuracy of roughly 80%. Our explanation-

based approach largely lags glass-box methods, likely because the base NLI model utterly

fails on QNLI (50.5% accuracy) and MRPC (55.0% accuracy) and does not grant much

support for the two tasks. Nonetheless, the results on NLI still support our main hypothesis:

explanations can be useful for calibration.

56

Known \ Unknown SQ-ADV TRIVIA HOTPOT

S
Q

-A
D

V MAXPROB 85.0 88.7 87.5
KAMATH 88.8 89.5 88.9
BOWPROP 91.5 90.6 89.0
LIMECAL 94.5 91.7 91.9

T
R

IV
IA

MAXPROB 85.0 88.7 87.6
KAMATH 85.6 91.9 88.7
BOWPROP 85.3 92.1 89.9
LIMECAL 90.9 92.5 92.1

H
O

T
P

O
T MAXPROB 85.0 88.7 87.6

KAMATH 86.1 91.4 89.4
BOWPROP 85.1 91.8 91.6
LIMECAL 91.7 92.3 92.5

Table 3.6: Area under Coverage-F1 curve in the Selective QA setting. Our explanation-based
approach is also strong in this setting, substantially outperforming existing baseline and our
own ablation.

3.5 Selective QA Setting

Our results so far have shown that a calibrator can use explanations to help make

binary judgments of correctness for a model running in a new domain. We now test our

model on the selective QA setting from Kamath et al. (2020) (Figure 3.2). This experiment

allows us to more directly compare with prior work and see performance in a setting where

in-domain (ID) and out-of-domain (OOD) examples are mixed together.

Given a QA model trained on source domain data, the goal of selective QA is to

train a calibrator on a mixture of ID source data and known OOD data, and test the calibrator

to work well on a mixture of in-domain and an unknown OOD data.

We follow the similar experimental setup as in Kamath et al. (2020). The detailed

setting is included in the supplementary material.

Results As shown in Table 3.6, similar to the main QA results. Our explanation-based

approach, LIMECAL, is consistently the best among all settings. We point out our approach

outperforms KAMATH especially in settings that involve SQUAD-ADV as known or unknown

OOD distribution. This can be attributed the similarity between SQUAD and SQUAD-ADV

57

which can not be well distinguished with features used in KAMATH (Context Length,

Answer Length, and etc.). The strong performance of our explanation-based approach

in the selective QA setting further verifies our assumption: explanation can be useful and

effective for calibrating black box models.

3.6 Related Work

Our approach is inspired by recent work on the simulation test (Doshi-Velez and

Kim, 2017), i.e., whether humans can simulate a model’s prediction on an input example

based on the explanations. Simulation tests have been carried out in various tasks (Ribeiro

et al., 2018; Nguyen, 2018; Chandrasekaran et al., 2018; Hase and Bansal, 2020) and give

positive results in some tasks (Hase and Bansal, 2020). Our approach tries to mimic the

process that humans would use to judge a model’s prediction by combining heuristics with

attributions instead of having humans actually do the task.

Using “meta-features” to judge a model also appears in literature on system combi-

nation for tasks like machine translation (Bojar et al., 2017), question answering (Kamath

et al., 2020; Zhang et al., 2021), constituency parsing (Charniak and Johnson, 2005; Fossum

and Knight, 2009) and semantic parsing (Yin and Neubig, 2019). The work of Rajani and

Mooney (2018) in VQA is most relevant to ours; they also use heuristic features, but we

further conjoin heuristic with model attributions. Our meta-feature set is derived from the

presence of certain properties, which is similar to the “concepts” used in concept-based

explanations (Ghorbani et al., 2019; Mu and Andreas, 2020), but we focus on using them

for estimating model performance rather than explaining a prediction.

Our work addresses the problem of calibration (Guo et al., 2017; Desai and Durrett,

2020), which is frequently framed in terms of models’ output probabilities. Past work

has attempted to tackle this problem using temperature scaling (Guo et al., 2017) or label

smoothing (Pereyra et al., 2017), which adjust confidence scores for all predictions. In

contrast, we approach this issue by applying a classifier leveraging instance-specific expla-

nations. Past work on generalizing to out-of-domain distribution in NLP largely focuses

58

on using unlabeled data from the target domain and requires finetuning a model (Ma et al.,

2019; Ramponi and Plank, 2020; Guo et al., 2020), whereas we improve OOD performance

of strictly black-box models.

3.7 Discussion & Conclusion

Limitations Despite showing promising results in improving model generalization perfor-

mance, our attribution-based approach does suffer from intensive computation cost. Using

either LIME or SHAP to generate attributions requires running inference a fair number

of perturbations when the input size is large (see Appendix for details), which limits our

method’s applicability. But this doesn’t undermine the main contribution of the method in

this chapter, answering the question in the title, and our approach is still applicable as-is in

the scenarios where we pay for access to the model but not per query.

The evaluation of calibration in this chapter primary focuses on relative confidences:

a system is considered to be better calibrated if it assigns higher confidence scores to correct

predictions than to incorrect ones. We do not assess the absolute confidence scores using

expected calibration error (ECE), the standard metric used in past work on calibration (Guo

et al., 2017; Zhang et al., 2021). Part of the reason is that, for the QA datasets studied in

our work, a prediction can be partially correct (with an F1 score greater than 0.0 and less

than 1.0), whereas ECE considers only the binary correctness (either 0 or 1) of predictions.

We leave improving the absolute calibration of confidence scores in addition to the relative

ranking as future work.

Conclusion We have explored whether model attributions can be useful for calibrating

black box models. The answer is yes. By connecting attributions with human heuristics, we

improve model generalization performance on new domains and tasks. Besides, it exhibits

promising generalization performance in some settings (cross-domain generalization and

Selective QA).

59

Chapter 4: Calibrating In-Context Learning Using
Explanations1

4.1 Introduction

In Chapter 2 and 3, we show the utility of attributions for improving BERT-based

LMs. This chapter focuses instead on large language models (LLMs), and shows that the

verification framework proposed in Chapter 3 can also be applied for improving LLMs with

free-text explanations.

A unique emerging capability of LLMs that have not been possessed by earlier

BERT-based models is in-context learning: LLMs are able to learn NLP tasks from just a

few training examples “in context,” without updating the model’s parameters (Brown et al.,

2020). However, this learning process is still poorly understood: models are biased by the

order of in-context examples (Zhao et al., 2021) and may not leverage the instructions or

even the labels of the examples in the ways one expects (Min et al., 2022; Webson and

Pavlick, 2022). Existing tools for interpreting model predictions have high computational

cost (Ribeiro et al., 2016) or require access to gradients (Simonyan et al., 2014; Sundararajan

et al., 2017), making them unsuitable for investigating in-context learning or explaining the

predictions of prompted models.

One appealing way to gain more insight into predictions obtained through in-context

learning is to let the language model “explain itself” (Nye et al., 2021; Wei et al., 2022c;

Chowdhery et al., 2022; Marasović et al., 2022; Lampinen et al., 2022). In addition to

input-label training pairs in context, one can prompt the language model with an explanation

for each pair and trigger the model to generate an explanation for its prediction (Figure 4.1).

Prompting with explanations introduces much richer information compared to using la-

1An early version of this chapter has been published in Ye and Durrett (2022b). Xi Ye is the first author
of Ye and Durrett (2022b), where he developed the research idea with other author(s), implemented the
framework, designed and performed the experiments and analysis, and wrote the paper.

60

Calibrator

Pr
om

pt
Train 

Example

Test 
Example

Explanation
+Label

Output

The prediction is incorrect. The explanation is not factual with respect to the context.

GPT-3

A: First, Crestfallen's artwork is done by Yelena Yemchuk. Second, Yelena Yemchuk is a Croatian professional
photographer. The answer is Croatian.

Crestfallen is a track on The Smashing Pumpkins’ album, Adore. The single's artwork is by Yelena Yemchuk. Johnny
McDaid is a Croatian professional photographer. Yelena Yemchuk is a Ukrainian professional photographer.
Q: Crestfallen’s artwork is done by a photographer of which nationality?

A: First, Missing You stars Yoo Seung-ho. Second, Yoo Seung-ho is born 17 August 1993. The answer is Yoo
Seung-ho.

Missing You is a South Korean television series starring Park Yoo-chun and Yoo Seung-ho. Yoo Seung-ho (born 17
August 1993) is a South Korean actor. Park Yoo-chun (born 23 July 1990) is a South Korean actor.
Q: Which Missing You actor was born August 17 1993?

Figure 4.1: Prompting GPT-3 with explanations. By including explanations in the in-context
examples, we can cause GPT-3 to generate an explanation for the test example as well. In
this case, the generated explanation is nonfactual, despite the simple reasoning involved
here. However, we show this nonfactuality actually provides a signal that can help calibrate
the model.

bels alone, which might guide the inference process and allow the model to learn more

information from the examples.

In this chapter, we investigate the nature of the explanations that LLMs generate

and whether they can improve few-shot in-context learning for textual reasoning tasks,

specifically QA and NLI. Recent prior work that finds success with this approach largely

targets symbolic reasoning tasks with a very different structure, such as math word problem

solving (Nye et al., 2021; Wei et al., 2022c). We experiment on three different datasets

spanning QA and NLI with four LLMs: OPT, GPT-3 (davinci), InstructGPT (text-davinci-

001), and text-davinci-002. The results suggest that explanations only substantially improve

accuracy for text-davinci-002, but give a smaller improvement or even hurt the performance

with the other LLMs.

Surprisingly, we find that the explanations generated by LLMs can be unreliable,

even for a very simple synthetic dataset. We evaluate the explanations along two axes:

factuality, whether the explanation is correctly grounded in the input, and consistency,

whether the explanation entails the final prediction. LLMs tend to generate consistent

explanations that account for the predictions, but the explanations may not be factual, as

61

as shown in Figure 4.1. Furthermore, our analysis suggests an unreliable explanation more

likely indicates a wrong prediction compared to a reliable explanation.

Despite LLMs’ failures here, we can still benefit from model-generated explanations

by using them for calibration. If we are able to automatically assess the reliability of

an explanation, we can allow an LLM to return a null answer when its explanation is

unreliable, since the prediction in this case is less likely to be correct. Unfortunately, there

is no automated way to perfectly assess the reliability, but we can extract features that

approximately reflect it. We use these features to calibrate InstructGPT’s2 predictions, and

successfully improve the in-context learning performance across all the datasets.

In summary, our main findings are: (1) Simply plugging explanations into the prompt

does not always substantially boost the in-context learning performance for textual reasoning.

(2) LLMs generate explanations consistent with their predictions, but these explanations

might not be factually grounded in the inputs. (3) The factuality of an explanation can serve

as an indicator for the correctness of the corresponding prediction. (4) Using features that

can approximate the factuality of explanations, we successfully use explanations to improve

the in-context learning performance across all tasks.

4.2 Does Prompting with Explanations Improve In-Context Learning?

In this chapter, we specifically focus on tasks involving reasoning over natural

language. These are tasks where explanations have been traditionally studied (Camburu

et al., 2018; Rajani et al., 2019), but which are more complex than tasks like sentiment

analysis which are well explained by extractive rationales (Zaidan et al., 2007; DeYoung

et al., 2020). We experiment on two tasks, reading comprehension question answering (QA)

and natural language inference (NLI), on three English-language datasets. For each dataset,

2Throughout this chapter, we primarily test on InstructGPT for two reasons. First, it was the most capable
model available at the time we were conducting the majority of our experiments. Second, it still has significant
room to improve on the datasets we explore in this chapter. This setting is a representative testbed for the
situation where an LLM-based system does not yet give satisfactory performance on a target task, causing the
system designer to turn to explanations in prompts to improve things.

62

S
Y

N
T

H
Context: Christopher agrees with Kevin. Tiffany agrees with Matthew. Mary hangs out with Danielle. James hangs out

with Thomas. Kevin is a student. Matthew is a plumber. Danielle is a student. Thomas is a plumber.
Question: Who hangs out with a student?

Answer: Mary Explanation: Danielle is a student and Mary hangs out with Danielle.

E
-S

N
L

I Premise: A toddler in a green jersey is being followed by a wheelchair bound woman in a red sweater past a wooden
bench.

Hypothesis: A toddler is walking near his wheelchair bound grandmother.
Label: Neither Explanation: the woman may not be his grandmother.

Figure 4.2: A SYNTH example and an E-SNLI example. See Figure 4.3 for HOTPOTQA
examples.

we create a test set with 250 examples.

4.2.1 Datasets

Synthetic Multi-hop QA (SYNTH) In order to have a controlled setting where we can

easily understand whether explanations are factual and consistent with the answer, we create

a synthetic multi-hop QA dataset. Shown in Figure 4.2, each example in this dataset asks a

bridge question (using the terminology of (Yang et al., 2018)) over a context consisting of

supporting facts paired with controlled distractors. This dataset is carefully designed to avoid

spurious correlations, giving us full understanding over the correct reasoning process and

the explanation for every example, which naturally consists of the two supporting sentences.
3

Adversarial HotpotQA (HOTPOTQA) We also test on the English-language Adversarial

HotpotQA dataset (Yang et al., 2018; Jiang and Bansal, 2019). We use the adversarially

augmented version since InstructGPT achieves high performance on the distractor setting of

the original dataset. We make a challenging set of examples by balancing sets of questions

on which InstructGPT makes correct and incorrect predictions. The context of each question

includes two ground truth supporting paragraphs and two adversarial paragraphs.

3This dataset is inspired by task 15 of the bAbI dataset (Weston et al., 2016). In our preliminary experiments
with some of the other bAbI tasks, we found poor performance from InstructGPT similar to our results on
SYNTH, both with and without explanations.

63

For HOTPOTQA, we manually annotated explanations for the training examples.

Figure 4.1 shows an example of such an explanation, highlighted in orange. We could use

the supporting sentences as the explanations, but we found they are usually too verbose and

not sufficient, e.g., with anaphors that resolve outside of the supporting sentences. Therefore,

we manually annotate a set of explanations which clearly describe the reasoning path for

each question.

E-SNLI E-SNLI (Camburu et al., 2018) is an English-language classification dataset

commonly used to study explanations, released under the MIT license. Shown in Figure 4.2,

each example consists of a premise and a hypothesis, and the task is to classify the hypothesis

as entailed by, contradicted by, or neutral with respect to the premise. As a notable contrast

to the other datasets, the explanations here are more abstract natural language written by

human annotators, as opposed to mostly constructed from extracted snippets of context.

4.2.2 Baselines

We study the effectiveness of plugging in explanations by comparing the in-context

learning performance of prompting with or without explanations. Prompting without

explanations resembles the standard few-shot in-context learning approach (Few-Shot). To

incorporate explanations into the prompt, we consider the following two most commonly

used paradigms:

Explain-then-Predict (E-P) prepends an explanation before the label (Figure 4.1).

The language model is expected to generate an explanation first followed by the prediction.

The prompting style of past work involving computational traces can be categorized into

this paradigm, including Nye et al. (2021) and Wei et al. (2022c). This approach is also

called a pipeline model in other literature on training models using explanations (Jacovi and

Goldberg, 2021; Wiegreffe et al., 2021).

Predict-then-Explain (P-E) generates the explanation after the prediction. Unlike

E-P, the predicted explanation does not influence the predicted label, since we use greedy

64

inference and the explanation comes afterwards. However, the explanations in the prompt

still impact the predictions.

4.2.3 Setup

For few-shot learning, we use roughly the maximum allowed shots in the prompt that

can fit the length limit of OPT (Zhang et al., 2022a) and GPT-3 (Brown et al., 2020), which

is 16 for SYNTH, 6 for HOTPOTQA, and 32 for E-SNLI, respectively.4 We experiment with

four LLMs, including OPT (175B), GPT-3 (davinci), InstructGPT (text-davinci-001), and

text-davinci-002. OPT and GPT-3 are trained using the standard causal language modeling

objective, whereas InstructGPT and text-davinci-002 are trained with special instruction

data and human annotations. We generate outputs with greedy decoding (temperature set

to be 0). Our prompt formats follow those in Brown et al. (2020). The explanations are

inserted before/after the prediction with conjunction words like because. Because the results

of in-context learning vary with the examples presented in the input prompt, for each dataset,

we randomly sample multiple groups of training shots, and report the mean and standard

deviation of the results (subscript). We use 5 groups for InstructGPT, the primary LM we

are using throughout this chapter, and 3 groups for the rest.

4.2.4 Results

As shown in Table 4.1, OPT, GPT-3, and InstructGPT show small to moderate

improvements from using explanations for textual reasoning tasks. On the two QA tasks,

SYNTH and HOTPOTQA, E-P improves the performance of InstructGPT, the best among

these three LMs, from 54.8 to 58.5 and 56.8 to 59.4, respectively.5 On E-SNLI, P-E

outperforms FEW-SHOT by 2.6, whereas E-P substantially lags FEW-SHOT. Comparing

E-P against P-E on SYNTH and E-SNLI, E-P typically degrades performance (except

4This contrasts with recent work like Zhao et al. (2021) that focuses on improving performance in the
1-4-shot setting; by using more data we achieve much stronger results on our tasks.

5For SYNTH, we also tried using an alternative style of explanations (reversing the order of the two
sentences in the explanations), which leads to mild performance degradation.

65

Table 4.1: Results of prompting with explanations on four large language models. Us-
ing explanations leads to small to moderate improves performance on OPT, GPT-3, and
InstructGPT, and has more prominent effects on text-davinci-002.

SYNTH HOTPOTQA E-SNLI

OPT (175B)
FEW-SHOT 40.52.8 49.72.6 44.03.8

E-P 29.60.5 52.66.5 39.37.8
P-E 40.22.6 43.34.5 43.41.6

GPT-3
FEW-SHOT 49.50.6 49.16.2 43.35.7

E-P 47.12.8 54.14.1 40.44.5
P-E 51.31.8 48.74.6 48.72.4

InstructGPT
FEW-SHOT 54.83.1 53.22.3 56.82.0

E-P 58.52.1 58.24.1 41.82.5
P-E 53.61.0 51.52.4 59.41.0

text-davinci-002
FEW-SHOT 72.01.4 77.73.2 69.12.0

E-P 86.93.8 82.45.1 75.67.6
P-E 81.12.8 77.24.8 69.45.0

on SYNTH for InstructGPT) and P-E is inconsistent across the different models, whereas

E-P consistently leads to performance improvements on HOTPOTQA. There is no single

winner between the two paradigms of using explanations; choosing the most effective

way is task-specific. Overall, vanilla LLMs (OPT and GPT-3) see limited benefit from

producing explanations, and even the Instruct-series InstructGPT does not see substantial

improvements.

The only exception is text-davinci-002. text-davinci-002 greatly benefits from ex-

planations in the prompt across all three tasks, and E-P is consistently more effective than

P-E. However, it is unclear what contributes to this difference. As far as we are aware, the

differences between text-davinci-002 and InstructGPT are not described in any publication

or blog post.6 Comparing GPT-3 and InstructGPT, we see the move to Instruct series models

is not sufficient to explain the difference. Given the lack of transparency with this model,

6One publicly-described difference is the addition of editing and insertion, discussed at https://
openai.com/blog/gpt-3-edit-insert/, but this does not explain the performance differences we
observe.

66

https://openai.com/blog/gpt-3-edit-insert/
https://openai.com/blog/gpt-3-edit-insert/

N
on

fa
ct

ua
l

Pedro Rubens! The individual Chapters were published into 64 ”tankōbon” by Kodansha.
Yōko Shōji (born 4 June 1950, in Mobara, Chiba) is a Japanese manga artist. She is best known for writing ”Seito Shokun!
Mulder Scully! The individual Chapters were published into 14 ”tankōbon” by Kodansha.
Seito Shokun! The individual Chapters were published into 24 ”tankōbon” by Kodansha between.
Q: How many Chapters does Yōko Shōji’s most famous manga have?
A: First, Yōko Shōji’s most famous manga is ”Seito Shokun!”. Second, ”Seito Shokun!” has 64 Chapters. The answer is 64.

In
co

ns
is

te
nt

Tim Minchin (December 29, 1808 July 31, 1875) was the President of the United States.
Andrew Johnson (December 29, 1808 July 31, 1875) was the President of the United States.
George Andrew Atzerodt (June 12, 1835 – July 7, 1865) was a conspirator, with John Wilkes Booth.
Jesse Andrew Williams (June 12, 1835 – July 7, 1865) was a conspirator, with John Wilkes Booth.
Q: Who was older, George Atzerodt or Andrew Johnson?
A: First, George Atzerodt was born on June 12, 1835. Second, Andrew Johnson was born on December 29, 1808. The
answer is George Atzerodt.

Figure 4.3: Explanations generated for HOTPOTQA. InstructGPT may generate nonfactual
explanations containing hallucination (red) or inconsistent explanations contradicting the
answer (red).

we hesitate to make scientific claims about the results it yields.

Our results do not suggest immediate strong improvements from incorporating

explanations across all LLMs, even for our synthetic dataset, contradicting recent prior work.

This can be attributed to the difference between the tasks we study. The tasks that receive

significant benefits from using explanations in Nye et al. (2021) and Wei et al. (2022c)

are all program-like (e.g., integer addition and program execution), whereas the tasks in

this chapter emphasize textual reasoning grounded in provided inputs. In fact, in Wei et al.

(2022c) and Chowdhery et al. (2022), explanations only show mild benefit on open-domain

QA tasks like StrategyQA (Geva et al., 2021b) that are closer to our setting.

4.3 Can LLMs Generate Factual and Consistent Explanations?

Prompting LLMs with explanations and having models generate them may not

guarantee higher performance on our tasks. But what about the quality of the model-

generated explanations themselves? We assess the reliability of the explanations for the

three datasets, measured in terms of two aspects.

Factuality refers to whether a generated explanation is faithfully grounded in the

corresponding input context (context for QA and premise/hypothesis pair for NLI). A factual

67

Table 4.2: Left: factuality (Fac) and consistency (Con) of the generated explanations. Right:
the % of the examples whose explanation factuality/consistency is congruent with the
prediction accuracy. In general, LLMs tend to generate consistent but less likely factual
explanations.

