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Summary

During most of 2020, the COVID-19 pandemic gave rise to considerable and growing numbers
of hospitalizations across most of the U.S. Typical COVID-19 hospitalization data, including
length of stay, intensive care unit (ICU) use, mechanical ventilation (Vent), and in-hospital
mortality provide clearly interpretable health care endpoints that can be compared across
population strata. They capture the resources consumed for the care of COVID-19 patients,
and analysis of these endpoints can be used for resource planning at the local level. Yet,
hospitalization data embody novel features that require careful statistical treatment to be
useful in this context. Specifically, statistical models must meet three goals: (i) They should
mesh with and inform mathematical epidemiologic or agent-based models of the COVID-19
experience in the population. (ii) They need to handle administrative censoring of hospi-
talization experience when data are extracted and downloaded for a given patient before
that patient’s hospitalization experience has terminated. And, (iii) models need to handle
risks for competing events, the occurrence of one blocking the possibility of the other(s).
For example, live discharge from the hospital “competes with” (i.e., blocks) in-hospital mor-
tality. We have adapted approaches from the survival analysis literature to address these
challenges in order to better understand and quantify the population experience in hospital
with respect to length of stay, ICU, Vent use and so on. Using hospitalization data from
a large U.S. metropolitan region, in this report, we show how standard techniques from
survival analysis can be brought to bear to address these challenges and yield interpretable
results. In the breakout/discussion, we will discuss formulation, estimation and inference,
and interpretation of competing risks models.
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1 Introduction

With a few exceptions, across most of the U.S., the COVID-19 pandemic began giving
rise to considerable and growing numbers of hospitalizations during March, 2020 (Dong,
2021). Briefly, typical COVID-19 hospitalization, including length of stay, intensive care unit
(ICU) use, mechanical ventilation (Vent), and in-hospital mortality are clear and comparable
health care endpoints that can be compared across population strata. They capture the
resources consumed for the care of COVID-19 patients, and analysis of these endpoints can
be used for resource planning at the local level (Yang et al., 2020). In addition, parameters
estimated from analysis of these endpoints can and have been used as inputs to mathematical
epidemiological models (Wang et al., 2020).

Hospitalization data embody novel features that have required careful statistical treatment,
approaches that we have adapted from the survival analysis methodological literature, de-
veloped, and applied since the early days of the pandemic in order to better understand and
quantify the population experience in hospital with respect to length of stay, ICU, Vent use
and so on. The models presented here have helped to bridge the statistical gap between
agent-based epidemic models and time-to-event analysis in the presence of both competing
risks and censoring. The purpose of this report is twofold. Primarily, we document and
describe these statistical approaches, and illustrate illustrate them on an analysis from Sum-
mer, 2020, that informed modeling efforts by other members of our local team. Secondarily,
we provide details on data exploited from one of three large hospital systems in a large
metropolitan region of the United States.

To accomplish this first purpose, statistical models must first be parameterized such that
they inform mathematical epidemiologic or agent-based models. Owing to the specification of
such models both in terms of alternative pathways through disease “states” (e.g., susceptible,
infectious, recovered) and in terms of length of time spent in various states, they are often
framed “conditional on the future”. For example, models may be parameterized in terms
of length of hospitalization stay “for those who die in hospital”, that is, conditional on the
future event of dying in hospital. Statistical analysis of data informing such models will
be more useful if such analyses are framed in these same terms. Additional challenges here
also arise in several classic areas of biostatistical application; these include censoring and
competing risks. In analysis of data on hospitalization and ICU use, censoring will arise when
the data are administratively frozen and extracted for analysis when, for a subset of patients,
the censoring time occurs before the event of interest. For example, when interest lies in
the time from hospital admission to ICU admission, ICU admission for a given patient will
be censored if the data are extracted for analysis while that patient is still in the hospital
and has not yet experienced ICU admission. In fact, we do not know based on the data
whether s/he will ever experience ICU admission or, in the alternative, if s/he will exit the
hospital without accessing the ICU at all. Lastly, a related but trickier phenomenon is that
of competing risks (Prentice et al., 1978; Gray, 1988; Fine & Gray, 1999). The problem is
easiest to understand in terms of live discharge and in-hospital death: As a patient advances
through time, s/he eventually will be discharged alive or will die in hospital. (Exactly) one
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of the two events must occur, and they cannot both occur. The two events are “competing”
as to which one will occur first and will thereby block the other from occurring.