Acc Fac Con Acc=Fac Acc=Con

reliability of explanations generated by InstructGPT

InstructGPT

SYNTH (E-P) 58.4 72.8 64.8 66.5 68.8
SYNTH (P-E) 54.8 51.6 95.2 89.6 57.2

ADVHP (E-P) 62.0 79.6 91.2 80.0 68.4
ADVHP (P-E) 54.0 69.2 82.0 77.6 67.2

E-SNLI (P-E) 62.0 − 98.8 − 62.0

reliability of explanations generated by other LLMs on SYNTH

OPT (175B) SYNTH (E-P) 30.0 77.2 47.2 45.6 58.8
SYNTH (P-E) 39.6 64.0 81.2 69.2 49.6

GPT-3 SYNTH (E-P) 46.8 59.2 64.8 66.8 61.2
SYNTH (P-E) 52.4 52.4 83.2 78.4 58.0

text-davinci-002 SYNTH (E-P) 86.0 91.6 85.2 91.2 84.8
SYNTH (P-E) 81.6 83.2 96.4 95.8 82.8

explanation should not contain hallucinations that contradict the context. See Figure 4.3 for

a nonfactual explanation.

Consistency measures if the explanation entails the prediction. Our concept of

consistency resembles plausibility as described in Jacovi and Goldberg (2021), in that we

assess whether the prediction follows from the explanation as perceived by a human. See

Figure 4.3 for an inconsistent explanation.

For SYNTH, we use rules to automatically judge whether an explanation is factual and

consistent on all four LLMs. For HOTPOTQA and E-SNLI, the authors manually inspected

the explanations generated by InstructGPT and annotated them for these two characteristics.

Note for each setting, the results are based on the explanations and predictions obtained

with a single set of training shots. We only show the results of P-E on E-SNLI, as E-P is

substantially worse here.

68

Nonfact Fact Incons Cons
0

20

40

60

80

Synthetic (P-E)

Incorrect
Correct

Nonfact Fact Incons Cons

AdvHotpot (E-P)

Incorrect
Correct

% of Correct/Incorrect Predictions by Factuality/Consistency

Figure 4.4: Explanations are more likely to be nonfactual than to be inconsistent, and a
nonfactual explanation usually indicates an incorrect prediction.

Results We summarize the results in Table 4.2. We only report consistency on E-SNLI,

as the explanations for E-SNLI often require some external commonsense knowledge

which cannot be easily grounded in the inputs or judged as true or false. The results

suggest a disconnect between the model predictions and the “reasoning” in explanations.

On InstructGPT, though using explanations improves its performance across three tasks,

the generated explanations are unreliable (upper section), even for the straightforward

synthetic setting. Comparing the factuality of explanations for SYNTH generated by GPT-3,

InstructGPT, and text-davinci-002, we see that instruction tuning improves the factuality, but

even the most powerful text-davinci-002 still fails to generate explanations that are perfectly

grounded in the input context. Overall, LLMs tend to generate consistent explanations (more

than 80% for all three datasets with the right prompt structure), but the explanations are

less likely to be factual, which is concerning as they can deceive a user of the system into

believing the model’s answer.

4.3.1 Reliability of Explanations and Prediction Accuracy

LLMs may hallucinate problematic explanations, but this could actually be advanta-

geous if it gives us a way of spotting when the model’s “reasoning” has failed. We investigate

the connection between the reliability of an explanation and the accuracy of a prediction

69

and ask whether a reliable explanation indicates an accurate prediction. (This resembles the

linguistic calibration of Mielke et al. (2020), but using a different signal for calibration.)

As shown in Table 4.2 (right), accuracy and factuality/consistency are typically

correlated, especially factuality. By knowing whether an explanation is factual, we can guess

the model’s accuracy a high fraction of the time (Accuracy = Factuality). A nonfactual expla-

nation very likely means an incorrect prediction on the SYNTH dataset across all four LLMs.

On HOTPOTQA, factuality and InstructGPT’s prediction correspond 80.0% of the time,

substantially surpassing the prediction accuracy itself. We show fractions of correct and in-

correct predictions when the explanations are factual/nonfactual and consistent/inconsistent

in Figure 4.4 for two of our settings. Factual explanations are much more likely paired with

correct predictions compared to nonfactual explanations. Consistency is also connected to

accuracy but is an inferior indicator compared to factuality in general (Table 4.2).

4.4 Calibrating In-Context Learning using Explanations

From Section 4.3.1, we see that a human oracle assessment of the factuality of an

explanation could be of substantial use for calibrating the corresponding prediction. Can we

automate this process?

We first show how to achieve this goal on the perfectly controlled SYNTH dataset

(Section 4.4.1). On our other two datasets, we use surface lexical matching to approximate

semantic matching and give real-valued scores approximately reflecting factuality. Following

past work on supervised calibration (Kamath et al., 2020; Chen et al., 2021a), we can learn

a calibrator that tunes the probabilities of a prediction based on the score of its explanation

(Section 4.4.2). We show such a calibrator can be trained with a handful of examples

beyond those used for in-context learning and successfully improve the in-context learning

performance on realistic datasets.7 We note that, as mentioned before, the experiments in

7This procedure does require extra data. However, it provides a natural avenue for using a small number of
additional examples that otherwise would be impossible to incorporate into this procedure, when the size of
the context actually limits the amount of data for in-context learning.

70

this section are conducted on InstructGPT.

4.4.1 Motivating Example: Improving SYNTH Dataset

We first show how post-hoc calibration functions in the controlled SYNTH setting,

where we can simply check the factuality of an explanation. Since the generated explana-

tion always follows the format “B is [profession] and A [verb] B.” (example in

Figure 4.2), we can split the explanation into two sentences. The explanation is factual if

and only if each of the two sentences exactly matches one of the sentences in the context.

We use the assessment to improve the performance of P-E for SYNTH, where a

nonfactual explanation typically indicates an incorrect prediction. This gives us a way to

reject presumably incorrect answers. Specifically, we iterate through the top 5 candidate

answers (restricted by the API) given by InstructGPT and reject any answer-explanation

pair if the explanation is nonfactual until we find a factual one. This procedure dramatically

improves the accuracy from 52.4% to 74.8%. Note that this SYNTH dataset is a challenging

task given its lack of reasoning shortcuts: for reference, neither ROBERTA (Liu et al.,

2019) nor DEBERTA (He et al., 2021) finetuned with 16 examples can achieve an accuracy

surpassing 50%. With the help of the explanations and the checking procedure, we can use

InstructGPT to achieve strong results using few-shot learning.

4.4.2 Learning-based Calibration Framework

Framework We now introduce the framework that can leverage the factuality assessment

of an explanation to calibrate a prediction. Let p be the vector of predicted probabilities

associated with each class label in NLI (or the probability score of predicted answer in QA).

Let v be a scalar value extracted from the explanation to describe the factuality. Then, we

can adjust the probabilities accordingly using a linear model: p̂ = softmax(W [p; v] + b),

where p̂ is the tuned probabilities.

Our calibration framework is extended from classical calibration methods (Platt,

1999; Guo et al., 2017; Zhao et al., 2021), which apply an affine transformation on the

71

probabilities alone: p̂ = softmax(Wp + b). In contrast, we use an additional factor v in

calibration to incorporate the factuality assessment of the explanation.

There are a small number of parameters (W and b) that need to be trained in such

a calibration framework. We will rely on a few more examples in addition to the shots

we use in the prompt to train the calibrator. Specifically, we use the prompt examples to

generate the predictions and explanations for these extra examples, and extract predicted

probabilities, factors, and target probabilities triples to construct training data points used to

train the calibrator. Note this procedure requires no explanation annotations for the extra

examples.

Approximating Factuality We approximate the factuality using lexical overlap between

the explanations and the inputs, which we found to work fairly well for our tasks.

HOTPOTQA: We use an explanation consisting of two sentences (examples in

Figure 4.3) as an illustration. Let E = (E(1), E(2)) be the generated explanation, where

E(1) and E(2) are the two sentences, and the E(i) = (e1, e2, · · ·) contain tokens e1, e2, · · · .

Similarly, let P = (P (1), P (2), P (3), P (4)) be the context paragraphs, and P (i) = (p1, p2, · · ·)
be the tokens. The factuality estimation of one explanation sentence E(i) is defined as:

V(E(i)) = maxP∈P
|E(i)∩P |
|E(i)| .

Intuitively, the factuality score for a sentence E is defined as the maximum number

of overlapping tokens over all paragraphs P , normalized by the number of tokens in E. We

then define the factuality score for the whole explanation as V(E) = minE∈E V(E), as it

requires all sentences to be factual in order to make the entire explanation factual.8

E-SNLI: The explanations of E-SNLI do not really involve a concept of factual-

ity. Nevertheless, we use an analogous score following the same principle by viewing the

premise as the context. Let E = (e1, e2, · · ·) be the explanation and P = (p1, p2, · · ·) be

8Alternatively, one might use a fine-tuned NLI model as a proxy (Chen et al., 2021a). However, our focus
is on the pure black-box setting, and we avoid models that require substantial amounts of data to make work.

72

Table 4.3: Accuracy (meanstd dev) of various methods on E-SNLI under different data
conditions. L denotes number of labels (as well as the total number of examples); E denotes
the number of explanations. Calibrating using explanations successfully improves the
performance of in-context learning.

w/o Explanation 32L 64L 96L 128L

RoBERTa 40.14.7 43.05.1 49.05.2 54.94.8

FEW-SHOT 56.82.0 − − −
FEW-SHOT(NN) − − − 58.91.0
FEW-SHOT+PROBCAL 61.93.8 62.42.6 63.22.9 63.91.2

w/ Explanation 32L+32E 64L+32E 96L+32E 128L+32E

P-E 59.42.0 − − −
P-E+PROBCAL 64.41.8 65.41.2 65.41.6 65.41.9
P-E+EXPLCAL 64.22.6 65.81.3 67.61.6 68.51.2

P-E+ZHANG 63.03.2 65.22.2 65.41.5 65.92.5

the premise. We simply score the explanation by V(E) = |E|∩|P |
|E| . The more an explanation

overlaps with the premise, the more factual we judge it to be.

4.4.3 Calibrating E-SNLI

Setup For E-SNLI, we use calibration methods to postprocess the final probabilities.

Unlike classical temperature scaling (Platt, 1999), note that the methods we use here can

actually change the prediction; we will therefore evaluate on accuracy of the calibrated

model.

We study the effectiveness of our explanation-based calibrator under different train-

ing data sizes varying from 32 to 128. Recall that we only require explanation annotations for

32 data points, and only need the labels for the rest to train the calibrator. For E-SNLI, we

calibrate P-E, which is shown to be more effective than E-P in this setting (Section 4.2.4).

Baselines We provide the performance of fine-tuned ROBERTA (Liu et al., 2019) model as

a reference, finding this to work better than DeBERTa (He et al., 2021). To isolate the effec-

tiveness of using explanations for calibration, we introduce three additional baselines using

73

non-explanation-based calibrators. We apply the probability-based calibrator as described

in Section 4.4.2 on the results obtained on few-shot learning (FEW-SHOT+PROBCAL)

and predict-then-explain pipeline (P-E+PROBCAL). We note that the parameters of these

calibrators are trained using the additional data points, as opposed to being heuristically

determined as in Zhao et al. (2021). Furthermore, we experiment with a recently proposed

supervised calibrator from Zhang et al. (2021), which uses the CLS representations from an

additional language model as features in the calibrator. The probabilities are tuned using

p̂ = softmax(W [p;h]+b), where h is the CLS representation. Since we do not have access

to the embeddings obtained by GPT-3, we use ROBERTA to extract the vectors instead.

We use such a calibrator on top of our best-performing base model, P-E, resulting P-E+

ZHANG ET AL. (2021).

Limited by the maximum prompt length, in-context learning is not able to take as

input the additional data used for training the calibrator. For a fair comparison, we can

allow the in-context model to use this data by varying the prompts across test examples,

dynamically choosing the prompt examples to maximize performance. Choosing closer data

points for prompting is a common and effective way of scaling up the training data size for

in-context learning (Shin et al., 2021; Liu et al., 2022). Following Liu et al. (2022), we test

the performance of choosing nearest neighbors for the prompt based on CLS embedding

produced by a ROBERTA model (Liu et al., 2019), referred as FEW-SHOT(NN). It is worth

clarifying that the FEW-SHOT and FEW-SHOT+PROBCAL approaches use the same set

of 32 training shots in the prompt for every test example, whereas the shot sets vary from

example to example in FEW-SHOT(NN).

Results We show the results in Table 4.3. We use 5 different groups of training examples

and report the mean and standard deviation across the groups. For FEW-SHOT(NN), we

only report the results obtained using 128 examples; results using a smaller number of

examples will be worse than this.

Under 128 training examples, applying a trained calibrator on top of prompting

with explanation (i.e., P-E+EXPLCAL) achieves the best accuracy of 68.5%, which is 12%

74

higher than the performance of the vanilla uncalibrated few-shot in-context learning (FEW-

SHOT). P-E+EXPLCAL also outperforms FEW-SHOT+PROBCAL and P-E+PROBCAL by

5% and 3%, respectively. Using explanations is more effective than using probabilities

alone. In addition, P-E+EXPLCAL also outperforms P-E+ZHANG ET AL. (2021), whose

performance is on par with P-E+PROBCAL. This suggests the additional CLS information

is not very helpful in this setting.

As the data size increases from 32 to 128, the performance of the explanation-

based calibrator keeps improving notably, whereas the performance of probability-based

calibrators nearly saturates at a data size of 96. The performance of FEW-SHOT(NN) with

128 training instances only improves the performance by 3.3%, compared to FEW-SHOT

with 32 training instances. Choosing nearest neighbors as the shots, while being effective

when having access to a large amount of data, is not helpful in the extreme data-scarce

regime. Calibrating using explanations is an effective way of using a few extra data points

that cannot fit in the prompt, which is a pitfall of standard in-context learning.

Finally, ROBERTA finetuned using 128 shots only achieves an accuracy of 54.9%,

lagging the performance of GPT-3 based models. The limited training data size is in-

sufficient for finetuning smaller language models like ROBERTA, but is sufficient for

P-E+EXPLCAL to be effective.

4.4.4 Calibrating HOTPOTQA

Setup For the HOTPOTQA dataset, our calibration takes the form of tuning the confidence

scores of the predicted answers to better align them with the correctness of predictions.

These confidence scores can be used in a “selective QA” setting (Kamath et al., 2020), where

the model can abstain on a certain fraction of questions where it assigns low confidence

to its answers. We use the area under coverage-accuracy curve (AUC) as in Chapter 3 to

evaluate how well a model is calibrated as in past literature (Kamath et al., 2020; Chen et al.,

2021a; Zhang et al., 2021; Garg and Moschitti, 2021). The curve plots the average accuracy

with varying fractions (coverage) of questions being answered (examples in Figure 4.5). For

75

Table 4.4: AUC scores (meanstd dev) on HOT-
POTQA under different data conditions. L
and E denotes the number of label annota-
tions and explanation annotations, respec-
tively. Explanation-based calibration success-
fully improves the performance on top of
prompting with explanations.

w/o Explanation 6L 32L 64L

FEW-SHOT 59.62.4 − −
FEW-SHOT(NN) − − 61.30.9

w/ Explanation 6L+6E 32L+6E 64L+6E

E-P 64.42.9 − −

E-P+EXPLCAL − 66.03.9 68.83.0

E-P+ZHANG − 65.63.9 66.13.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coverage

40

45

50

55

60

65

70

75

80

Ac
c

Coverage-Acc on AdvHotpot
Few-Shot
Few-Shot(NN)
E-P
E-P+ExplCalib
E-P+Zhang

Figure 4.5: Coverage-Acc curves of
various methods on HOTPOTQA. E-
P+EXPLCAL is better calibrated com-
pared to uncalbrated E-P as well as the
other approaches.

any given coverage, a better calibrated model should be able to identify questions that it

performs best on, hence resulting a higher AUC.

We experiment with training data set sizes of 6, 32, and 64. We report the results

averaged from 5 trials using different training sets. For HOTPOTQA, we calibrate E-P,

which is shown to be more effective than P-E in this setting (Section 4.2.4).

Results We show the AUC scores in Table 4.4. By leveraging explanations, E-P+EXPLCAL

successfully achieves an AUC of 68.8, surpassing both FEW-SHOT by 7 points and E-P

by 4 points. We note this is a substantial improvement, given that the upperbound of AUC

is constrained by the accuracy of the answers and cannot reach 100. Figure 4.5 shows

the coverage-accuracy curves of various methods averaged across the 5 training runs. E-

P+EXPLCAL always achieves a higher accuracy than its uncalibrated counterpart, E-P,

under a certain coverage, and the gap is especially large in the most confident intervals

(coverage ¡ 50%). E-P+ZHANG ET AL. (2021) is able to calibrate the predictions on this

dataset, but still lags our explanation-based calibrator, E-P+EXPLCAL.

In addition, the explanation-based calibrator can be effective with as few as 32

examples. This is because there are only two parameters (the probability of predicted answer

76

and the explanation-based factor) in the calibrator, which can be easily learned in this few-

shot setting. Comparing E-P+EXPLCAL against FEW-SHOT(NN), using nearest neighbors

in the prompt is also able to improve the performance compared to using a fixed set of shots

(FEW-SHOT), yet our lightweight calibrator can better utilize such a small amount of data,

and learn to distinguish more accurate predictions based on the explanations.

4.5 Related Work

Our investigation is centered around in-context learning (Brown et al., 2020), which

has garnered increasing interest since the breakthrough of various large pretrained language

models. Recent work has been devoted to studying different aspects of in-context learn-

ing, including its wayward behaviors (Min et al., 2022; Webson and Pavlick, 2022) and

approaches to overcome them (Zhao et al., 2021), whereas our exploration focuses on using

explanations.

The utility of explanations for few-shot in-context learning has also been discussed

concurrently (Nye et al., 2021; Wei et al., 2022c; Marasović et al., 2022; Chowdhery et al.,

2022; Lampinen et al., 2022; Wiegreffe et al., 2022), especially in symbolic reasoning tasks.

We differ in that we study more free-form explanations in tasks (QA and NLI, specifically)

focusing on textual reasoning over provided contexts. Furthermore, our work focuses on the

nature of the explanations generated by LLMs, which are found to be unreliable. Regarding

our use of calibration, similar ideas of explanation-based performance estimation have been

applied to other tasks (Rajani and Mooney, 2018) as well as in Chapter 2 and Chapter 3,

but the method of this chapter relies on the free-text explanations generated by the model

instead of interpretations obtained through post-hoc interpretation techniques.

More broadly, how to use explanations in various forms (textual explanation, high-

lights, etc.) to train better models is a longstanding problem (Zaidan et al., 2007). Past

work has built a series of pipeline models that first generate the explanations and then make

predictions purely based on the generated explanations (Wiegreffe et al., 2021; Zhou and

Tan, 2021; Chen et al., 2022a). Prior research has also explored using explanations as

77

additional supervision to train joint models (Hancock et al., 2018; Dua et al., 2020; Lamm

et al., 2021; Stacey et al., 2022). Another line of work seeks to align the reasoning process

of a trained model with the explanations, which is typically done by interpreting a prediction

post-hoc through explanation techniques and optimizing the distance between the obtained

explanation and ground truth explanation (Liu and Avci, 2019; Rieger et al., 2020; Plumb

et al., 2020; Erion et al., 2021; Yao et al., 2021). These aforementioned methods all update

the model parameters and typically require a considerable amount of explanation annotations

to be effective. By contrast, our setting treats language models as pure black boxes and only

requires few-shot explanations.

Lastly, our work connects with recent research focused on calibrating the predictions

of LLMs Kadavath et al. (2022); Zhao et al. (2023); Huang et al. (2024); Zhu et al. (2023).

These studies primarily aim to align the confidence scores of model predictions with the

actual probability of their correctness, without altering the predictions themselves. Our

approach differs in that we leverage explanations to adjust the relative confidence scores

across different predictions, reranking candidate predictions to enhance the accuracy of the

model’s outputs.

4.6 Discussion & Conclusion

Caveats and Risks of Explanations from Large Language Models Our analysis suggests

that LLMs’ internal “reasoning” does not always align with explanations that it generates, as

shown by our consistency results. More concerning, the explanations might not be factually

grounded in the provided prompt. This shortcoming should caution against any deployment

of this technology in practice: because the explanations are grammatical English and look

very convincing, they may deceive users into believing the system’s responses even when

those responses are incorrect. Section 6 of Bender et al. (2021) discusses these risks in

additional detail. The fact that language models can hallucinate explanations is also found

in other work (Zhou and Tan, 2021). This result is unsurprising in some sense: without

sufficient supervision or grounding, language models do not learn meaning as distinct from

78

form (Bender and Koller, 2020), so we should not expect their explanations to be strongly

grounded.

We have shown that even explanations which don’t lead to accuracy gains can still be

useful for calibration. However, the lexical overlap feature we use here is a weak signal of

explanation correctness (see the example in Figure 4.1). Strong enough entailment models

should theoretically be able to perform this task and work across a range of tasks without

fine-tuning. This explanation assessment model can even be a language model itself trained

for this particular propose to approach the verification tasks for a given domain by in-context

learning.9

Conclusion We have explored the capabilities of LLMs in using explanations in in-context

learning for textual reasoning. Through our experiments with four LLMs and on two QA

datasets and an NLI dataset, we find that simply including explanations in the prompt

does not always improve the performance of in-context learning. Our manual analysis

demonstrates that LLMs tend to generate nonfactual explanations when making wrong

predictions, which can be a useful leverage to assess the correctness of the predictions. Lastly,

we showcase how to use explanations to build lightweight calibrators, which successfully

improve InstructGPT’s in-context learning performance across all three datasets.

9Since the release of an early published version of this chapter (Ye and Durrett, 2022b), there has been
work that uses LLMs to evaluate the confidence of their predictions Kadavath et al., 2022, and more relevant
to our work, the validity of reasoning chains Xie et al. (2023). As LLMs continue to grow in capability, we
believe this represents a promising direction for future research.

79

Chapter 5: Explanation Selection for Chain-of-Thought
Prompting1

5.1 Introduction

In the previous chapter, we show including explanations can potentially boost the

prompting performance on a diverse of reasoning tasks, but sometimes may only lead to

small to moderate improvements. Constructing effective explanations often require manual

engineering (Wei et al., 2022c; Zhou et al., 2022a) to reach their full potential; past work

has demonstrated that different combinations of explanations can lead to widely varying

model performance (Wang et al., 2022b). These explanations are typically written in natural

language (Madaan and Yazdanbakhsh, 2022; Ye et al., 2023b; Wang et al., 2023) and there

are naturally many variants to explain the answer to a single question. Explanations in

standard datasets written by crowdworkers may not be optimal, and even expert “prompt

engineers” may not be able to easily elicit the best behavior.

This chapter studies the problem of optimizing explanations for better downstream

performance on textual reasoning tasks. Inspired by recent work that bootstraps LLMs to

improve reasoning (Zelikman et al., 2022; Huang et al., 2022), we propose an approach that

can bootstrap a set of seed explanations (e.g., crowdworker annotated explanations) using an

unlabeled development data set. As shown in Figure 5.1, we first prompt LLMs to construct

alternative candidate explanations from the seed explanations. We then search over possible

combinations of candidate explanations to find a combination that has high accuracy on the

development set, which is silver-labeled using seed explanations.

Evaluating one candidate combination of explanations requires inference over the

development set to compare against the silver labels. Given the cost of running LLMs,

1An early version of this chapter has been published in Ye and Durrett (2023). Xi Ye is the first author of
Ye and Durrett (2023), where he developed the research idea with other author(s), implemented the framework,
designed and performed the experiments and analysis, and wrote the paper.

80

Because we know that Amy had 5 apples and Alex had 7, the answer is 12.

If we add the 5 apples that Amy has with the 7 that Alex has, then it’s 12.
…

GPT-3Expl AnsQ Expl AnsQ Expl AnsQ Test Q Expl Ans

In-context examples with explanations Prediction

Amy’s 5 apples plus Alex’s 7 yields 12 apples as the answer. Combo C2

Combo C1 S(C1)
<latexit sha1_base64="nis3/btwKBf5gRuLWhuJZmam+WQ=">AAAD1nicfVNbb9MwFHYTLiPcOnjkxaKqlIqpagYSPIA0MU3iYYii0a2oKZHjOK21OIliBxos8wBCvPLbeOM/8CNw0mTtumlHiXT8fefy+eTETyPKxWDwt2WY167fuLl1y7p95+69++3tB8c8yTNMRjiJkmzsI04iGpORoCIi4zQjiPkROfFP90v+5DPJOE3iD6JIyZShWUxDipHQkLfd+tcNPWx13TkSslCey5CYZ0z6hAulYWl1oaBRQOSBsioSo0geKXvfc3qab5B3GtFn/QztCvRDXQ66jAawOS9UD76CTQeehIKhhbInDf9FebLWoT65IknPMkNlrxWZerKALo3hWfePSq2LOVzdg6FsRmNVk5Wo84GyiXx7eKBKLiYzSC8vxilbq/S1Sa5U7dBNqiy06tqUrpFJsYpeKI9Y+jO4Yk4EWuFBhV81zx24lNuDTyCDL+HVsbTntTuD/qAyeNFxaqcDaht67T9ukOCckVjgCHE+cQapmEqUCYojojci5yRF+BTNyES7MWKET2W1lgp2NRLAMMn0GwtYoesZEjHOC+bryFIl3+RK8DJukovwxVTSOM0FifGyUZhHUCSw3HEY0IxgERXaQTijWivEc5QhLPSfYOkhOJtXvugc7/adp/3d9886e6/rcWyBR+AxsIEDnoM98AYMwQhg48gojO/GD3NsfjN/mr+WoUarznkIzpn5+z8ijkFo</latexit>

S(C2)
<latexit sha1_base64="eAN0YBKQMYckUnMCVQHN22EawKI=">AAAD1nicfVNbb9MwFHYTLiPcOnjkxaKq1IppagsSPIA0MU3iYYii0a2oKZHjOK212IliBxos8wBCvPLbeOM/8CNw0mTtumlHiXT8fefy+eTETyIqZK/3t2HZ167fuLl1y7l95+69+83tB8cizlJMRjiO4nTsI0EiyslIUhmRcZISxPyInPin+wV/8pmkgsb8g8wTMmVoxmlIMZIG8rYb/9qhh522O0dS5dpzGZLzlCmfCKkNrJw2lDQKiDrQTkliFKkj3dn3Bl3D18g7g5izeYadEvRDUw66jAawPi90F76CdQcRh5Khhe5Mav6L9lSlQ39yZZycZYa6s1Zk6qkcupTDs+4ftV4Xc7i6B0PpjHJdkaWo84Gqjnx7eKALjpMZpJcXE5StVfpaJ5eqdugmVRRada1LV8gkX0UvtEcc8xlcOScSrfCgxK+a5w5cyu3CJ5DBl/DqWNr1mq3ebq80eNHpV04LVDb0mn/cIMYZI1ziCAkx6fcSOVUolRRHxGxEJkiC8CmakYlxOWJETFW5lhq2DRLAME7NyyUs0fUMhZgQOfNNZKFSbHIFeBk3yWT4YqooTzJJOF42CrMIyhgWOw4DmhIso9w4CKfUaIV4jlKEpfkTHDOE/uaVLzrHg93+093B+2etvdfVOLbAI/AYdEAfPAd74A0YghHA1pGVW9+tH/bY/mb/tH8tQ61GlfMQnDP7938lxEFp</latexit>

surrogate
scores

O(C2)
<latexit sha1_base64="Kv01vE9O2AXupTyDG91q2jcjzws=">AAAD1nicfVNbb9MwFHYTLiNc1sEjLxZVpVZMU1uQ4AGkiWkSD0MUQbeipkSO47TW7CSKHWiwzAMI8cpv443/wI/ASZO166YdJdLx953L55MTP2FUyF7vb8Oyr12/cXPrlnP7zt17282d+8cizlJMRjhmcTr2kSCMRmQkqWRknKQEcZ+RE//0oOBPPpNU0Dj6IPOETDmaRTSkGEkDeTuNf+3Qw07bnSOpcu25HMl5ypVPhNQGVk4bSsoCog61U5IYMfVWdw68Qdfw64g5m2fYKUE/NOWgy2kA6/NCd+FLWHcQcSg5WujOpOa/aE9VOvQnV8bJWWaoO2tFpp7KoUsjeNb9o9brYo5W9+AondFIV2Qp6nygqiPfHB3qgovIDNLLiwnK1yp9rZNLVbt0kyoKrbrWpStkkq+iF9ojjvkMrpwTiVZ4UOJXzXMXLuV24WPI4Qt4dSztes1Wb69XGrzo9CunBSobes0/bhDjjJNIYoaEmPR7iZwqlEqKGTEbkQmSIHyKZmRi3AhxIqaqXEsN2wYJYBin5o0kLNH1DIW4EDn3TWShUmxyBXgZN8lk+HyqaJRkkkR42SjMGJQxLHYcBjQlWLLcOAin1GiFeI5ShKX5ExwzhP7mlS86x4O9/pO9wbunrf1X1Ti2wEPwCHRAHzwD++A1GIIRwNZ7K7e+Wz/ssf3N/mn/WoZajSrnAThn9u//GNhBZQ==</latexit>

O(C1)
<latexit sha1_base64="j000YTHxNj0JCN6O0wukt63ypnY=">AAAD1nicfVNbb9MwFHYTLiNc1sEjLxZVpVRMVTOQ4AGkiWkSD0MUQbeipkSO47TW4iSKHWiwzAMI8cpv443/wI/ASZO166YdJdLx953L55MTP40oF4PB35ZhXrt+4+bWLev2nbv3tts79495kmeYjHASJdnYR5xENCYjQUVExmlGEPMjcuKfHpT8yWeScZrEH0SRkilDs5iGFCOhIW+n9a8betjqunMkZKE8lyExz5j0CRdKw9LqQkGjgMhDZVUkRpF8q+wDz+lpfh3RZ/0M7Qr0Q10OuowGsDkvVA++hE0HnoSCoYWyJw3/RXmy1qE+uSJJzzJDZa8VmXqygC6N4Vn3j0qtizla3YOhbEZjVZOVqPOBsol8c3SoSi4mM0gvL8YpW6v0tUmuVO3STaostOralK6RSbGKXiiPWPozuGJOBFrhQYVfNc9duJTbg48hgy/g1bG057U7g/6gMnjRcWqnA2obeu0/bpDgnJFY4AhxPnEGqZhKlAmKI6I3IuckRfgUzchEuzFihE9ltZYKdjUSwDDJ9BsLWKHrGRIxzgvm68hSJd/kSvAybpKL8PlU0jjNBYnxslGYR1AksNxxGNCMYBEV2kE4o1orxHOUISz0n2DpITibV77oHO/1nSf9vXdPO/uv6nFsgYfgEbCBA56BffAaDMEIYOO9URjfjR/m2Pxm/jR/LUONVp3zAJwz8/d/FaJBZA==</latexit>

validate best
on silver data, 
keep highest 

scoreÊ1
<latexit sha1_base64="3F2idGyf1UOzrDGGfG+981d8R6U=">AAAD4XicfVPPb9MwFHYTfozwq4MjF4uqUiumqRlIcABpYprEYYgi0W2o6SLHcVprthPFDjREvnHhAEJc+a+48ZdwxUmTteumWYn03vd9773PjhMkjEo1GPxtWfa16zdubtxybt+5e+9+e/PBoYyzFJMRjlmcHgdIEkYFGSmqGDlOUoJ4wMhRcLpX8kefSCppLD6oPCETjqaCRhQjZSB/s/XPmyFV7GvfdbqRj51ulefa9zhSs5QXAZFKG7hwulBRFhIjNmnJYsSKd7q357v9NcTk5hn2KjCITD/ocRrCJp/rPnwFmxEyjhRHc90bN/xn7Re1EX3iqTg5q4x0b6XJxC9y6FEBz6Z/1HrVzMFyIxylUyoa75Wp88KiUb492NclJ8gU0subScpXOn1piitXW3SdKhstpzata2ScL9Vz7ZPyO3hqRhRa4mGFX3WeW3Bhtw+fQA5fwqu1tO+3O4PtQbXgxcCtgw6o19Bv//HCGGecCIUZknLsDhI1KVCqKGZEO14mSYLwKZqSsQkF4kROiuqGatg1SAijODWvULBCVysKxKXMeWCUpUu5zpXgZdw4U9GLSUFFkiki8GJQlDGoYlhedxjSlGDFchMgnFLjFeIZShFW5qdwzCG461u+GBzubLtPt3feP+vsvq6PYwM8Ao9BD7jgOdgFb8AQjAC2Tqyv1nfrh43tb/ZP+9dCarXqmofg3LJ//wc7jkVn</latexit>

candidate explanations
Ê2

<latexit sha1_base64="bBpNJ3U/i+YRpoQh+bWPo2r6Gg4=">AAAD4XicfVPPb9MwFHYTfozwq4MjF4uqUiqmqilIcABpYprEYYgi0W2o6SLHcVprcRLZDjREvnHhAEJc+a+48ZdwxUmTteumWYn03vd9773PjuOnERVyMPjbMsxr12/c3Lpl3b5z99799vaDQ5FkHJMxTqKEH/tIkIjGZCypjMhxyglifkSO/NO9kj/6RLigSfxB5imZMjSLaUgxkhrytlv/3DmSxb7yhlY39LDVrfJceS5Dcs5Z4RMhlYYLqwsljQKixTotWYyi4p2y9zynt4HoXD8juwL9UPeDLqMBbPKF6sFXsBkhklAytFD2pOE/K6+ojagTVybpWWWo7LUmU6/IoUtjeDb9o1LrZg5WG2GIz2jceK9MnRcWjfLtwb4quZjMIL28maBsrdOXprhytUM3qbLRamrTukYm+Uq9UB4pv4Mr50SiFR5U+FXnuQOXdnvwCWTwJbxaS3teuzPoD6oFLwZOHXRAvUZe+48bJDhjJJY4QkJMnEEqpwXikuKIKMvNBEkRPkUzMtFhjBgR06K6oQp2NRLAMOH6jSWs0PWKAjEhcuZrZelSbHIleBk3yWT4YlrQOM0kifFyUJhFUCawvO4woJxgGeU6QJhT7RXiOeIIS/1TWPoQnM0tXwwOh33naX/4/lln93V9HFvgEXgMbOCA52AXvAEjMAbYODG+Gt+NHyY2v5k/zV9LqdGqax6Cc8v8/R8/AEVo</latexit>

Ê3
<latexit sha1_base64="Jyl+b27ik+K53A5tgX3W7HrB8DY=">AAAD4XicfVPPb9MwFHYTfozwYx0cuVhUlVIxVc2GBAeQJqZJHIYoEt2Gmi5yHKe1FjtR7EBD5BsXDiDElf+KG38JV5w0WbtumpVI733f99777Dh+ElEhB4O/LcO8cfPW7Y071t179x9strceHok4SzEZ4TiK0xMfCRJRTkaSyoicJClBzI/IsX+2X/LHn0gqaMw/yDwhE4amnIYUI6khb6v1z50hWRwob9fqhh62ulWeK89lSM5SVvhESKXhwupCSaOAaLFOSxajqHin7H3P6a0hOtfP0K5AP9T9oMtoAJt8rnrwFWxGiDiUDM2VPW74z8oraiPq1JVxcl4ZKnulycQrcuhSDs+nf1Rq1czhciMMpVPKG++VqYvColG+PTxQJcfJFNKrmwnKVjp9aYorV9t0nSobLac2rWtknC/Vc+WR8ju4ckYkWuJBhV93nttwYbcHn0IGX8LrtbTntTuD/qBa8HLg1EEH1Gvotf+4QYwzRrjEERJi7AwSOSlQKimOiLLcTJAE4TM0JWMdcsSImBTVDVWwq5EAhnGqXy5hha5WFIgJkTNfK0uXYp0rwau4cSbDF5OC8iSThOPFoDCLoIxhed1hQFOCZZTrAOGUaq8Qz1CKsNQ/haUPwVnf8uXgaKfv7PZ33j/r7L2uj2MDPAZPgA0c8BzsgTdgCEYAG6fGV+O78cPE5jfzp/lrITVadc0jcGGZv/8DQnJFaQ==</latexit>

Combo C3 S(C3)
<latexit sha1_base64="qDMGdvpqI/mRkJf+hV+ivMBJUTI=">AAAD4XicfVPPb9MwFHYTfozwq4MjF4uqUiumqV2R4ADSxDSJwxBF0G2o6SLHcVprthPFDjREvnHhAEJc+a+48ZdwxUmTteumWYn0/H3fe++z8+LHjErV6/1tWPa16zdubtxybt+5e+9+c/PBoYzSBJMRjliUHPtIEkYFGSmqGDmOE4K4z8iRf7pX8EefSCJpJD6oLCYTjqaChhQjZSBvs/Gv7c6Qyve1N3DaoYedxT7TnsuRmiU894lU2sC504aKsoAYsVOSGLH8ve7seYOu4WvkrUHM3jzDTgn6oSkHXU4DWO/nugtfwrqDjELF0Vx3xjX/WXt55UOfuCqKzzJD3VkpMvHyDLpUwLPuH7VeNXOwPAdHyZQKXZGlqfPCvFa+OdjXBSfIFNLLi0nKVyp9qZNLV1t0nSoKLbvWpStknC3Vc+2R4jO4akYUWuJBiV91n1twYbcLn0AOX8CrtbTrNVu97V654MWgXwUtUK2h1/zjBhFOOREKMyTluN+L1SRHiaKYETMRqSQxwqdoSsYmFIgTOcnLCdWwbZAAhlFiXqFgia5m5IhLmXHfKAuXcp0rwMu4carC55OcijhVROBFozBlUEWwGHcY0IRgxTITIJxQ4xXiGUoQVuancMwl9NePfDE43NnuD7Z33j1t7b6qrmMDPAKPQQf0wTOwC16DIRgBbJ1YX63v1g8b29/sn/avhdRqVDkPwbll//4PSuNFbw==</latexit>

Figure 5.1: Optimizing explanations given a candidate set. We generate candidate explana-
tions in a leave-one-out fashion (not shown), prioritize combinations of explanations using a
surrogate score S, then evaluate them on silver data to optimize accuracy.

evaluating a large number of candidates is impractical. We propose a two-stage approach

to efficiently search over potentially high-scoring combinations. We first evaluate each

candidate explanation in isolation based on silver accuracy on the development set or the log

likelihood on the few-shot training exemplar set. Scores of these individual explanations can

be combined to compute scores of combinations, which gives a proxy of that combination’s

performance against silver set. We then can allocate our computation budget to evaluate

better-performing candidate combinations based on the proxy metrics.

We apply our approach to optimize explanations on four datasets: GSM, ECQA,

E-SNLI, and STRATEGYQA, covering a spectrum of textual reasoning tasks. Across the

four datasets, our approach is able to find explanations that achieve 4% higher accuracy

on average compared to initial seed explanations. We also show our proxy metrics can

effectively approximate the downstream performance of combinations, and thus allow

prioritizing search over better-performing explanations.

To summarize, our contributions are: (1) We propose a framework for optimizing

explanations for in-context learning by optimizing over combinations of explanations. (2) We

show that pseudo-labeling an unlabeled dataset can be used to evaluate such combinations.

(3) We propose two proxy metrics to prioritize exploring better combinations given a limited

computation budget.

81

5.2 Problem Formulation
5.2.1 Problem Statement

Following the standard chain-of-thought setting (Wei et al., 2022c), we assume

access to a set of exemplars (input-output pairs) T = {(qi, ai)}i=1:K and seed explanations

Ẽ = {ẽi}i=1:K annotated for each exemplar in T (one per exemplar). In addition to T , some

of our approaches assume access to an unlabeled development set V that only includes the

inputs, i.e., V = {qi}i=1:M . Let θ be the parameters of an LLM.

Our goal is to find an explanation set E = {ei}i=1:K that leads to the best accuracy.

Each ei ∈ Σ∗ is a natural language explanation expressed in the subword vocabulary Σ of

the pre-trained language model. Past work has optimized many aspects of the in-context

learning process, for example, the verbalization of prompts (Deng et al., 2022; Zhang et al.,

2022b), exemplar selection (Ye et al., 2023b), and exemplar order (Lu et al., 2022), whereas

our work focuses on optimizing the format of explanations in this particular way.

Because we assume a very small number of training examples, all of which are going

to be included in the prompt, our notion of optimization (our “training objective”) cannot

rely on maximizing the likelihood of labeled training data. As we discuss in future sections,

we will explore both likelihood-based measures as well as accuracy against pseudo-labeled

versions of V . These objectives are also expensive to evaluate using LLMs, so we will

operate under an additional constraint of cost in our methods.

Candidate explanations Directly searching over the combinatorial explanation space

of E is intractable. Practically, we constrain the space of each ei by selecting each from

a candidate explanation set Êi = {ê(1)i . . . ê
(|Êi|)
i }, where each ê

(j)
i denotes a candidate

explanation associated with each exemplar qi. The candidate explanation sets Ê1 . . . ÊK can

be generated by the LLM using a set of manually annotated seed explanations annotated by

human Ẽ = {ẽi}i=1:K . That is, we use the exemplar set T and the seed sets Ẽ excluding

(qi, ẽi, ai) to prompt the LLM and draw N (40 in our implementation) samples for Êi:

82

Min Avg Max Seed

GSM 57.7 61.8 66.0 61.9
ECQA 72.7 76.1 78.6 74.9
E-SNLI 60.3 72.3 80.1 71.8
STRATEGYQA 69.8 73.8 76.5 74.0

Table 5.1: Statistics of the performance of 16 different random combinations of explanations
on 4 datasets and the performance of the seed explanations from crowdworkers. All tasks
show substantial variation in performance.

(ê, â) ∼ p(e, ai | {(qj, ẽj, aj)}j=1:K∧j ̸=i, qi; θ) (5.1)

Put another way, we use a leave-one-out approach to sample explanations and

answers for each example using chain-of-thought prompting with K − 1 examples. We

reject any samples that do not have the correct answer for the example.

A combination C is a set of {ei} that contains one explanation ei from the candidate

explanation set Êi, i.e., C = {ei}i=1:K ∧ ∀i, ei ∈ Êi. Now we can restate our problem: our

goal is to find an explanation combination C that maximizes the accuracy when evaluating

on test data.

5.2.2 Performance Varies Across Explanations

To illustrate the potential of our approach, we briefly analyze how using different

explanations, for the same set of exemplars, can impact the downstream performance. As

mentioned earlier, we generate candidate explanation sets according to Eq (5.1). Concretely,

we use temperature scaling of 0.7 and sample 40 completions for each qi, only retaining an

ē if it is paired with a correct answer ā = ai. Note that for different qi, we may find varying

number of valid ē (ranging from 0 to 40). We keep at most 8 for each qi to save the search

cost. We also include the seed explanations in the candidate explanation sets.

For each dataset, we randomly sample 16 combinations using the augmented can-

83

GPT-3Test ex TrueCombination C1

False

GPT-3 True

…

Combination C2

Combination C3

{<latexit sha1_base64="UZXUAA2mrQ+9Ep4vl2WDZExLjPY=">AAADqXicfVJdb9MwFHUTPkb4WAePvFhURa02Te1AggeQJhASD0XqJNoVmhI5rtNai53IdqDB8m/jP/DGv8FJk7Xrpl3J0vU55557c+MwjalUvd6/huPeuXvv/t4D7+Gjx0/2mwdPxzLJBCYjnMSJmIRIkphyMlJUxWSSCoJYGJPz8OJjwZ//JELShH9VeUpmDC04jShGykLBQeNPOwqw1/aXSOncBD5DaimYDolUxvO11+567WGnhMPIKqDP6BzW95XpwvewLpJJpBhamc605n+ZQFfW5oevkvSyMjKdLZNZoHPoU76mMYr1N2Ns58vrYDMaQ2JBuanIcqirQl0rvww+mYLjZAHpzWaSsi2n33VxOdUR3aUKo03X2rpCpvlGvTIB8exmfbUkCm3weYnfts8juB63Cw8hg+/g7VraDZqt3nGvDHg96VdJC1QxDJp//XmCM0a4wjGSctrvpWqmkVAUx8T+80ySFOELtCBTm3LEiJzp8qUZ2LbIHEaJsIcrWKLbFRoxKXMWWmUxpdzlCvAmbpqp6O1MU55minC8bhRlMVQJLJ4tnFNBsIpzmyAsqJ0V4iUSCCv7uD27hP7uJ19PxifH/VfHJ2evW6cfqnXsgefgBeiAPngDTsFnMAQjgJ2XzsAZOWP30D1zJ+73tdRpVDXPwJVw8X+2EDD0</latexit>

Test ex

Test ex

GPT-3

sampled combinations model prediction

ā = True

Figure 5.2: Silver labeling of unlabeled test example given several sampled combinations.
This example is for a binary task with True or False labels (e.g., StrategyQA).

didate explanation sets, and report the statistics of the performance in Table 5.1. We see

substantial variance in performance with different C: the average gap between the maximum

performance and minimum performance exceeds 5% and is as large as 20% (on E-SNLI).