The approach and analyses presented here were motivated by nearly complete COVID-19
hospitalization data extracted from the electronic health record (EHR) system of one of
three multi-hospital systems in a large metropolitan area in the Southwestern region of the
United States, Austin, Texas. In the context of expanding data and ongoing analysis needs
for purposes of modeling and local epidemic planning, we produced multiple instances of the
analyses developed and illustrated here. At this point, the data are somewhat outdated. Our
main goal here, however, is to use them as a platform to describe, document, and illustrate the
statistical approach; more up-to-date and in-depth analyses are reported elsewhere (Rathouz,
2021). A second goal is to tabulate the estimates used in a modeling report from our group
which describes a staged alert system designed to ensure healthcare capacity in the Central
Texas region (Yang, 2020). A third goal is to provide some technical details on the procedures
and variables involved in data extraction.

In Section (2), we describe in mathematical terms the data configuration, notation, and
statistical models. The example data are described and analyzed using these approaches for
illustrative purposes in Section (3), and a brief Discussion appears in Section (4).

2 Statistical Framework

2.1 Notation and Data Configuration

For a given hospitalization, let t0 be the admission date, tICU be the date of ICU admission
or the date of a competing event—but not a censoring event—for ICU admission, tVent be a
similar time for date of first use of mechanical ventilation, and tDisch be the date of discharge
or in-hospital death, whichever comes first. Denote a separate censoring date as tCens. Note
importantly that censoring does not block any of the events from actually occurring; it just
masks our ability to observe that event in our data.

We want to define durations and also acknowledge that we can only observe the first of a set
of competing events. As such define time durations in hospital for these events as:

time to ICU: TICU = min(tICU − t0, tCens − t0) ,

time to vent: TVent = min(tVent − t0, tCens − t0) ,

time to discharge: TDisch = min(tDisch − t0, tCens − t0) and ,
time to discharge from ICU: TDisch|ICU = min(tDisch − tICU, tCens − tICU) .

The last value TDisch|ICU is only defined for subjects who are admitted to ICU, i.e., for whom
DICU = 1, defined next.

Together with the various event times t and durations T, define corresponding event types
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D. For example, for ICU admission, DICU ∈ {0, 1, 2} indicates censoring while the patient
is still in hospital and not-yet admitted to ICU (0), discharge from or deceased in hospital
before any ICU admission (2), or admitted to ICU (1); and similarly for DVent. Define
DDisch ∈ {0, 1, 2} to indicate censoring while the person is still in hospital, death in hospital
(2), or live discharge from hospital (1). Note that under this definition, TICU = tICU−t0 when
DICU ≥ 1 and TICU = tCens − t0 when DICU = 0, and similarly for DVent and DDisch. Two of
these three event times, TICU and TDisch|ICU, and their corresponding event types, DICU and
DDisch, are of primary interest in the analyses that follow, so we will focus on them. Finally,
denote by X a vector of predictor or covariate values, which may include admission date, t0,
may just be a stratifying variable, may be a regressor, or may not be included at all.

We frame these analyses in term of competing risks models (Prentice, 1978; Gray, 1988; Fine,
1999). Identifying assumptions in these models involve censoring time being conditionally
independent of time to event of interest, given X. In our case, this is codified by

(tICU − t0)⨿ (tCens − t0)|X ,

(tVent − t0)⨿ (tCens − t0)|X ,

(tDisch − t0)⨿ (tCens − t0)|X and ,
(tDisch − tICU)⨿ (tCens − tICU)|X .

These assumptions would appear to be well justified by the nature of the problem, namely
that administrative censoring for data extraction and download, is due only to processes
determining when the facility pulls data from of their electronic health record and reports it
to our team and/or to the Austin Public Health office.

2.2 Competing Risk Model Specification and Estimation

For any one of the foregoing time-to-event definitions (TICU, TVent, etc.) above, we consider
a competing risks modeling framework. The data for each person and each event type E
(e.g., E = ICU as defined above) consist of (X,TE, DE), where X and TE are as defined in
the foregoing section, and DE = 0, 1, . . . , KE, where DE = 0 denotes independent censoring,
DE = k, k = 1, . . . , KE indicate KE different competing endpoints for the event E of interest
(e.g., live discharge or in-hospital mortality for DDisch), and, when appropriate, DE = 1
indicates the event of primary interest.

The competing risks framework is built up through a collection of sub-distribution, or cumu-
lative incidence, functions (CIF). We have already defined independent censoring date tCens;
consider the counterfactual situation wherein tCens = ∞, so that every subject is observed
until one of the competing events occurs. In that case, DE > 0 for all subjects and all events;
denote this counterfactual DE as D∗

E. Then, the sub-distribution functions are defined as
follows, where we omit the E subscript from F, S, µ, and h.

Fk(t|X) = Pr(TE ≤ t ∩D∗
E = k,X), k = 1, 2, . . . , K , (1)
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so that the overall distribution and survival functions for time-to-event endpoints are given
by

F (t|X) =
K∑
k=1

Fk(t|X) and S(t|X) = 1− F (t|X) . (2)

Note that these functions govern the distributions that would have been observed in the
absence of independent administrative censoring. Estimation methods (Gray, 1988; Fine
1999) employed here account for censoring, yielding model interpretations in terms of (1)
and (2), even while working with data involving such censoring, i.e., when DE—and not
D∗

E—is observed.