In addition, the performance of seed explanations annotated by crowdworkers (SEED in

Table 5.1) largely lags the best possible explanations, indicating substantial headroom for

improvement.

5.3 Method Overview

Having candidate explanations for each question, we have reduced the search space

from exponential in the vocabulary size to merely NK . We then search over possible

combinations of explanations. We describe our method for scoring combinations and the

constraints under which our search takes place.

Pseudo-labeling development set We do not assume access to labeled examples beyond

the K few-shot examples provided. However, we can take advantage of unlabeled data in

V . We use a pseudo-labeling approach to derive labels for V following past work (Wang

et al., 2022c). This approach is depicted in Figure 5.2; given q ∈ V , we sample random

combinations of explanations to get predictions and use the majority-voted answer as the

pseudo label â:

â = argmax
a

∑
C={ei}

1[a = argmax
ā

p(ā | {(qi, ei, ai)}i=1:K , q; θ)]

84

We now use the accuracy against the silver label as a surrogate objective O, searching for C

that maximizes accuracy with respect to the â:

O(C) = argmax
C={ei}i=1:K

∑
qj∈V

1[âj = argmax
ā

p(ā | {(qi, ei, ai)}i=1:K , qj; θ)].

Searching over combinations One further complicating factor is that evaluating a combi-

nation C using O is expensive, as it requires running inference over the development set.

We measure the computation budget B by the number of combinations needed to be scored

using O.

A naive approach is to randomly select B combinations to search, but this is inef-

ficient. We propose additional surrogate metrics S to serve as a proxy for O for scoring

combinations. We design S so that it can cost-efficiently score all combinations, with high

S(C) indicating a combination C likely to obtain high O(C) score. In this way, S can be

used to propose promising candidate combinations, only a few of which are scored using

the actual objective O to save search budget.

5.4 Proxy Metrics for Finding Promising Combinations

Owning to the high cost, we only evaluate a small number (tens of combinations) of

combinations against development set using O (Eq (5.3)). We first extract a set of promising

combinations according to two proxy metrics, then evaluate those using our silver data.

5.4.1 One-shot Silver Accuracy

To optimize the silver accuracy of a combination of explanations (our objective O),

we hypothesize that the prediction of a combination can be approximated with the prediction

of each explanation used one-shot. That is, we expect p(a | {(qi, ei, ai)}i=1:K , q; θ) to be

higher when
∑

i=1:K p(a | (qi, ei, ai), q; θ) is higher. We draw this hypothesis based on

recent work on example selection for ICL, which shows that combining examples that

85

individually perform well will yield better performance from the combination (Ye et al.,

2023b; Rubin et al., 2022).

We define the average one-shot silver accuracy as a proxy metric SOSAcc:

SOSAcc(C = {ei}i=1:K) =
∑

i=1:K

∑
qj∈V

1[âj = argmax
ā

p(ā | (qi, ei, ai), qj ; θ)]

By computing the one-shot silver performance for ∀ê(i)j ∈ Ê(i) for ∀i = 1 : K, we can
efficiently compute the proxy metric SOSAcc for any combination C.2

5.4.2 One-shot Log Likelihood

Besides using silver accuracy, another principle is to optimize the held-out log
likelihood of the exemplar set:

∑
j=1:K

log p(aj | {(qi, ei, ai)}i=1:K∧i ̸=j, qj; θ).

We apply a similar hypothesis and use the one-shot performance
∑

i=1:K∧i ̸=j p(aj | (qi, ei,
ai), qj; θ) as the surrogate of p(aj | {(qi, ei, ai)}i=1:K∧i ̸=j, qj; θ). We can then score a
candidate combination by:

∑
j=1:K

∑
i=1:K∧i ̸=j

log
∑
e

p(aj, e | (qi, ei, ai), qj; θ).

Since summing over explanations is intractable, we approximate this sum using the single
sample of e to estimate the one-shot performance, leading to:

SOSLL =
∑
j=1:K

∑
i=1:K∧i ̸=j

log p(ej, aj | (qi, ei, ai), qj; θ). (5.2)

We can compute SOSLL for any C by only computing all the pairwise probabilities,
p(ej, aj | (qi, ei, ai), qj; θ), for ∀ei ∈ Êi, ej ∈ Êj∀i = 1 : K, j = 1 : K ∧ i ̸= j, which is
computationally feasible. Note that this metric does not require a development set.

2While this involves NK evaluations on the silver set, note that these evaluations are one-shot and
significantly less computationally expensive than using higher numbers of shots.

86

GSM ECQA ESNLI STRATEGYQA
METRICS MAX@8 MAX@16 MAX@8 MAX@16 MAX@8 MAX@16 MAX@8 MAX@16

NAIVE 65.1 66.0 78.6 78.6 79.5 80.1 76.2 76.5

SOSAcc 66.4 67.0 79.7 80.5 80.4 81.2 74.3 74.9
SOSLL 65.7 65.9 80.2 80.6 75.8 76.5 77.1 77.4

Table 5.2: Oracle maximum accuracies achievable with 8 or 16 candidate combinations
using different selection strategies. Using log likelihood-based or silver accuracy-based
proxy metrics can find more promising candidate combinations than random candidates.

5.4.3 Ensemble

We have described the two proxy metrics using either the unlabeled set V or the
labeled few-show exemplars T . Our further analysis (which we will describe later in
Section 5.4) shows the choice of the most effective metric is task-specific. We additionally
propose a strategy, ENSEMBLE of the SOSLL and SOSAcc. Specifically, we first construct two
sets of combinations that are preferred by these two proxy metrics individually, and then
select the best one, from the union of these two sets, according to O.

5.5 Experimental Setup
5.5.1 Language Models

We primarily use code-davinci-002 (Chen et al., 2021b), a state-of-the-art LLM
API, throughout our experiments, given its strong performance on various reasoning tasks
(Li et al., 2022b). In addition, we use text-davinci-003 to verify the effectiveness of
the proxy metrics. code-davinci-002 is a base model, and text-davinci-003 is an
Instruct-series model fine-tuned to align with human preferences (Ouyang et al., 2022).

Inference We follow past work to employ greedy decoding (greedily selecting the most
probable token autoregressively) (Wei et al., 2022c) or self-consistency decoding (sampling
tens of outputs from LLMs via temperature scaling and using popularity voting to assign a
label) (Wang et al., 2022c).

Cost Querying LLMs is computationally intensive. We aim to search for better explana-
tions within a reasonable budget. Our evaluation of cost is based on the number of tokens
processed by LLMs, including both tokens in the prompts and the tokens generated by
LLMs. We further bucket the measurement of cost by the number of combinations C that
are scored by O, which involves processing M(K + 1) examples.

87

5.5.2 Datasets

We experiment with four datasets covering four distinct tasks, including:

• GSM (Cobbe et al., 2021) consists of grade school math questions. Each is paired
with a human-written explanation for the answer.

• ECQA (Aggarwal et al., 2021; Talmor et al., 2019) contains multiple-choice questions
which test models’ commonsense knowledge.

• E-SNLI (Camburu et al., 2018) studies the task of natural language inference which
is to classify the relation between a premise and a hypothesis.

• STRATEGYQA (Geva et al., 2021a) asks Yes-No questions requiring steps. The
dataset does not have explanation annotations, but it provides facts (Geva et al., 2021a)
which are supporting evidence (albeit noisy ones) for the answers, so we use them as
explanations.

For each of the datasets, we choose prompt formats commonly used in past work (Wei
et al., 2022c; Wang et al., 2022b). We use 8 exemplars in prompts for GSM, ECQA, and
STRATEGYQA, and 9 exemplars (3 for each class) for E-SNLI, as sing more exemplars
would not lead to further performance gains.

5.6 Effectiveness of Proxy Metrics
Before showing the results of the complete system, we first present experiments for

verifying the effectiveness of the two proxy metrics. We evaluate them on the basis of the
best oracle accuracy on a small (gold) labeled test set that we can reach using the top-X
candidates, referred to as MAX@X , ranked by SOSAcc or SOSLL. This gives an oracle upper
bound for the performance that silver reranking via O can yield.

Setup We compare our metrics against a baseline which randomly scores combinations
(NAIVE). We mainly use code-davinci-002 for this experiment. For SOSAcc, we silver-
labeled 256 randomly drawn development with 48 samples of combinations. For each
dataset, we experiment with four different exemplar sets T to control for randomness and
report the average number.

Results Table 5.2 shows the maximum reachable performance within 8 (Max@8) and
16 (Max@16) candidate combinations. For each dataset, using one of our metrics can find
more promising candidate combinations than randomly proposed candidates. Among the

88

(a) GSM: random exemplar set 1. (b) GSM: random exemplar set 2.

(c) ECQA: random exemplar set 1. (d) ECQA: random exemplar set 2.

(e) E-SNLI: random exemplar set 1. (f) E-SNLI: random exemplar set 2.

(g) STRATEGYQA: random exemplar set 1. (h) STRATEGYQA: random exemplar set 2.

Figure 5.3: Gold test set accuracy (y-axis) vs. various surrogate proxy scores for explanation
sets. Points of three different colors denote combinations selected using three metrics.
Generally, there is a positive correlation between SOSAcc (also SOSLL) and performance on
these datasets.

top 16 combinations, combinations preferred by SOSAcc can achieve better performance than
randomly selected combinations by 1.0%, 0.9%, and 1.4% on GSM, ECQA, and E-SNLI,
respectively. SOSLL is the most effective strategy on ECQA, and STRATEGYQA, surpassing
NAIVE by 2.0% and 0.9% on the basis of 16 candidate combinations. We do not find one
metric that consistently gives the best performance.

Proxy metrics vs downstream accuracy In Figure 5.3, we show a series of graphs
for intuitive understanding of how the proxy metrics relate to the downstream accuracy.

89

Each group of graphs shows the downstream accuracy vs. the surrogate proxy scores of
combinations preferred by different metrics. For each dataset, we show two groups of graphs
for two different exemplar sets out of four. Each group contains three graphs with different
values on the x-axis. The first graph of a triple shows SOSAcc on the x-axis and the second
one shows one-shot likelihood on the exemplar set (positively correlates with SOSLL). In
addition to the two proxy metrics, we show the completion likelihood on the third graph
(probability of the predictions on the development set).

We show that the two surrogate scores we define mostly positively correlate with the
downstream accuracy. SOSAcc (left) works uniformly well except on STRATEGYQA. SOSLL

works well except for Figure 5.3a from GSM and Figure 5.3f from E-SNLI. In particular,
on ECQA, both of them highly positively correlate with the downstream accuracy. Further-
more, we show the candidate combinations preferred by our proxy metrics lead to, in most
cases, better likelihood on the development set (third graph in each triple), which indicates
these combinations are more “optimized” for a specific task; past work suggests that better
likelihood generally correlates with better downstream performance (Gonen et al., 2022).

5.7 Effectiveness of Framework
5.7.1 Main Results

We now test the effectiveness of the full framework. We mainly compare the
performance of the explanations optimized via our approach against (1) the ZERO-COT
approach (Kojima et al., 2022) (not using any human provided explanations) and (2) using
seed explanations. In addition, we derive two baselines from past work on constructing effec-
tive explanations for ICL, which also select potentially better explanations from candidate
explanations. Recall that Êi = {ê(1)i . . . ê

(|Êi|)
i } is the candidate explanation set for qi, our

baselines include (1) BESTLEN that chooses the longest explanations (i.e., maxẽ∈Ẽ |ẽ|), as
Fu et al. (2022) suggest using more complex CoTs leads to better performance for arithmetic
reasoning, and (2) BESTPPL that chooses the explanation with the best perplexity (i.e.,
maxẽ∈Ẽ Perplexity(ai, ẽ, qi)), as Gonen et al. (2022) suggest lower perplexity of prompts
correlate with better performance. We note that these two baselines are not invented for
optimizing explanations of given exemplars and are adapted to fit our setting. We refer to
our optimization approach (based on the ENSEMBLE strategy) as OPTIMIZED.

Setup For all dataset sets, we experiment with 4 different exemplar sets as well as different
unlabeled sets V of 256 randomly selected examples. We sample 48 combinations to silver
label V . We constrain the computation budget B to be 50; this was the highest point feasible
given limitations and was also where we found the silver accuracy (O) to be nearly saturated.
We note this budget has included the overhead for computing the proxy metrics as well as

90

GSM ECQA E-SNLI STRQA

ZERO-COT 30.9 61.2 49.7 55.1

SEED 62.6 77.0 75.2 71.3

BESTLEN 61.8 74.6 74.9 68.3
BESTPPL 63.4 79.4 76.5 69.0

OPTIMIZED 66.0 83.0 82.8 71.6

Table 5.3: The performance of optimized explanations against seed explanations and base-
lines derived from past work. Optimized explanations substantially outperform other
approaches on GSM, ECQA, and E-SNLI.

the computation for scoring combinations using O.

Results We show the performance of different approaches in Table 5.3. Overall, using our
framework can find substantially better explanations measured by prompting performance
compared to seed explanations. Without using any manually annotated explanations, the
performance of ZERO-COT is far behind few-shot prompting using the seed explanations
(SEED). Meanwhile, the explanations optimized using our framework outperforms the
original seed explanations by 3.3%, 4.3%, and 7.1%, on GSM, ECQA, and E-SNLI,
respectively. Choosing explanations with the lowest perplexity (BESTPPL) is able to
marginally improve the performance on GSM, ECQA, and E-SNLI, compared to the seed
set, but is consistently worse than our approach, and even leads to performance degradation
on STRATEGYQA. As we are using 4 different random exemplar sets, we perform 4 groups
of significance tests for different random trials.

5.7.2 Analysis

Self-consistency performance In addition to greedy decoding used in Table 5.3, we
evaluate the performance of our optimized explanations under self-consistency decoding
and compare against seed explanations. We vary the number of samples from 5 to 40,
and show the results in Table 5.4. We note that the results are on a basis of one random
exemplar set for each of the datasets, owing to the high computational cost of drawing tens
of samples. As shown in Table 5.4, the optimized explanations consistently outperform the
seed explanations under different numbers of samples. The gap is especially significant with
smaller number of samples.

Results on other LLMs We mainly uses code-davinci-002 in our experiments given
its state-of-the-art ICL abilities. We also verify the effectiveness of our approach on

91

NUM EXPL GSM ECQA E-SNLI STQA

5 SEED 70.4 79.8 80.0 72.9
OPTIM 73.5 81.5 85.1 71.9

10 SEED 74.9 81.1 82.5 73.5
OPTIM 78.9 82.1 85.5 73.1

20 SEED 79.1 81.2 83.7 74.4
OPTIM 80.5 82.5 86.3 74.0

40 SEED 80.1 81.5 84.6 75.0
OPTIM 81.2 82.5 87.2 75.4

Table 5.4: Performance of seed explanations and optimized (Optim) explanations using
self-consistency decoding with varying number of samples.

GSM ECQA E-SNLI STRQA

SEED 58.2 74.3 81.0 67.6

OPTIMIZED 61.3⇑ 76.9⇑ 82.8↑ 69.4⇑

Table 5.5: The performance of optimized explanations against seed explanations on
text-davinci-003 (⇑ and ↑ denote significant improvements with p ¡ 0.05 and p ¡
0.1, respectively). Our optimization approach is effective across LLMs.

text-davinci-003, an LLM finetuned to align with human feedback (Ouyang et al.,
2022). We note that experiment with a smaller scale given the high cost and evaluate on one
random set of exemplars instead of four. As shown in Table 5.5, applying our approach can
also find better-performing explanations for all the datasets on text-003.

Generalizability of optimized explanations We investigate whether the performance
improvements of our optimized explanations in a particular domain can generalize to other
datasets with different distributions. Table 5.6 shows the performance of seed explana-
tions and the optimized explanations from the GSM dataset (OPTIM-GSM) on the other
arithmetic reasoning datasets, including SVAMP (Patel et al., 2021) and MAWPS (Koncel-
Kedziorski et al., 2016). As suggested by the results, the optimized explanations achieve
better performance compared to seed explanations on the out-of-domain datasets, which
indicates that the performance improvements can generalize.

Results with reduced computation budget We expect search with our proxy metrics can
still work well without high computation budget since they already extract potentially high-
scoring combinations. We test a setting that uses a reduced computation budget. We set the

92

SVAMP SINEQ SINOP ADDSUB MULARI

SEED 73.0 92.8 91.5 86.7 95.0

OPTIM-GSM 76.9 93.4 92.2 89.6 95.6

Table 5.6: Explanations optimized on the GSM dataset (OPTIM-GSM) achieve better per-
formance on SVAMP and different settings of MAWPS compared to the seed explanations.
The performance improvements of optimized explanations on one dataset can generalize to
other out-of-domain datasets.

GSM ECQA E-SNLI STRQA

SEED 62.6 77.0 75.2 71.3

OPTIMIZED 64.5 81.2 81.5 71.0

Table 5.7: Results of searching with a reduced budget. Optimized explanations can still
improve the performance upon the seed explanations.

budget to be 20. As seen in Table 5.7, with reduced budget, our framework can still improve
the downstream performance compared to seed explanations by around 2.0%, 4.0%, and
6.0%, on GSM, ECQA, and E-SNLI, while maintaining performance on STRATEGYQA.

Failure analysis of proxy metrics In Section 5.6, we see that the SOSLL and SOSAcc do
not always positively correlate with the performance on certain datasets. While we show
such uncertainty can be handled by using an ensemble and scoring based on O we briefly
analyze the failure of the two metrics for a better understanding of them.

In Table 5.2, SOSAcc performs poorly on STRATEGYQA, yielding lower performance
than the NAIVE strategy. The silver accuracy on this dataset is very poor: almost all one-shot
accuracy is below 50% (see Figure 5.3g), worse than random guessing. One reason is that the
binary nature of the task causes a single demonstration to be less suitable and representative
than a single demonstration on more complex tasks like GSM. Under such circumstances,
the averaged one-shot accuracy is no longer indicative of the full-prompt silver accuracy.
On the other datasets, one-shot accuracy is meaningful (better than random guess), and the
SOSAcc correlates well with the full-prompt accuracy.

Furthermore, combinations scored highly by SOSLL in Figure 5.3f are not better than
random combinations in terms of downstream accuracy. Such combinations also lead to
a mediocre completion likelihood, which is unusual as optimizing SOSLL typically leads
to the highest completion likelihood in other cases in Figure 5.3. We hypothesize this can
be attributed to the distribution gap between the exemplar set and the test set. Since SOSLL

optimizes the log likelihood only based on the exemplar set, it might not generalize well to

93

the test set under severe distribution shift, which is indicated by the suboptimal completion
likelihood.

5.8 Related Work
We study prompting LLMs with chain-of-thought (Nye et al., 2021; Wei et al., 2022c;

Shi et al., 2022) or textual explanations more generally (Marasović et al., 2022). Much of
the past work focuses on exemplar selection in the presence of explanations (Fu et al., 2022;
Ye et al., 2023b) or developing prompting methods for various reasoning tasks (Jung et al.,
2022; Gao et al., 2022), which typically require manually engineered explanations. We
focus instead on searching for better-performing explanations.

Our approach leverages data without explanation annotations. Similarly, prior work
also explores the means of using few-show explanations together with data points without
explanations annotations for improving downstream performance (Zelikman et al., 2022;
Li et al., 2022b; Ye et al., 2023b; Li et al., 2022a; Wang et al., 2022a; Huang et al., 2022).
Many of these techniques need a large amount of fully labeled data to train models used for
generating explanations (Zelikman et al., 2022) or smaller models used as verifiers (Li et al.,
2022b,a; Wang et al., 2022a), whereas our work only uses a small unlabeled set. There is
also work on automatically constructing CoTs (Zhang et al., 2023) starting ZoTs (Kojima
et al., 2022), which also requires a fully labeled dataset. In particular, Huang et al. (2022)
also use LLMs to silver labeled data points for finetuning the LLMs; our work instead treats
LLMs as black-boxes and searches for better explanations instead of tuning the parameters.

Our work also closely relates to prompt optimization. While experts can potentially
engineer better prompts (Reynolds and McDonell, 2021; Mishra et al., 2022), such a process
requires heavy manual effort. This has attracted growing interest on automated prompt
engineering. One line of work requires interacting with gradients (Shin et al., 2020; Hu
et al., 2021) or continuous embeddings (Sun et al., 2022a,b; Diao et al., 2022; Sun et al.,
2023). Another line uses LMs as black-boxes (Prasad et al., 2022; Deng et al., 2022; Zhang
et al., 2022b; Zhou et al., 2022c). However, this past work either optimizes over discrete
templates (not applicable for the explanation optimization setting) or optimizes over string
verbalizations (a search space too large for our setting).

5.9 Discussion & Conclusion
Limitations This chapter focuses on optimizing explanations solely for improving down-
stream prompting performance, without addressing other qualities of the explanations such
as simulatability (Doshi-Velez and Kim, 2017), faithfulness (Subramanian et al., 2020; Wu
and Mooney, 2019), and their utility in aiding human decision-making (Lipton, 2018). Our

94

qualitative assessment of the optimized explanations does not indicate a decline in their
quality, nor do they appear significantly better or more plausible as perceived by humans.
In most cases, the optimization merely involves “mildly paraphrasing” the original expla-
nations. The optimization objective here is designed to induce better test predictions in
the final model. Part of the effects of this optimization may also be in the combination
of the different explanations, so explanations may also be selected because they are more
“compatible” with others in the final O ranking function. Future research could explore
jointly optimizing the downstream prompting performance and the intrinsic quality of the
explanations.

Conclusion We have presented an approach that can search for better-performing ex-
planations for ICL starting from a set of seed explanations. Our approach first proposes
promising candidate combinations of alternative explanations generated using LLMs, then
finds explanation combinations using proxy metrics before using a silver-labeled validation
set to select the best candidate. Our results highlight the substantial variance in the perfor-
mance of different sets of explanations, paving the way for future work to further optimize
explanations in this paradigm.

95

Chapter 6: Satisfiability-Aided Language Models Using
Declarative Prompting1

6.1 Introduction

In Chapter 4 and Chapter 5, we focus on providing imperative style explanations such

as chain-of-thought (CoT) (Wei et al., 2022c) to aid LLMs in reasoning, which enable LLMs

to follow a sequence of reasoning steps before making a prediction. This is effective on

various multi-step reasoning tasks, especially those with fixed forward reasoning procedures,

e.g., concatenating the last letters of several words. However, imperative explanations can

fall short when scaling to problems that involve intensive computation (Gao et al., 2023) or

long sequences of reasoning steps (Creswell et al., 2023; Saparov and He, 2023; Ribeiro

et al., 2023), especially as LLMs exhibit limited planning capabilities (Valmeekam et al.,

2022; Liu et al., 2023a).

In this chapter, we show how we can use declarative formal specifications as explana-

tions and how we can combine LLMs with symbolic solvers, which scales LLMs to complex

problems requiring deep reasoning depth. Solving a complex reasoning problem involves

three conceptual components: parsing a natural language description into a representation

of the problem, deriving a plan to solve the problem, and executing that plan to obtain

an answer. Recent work on improving CoT prompting focuses on fixing execution errors

by augmenting LLMs with symbolic executors such as a Python interpreter, which leads

to improved performance on arithmetic and symbolic reasoning tasks (Gao et al., 2023;

Chen et al., 2022b; Lyu et al., 2023). However, CoT prompting (Wei et al., 2022c; Nye

et al., 2021) and its executor-augmented successors (Gao et al., 2023; Chen et al., 2022b;

Lyu et al., 2023) are oriented towards imperative solving procedures: a CoT or a program

specifies the reasoning procedure as chained steps (Wei et al., 2022c; Gao et al., 2023)

1An early version of this Chapter has been published in Ye et al. (2023a). Xi Ye is the first author of Ye et al.
(2023a), where he developed the research idea with other author(s), implemented the framework, designed and
performed the experiments and analysis, and wrote the paper.

96

..
.

..
.

We know each student visits one of the cities with at
least one of the other four students. We know there are
five students and three cities. So there must be three
students visiting the one city and two other students
visiting another city.

Let's consider option (A).
Assume someone visits Montreal, but Lori does not visit
Montreal.
We know Lori visits Montreal or else Toronto. So Lori
visits Toronto.
Assume Sharon visits Toronto with Lori.
We know Sharon visits a different city than Paul. So
Paul has to visit Montreal.
Hubert and Regina can visit Montreal with Paul with no
conflicts. So Lori does not necessarily visit Montreal.
This statement is False.

Each of five students—Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the
following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits
Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.
Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal. (B) […]

Input

Specification

Chain-of-Thought Prompting (imperative specification) Satisfiability-Aided LM (ours; declarative specification)

students = [Hubert, Lori, Paul, Regina, Sharon]
cities = [Montreal, Toronto, Vancouver]
visits = Function(students, cities)
Sharon visits a different city than Paul
visits(Sharon) != visits(Paul)
Lori visits Montreal or else Toronto
Or(visits(Lori) == Montreal, visits(Lori) == Toronto)
Each student visits one of the cities with at least one other student
ForAll([s1], Exists([s2], And(s2 != s1, visits(s1) == visits(s2))))
......
(A)
solve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal))

Specification

The LLM parses the question, plans the reasoning, and
executes it all in the CoT (shown by dashed arrows) A SAT solver generates and executes a proof plan using automated theorem proving

1

3

2

SAT Solver
False2

1

3

Q

Q

The LLM only parses
the question to a
problem specification
in this step

Figure 6.1: Illustration of our Satisfiability-aided Language Modeling approach (right). We
first parse an NL input into a declarative task specification (a set of logical constraints) using
prompting (Section 6.3.1), then use a SAT solver to solve the problem (Section 6.3.2). The
chain-of-thought strategy in prior work (left) yields imperative reasoning processes.

in the order of execution. While this is effective for problems whose natural language

already provides a suitably clear “plan” for the reasoning, it only leads to limited success for

reasoning problems like in Figure 6.1 that do not outline such a plan (Ribeiro et al., 2023).

These problems often state a set of premises and constraints and ask questions that require

sophisticated planning to deductively reason over the inputs, which is still challenging even

for modern LLMs (Valmeekam et al., 2022).

Our work tackles both execution errors and, more importantly, planning errors. We

propose SATisfiablity-aided Language Modeling (SATLM) using declarative prompting.

The core idea is to cast a natural language (NL) reasoning problem as a satisfiability (SAT

for short) problem. As shown in Figure 6.1 (right), given a problem in NL, we prompt

an LLM to parse it into a SAT problem specification which consists of a set of logical

97

formulas, then obtain the solution by invoking a SAT solver.2 The LLM is specialized

towards understanding the preconditions stated in the problem, while the solver is leveraged

to plan out the reasoning procedure. In addition, the solver guarantees the correctness of

execution, similar to the interpreter used in program-aided LMs (PROGLM).

We evaluate our approach on 8 datasets spanning 4 tasks, including arithmetic

reasoning, logical reasoning, symbolic reasoning, and a regex synthesis task. Our SATLM

consistently outperforms COT and PROGLM across all datasets, usually by a large margin.

On GSM-SYS, SATLM outperforms PROGLM by a 23%; on GSM, SATLM achieves

84.8% with self-consistency decoding using few-shot prompting, equaling past work that

uses the full training set and the same LLM (Li et al., 2022b; Ni et al., 2023). SATLM also

sets a new SoTA on LSAT (Zhong et al., 2022), BOARDGAMEQA (Kazemi et al., 2023),

and STRUCTUREDREGEX (Ye et al., 2020b).

Our analysis illustrates why the combination of SAT solver and declarative prompt-

ing is so effective. We find (1) program-aided LMs often make planning errors (e.g.,

manipulating equations incorrectly), which can be remedied by the SAT solver. (2) Forcing

LLMs to explicitly state a declarative specification can even improve vanilla CoT prompting.

(3) Our SATLM approach can abstain from making uncertain predictions if it parses a

problem into an unsatisfiable or ambiguous specification, giving it even higher accuracy in

the selective prediction setting (El-Yaniv and Wiener, 2010).

6.2 Overview

This work addresses the challenge of using LLMs to solve NL reasoning tasks. At a

high level, an NL reasoning task is a natural language description of a collection of facts Φ

(such as propositions or constraints) about some objects and a question Q related to these

objects. The goal of the reasoning task is to find an answer to Q that can be deduced from

2Here, we use SAT solver to refer to any automated reasoning tool for checking the satisfiability of formulas
in formal logic. Hence, “SAT solver” in this Chapter also includes first-order theorem provers and SMT
solvers.

98

the information provided in Φ.

We conceptualize the general procedure for solving NL reasoning tasks in three

steps: parsing, planning, and execution. We are given natural language input xtest =

(NL(Φ), NL(Q)) which describes both Φ and Q. Our first step is to parse this natural

language into a predicted task specification (Φ̂, Q̂), which is a formal description of the

facts and the query.

Given (Φ̂, Q̂), the planning step then involves determining a sequence of reasoning

steps [r1, . . . , rn] beginning with the task specification and ending with the answer to

the question. Each step involves invoking a function (e.g., arithmetic operator or logical

operator) that produces intermediate results which can be utilized in subsequent steps. A

plan can be formulated by an LLM with COT prompting or by a symbolic solver as in our

work here. Finally, we execute the plan systematically with either a symbolic executor (our

method) or an LLM, returning the output of the last step, rn, as the answer.

Our solution approaches the problem using exactly these three steps.

Parsing into declarative specification We prompt an LLM to generate a specification

stest for xtest. Note that the translation from this description into the specification is

not straightforward and cannot be done in a rule-based way for most tasks; Figure 6.4

shows some particularly complex examples involving commonsense reasoning. The spec-

ification stest is a sequence of interleaved NL statements and logical formulas (LF):

stest = [z1, . . . , zn] and zi ∈ ΣNL ∪ ΣLF , where ΣNL and ΣLF denote the space of natural

language and logical formulas, respectively. We derive the formal specification (Φ̂, Q̂) by

taking all the zi in ΣLF from stest. An example of the specification is presented on the right

of Figure 6.1. Our specification is declarative since we do not explicitly generate the ri from

the LLM at this stage.

Planning and execution with a SAT solver Given the predicted formal specification

(Φ̂, Q̂), we wish to derive the final answer of the query Q̂ from it. We say that a solution a is

99

correct if Φ̂ logically entails Q̂ = a, denoted as Φ̂ |= Q̂ = a. The key insight behind our

work is to offload both the planning and execution steps to a SAT solver. Specifically, we

use a SAT solver to find a satisfying assignment for a in the formula:

∀V. (Φ̂ ⇒ Q̂ = a)

where V denotes the set of all variables used in Φ̂ and Q̂ ∈ V is a variable that

corresponds to the solution. Note that the only free variable in this formula is a; hence, the

assignment to a returned by the solver is the final answer to the reasoning problem.

The approach outlined above has two important strengths. First, because the SAT

solver is sound (i.e., any assignment it produces satisfies the formula), the solution is correct

by construction. Thus, assuming that the parsing is correct and Φ̂ and Q̂ match Φ and

Q, we have a proof that the solution is indeed correct. Second, the planning step is done

internally to the solver, and the chain of reasoning steps [r1, . . . , rn] can be obtained by

asking the solver to produce a proof of the validity of the formula Φ̂ ⇒ Q̂ = a∗ where a∗ is

the assignment produced by the SAT solver. All solvers we consider can produce such a

proof of validity (e.g., in the form of a resolution refutation (Davis and Putnam, 1960)).

Comparison with prior LLM reasoning approaches Prior approaches to NL-based

reasoning with LLMs can also be framed in the parse-plan-execute framework proposed

above. In particular, the chain-of-thought paradigm (Nye et al., 2021; Wei et al., 2022c)

uses LLMs to perform each of the three steps. Program-aided language models (Gao et al.,

2023; Chen et al., 2022b; Lyu et al., 2023) combine the parsing and planning steps to use

an LLM to derive a program that corresponds to the plan.3 The final execution step is then

performed by using the interpreter of the underlying programming language to derive the

3This is true for “faithful chain-of-thought” as well (Lyu et al., 2023). This Chapter describes a breakdown
of the process into “translation” and “solving” stages, where the translation step corresponds to both our
parsing and planning stages. The solver used in that approach for tasks like CLUTRR does not do additional
planning, but merely executes the steps outlined in CoT. In addition, their approach uses Python for execution,
whereas ours uses SAT and Z3 as the unifying solving framework.

100

Let X be the number of Pokemon Stan has
caught. Alex has caught 5 more than Stan, so
Alex has caught X + 5.

Stan has caught 13 less than 4 times as many
as Adelwolfe has caught, so Stan has caught
4X - 13. Together they have caught 339
Pokemon, so X + 5 + 4X - 13 = 339.

Combining like terms produces 5X + 5 = 339.
Subtracting 5 from both sides produces 5X =
334. Dividing both sides by 5 produces X =
$66.80, so Stan has caught 66 Pokemon.

The answer is 66.

Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is. Together they have caught 339 Pokemon. Alex has caught 5 more than Stan, and Stan
has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon has Stan caught?

Input

LLM (Parse + Plan + Execute)
total_pokemon = 339
stan_pokemon = Variable()
alex_pokemon = stan_pokemon + 5
stan_pokemon = adelwolfe_pokemon * 4 - 13
total_pokemon = alex_pokemon + stan_pokemon +
adelwolfe_pokemon
result = stan_pokemon
solve(result)

result = 147result = -94

Program FOL Formulas

CoT ProgramLM SatLM
LLM (Parse + Plan)

Interpreter (Execute)

LLM (Parse)

Solver (Plan + Execute)

total_pokemon = 339
alex_pokemon = 5
stan_pokemon = 4
adelwolfe_pokemon = 13
stan_pokemon = (total_pokemon -
alex_pokemon - adelwolfe_pokemon *
stan_pokemon) / (1 - stan_pokemon)
result = stan_pokemon

Figure 6.2: Exemplar specifications for arithmetic reasoning problems generated by different
approaches. COT makes errors when parsing an equation; PROGLM produces an incorrect
reasoning chain (both errors are highlighted in red). By only using the LLMs to generate
declarative specifications and relying on a solver to handle the reasoning, SATLM generates
the correct answer.

final answer. In contrast to these approaches, our work uses an LLM only to perform the

parsing step, which is an easier problem for LLMs than planning.

We show a concrete example comparing COT and PROGLM with our approach in

Figure 6.2. COT performs all three steps with the LLM. For instance, “Alex has caught

X + 5” in the output corresponds to “Alex has caught 5 more than Stan” in the NL input

(parsing). Later, COT decides how to solve for the variable X with “Combining like terms

...” (planning). At the same time, it also derives the equation “5X = 334” directly in

its generation (execution). However, COT incorrectly uses the same X in the equation

“X + 5” and “4X − 13”, when it is supposed to be different. (Note that 4X − 13 would be

correct if Stan and Adelwolfe’s roles in the corresponding NL clause were reversed.) By

allowing the LLM to focus only on translation, we find a lower incidence of this kind of

error, in addition to eliminating planning errors. Notably, planning errors are not addressed

by PROGLM, which does not use programmatic manipulation at this stage. Different from

PROGLM, SATLM only parses the information provided in the input question, passes the

parsed formulas to a solver for both planning and execution, and obtains the correct result.

101

6.3 SAT-Aided Language Models using Declarative Prompting
6.3.1 Declarative Prompting

We use few-shot prompting to generate the specification stest for the test input

xtest. Specifically, we include few-shot demonstrations (xi, si)
k
i=1 in the prompt, append

test input xtest after the prompt, and let the LLM complete the specification for xtest, i.e.,

stest ∼ p(xtest | x1, s1, . . . , xk, sk).

We show an example specification for a logical reasoning task in Figure 6.1, and an

example specification for an arithmetic reasoning task in Figure 6.2. Observe that in both

examples, our SAT formulas (i.e., the logical formulas of [z1, . . . , zn] in ΣLF) are written as

code following Python syntax, while the natural language in ΣNL is written using comment

syntax. We found that including the language here as comments was useful to improve the

fidelity of the translation. Our declarative prompts also use meaningful variable names and

descriptive comments following the style of prompts in prior work (Gao et al., 2023; Lyu

et al., 2023). Finally, we use Python rather than a specialized DSL to be more congruent

with our models’ pretraining data (Ouyang et al., 2022; Chen et al., 2021b).

6.3.2 Solving with a SAT Solver

SAT problem A SAT problem is a triple P = (Φ,T, Q) where Φ is a set of first-order

logic formulas in some theory T4 and Q is the query of interest. We use Variable(P) to

denote the free variables in Φ. Q contains only variables in Variable(P). An example SAT

problem is P = ({x + y = 3, x − y = 1},TE ∪ TZ, x − 2), where TE ∪ TZ indicates that

only equality and linear arithmetic operations on integers are allowed in the formulas.

Many NL reasoning tasks in the literature can be formulated as SAT problems and

solved using an off-the-shelf solver. For arithmetic reasoning, the SAT formulas Φ are

equations encoding the relationships between variables, and t specifies the target variable

asked in the question (see Figure 6.1). For logical reasoning, Φ encodes preconditions

4The theory defines the meaning of some of the symbols used in the formula. For example, in the theory of
linear arithmetic, axioms of the theory give meaning to operators like addition, less than, etc.

102

and t specifies the target statement posed by the question. We also show that symbolic

reasoning, regex synthesis, and other problems involving reasoning over arrays or strings

can be handled in this framework.

Unlike prior work such as Faithful CoT (Lyu et al., 2023) that uses task-specific

formulations and task-specific solvers for different problem types, all the tasks in this

Chapter are formulated as general SAT instances that can be solved by a single solver (as

described later in this section).

Parsing NL to a SAT problem Recall that we obtain a specification stest from a test NL

task xtest. To derive the SAT problem Ptest = (Φ̂test,Ttest, Q̂test) from stest, we extract

the constraints Φ̂test and the target expression Q̂test (marked by solve in our prompt) by

taking all the zi in ΣLF of stest. We identify the theory Ttest by analyzing the formulas in

Φ̂test.

Solving the SAT problem Given the SAT problem P, we invoke an automated theorem

prover (such as the Z3 SMT solver (De Moura and Bjørner, 2008) used in our implemen-

tation) to obtain a model M that maps each free variable v ∈ Variable(P) to a concrete

value under theory T. The final answer is obtained by substituting each free variable vi in

Q̂ with M [vi]. For example, given the problem ({x+ y = 3, x− y = 1},TE ∪ TZ, x− 2),

we ask the solver to find a solution to the constraint x + y = 3 ∧ x− y = 1 in the theory

TE ∪ TZ, which yields x = 2 and y = 1. Then, to obtain the final answer, we substitute x by

2 in the target expression x− 2 to obtain the result 2− 2 = 0.

Feedback signals from the solver Given a set of Φ̂ specified in P, the SAT solver will try

to search for a satisfying assignment M which satisfies all constraint formulas in Φ̂. If the

solver succeeds in finding such an assignment within a certain time limit, it will use M to

evaluate the query Q̂ and return the final result, otherwise it is a timeout. However, the solver

may fail to find a solution for problematic P and provide feedback in one of the following

103

types: (1) error in execution (ERROR) caused by invalid formulas (e.g., syntax errors) or

time-out; (2) unsatisfiable formulas (UNSAT), caused by conflicting formulas in the Φ̂ (e.g.

Φ̂ = {x = y + 1, y = x + 1}) (no feasible solution); (3) ambiguous formulas (AMBIG),

caused by the existence of multiple feasible solutions (e.g. Φ̂ = {x = y + 1, x > 0}).

Unlike the executor used in PROGLM that can only detect errors in code execution,

SAT solver can spot UNSAT and AMBIG in addition to ERROR. We show this unique

characteristic allows our SATLM to abstain from potentially incorrect predictions much

more effectively compared to PROGLM in the selective prediction setting (El-Yaniv and

Wiener, 2010) (Section 6.4.4).

6.4 Experiments
6.4.1 Setup

Tasks Our work investigates 8 datasets covering 4 tasks, with a focus on arithmetic

reasoning and logical reasoning tasks. For arithmetic reasoning, we use GSM (Cobbe

et al., 2021), GSM-SYS, and ALGEBRA (He-Yueya et al., 2023). GSM-SYS is a special

subset of GSM containing examples that are paired with human-annotated solutions in-

volving systems of equations. For logical reasoning, we use LSAT (Zhong et al., 2022),

BOARDGAMEQA (Kazemi et al., 2023), CLUTRR (Sinha et al., 2019), and PROOFWRITER (Tafjord

et al., 2021). For BOARDGAMEQA, we report the average performance on the three data

splits (depth 1 to depth 3).

For CLUTRR, we use exemplars requiring up to 3 intermediate steps but evaluate

on test examples requiring up to 10 intermediate steps (Sinha et al., 2019), following past

work (Lyu et al., 2023). For PROOFWRITER, we evaluate on the most challenging examples

requiring depth-5 proofs (Tafjord et al., 2021). For symbolic reasoning, we use Colored

Object (COLOR) from BIG-bench (et al., 2022) as an exemplar task. This task can be

abstracted as finding elements in a list under certain constraints. We also evaluate on a regex

synthesis dataset, STREGEX (Ye et al., 2020b), which requires synthesizing a regex give NL

description. We cast this task into synthesizing the surface form (i.e., a string) of the target

104

regex, and use SATLM to parse NL description into constraints over the string.

Baselines We compare SATLM against 3 baselines, including standard prompting (directly

giving the answer), chain-of-thought prompting (COT), and executor-augmented LLMs

(PROGLM). We do not compare to zero-shot baselines such as zero-shot CoT, which

generally underperform few-shot CoT by a large margin on the tasks we investigate (Kojima

et al., 2022).

For COT and PROGLM, we leverage prompts of existing work (Gao et al., 2023;

Lyu et al., 2023; Creswell et al., 2023) whenever possible. For SATLM, we manually write

prompts for the same exemplar sets used in COT and PROGLM to ensure a fair comparison.

We note that some settings, such as PROGLM for LSAT, are not applicable.

Language Models & Decoding We conduct our main experiments and analysis on

code-davinci-002 (Chen et al., 2021b), a state-of-art LLM for code and code-adjacent

tasks. We evaluate the performance with both greedy decoding and self-consistency decod-

ing (Wang et al., 2022c). Following past work (Gao et al., 2023), we use 40 samples on all

datasets except for LSAT, BOARDGAMEQA, and PROOFWRITER; we use 5 samples on

these datasets involving long prompts and high computation cost. For COT and PROGLM,

we use a temperature of 0.7; for SATLM, we use a higher temperature of 0.9, which we find

to work better.

6.4.2 Main Results

Table 6.1 shows the performance of our approach compared to the baselines. In

general, our SAT-aided approach outperforms both COT and PROGLM by a substantial

margin except on GSM with greedy decoding. We perform significance tests via bootstrap

resampling, and all improvements of SATLM over PROGLM are statistically significant

(p < 0.05).

The first two columns show the performance on the GSM dataset. COT and

105

Table 6.1: Comparison of our approach (SATLM) against standard prompting (directly
predicting the answer), COT and PROGLM. Certain settings are not applicable (marked as
−). With greedy decoding, SATLM outperforms COT and PROGLM on all datasets by a
substantial margin except for GSM, where it is on par with PROGLM. With self-consistency
decoding, SATLM is consistently better than PROGLM, giving SoTA accuracy on LSAT
and BOARDGAMEQA.

GSM-SYS GSM ALGE LSAT BOARD CLUTRR PROOF COLOR REGEX

code-davinci-002 (greedy decoding)

STANDARD 21.0 22.2 45.9 22.0 44.6 41.2 76.6 75.7 −
COT 46.5 62.7 53.6 23.5 60.7 40.8 80.1 86.3 −
PROGLM 43.4 72.7 52.3 − − 58.9 83.7 95.1 39.1
SATLM 69.4 71.8 77.5 35.0 79.4 68.3 99.7 97.7 41.0

code-davinci-002 (self-consistency decoding)

COT 56.1 77.3 64.9 23.1 62.8 45.7 88.7 90.6 −
PROGLM 53.4 82.4 57.7 − − 71.9 91.2 98.0 56.5
SATLM 80.9 84.8 90.9 37.4 80.7 80.1 99.7 99.4 59.7

PROGLM achieve much worse performance on GSM-SYS than on GSM, indicating that

GSM-SYS is a challenging subset. On this subset, SATLM achieves 69.4% and 80.9% with

greedy decoding and self-consistency decoding, surpassing both PROGLM and COT more

than by 20%. On the original GSM dataset, the SATLM model has a slightly lower accuracy

than PROGLM with greedy decoding, but outperforms it with self-consistency decoding by

2.4%; we provide detailed analysis accounting for the differences later in this section. This

self-consistency accuracy of 84.8% even exceeds recent work that uses the full training set

with code-davinci-002 (82.3% in DIVERSE (Li et al., 2022b); 84.5% in LEVER (Ni

et al., 2023)). On ALGEBRA, a challenging dataset of math problems extracted from algebra

textbooks, SATLM also outperforms COT and PROGLM by more than 20%.

On LSAT, CLUTRR, PROOFWRITER, and COLOR, SATLM consistently achieves

the best performance with either greedy decoding or self-consistency decoding. SATLM

also sets the new SoTA on both LSAT and BOARDGAMEQA, surpassing previous models

that are trained on the full training set. Specifically, SATLM elevates the SoTA from

30.9% (Zhong et al., 2022) to 37.4% on LSAT and from 73.9% (Kazemi et al., 2023)) to

80.7% on BOARDGAMEQA.

106

sara_height = Variable()
joe_height = Variable()
total_height = 120
joe_height = 2 * sara_height + 6
total_height = sara_height + joe_height
solve(joe_height)

Q: Sara and Joe have a combined
height of 120 inches. Joe is 6
inches more than double Sara's
height. How tall is Joe?

We know total_height = sara_height + joe_height, and joe_height = 2 *
sara_height + 6.
So total_height = sara_height + 2 * sara_height + 6 = 3 * sara_height + 6
Therefore, sara_height = (total_height - 6) / 3 = (120 - 6) / 3 = 114 / 3 = 38
joe_height = 2 * sara_height + 6 = 2 * 38 + 6 = 76 + 6 = 82
The answer is 82

The answer is 82

Input SAT Solution

CoT Solver

No Solver

Figure 6.3: A variant of our approach which replaces the SAT solver with a “CoT solver”
that takes the SAT problem as input and solves it in natural language.

In the regex synthesis domain, with greedy decoding, directly translating natural

language descriptions to regexes (PROGLM) achieves 37.1%, whereas using declarative

prompting achieves 44.0%. With self-consistency, we surpass the previous SoTA perfor-

mance of 55.6% (Ye et al., 2021a).

6.4.3 Impact of SAT Solver & Declarative Prompting

Table 6.2: The performance of variants of our approach that use CoT Solver or No Solver.
Using declarative prompting with CoT solver is more effective than imperative CoT prompt-
ing.

GSM-SYS GSM CLUTRR

STANDARD 21.0 22.2 41.2
COT 46.5 62.7 40.8
PAL 43.4 72.8 58.9

SATSYMSOLVER 69.4 71.7 68.3
SATCOTSOLVER 54.5 63.2 48.9
SATNOSOLVER 26.6 23.7 40.7

We conduct analysis to isolate the effectiveness of the two key components, the

SAT solver and declarative prompting. Specifically, we test a variant of our approach that

still uses declarative prompting but then solves the equations in natural language with CoT

rather than using the symbolic solver (see Figure 6.3). Essentially, the LLM itself carries

107

Table 6.3: Fraction of planning errors (incorrect reasoning chains) and execution errors
(numeric errors) made by COTSOLVER.

GSM-SYS GSM CLUTRR

PLAN ERR 72.5 42.5 47.5
EXEC ERR 27.5 57.5 52.5

Table 6.4: Log likelihood (unnormalized / normalized) of the generated sequences (with
greedy decoding) of PROGLM and SATLM on three datasets. Better log likelihood indicates
higher LLM confidence in the parsing stage.

GSM-SYS GSM CLUTRR

PAL -9.5/-6.910-2 -9.2/-6.010-2 -3.1/-8.510-3

SAT -8.5/-5.910-2 -9.7/-6.210-2 -2.0/-7.910-3

out planning and execution. This experiment helps isolate the benefits of the solver, which

will compute an answer without making any mistakes, from the benefits of the declarative

formulation. We also compare to prompting LLMs to directly give the answer (NOSOLVER).

Impact of Symbolic Solver As shown in Table 6.2, completely ablating the solver and

directly predicting the answer (SATNOSOLVER) only yields performance that is on par with

STANDARD. Interestingly, SATCOTSOLVER can solve more SAT problems than NOSOLVER.

This partially reflects the effectiveness of CoT and partially reflects the fact that many dataset

instances require relatively simple planning and execution, allowing pure forward reasoning

to solve them. However, using a symbolic solver (SATSYMSOLVER), which guarantees correct

planning and execution, leads to further improvements.

We manually analyzed 40 cases where the symbolic solver yields the correct answer

but SATCOTSOLVER fails to solve them. We categorized the errors as planning errors, where

the reasoning chains are incorrect, and execution errors, where the reasoning chains are

correct but computations are incorrect. Table 6.3 shows that most errors by SATCOTSOLVER

are planning errors, especially on GSM-SYS which requires solving complex system of

equations.

108

Impact of Declarative Prompting Table 6.2 also shows that decoupling parsing and

planning/solving is still useful, even when not using a symbolic solver: SATCOTSOLVER

outperforms COT by 7.9%, and 8.1% on GSM-SYS and CLUTRR, respectively. We note

that SATCOTSOLVER can be viewed as a two-stage CoT prompting strategy, with a prompt

showing that the first step is to formulate declaratively, then the next step is to solve.

We hypothesize that parsing a question into declarative formulas is more straightfor-

ward than parsing it into an imperative solving procedure. To evaluate this hypothesis, we

use log likelihood of the generated tokens to assess how straightforward the translation is, as

higher log-likelihood typically indicates the outputs are more fluent to LLMs, a connection

demonstrated in Chapter 5 (as well as in recent literature (Gonen et al., 2022)). We show

both unnormalized (total) and normalized log likelihood in Table 6.4. On GSM-SYS and

CLUTRR where SATLM outperforms PROGLM, its generated outputs are also associated

with higher likelihood.

6.4.4 Advantages of SAT in Selective Prediction

A SAT solver may not always return an answer, particularly if there are parsing

errors from the question. We show that this is an advantage of SATLM: these errors allow

us to abstain from making likely incorrect predictions.

Table 6.5 shows the fraction of correct predictions and incorrect predictions when

the program or SAT solver successfully returns an answer as well as the fraction of different

types of feedback signals. We report the fraction of questions answered as well as selective

accuracy, defined by the fraction of overall accuracy (% of correct answers) normalized by

coverage (% of answered problems). SATLM makes fewer predictions on all three datasets

compared to PROGLM, as it can trigger both UNSAT and AMBIG errors. However, SATLM’s

selective accuracy is consistently better than PROGLM’s, especially on GSM-SYS (77% vs

45%). As a result, SATLM’s overall performance is significantly better than PROGLM on

GSM-SYS and CLUTRR, even when making fewer predictions.

We note that on GSM, SATLM has slightly lower coverage but higher selective

109

Table 6.5: Analysis of accuracy and execution status of SATLM and PROGLM. We present
the fraction of tasks solved correctly or incorrectly in GSM-SYS, GSM, and CLUTRR,
along with the breakdown of feedback from the solver. SATLM generally makes fewer
predictions than PROGLM (ANSWERED), but more frequently makes correct predictions
when it returns an answer (SELECTIVE ACC) and gives a higher absolute number of correct
predictions on GSM-SYS and CLUTRR.

GSM-SYS GSM CLUTRR
PROGLM SATLM PROGLM SATLM PROGLM SATLM

CORRECT 43.3 69.4 72.7 71.8 58.9 68.3
INCORRECT 52.5 20.6 25.7 21.2 21.0 7.7

ERROR 4.2 2.6 1.6 2.1 20.1 3.5
UNSAT − 2.4 − 1.5 − 15.5
AMBIG − 5.0 − 3.4 − 5.0

ANSWERED 95.8 90.0 98.4 93.0 79.9 76.0
SELECTIVE ACC 45.2 77.1 73.8 77.2 73.7 89.9

accuracy compared to PROGLM. This explains why SATLM lags behind PROGLM with

greedy decoding but outperforms PROGLM with self-consistency decoding (Table 6.1). By

drawing multiple samples, SATLM can increase its coverage and achieve higher accuracy

than PROGLM since its predictions are more accurate.

6.4.5 Analysis

LLMs Can Perform Commonsense Reasoning While Parsing There are many problems

that do not state premises or constraints in a completely explicit way. Figure 6.4) shows

two examples where commonsense inferences are required during parsing. For example, on

the left, the model must recognize that animals refers to the chickens and cows collectively.

Similarly, knowing that red is a primary color is needed to successfully apply rules on

BOARDGAMEQA (right). We observe from the outputs in both cases that LLMs are capable

of implicitly performing commonsense reasoning and produce correct logical formulas

in the parsing step. As shown in Table 6.1, SATLM exhibits strong performance on

BOARDGAMEQA, a dataset which requires this implicit background knowledge.

110

animals_total = 60
animals_chickens = Variable()
animals_cows = Variable()
animals_chickens = animals_cows * 2
animals_total = animals_chickens + animals_cows
legs_chickens = animals_chickens * 2
legs_cows = animals_cows * 4
legs_total = legs_chickens + legs_cows

Q: Farmer Brown has 60 animals on his farm, all
either chickens or cows. He has twice as many
chickens as cows. How many legs do the animals
have, all together?

Input

SAT Solution
Implies(has_same_first_letter_name(pelikan, llama), create_castle(pelikan, gadwall)) # Rule2
Implies(has_card_with_primary_color(pelikan), create_castle(pelikan, gadwall)) # Rule3
The first letter of Peddi is P. The first letter of Beauty is B. So the pelikan does not
have the same first letter name as the llama.
has_same_first_letter_name(pelikan, llama) == False
The pelikan has a card that is red in color. red is a primary color.
has_card_with_primary_color(pelikan) == True
...

The llama is named Peddi. The pelikan has a card that is red in color, and is named Beauty.
Rule2: If the pelikan has a name whose first letter is the same as the first letter of the llama's name, then the
 pelikan creates a castle for the gadwall.
Rule3: The pelikan will create a castle for the gadwall if it (the pelikan) has a card with a primary color.
. . .

Input

SAT Solution

Figure 6.4: Examples outputs from GSM (left) and BOARDGAMEQA (right) show that
LLMs can perform commonsense reasoning while parsing.

Table 6.6: Results on gpt-3.5-turbo, text- davinci-003, and code-davinci-001.
The effectiveness of SATLM can generalize across LLMs.

GSM-SYS GSM LSAT CLUTRR PROOF

gpt-3.5-turbo (greedy decoding)
COT 44.8 74.4 23.9 41.2 82.3
PROGLM 51.2 77.9 − 45.9 76.4
SATLM 63.4 76.4 30.0 50.6 96.4

text-davinci-003 (greedy decoding)
COT 42.8 62.5 21.7 34.5 83.5
PROGLM 40.4 71.7 − 41.2 83.7
SATLM 63.6 70.3 30.4 58.2 99.7

code-davinci-001 (greedy decoding)
PROGLM 15.5 35.6 − 22.2 63.8
SATLM 16.5 34.2 19.6 30.2 86.6

Results Across Different Language Models In addition to the main LLM used in our

work, code-davinci-002, we further test whether SATLM can generalize to other LLMs.

We choose gpt-3.5-turbo (0613 version), text-davinci-003, and code-davinci-001.

gpt-3.5-turbo is optimized for chat. text-davinci-003 is an LLM pretrained on

NL, and tuned to align with human feedback (Ouyang et al., 2022). code-davinci-001

is also an LLM pretrained on code, but less capable compared to 002. As shown in Ta-

ble 6.6, SATLM is better than PROGLM on the arithmetic reasoning and logical reasoning

datasets except for GSM across these three LLMs. The trend is congruent with the results

on code-davinci-002 (Table 6.1), which suggests the approach’s general applicability

across different LLMs, regardless of their varying capabilities.

111

Table 6.7: The performance of PROGLM and SATLM with varying exemplar sets. SATLM
consistently outperforms PROGLM on GSM-SYS and CLUTRR.

GSM-SYS GSM CLUTRR

Se
t1 PROG 43.4 72.7 58.9

SAT 69.4 71.8 68.3

Se
t2 PROG 41.4 72.5 59.0

SAT 71.8 71.3 67.9

Se
t3 PROG 37.1 70.3 57.2

SAT 66.7 70.0 68.0

Sensitivity to Different Exemplar Sets We test whether the advantages of SATLM

is sensitive to different sets of exemplars. We experiment with 3 sets of exemplars on

code-davinci-002. As shown in Table 6.7, SATLM consistently outperforms PROGLM

by a large margin on GSM-SYS and CLUTRR, and achieves comparable performance on

GSM. The results suggest the effectiveness of our approach is insensitive to varying the

choice of exemplars.

6.5 Related Work

Reasoning with LLMs Our work is built on top of few-shot prompting (Brown et al.,

2020), which has proven effective on a wide range of tasks (Wei et al., 2022b; Liu et al.,

2023b; Gehrmann et al., 2021; Reif et al., 2022; Wei et al., 2022a; Sanh et al., 2022). In

particular, we focus on improving LLMs on reasoning tasks, which are challenging for

language models even with recent developments (Marcus, 2020; Garcez and Lamb, 2023).

Various techniques have been proposed for improving reasoning abilities (Nye et al., 2021;

Zhou et al., 2022a; Kojima et al., 2022; Khot et al., 2022; Fu et al., 2022; Wang et al.,

2022a; Li et al., 2022a; Lyu et al., 2023). They largely follow a chain-of-thought (Wei

et al., 2022c) or scratchpad (Nye et al., 2021) paradigm. Among them, our work is the

most related to the line of work that generates imperative programs to be executed by a

symbolic executor, such as a Python interpreter (Gao et al., 2023; Chen et al., 2022b) or

domain-specific executors (Lyu et al., 2023). In this work, we propose a different paradigm

112

that parses NL problems into declarative SAT problems and offloads the solving procedure

to a SAT solver.

Tool-use Previous work has also explored equipping LLMs with other tools, including

search engines (Yu et al., 2023; Schick et al., 2023), calculators (Cobbe et al., 2021;

Chowdhery et al., 2022), or other domain-specific special modules (Schick et al., 2023;

Demeter and Downey, 2020). A line of work focuses on using program-related tools such

as program executors (Poesia et al., 2022), program analysis tools (Jain et al., 2022), and

synthesis tools (Rahmani et al., 2021) to enhance the quality of the generated code. Our

works further explores improving LLMs with SAT solvers.

Concurrent work explores the intersection of LLMs and planning, parsing planning

problems into PDDL descriptions and leveraging a classical planner to produce the plan (Liu

et al., 2023a). Our work differs in that we use the SAT formulation to solve general reasoning

tasks, including arithmetic reasoning and logical reasoning, which cannot be specified in

PDDL. Also concurrently, He-Yueya et al. (2023) combine LLMs and symbolic solvers

for solving math problems. However, this work only focus on arithmetic reasoning tasks

and employs a math-specific symbolic solver (PySym). Our work takes a more general

approach by formulating the problem within the scope of first-order logic and therefore is

domain-agnostic.

Semantic Parsing Our approach leverages LLMs to parse NL problems into SMT specifi-

cations, which is a form of semantic parsing (parsing NL descriptions into logical forms).

Semantic parsing is a long-standing problem (Woods, 1973; Zelle and Mooney, 1996;

Zettlemoyer and Collins, 2005; Berant et al., 2013; Dong and Lapata, 2016). There have

been various techniques proposed to translate natural language to “if-this-then-that” state-

ments (Quirk et al., 2015), SQL queries (Iyer et al., 2017), bash commands (Lin et al., 2018),

regular-expressions (Kushman and Barzilay, 2013; Ye et al., 2020c), and more. In particular,

our method is closely aligned with previous efforts to parse natural language descriptions

into Prolog (or Prolog-like) logical forms (Pereira and Warren, 1980; Dowding et al., 1993;

113

Tang and Mooney, 2001), which is also a type of declarative logical specification. These

systems primarily focus on using Prolog to handle NL queries for interacting with domain-

specific knowledge bases, whereas our approach aims to enhance the reasoning capabilities

of LLMs. We employ code-style SMT specifications and leverage general-purpose LLMs to

address a broad range of reasoning tasks. Additionally, while most prior work in semantic

parsing focuses on single-sentence queries, our method is capable of handling complex

problems that involve multiple constraints (e.g., each example for LSAT involves more than

8 constraints on average).

6.6 Conclusion & Limitations

We have presented a framework for satisfiability-aided language models, casting

a wide range of reasoning tasks into SAT problems under a unified formulation. We use

an LLM to parse an NL query into a declarative specification and leverages a SAT solver

to derive the final answer. Evaluation results on 8 datasets spanning 4 tasks across several

LLMs demonstrate the effectiveness of our approach over program-aided language models.

Limitations Our framework parses an NL problems into a set of declarative formulas.

The NL description of some problems may already be more compatible with an imperative

solving procedure, and our approach is likely to be less effective in these cases (e.g., SATLM

slightly lags PROGLM on GSM). Future research can explore an integration or ensemble of

these two prompting styles for more flexible reasoning.

SATLM heavily relies on the SAT solver and inherits some limitations of the SAT

solver itself, such as computational cost when dealing with complex formulas involving

quantifiers or nonlinear arithmetic. Moreover, SAT solvers can be limited by the expressive-

ness of the underlying theory, as not all theories can be easily encoded in first-order logic.

Nevertheless, the wide range of tasks that we can instantiate our SATLM framework on

shows its general applicability.

Our current approach parses a problem into a SAT specification, runs the solver, and

114

returns the answer in a one-round fashion. One can imagine that unsatisfiable formulas

or ambiguous formulas could be improved by re-prompting the model to improve the

specification based on the exception signals, as explored in concurrent work for other

problems (Paul et al., 2023; Madaan et al., 2023; Chen et al., 2023). We believe this is an

exciting direction for future work.

115

Chapter 7: Conclusion and Future Work

In this dissertation, our goal is to enable language models perform complex reasoning

reliably. We fullfill this goal by building frameworks for steering textual reasoning with

explanations.

Intervening on Predictions Post-Hoc In Chapters 2 - 4, we have established a framework

that leverages explanations for improving model predictions via post-hoc intervention. We

start from a case study that connects explanations and QA model behavior in Chapter 2. We

present a new methodology using explanations to understand model behavior on realistic

counterfactuals. We show explanations can indeed be connected to model behavior, and

therefore we can compare explanations to understand which ones truly give us actionable

insights about what our models are doing.

Our findings mentioned above motivate us to explore, in Chapter 3, whether model

attributions can be useful for calibrating black box models. The answer is yes. We build a

framework that trains a verifer to assessing model robustness based on features describing

the reasoning process. Using the features automatically extracted from attributions for BERT-

based models, we improve model generalization performance on new domains and tasks. In

addition, it exhibits promising generalization performance in cross-domain generalization

and Selective answering.

In Chapter 4, we shift our focus to studying the capabilities of LLMs in using

explanations in in-context learning for textual reasoning, given their success in various

reasoning tasks. Through our experiments with four LLMs and on two QA datasets and

an NLI dataset, we find that simply including explanations in the prompt does not always

improve the performance of in-context learning. Our manual analysis demonstrates that

LLMs tend to generate nonfactual explanations when making wrong predictions. Never-

theless, nonfactual explanations can be a useful leverage to assess the correctness of the

116

predictions. We use the general framework developed in Chapter 3, building lightweight

calibrators that uses features approximating the factuality of explanations from LLMs. Our

framework successfully improve LLMs’ in-context learning performance across all three

datasets.

Teaching LLMs to Reason with Explanations In addition post-hoc intervention, we

also explore how to use explanations as training supervision for teaching LMs to reason.

In Chapter 5 - 6, we particularly focus on the question of how to formalize more effective

explanations for LLMs, as using different explanations can lead to substantially varied

performance on downstream tasks.

In Chapter 5, we present an approach that can search for better-performing expla-

nations for in-context learning starting from a set of seed explanations. Our approach first

proposes promising candidate combinations of alternative explanations generated using

LLMs, then finds explanation combinations using proxy metrics before using a silver-labeled

validation set to select the best candidate. Through preliminary investigation, we highlight

the substantial variance in the performance of different sets of explanations. Further eval-

uation results suggest that using our framework can find substantially better explanations

measured by prompting performance compared to seed explanations.

Our optimization technique can substantially improve downstream performance by

finding the best “paraphrases” of the original explanations. In Chapter 6, we study how a

fundamental characteristic of the explanations, whether they are imperative or declarative,

impacts the effectiveness of explanations. We present a framework for satisfiability-aided

language models. Our framework uses declarative formal specifications as the explanations

and equips LLMs with SMT solvers, which amends the limited planning capabilities of

LLMs. We first cast a wide range of reasoning tasks into SAT problems under a unified

formulation. Next, we use an LLM to parse an NL query into a declarative specification and

leverages a SAT solver to derive the final answer. Evaluation results on multiple datasets

spanning arithmetic reasoning, logical reasoning, symbolic reasoning, and regex synthesis,

117

across several LLMs demonstrate the effectiveness of our approach over baselines that use

imperative explanations; our framework scales LLMs to much more complex reasoning

problems such as LSAT problems exhibiting extensively long reasoning steps.

7.1 Future Directions

Our ultimate goal is to augment human capabilities with LMs in various tasks

demanding deep reasoning (such as data analytics and programming), surpassing the efficacy

and efficiency achievable by humans alone. We believe that leveraging explanations is crucial

to enable robust reasoning skills and effective human-LM collaboration, which are essential

for realizing this goal. Finally, we outline future directions to further advance our research

agenda.

Effective human-LM collaboration with explanations as the vehicle Despite the variety

of explanation forms and generation techniques available, extensive research suggests that

explanations have only achieved limited success in aiding humans across many tasks (Hase

and Bansal, 2020; Wang and Yin, 2021; Joshi et al., 2023). To this end, we are interested

in developing a more effective protocol for human-LM collaboration, where LMs can take

initiative to seek explanations towards collaboratively solving a problem. Specifically,

LMs can actively express their uncertainties and request clarifications on sub-tasks or data

instances where their confidence is low. In turn, humans can inspect their explanations on

these instances as well and provide targeted feedback to guide LM behavior. This protocol

raises intriguing questions regarding the most effective forms of explanations for LMs (such

as case-based or contrastive explanations (Jacovi et al., 2021)) and feedback (like natural

language instructions or preferences regarding explanations). This protocol also raises

questions about how to enhance LMs to provide better explanations for humans. Future

research can potentially work on optimizing LM-generated explanations based on their

utility to human users.

118

Combining NL explanations and formal explanations for flexible and robust reasoning

While utilizing formal specifications to teach LMs guarantees soundness in reasoning, there

are many reasoning tasks that involve both “hard” constraints as well as rules that are tricky

to articulate solely through formal specifications. For instance, in legal reasoning, certain

prerequisites must be met for a verdict of guilt, yet whether a suspect in a case fulfills these

criteria can be debatable and difficult to verify with formal specifications alone. Furthermore,

some problems might require a blend of reasoning types, some that are suitable for solvers

like deductive reasoning, and others less so, such as defeasible reasoning and reasoning by

analogy. A system that can make use of both hard formal specifications (like SMT formulas)

as well NL statements (NL proposition based on commonsense) would take benefit of both

the reliability of symbolic systems as well as the flexibility of LM’s capabilities in NL

reasoning. Future research can work on designing neurosymbolic specifications and solvers

for complex reasoning tasks.

Building resources towards complex reasoning in real-world applications LMs have

significantly advanced in their reasoning capabilities, demonstrating great potential for a

wide range of applications. However, there is a notable gap in resources for benchmarking

and enhancing LMs’ reasoning abilities in a manner that aligns with actual user needs in

real-world scenarios. Many existing resources for language reasoning are synthetic in nature,

both in terms of language used and the goals of the tasks. Some of our previous work has

involved compiling datasets that test reasoning with natural narrative text (Sprague et al.,

2023) or real user queries (Ye et al., 2020a). Moving forward, our aim is to develop resources

that facilitate the application of LLMs in real-world settings where language-based reasoning

is crucial. One area of focus is data analysis tasks, which require in-depth examination of

data to extract meaningful insights. For instance, how can we enable LMs to analyze sales

data, pinpointing key factors and customer segments that could drive revenue growth? This

task demands both data-driven reasoning and commonsense reasoning. Potential future

work can be dedicated to establishing datasets and platforms that support research in this

direction.

119

Works Cited

Julius Adebayo, Michael Muelly, Harold Abelson, and Been Kim. Post hoc explana-

tions may be ineffective for detecting unknown spurious correlation. In International

Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=xNOVfCCvDpM.

Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet Agrawal, Dinesh Khandelwal,

Parag Singla, and Dinesh Garg. Explanations for CommonsenseQA: New Dataset and

Models. In Proceedings of the Annual Meeting of the Association for Computation

Linguistics (ACL), 2021.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: Circumventing defenses to adversarial examples. In

Proceedings of the 35th International Conference on Machine Learning, 2018.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement

learning via policy extraction. In Advances in Neural Information Processing Systems

(NeurIPS), 2018.

Jasmijn Bastings, Sebastian Ebert, Polina Zablotskaia, Anders Sandholm, and Katja

Filippova. ”Will You Find These Shortcuts?” A Protocol for Evaluating the Faith-

fulness of Input Salience Methods for Text Classification. In arXiv, 2021. doi: 10.

48550/ARXIV.2111.07367. URL https://arxiv.org/abs/2111.07367.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Net-

work dissection: Quantifying interpretability of deep visual representations. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 6541–6549, 2017.

120

https://openreview.net/forum?id=xNOVfCCvDpM
https://openreview.net/forum?id=xNOVfCCvDpM
https://arxiv.org/abs/2111.07367

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form,

and understanding in the age of data. In Proceedings of the Annual Meeting of the

Association for Computation Linguistics (ACL), 2020.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.

On the dangers of stochastic parrots: Can language models be too big? In Proceed-

ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency,

FAccT ’21, page 610–623, New York, NY, USA, 2021. Association for Comput-

ing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL

https://doi.org/10.1145/3442188.3445922.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing

on Freebase from question-answer pairs. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 1533–1544, Seattle,

Washington, USA, October 2013. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/D13-1160.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow,

Shujian Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof

Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia Specia, and Marco Turchi.

Findings of the 2017 conference on machine translation (WMT17). In Proceedings

of the Second Conference on Machine Translation, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners. In Advances in Neural Information

Processing Systems (NeurIPS), 2020.

121

https://doi.org/10.1145/3442188.3445922
https://www.aclweb.org/anthology/D13-1160

Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-

SNLI: Natural Language Inference with Natural Language Explanations. In Advances

in Neural Information Processing Systems (NeurIPS), 2018.

Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay, and

Devi Parikh. Do explanations make VQA models more predictable to a human? In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, 2018.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt dis-

criminative reranking. In Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics (ACL’05), 2005.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. Generating hierarchical explana-

tions on text classification via feature interaction detection. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 2020.

Howard Chen, Jacqueline He, Karthik Narasimhan, and Danqi Chen. Can rational-

ization improve robustness? In Proceedings of the Annual Meeting of the Association

for Computation Linguistics (ACL), 2022a.

Jifan Chen and Greg Durrett. Understanding dataset design choices for multi-hop

reasoning. In Proceedings of the Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-

HLT), 2019.

Jifan Chen, Eunsol Choi, and Greg Durrett. Can NLI models verify QA systems’

predictions? In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan,

Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,

122

Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz

Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,

David W. Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel

Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin, S. Arun Balaji, Shan-

tanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,

Alec Radford, Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer,

Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and

Wojciech Zaremba. Evaluating large language models trained on code. ArXiv,

abs/2107.03374, 2021b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of

thoughts prompting: Disentangling computation from reasoning for numerical rea-

soning tasks. arXiv preprint arXiv:2211.12588, 2022b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large

language models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-

tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,

Abhishek Baindoor Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar Prab-

hakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope, James Bradbury,

Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-

skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcı́a, Vedant

Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan,

Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan,

Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana

Pillai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira Moreira, Rewon Child, Olek-

sandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark

Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern, Douglas

123

Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling

with Pathways. ArXiv, abs/2204.02311, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael

Collins, and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of

natural yes/no questions. In Proceedings of the 2019 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz

Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher

Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv

preprint arXiv:2110.14168, 2021.

Alexis Conneau, German Kruszewski, Guillaume Lample, Loı̈c Barrault, and Marco

Baroni. What you can cram into a single $&!#* vector: Probing sentence embeddings

for linguistic properties. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), 2018.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference:

Exploiting large language models for interpretable logical reasoning. In The

Eleventh International Conference on Learning Representations, 2023. URL

https://openreview.net/forum?id=3Pf3Wg6o-A4.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

J. ACM, 7(3):201–215, jul 1960. ISSN 0004-5411. doi: 10.1145/321033.321034.

URL https://doi.org/10.1145/321033.321034.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz, and Ivan Titov. How do

decisions emerge across layers in neural models? interpretation with differentiable

masking. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2020.

124

https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.1145/321033.321034

Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Proceed-

ings of the Theory and Practice of Software, 14th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,

page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3540787992.

David Demeter and Doug Downey. Just add functions: A neural-symbolic language

model. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):7634–

7642, Apr. 2020. doi: 10.1609/aaai.v34i05.6264. URL https://ojs.aaai.

org/index.php/AAAI/article/view/6264.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin

Shu, Meng Song, Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text

prompts with reinforcement learning. arXiv preprint arXiv:2205.12548, 2022.

Shrey Desai and Greg Durrett. Calibration of pre-trained transformers. In Proceed-

ings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2020.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong,

Richard Socher, and Byron C. Wallace. ERASER: A benchmark to evaluate ratio-

nalized NLP models. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2020.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, Xiao Zhou, and Tong Zhang.

Black-box prompt learning for pre-trained language models. ArXiv, abs/2201.08531,

2022. URL https://api.semanticscholar.org/CorpusID:246210164.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of

sentential paraphrases. In Proceedings of the Third International Workshop on

Paraphrasing (IWP2005), 2005.

125

https://ojs.aaai.org/index.php/AAAI/article/view/6264
https://ojs.aaai.org/index.php/AAAI/article/view/6264
https://api.semanticscholar.org/CorpusID:246210164

Li Dong and Mirella Lapata. Language to logical form with neural attention. In

Proceedings of the 54th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 33–43, Berlin, Germany, August 2016.

Association for Computational Linguistics. doi: 10.18653/v1/P16-1004. URL

https://www.aclweb.org/anthology/P16-1004.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable

machine learning. arXiv preprint arXiv:1702.08608, 2017.

John Dowding, Jean Mark Gawron, Doug Appelt, John Bear, Lynn Cherny, Robert

Moore, and Douglas Moran. GEMINI: A natural language system for spoken-

language understanding. In 31st Annual Meeting of the Association for Computa-

tional Linguistics, Columbus, Ohio, USA, June 1993. Association for Computational

Linguistics.

Dheeru Dua, Sameer Singh, and Matt Gardner. Benefits of intermediate annotations

in reading comprehension. In Proceedings of the Annual Meeting of the Association

for Computation Linguistics (ACL), 2020.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen

Lin, Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang,

Soumya Sanyal, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith

and fate: Limits of transformers on compositionality. In Thirty-seventh Conference

on Neural Information Processing Systems, 2023. URL https://openreview.

net/forum?id=Fkckkr3ya8.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classi-

fication. Journal of Machine Learning Research, 11(53):1605–1641, 2010. URL

http://jmlr.org/papers/v11/el-yaniv10a.html.

Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott M Lundberg, and Su-In Lee.

Improving performance of deep learning models with axiomatic attribution priors

and expected gradients. Nature machine intelligence, 3(7):620–631, 2021.

126

https://www.aclweb.org/anthology/P16-1004
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
http://jmlr.org/papers/v11/el-yaniv10a.html

Aarohi Srivastava et al. Beyond the imitation game: Quantifying and extrapolating

the capabilities of language models. ArXiv, abs/2206.04615, 2022.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen.

MRQA 2019 shared task: Evaluating generalization in reading comprehension. In

Proceedings of 2nd Machine Reading for Reading Comprehension (MRQA) Workshop

at EMNLP, 2019.

Victoria Fossum and Kevin Knight. Combining constituent parsers. In Proceedings

of Human Language Technologies: The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics, Companion Volume:

Short Papers, 2009.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-

based prompting for multi-step reasoning. In Proceedings of the International

Conference on Learning Representations (ICLR), 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie

Callan, and Graham Neubig. Pal: Program-aided language models. arXiv preprint

arXiv:2211.10435, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie

Callan, and Graham Neubig. Pal: Program-aided language models. In Proceedings

of the International Conference on Machine Learning (ICML), 2023.

Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic AI: The 3rd wave. Artificial

Intelligence Review, pages 1–20, 2023.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen,

Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta,

Hannaneh Hajishirzi, Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiangming Liu,

Nelson F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay

Subramanian, Reut Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. Evaluating

127

models’ local decision boundaries via contrast sets. In Findings of the Association

for Computational Linguistics: EMNLP 2020, 2020.

Siddhant Garg and Alessandro Moschitti. Will this Question be Answered? Question

Filtering via Answer Model Distillation for Efficient Question Answering. In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, 2021.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Am-

manamanchi, Anuoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu,

Miruna-Adriana Clinciu, Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Durmus,

Ondřej Dušek, Chris Chinenye Emezue, Varun Gangal, Cristina Garbacea, Tat-

sunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza

Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela,

Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique

Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin

Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey

Osei, Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Rau-

nak, Juan Diego Rodriguez, Sashank Santhanam, João Sedoc, Thibault Sellam,

Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo, Hen-

drik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and Jiawei

Zhou. The GEM benchmark: Natural language generation, its evaluation and

metrics. In Proceedings of the 1st Workshop on Natural Language Generation,

Evaluation, and Metrics (GEM 2021), pages 96–120, Online, August 2021. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/2021.gem-1.10. URL

https://aclanthology.org/2021.gem-1.10.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan

Berant. Did aristotle use a laptop? a question answering benchmark with implicit

reasoning strategies. Transactions of the Association for Computational Linguistics,

128

https://aclanthology.org/2021.gem-1.10

9:346–361, 2021a. doi: 10.1162/tacl a 00370. URL https://aclanthology.

org/2021.tacl-1.21.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan

Berant. Did Aristotle Use a Laptop? A Question Answering Benchmark with

Implicit Reasoning Strategies. Transactions of the Association for Computational

Linguistics (TACL), 2021b.

Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic

concept-based explanations. In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. De-

mystifying prompts in language models via perplexity estimation. arXiv preprint

arXiv:2212.04037, 2022.

Dirk Groeneveld, Tushar Khot, Mausam, and Ashish Sabharwal. A simple yet strong

pipeline for HotpotQA. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2020.

Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin Chen, Di He, and Xing Xie.

Towards a deep and unified understanding of deep neural models in NLP. In Proceed-

ings of the 36th International Conference on Machine Learning, 2019.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of

modern neural networks. In Proceedings of the 34th International Conference on

Machine Learning (ICML), 2017.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal. Multi-source domain adaptation

for text classification via distancenet-bandits. In Proceedings of the Annual Meeting

of the Association for the Advancement of Artificial Intelligence (AAAI), 2020.

129

https://aclanthology.org/2021.tacl-1.21
https://aclanthology.org/2021.tacl-1.21

Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang,

and Christopher Ré. Training classifiers with natural language explanations. In

Proceedings of the Annual Meeting of the Association for Computation Linguistics

(ACL), 2018.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Self-attention attribution: Interpreting

information interactions inside transformer. In Proceedings of the Annual Meeting of

the Association for the Advancement of Artificial Intelligence (AAAI), 2020.

David Harbecke. Explaining natural language processing classifiers with occlusion

and language modeling. arXiv preprint arXiv:2101.11889, 2021.

Peter Hase and Mohit Bansal. Evaluating explainable AI: Which algorithmic ex-

planations help users predict model behavior? In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 2020.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-

enhanced BERT with Disentangled Attention. In Proceedings of the International

Conference on Learning Representations (ICLR), 2021.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and Noah D. Goodman. Solving

math word problems by combining language models with symbolic solvers. ArXiv,

abs/2304.09102, 2023.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,

and Trevor Darrell. Generating Visual Explanations. In European Conference on

Computer Vision (ECCV), 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric

Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving

with the math dataset. In Advances in Neural Information Processing Systems

(NeurIPS), 2021.

130

J. Hewitt and P. Liang. Designing and interpreting probes with control tasks. In

Empirical Methods in Natural Language Processing (EMNLP), 2019.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Juanzi Li, and Maosong

Sun. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer

for text classification. arXiv preprint arXiv:2108.02035, 2021.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun

Yu, and Jiawei Han. Large language models can self-improve. arXiv preprint

arXiv:2210.11610, 2022.

Yukun Huang, Yixin Liu, Raghuveer Thirukovalluru, Arman Cohan, and Bhuwan

Dhingra. Calibrating long-form generations from large language models. arXiv

preprint arXiv:2402.06544, 2024.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke

Zettlemoyer. Learning a neural semantic parser from user feedback. In Proceedings

of the Annual Meeting of the Association for Computational Linguistics (ACL), 2017.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems:

How should we define and evaluate faithfulness? In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 2020.

Alon Jacovi and Yoav Goldberg. Aligning faithful interpretations with their social

attribution. Transactions of the Association for Computational Linguistics (TACL), 9:

294–310, 2021. doi: 10.1162/tacl a 00367.

Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, and

Yoav Goldberg. Contrastive explanations for model interpretability. In Marie-

Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Pro-

ceedings of the 2021 Conference on Empirical Methods in Natural Language Process-

ing, pages 1597–1611, Online and Punta Cana, Dominican Republic, November 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.120.

131

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy,

Sriram Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program

synthesis. ICSE, May 2022.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading compre-

hension systems. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2017.

Yichen Jiang and Mohit Bansal. Avoiding reasoning shortcuts: Adversarial evalua-

tion, training, and model development for multi-hop QA. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, 2019.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and Xiang Ren. Towards

hierarchical importance attribution: Explaining compositional semantics for neural

sequence models. In International Conference on Learning Representations, 2020.

Brihi Joshi, Ziyi Liu, Sahana Ramnath, Aaron Chan, Zhewei Tong, Shaoliang Nie,

Qifan Wang, Yejin Choi, and Xiang Ren. Are machine rationales (not) useful

to humans? measuring and improving human utility of free-text rationales. In

Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of

the 61st Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 7103–7128, Toronto, Canada, July 2023. Association for

Computational Linguistics. doi: 10.18653/v1/2023.acl-long.392.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large

scale distantly supervised challenge dataset for reading comprehension. In Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), 2017.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula,

Ronan Le Bras, and Yejin Choi. Maieutic prompting: Logically consistent reasoning

with recursive explanations. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2022.

132

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain,

Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-

Johnson, et al. Language models (mostly) know what they know. arXiv preprint

arXiv:2207.05221, 2022.

Amita Kamath, Robin Jia, and Percy Liang. Selective question answering under

domain shift. In Proceedings of the Annual Meeting of the Association for Computa-

tional Linguistics (ACL), 2020.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. Learning the difference

that makes a difference with counterfactually-augmented data. In International

Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=Sklgs0NFvr.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite,

and Deepak Ramachandran. BoardgameQA: A Dataset for Natural Language

Reasoning with Contradictory Information. In Advances in Neural Information

Processing Systems (NeurIPS), 2023.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter

Clark, and Ashish Sabharwal. Decomposed prompting: A modular approach for

solving complex tasks. In Proceedings of the International Conference on Learning

Representations (ICLR), 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. Large language models are zero-shot reasoners. In Advances in Neural

Information Processing Systems (NeurIPS), 2022.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh

Hajishirzi. MAWPS: A math word problem repository. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 2016.

133

https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr

Nate Kushman and Regina Barzilay. Using semantic unification to generate regular

expressions from natural language. In Proceedings of the 2013 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT), 2013.

Matthew Lamm, Jennimaria Palomaki, Chris Alberti, Daniel Andor, Eunsol Choi,

Livio Baldini Soares, and Michael Collins. QED: A framework and dataset for

explanations in question answering. Transactions of the Association for Compu-

tational Linguistics, 9:790–806, 2021. doi: 10.1162/tacl a 00398. URL https:

//aclanthology.org/2021.tacl-1.48.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson,

Michael Henry Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and

Felix Hill. Can language models learn from explanations in context? In Findings of

the Conference on Empirical Methods in Natural Language Processing (Findings of

EMNLP), 2022.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predic-

tions. In Proceedings of the 2016 Conference on Empirical Methods in Natu-

ral Language Processing, pages 107–117, Austin, Texas, November 2016. As-

sociation for Computational Linguistics. doi: 10.18653/v1/D16-1011. URL

https://www.aclweb.org/anthology/D16-1011.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk

Michalewski, Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,

Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant

Misra. Solving quantitative reasoning problems with language models. ArXiv,

abs/2206.14858, 2022.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong

Wang, Jing Qian, Baolin Peng, Yi Mao, et al. Explanations from large language

models make small reasoners better. arXiv preprint arXiv:2210.06726, 2022a.

134

https://aclanthology.org/2021.tacl-1.48
https://aclanthology.org/2021.tacl-1.48
https://www.aclweb.org/anthology/D16-1011

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu

Chen. On the advance of making language models better reasoners. arXiv preprint

arXiv:2206.02336, 2022b.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. NL2Bash:

A Corpus and Semantic Parser for Natural Language Interface to the Linux Operating

System. In Proceedings of the Eleventh International Conference on Language

Resources and Evaluation LREC 2018, Miyazaki (Japan), 7-12 May, 2018., 2018.

Zachary C Lipton. The mythos of model interpretability: In machine learning, the

concept of interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and

Peter Stone. LLM+ P: Empowering Large Language Models with Optimal Planning

Proficiency. arXiv preprint arXiv:2304.11477, 2023a.

Frederick Liu and Besim Avci. Incorporating priors with feature attribution on

text classification. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2019.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu

Chen. What makes good in-context examples for GPT-3? In Proceedings of Deep

Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction

and Integration for Deep Learning Architectures, pages 100–114, Dublin, Ireland and

Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/

2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.

10.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham

Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods

in natural language processing. ACM Comput. Surv., 55(9), jan 2023b. ISSN 0360-

0300. doi: 10.1145/3560815. URL https://doi.org/10.1145/3560815.

135

https://aclanthology.org/2022.deelio-1.10
https://aclanthology.org/2022.deelio-1.10
https://doi.org/10.1145/3560815

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. ArXiv, abs/1907.11692, 2019.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.

Fantastically ordered prompts and where to find them: Overcoming few-shot prompt

order sensitivity. In Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), May 2022.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna

Apidianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. arXiv

preprint arXiv:2301.13379, 2023.

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nallapati, and Bing Xiang. Domain

adaptation with BERT-based domain classification and data selection. In Proceedings

of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo

2019), 2019.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of

thought, it takes two to tango. arXiv preprint arXiv:2209.07686, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah

Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-

refine: Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651,

2023.

Ana Marasović, Iz Beltagy, Doug Downey, and Matthew E. Peters. Few-shot self-

rationalization with natural language prompts. In Findings of the North American

Chapter of the Association for Computational Linguistics (NAACL Findings), 2022.

136

Gary Marcus. The next decade in AI: four steps towards robust artificial intelligence.

arXiv preprint arXiv:2002.06177, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a

Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics,

19(2):313–330, 1993. URL https://aclanthology.org/J93-2004.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing

syntactic heuristics in natural language inference. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 2019.

Sabrina J. Mielke, Arthur D. Szlam, Y.-Lan Boureau, and Emily Dinan. Linguistic

calibration through metacognition: aligning dialogue agent responses with expected

correctness. ArXiv, abs/2012.14983, 2020.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.

Artificial intelligence, 267:1–38, 2019.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and

Luke Zettlemoyer. Compositional questions do not necessitate multi-hop reasoning.

In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, 2019.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Ha-

jishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes

in-context learning work? In Proceedings of the North American Chapter of the

Association for Computational Linguistics (NAACL), 2022.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi.

Reframing instructional prompts to GPTk’s language. In Findings of the Association

for Computational Linguistics: ACL 2022, 2022.

Jesse Mu and Jacob Andreas. Compositional explanations of neurons. In Advances

in Neural Information Processing Systems (NeurIPS), 2020.

137

https://aclanthology.org/J93-2004

Dong Nguyen. Comparing automatic and human evaluation of local explanations

for text classification. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), 2018.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I Wang,

and Xi Victoria Lin. LEVER: Learning to Verify Language-to-Code Generation with

Execution. In Proceedings of the International Conference on Machine Learning

(ICML), 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob

Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,

Charles Sutton, and Augustus Odena. Show your work: Scratchpads for intermediate

computation with language models. ArXiv, abs/2112.00114, 2021.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell,

Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. Training

language models to follow instructions with human feedback. In Advances in Neural

Information Processing Systems (NeurIPS), 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really

able to solve simple math word problems? In Proceedings of the 2021 Confer-

ence of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Online, June 2021. Association for Com-

putational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL https:

//aclanthology.org/2021.naacl-main.168.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut,

Robert West, and Boi Faltings. Refiner: Reasoning feedback on intermediate

representations. arXiv preprint arXiv:2304.01904, 2023.

138

https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168

Fernando C.N. Pereira and David H.D. Warren. Definite clause grammars for

language analysis—a survey of the formalism and a comparison with augmented

transition networks. Artificial Intelligence, 13(3):231–278, 1980. ISSN 0004-3702.

doi: https://doi.org/10.1016/0004-3702(80)90003-X.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hin-

ton. Regularizing neural networks by penalizing confident output distributions. In

Proceedings of the International Conference on Learning Representations Workshop

(ICLR Workshop), 2017.

John Platt. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74,

1999.

Gregory Plumb, Maruan Al-Shedivat, Ángel Alexander Cabrera, Adam Perer, Eric

Xing, and Ameet Talwalkar. Regularizing black-box models for improved inter-

pretability. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher

Meek, and Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained

language models. In International Conference on Learning Representations, 2022.

URL https://openreview.net/forum?id=KmtVD97J43e.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free,

edit-based instruction search for prompting large language models. In arXiv, 2022.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike

Lewis. Measuring and narrowing the compositionality gap in language models.

ArXiv, abs/2210.03350, 2022.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark,

and Yejin Choi. Counterfactual story reasoning and generation. In Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th

139

https://openreview.net/forum?id=KmtVD97J43e

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

2019.

Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning

semantic parsers for if-this-then-that recipes. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

878–888, Beijing, China, July 2015. Association for Computational Linguistics.

doi: 10.3115/v1/P15-1085. URL https://www.aclweb.org/anthology/

P15-1085.

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun

Radhakrishna, Gustavo Soares, and Ashish Tiwari. Multi-modal program inference:

A marriage of pre-trained language models and component-based synthesis. Proc.

ACM Program. Lang., 5(OOPSLA), oct 2021. doi: 10.1145/3485535. URL

https://doi.org/10.1145/3485535.

Nazneen Fatema Rajani and Raymond Mooney. Stacking with auxiliary features for

visual question answering. In Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, 2018.

Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Ex-

plain Yourself! Leveraging Language Models for Commonsense Reasoning. In

Proceedings of the Annual Meeting of the Association for Computation Linguistics

(ACL), 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pages

140

https://www.aclweb.org/anthology/P15-1085
https://www.aclweb.org/anthology/P15-1085
https://doi.org/10.1145/3485535

2383–2392, Austin, Texas, November 2016. Association for Computational Lin-

guistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/

anthology/D16-1264.

Alan Ramponi and Barbara Plank. Neural unsupervised domain adaptation in

NLP—A survey. In Proceedings of the International Conference on Computational

Linguistics (COLING), 2020.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and

Jason Wei. A recipe for arbitrary text style transfer with large language models.

In Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 837–848, Dublin, Ireland, May 2022.

Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.94.

URL https://aclanthology.org/2022.acl-short.94.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models:

Beyond the few-shot paradigm. Extended Abstracts of the 2021 CHI Conference on

Human Factors in Computing Systems, 2021.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Henghui Zhu, Rui Dong, Deguang

Kong, Juliette Burger, Anjelica Ramos, zhiheng huang, William Yang Wang, George

Karypis, Bing Xiang, and Dan Roth. STREET: A multi-task structured reasoning

and explanation benchmark. In The Eleventh International Conference on Learning

Representations, 2023. URL https://openreview.net/forum?id=1C_

kSW1-k0.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust

you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision

model-agnostic explanations. In AAAI, volume 18, pages 1527–1535, 2018.

141

https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://aclanthology.org/2022.acl-short.94
https://openreview.net/forum?id=1C_kSW1-k0
https://openreview.net/forum?id=1C_kSW1-k0

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond

accuracy: Behavioral testing of NLP models with CheckList. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, 2020.

Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are

useful: Penalizing explanations to align neural networks with prior knowledge. In

Proceedings of the International Conference on Machine Learning (ICML), 2020.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts

for in-context learning. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead. Nature Machine Intelligence, 1, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid

Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari,

Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon

Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-

Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey,

Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,

Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella

Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted

training enables zero-shot task generalization. In International Conference on

Learning Representations, 2022. URL https://openreview.net/forum?

id=9Vrb9D0WI4.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic

formal analysis of chain-of-thought. In The Eleventh International Conference on

Learning Representations, 2023. URL https://openreview.net/forum?

id=qFVVBzXxR2V.

142

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli,

Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language

models can teach themselves to use tools. arXiv, 2023. doi: 10.48550/ARXIV.2302.

04761. URL https://arxiv.org/abs/2302.04761.

Sofia Serrano and Noah A. Smith. Is attention interpretable? In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, 2019.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush

Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language

models are multilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057,

2022.

Richard Shin, Christopher Lin, Sam Thomson, Charles Chen, Subhro Roy, Em-

manouil Antonios Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin

Van Durme. Constrained language models yield few-shot semantic parsers. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2021.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer

Singh. AutoPrompt: Eliciting Knowledge from Language Models with Automatically

Generated Prompts. In Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2020.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency maps. In

Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track

Proceedings, 2014. URL http://arxiv.org/abs/1312.6034.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton.

CLUTRR: A diagnostic benchmark for inductive reasoning from text. In Proceedings

143

https://arxiv.org/abs/2302.04761
http://arxiv.org/abs/1312.6034

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), November 2019.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr:

Testing the limits of chain-of-thought with multistep soft reasoning. In Proceedings

of the International Conference on Learning Representations (ICLR), 2023.

Joe Stacey, Yonatan Belinkov, and Marek Rei. Supervising model attention with

human explanations for robust natural language inference. In Proceedings of the

Annual Meeting of the Association for the Advancement of Artificial Intelligence

(AAAI), 2022.

Julia Strout, Ye Zhang, and Raymond Mooney. Do Human Rationales Improve Ma-

chine Explanations? In Proceedings of the 2019 ACL Workshop BlackboxNLP: Ana-

lyzing and Interpreting Neural Networks for NLP, pages 56–62, Florence, Italy, Au-

gust 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4807.

URL https://www.aclweb.org/anthology/W19-4807.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual

predictions with feature contributions. Knowledge and information systems, 41(3):

647–665, 2014.

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolfson, Sameer Singh,

Jonathan Berant, and Matt Gardner. Obtaining faithful interpretations from composi-

tional neural networks. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2020.

Qiushi Sun, Chengcheng Han, Nuo Chen, Renyu Zhu, Jing Gong, Xiang Lisa Li,

and Ming Gao. Make prompt-based black-box tuning colorful: Boosting model

generalization from three orthogonal perspectives. ArXiv, abs/2305.08088, 2023.

URL https://api.semanticscholar.org/CorpusID:258685392.

144

https://www.aclweb.org/anthology/W19-4807
https://api.semanticscholar.org/CorpusID:258685392

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng

Qiu. BBTv2: Towards a gradient-free future with large language models. In

Proceedings of the 2022 Conference on Empirical Methods in Natural Language

Processing, December 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-

box tuning for language-model-as-a-service. arXiv preprint arXiv:2201.03514,

2022b.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In Proceedings of the International Conference on Machine Learning

(ICML), 2017.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating impli-

cations, proofs, and abductive statements over natural language. In Findings of the

Association for Computational Linguistics: ACL-IJCNLP (ACL Findings), August

2021.

Alon Talmor and Jonathan Berant. MultiQA: An empirical investigation of general-

ization and transfer in reading comprehension. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 2019.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Common-

senseQA: A question answering challenge targeting commonsense knowledge. In

Proceedings of the 2019 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), June 2019.

Lappoon R Tang and Raymond J Mooney. Using multiple clause constructors in

inductive logic programming for semantic parsing. In European Conference on

Machine Learning, pages 466–477. Springer, 2001.

145

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy,

Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick.

What do you learn from context? probing for sentence structure in contextualized

word representations. In International Conference on Learning Representations,

2019.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.

Generating token-level explanations for natural language inference. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 963–969, Minneapolis, Minnesota, June 2019. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/N19-1101. URL https:

//www.aclweb.org/anthology/N19-1101.

Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me?

interpretable attribution for feature interactions. In Advances in Neural Information

Processing Systems (NeurIPS), 2020.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang, Xiaodong He, and Bowen

Zhou. Select, answer and explain: Interpretable multi-hop reading comprehension

over multiple documents. In Proceedings of the Association for the Advancement of

Artificial Intelligence (AAAI), 2020.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.

Large Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and

Reasoning about Change). ArXiv, abs/2206.10498, 2022.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat

Chaudhuri. Programmatically interpretable reinforcement learning. In Proceedings

of the 35th International Conference on Machine Learning, 2018.

146

https://www.aclweb.org/anthology/N19-1101
https://www.aclweb.org/anthology/N19-1101

Elena Voita and Ivan Titov. Information-theoretic probing with minimum description

length. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2020.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal

adversarial triggers for attacking and analyzing NLP. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.

Bowman. GLUE: A multi-task benchmark and analysis platform for natural lan-

guage understanding. In Proceedings of the International Conference on Learning

Representations (ICLR), 2019.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer,

and Huan Sun. Towards understanding chain-of-thought prompting: An empirical

study of what matters. In Proceedings of the Annual Meeting of the Association for

Computation Linguistics (ACL), 2023.

Peifeng Wang, Aaron Chan, Filip Ilievski, Muhao Chen, and Xiang Ren. Pinto:

Faithful language reasoning using prompt-generated rationales. In Proceedings of

the International Conference on Learning Representations (ICLR), 2022a.

Xinru Wang and Ming Yin. Are explanations helpful? a comparative study of

the effects of explanations in ai-assisted decision-making. In Proceedings of the

26th International Conference on Intelligent User Interfaces, New York, NY, USA,

2021. Association for Computing Machinery. ISBN 9781450380171. doi: 10.1145/

3397481.3450650.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou.

Rationale-augmented ensembles in language models. ArXiv, abs/2207.00747, 2022b.

147

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny

Zhou. Self-consistency improves chain of thought reasoning in language models. In

Proceedings of the International Conference on Learning Representations (ICLR),

2022c.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the

meaning of their prompts? In Proceedings of the North American Chapter of the

Association for Computational Linguistics (NAACL), 2022.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,

Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot

learners. In International Conference on Learning Representations, 2022a. URL

https://openreview.net/forum?id=gEZrGCozdqR.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,

Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori

Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent

abilities of large language models. Transactions on Machine Learning Research,

2022b. URL https://openreview.net/forum?id=yzkSU5zdwD. Sur-

vey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and

Denny Zhou. Chain of thought prompting elicits reasoning in large language models.

In Advances in Neural Information Processing Systems (NeurIPS), 2022c.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomás Mikolov. Towards AI-

Complete Question Answering: A Set of Prerequisite Toy Tasks. In Proceedings of

the International Conference on Learning Representations (ICLR), 2016.

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), 2019.

148

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=yzkSU5zdwD

Sarah Wiegreffe, Ana Marasović, and Noah A. Smith. Measuring association between

labels and free-text rationales. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP), 2021.

Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta, Mark Riedl, and Yejin Choi.

Reframing Human-AI Collaboration for Generating Free-Text Explanations. In

Proceedings of the North American Chapter of the Association for Computational

Linguistics (NAACL), 2022.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge

corpus for sentence understanding through inference. In Proceedings of the North

American Chapter of the Association for Computational Linguistics (NAACL), 2018.

W. A. Woods. Progress in natural language understanding: an application to lunar

geology. In AFIPS National Computer Conference, AFIPS ’73, page 441–450, New

York, NY, USA, 1973. Association for Computing Machinery. ISBN 9781450379168.

doi: 10.1145/1499586.1499695. URL https://doi.org/10.1145/1499586.

1499695.

Jialin Wu and Raymond Mooney. Faithful multimodal explanation for visual question

answering. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and

Interpreting Neural Networks for NLP, 2019.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and

Qizhe Xie. Self-evaluation guided beam search for reasoning. In Advances in Neural

Information Processing Systems (NeurIPS), 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan

Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse,

explainable multi-hop question answering. In Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2018.

149

https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/1499586.1499695

Huihan Yao, Ying Chen, Qinyuan Ye, Xisen Jin, and Xiang Ren. Refining lan-

guage models with compositional explanations. In Advances in Neural Information

Processing Systems (NeurIPS), 2021.

Xi Ye and Greg Durrett. Can explanations be useful for calibrating black box models?

In Proceedings of the Annual Meeting of the Association for Computation Linguistics

(ACL), 2022a.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for

textual reasoning. In Advances in Neural Information Processing Systems (NeurIPS),

2022b.

Xi Ye and Greg Durrett. Explanation selection using unlabeled data for chain-of-

thought prompting. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2023.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Benchmarking multimodal regex

synthesis with complex structures. In Proceedings of the Annual Meeting of the

Association for Computation Linguistics (ACL), 2020a.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Benchmarking multimodal regex

synthesis with complex structures. In Proceedings of the Annual Meeting of the

Association for Computation Linguistics (ACL), 2020b.

Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and Greg Durrett. Sketch-driven

regular expression generation from natural language and examples. In Transactions

of the ACL, 2020c.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Optimal neural program synthesis

from multimodal specifications. In Findings of the Association for Computational

Linguistics: EMNLP (EMNLP Findings), 2021a.

150

Xi Ye, Rohan Nair, and Greg Durrett. Connecting attributions and qa model behavior

on realistic counterfactuals. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2021b.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided

language models using declarative prompting. In Advances in Neural Information

Processing Systems (NeurIPS), 2023a.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth

Pasunuru. Complementary explanations for effective in-context learning. In Findings

of the Annual Meeting of the As- sociation for Computational Linguistics (ACL

Findings), 2023b.

Chih-Kuan Yeh, Been Kim, Sercan Ö. Arik, C. Li, P. Ravikumar, and T. Pfister.

On concept-based explanations in deep neural networks. In Advances in Neural

Information Processing Systems (NeurIPS), 2019.

Pengcheng Yin and Graham Neubig. Reranking for neural semantic parsing. In Pro-

ceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics, 2019.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal,

Chenguang Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve:

Large language models are strong context generators. In International Conference

for Learning Representation (ICLR), 2023.

Omar Zaidan, Jason Eisner, and Christine Piatko. Using “annotator rationales” to

improve machine learning for text categorization. In Proceedings of the Annual

Meeting of the Association for Computation Linguistics (ACL), 2007.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman. Star: Bootstrapping reasoning

with reasoning. In Advances in Neural Information Processing Systems (NeurIPS),

2022.

151

John M. Zelle and Raymond J. Mooney. Learning to parse database queries using in-

ductive logic programming. In Proceedings of the Annual Meeting of the Association

for the Advancement of Artificial Intelligence (AAAI), AAAI’96, page 1050–1055.

AAAI Press, 1996. ISBN 026251091X.

Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical form:

structured classification with probabilistic categorial grammars. In Proceedings of

the Twenty-First Conference on Uncertainty in Artificial Intelligence, UAI’05, page

658–666, Arlington, Virginia, USA, 2005. AUAI Press. ISBN 0974903914.

Shujian Zhang, Chengyue Gong, and Eunsol Choi. Knowing more about questions

can help: Improving calibration in question answering. In Findings of the Annual

Conference of the Association for Computational Linguistics (ACL Findings), 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,

Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali

Sridhar, Tianlu Wang, and Luke Zettlemoyer. OPT: Open Pre-trained Transformer

Language Models. ArXiv, abs/2205.01068, 2022a.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gon-

zalez. Tempera: Test-time prompting via reinforcement learning. arXiv preprint

arXiv:2211.11890, 2022b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought

prompting in large language models. In The Eleventh International Conference on

Learning Representations (ICLR 2023), 2023.

Theodore Zhao, Mu Wei, J Samuel Preston, and Hoifung Poon. Automatic calibration

and error correction for large language models via pareto optimal self-supervision.

arXiv preprint arXiv:2306.16564, 2023.

152

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before

use: Improving few-shot performance of language models. In Proceedings of the

International Conference on Learning Representations (ICLR), 2021.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai

Wang, Jian Yin, Ming Zhou, and Nan Duan. Analytical reasoning of text. In Findings

of the Association for Computational Linguistics: NAACL (NAACL Findings), 2022.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting

enables complex reasoning in large language models. ArXiv, abs/2205.10625, 2022a.

Hattie Zhou, Azade Nova, H. Larochelle, Aaron C. Courville, Behnam Neyshabur,

and Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. ArXiv,

abs/2211.09066, 2022b.

Yangqiaoyu Zhou and Chenhao Tan. Investigating the effect of natural language

explanations on out-of-distribution generalization in few-shot NLI. In Proceedings of

the Workshop on Insights from Negative Results in NLP, 2021.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris

Chan, and Jimmy Ba. Large language models are human-level prompt engineers.

arXiv preprint arXiv:2211.01910, 2022c.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the

calibration of large language models and alignment. arXiv preprint arXiv:2311.13240,

2023.

153

Vita

Xi Ye received the Bachelor of Engineering degree in Software Engineering from

the School of Software at Tsinghua University in 2018. During his undergraduate studies,

he worked as a research assistant in THUVis Lab under the supervision of Shixia Liu,

focusing on data visualization and machine learning. After that, he joined the Department

of Computer Science at The University of Texas at Austin as a graduate student, where he

pursued his doctoral research under the supervision of Greg Durrett. His research is in the

area of natural language processing, particularly in leveraging explanations to steer language

models for complex textual reasoning tasks. He is also interested in semantic parsing and

program synthesis.

Address: xiye@cs.utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

154

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Contributions of This Dissertation

	Chapter 2: Connecting Attributions and QA Model Behavior
	Introduction
	Motivation
	Behavior on Counterfactuals
	Explanation Techniques
	Token Attribution-Based
	Feature Interaction-Based
	Layer-wise Attention Attribution

	Experiments
	Hotpot Yes-No Questions
	Hotpot Bridge Questions
	SQuAD Adversarial
	Discussion and Limitations

	Related Work
	Conclusion

	Chapter 3: Calibrating Black-box Models Using Explanations
	Introduction
	Using Explanations for Black Box Model Calibration
	Generating Explanations
	Extracting Features by Combining Explanations and Heuristics
	Calibrator Model

	Tasks and Datasets
	Experiments
	Main Results: QA
	Main Results: NLI
	Analysis
	Comparison to Finetuned Models

	Selective QA Setting
	Related Work
	Discussion & Conclusion

	Chapter 4: Calibrating In-Context Learning Using Explanations
	Introduction
	Does Prompting with Explanations Improve In-Context Learning?
	Datasets
	Baselines
	Setup
	Results

	Can LLMs Generate Factual and Consistent Explanations?
	Reliability of Explanations and Prediction Accuracy

	Calibrating In-Context Learning using Explanations
	Motivating Example: Improving Synth Dataset
	Learning-based Calibration Framework
	Calibrating e-SNLI
	Calibrating HotpotQA

	Related Work
	Discussion & Conclusion

	Chapter 5: Explanation Selection for Chain-of-Thought Prompting
	Introduction
	Problem Formulation
	Problem Statement
	Performance Varies Across Explanations

	Method Overview
	Proxy Metrics for Finding Promising Combinations
	One-shot Silver Accuracy
	One-shot Log Likelihood
	Ensemble

	Experimental Setup
	Language Models
	Datasets

	Effectiveness of Proxy Metrics
	Effectiveness of Framework
	Main Results
	Analysis

	Related Work
	Discussion & Conclusion

	Chapter 6: Satisfiability-Aided Language Models Using Declarative Prompting
	Introduction
	Overview
	SAT-Aided Language Models using Declarative Prompting
	Declarative Prompting
	Solving with a SAT Solver

	Experiments
	Setup
	Main Results
	Impact of SAT Solver & Declarative Prompting
	Advantages of Sat in Selective Prediction
	Analysis

	Related Work
	Conclusion & Limitations

	Chapter 7: Conclusion and Future Work
	Future Directions

	Works Cited
	Vita