An important feature of this formulation, and one that connects to the mathematical epi-
demic modeling framework, is that, as t → ∞, (1) yields the probability of failure being of
type k, i.e.,

Pr(D∗
E = k) = Fk(∞|X) ≡ lim

t→∞
Fk(t|X) ,

and in addition
Fk(t|X)

F (t|X)
= Pr(D∗

E = k|T ≤ t,X) .

This means that, when analyzing times to events in hospitalized patients, we can also es-
timate the overall probability Pr(D∗

E = k) of event k occurring. Indeed, mathematical
epidemic models such as Wang et al. (2020) are parameterized in terms of the hazard of
event k occurring at some time t, given that it will eventually occur, i.e., that eventual
failure will be of type k.

This hazard is sometimes called the instantaneous risk, or the failure rate in exponential
waiting time models. When a given event type is of interest, the conditional (on event type
k) distribution and hazard function are then given by

F c
k (t|X) =

Fk(t|X)

Fk(∞|X)
and hc

k(t|X) =
dFk(t|X)

Fk(∞|X)− Fk(t|X)
.

In the analyses presented here, key quantities to be estimated are Fk(∞|X) as are features
such as the mean and percentiles of the conditional distribution F c

k (t|X).

In much of our work, covariate X is primarily used as a stratifying variable, and completely
separate sets of CIF’s Fk(t|X = x) are estimated for each value of x. For any given stratum
x, we follow Gray (1988) to obtain estimates F̂k(t|X = x), P̂r(D∗ = k), and F̂ c

k (t|X = x),
from which we can further obtain estimated conditional (on event type k occurring) quantiles
Q̂c(p|X = x) (where Q(·) is the inverse of F (·)), and the conditional mean failure time. This
last quantity is conditional on event type k occurring and on stratum x; it is given by

µc
k(x) = E(TE|D∗

E = k,X = x) =
∫ ∞

0
[1− F c

k (t|X = x)] dt .

An alternative formulation treats X as a, possibly continuous and possibly vector-valued,
covariate. In this case, analysis turns on the sub-distribution hazard function

hk(t|X) =
dFk(t|X)

1− Fk(t|X)
, (3)
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which is the instantaneous risk of event k at time t given event k has not yet occurred (even
if another event k′ occurrence has blocked event k. Note that hk(t|X) is subtly different than
the cause-specific hazard, which, loosely, is the instantaneous risk of event k at time t given
no other event k or k′ has yet occurred. Furthermore, hk(t|X) can be modeled directly in a
regression model with a proportional hazards specification, viz,

hk(t|X = x) = hk0(t) exp(x
Tβ) , (4)

where the baseline sub-distribution hk0(t) is non-parametric. Fortunately, we do not need
to be overly concerned with the interpretation of β. Rather, for given values of x, β, and
hk0(t), we can compute—or estimate—the hk(t|X = x) and thereby obtain Fk(t|X = x),
and functions deriving therefrom including the complete sub-distribution CIF. Estimation
of and inferences on β and hk0(t) are given by Fine (1999).

A final consideration relates to statistical inferences—hypothesis tests and confidence in-
tervals. In the demonstration analysis in the next section, we did not obtain confidence
intervals for estimated parameters; we were still adapting methods to the rapidly changing
COVID-19 landscape. However, in ongoing work, for estimates such as the probability of
ICU use, either globally or stratified by grouping variables such as age, we have typically
employed the bootstrap procedure (Efron, 1994), sampling from the entire set of hospital-
izations with replacement, and re-estimating the entire parameter set for each resample. We
then obtain bootstrap standard errors and employ normal-theory-based tests and confidence
intervals. Alternatively, for tests comparing groups with respect to sub-distribution hazard,
we have employed likelihood ratio tests from the proportional hazards model (4), with sets
of indicator variables representing the groups or strata.

3 Example: Hospital System Data in Austin, Texas

3.1 Study Population and Data

Data arise from one of three large hospital systems in the 5-county Austin-Round Rock
Metropolitan Statistical Area (MSA, e.g., CDC, 2018), located in Central Texas and com-
prising Travis, Williamson, Bastrop, Caldwell, and Hays Counties. As the pandemic grew in
March and April, 2020, we developed a system to extract data from the backend database
of the electronic health record (EHR) system at use in the inpatient settings across the sys-
tem, with the goal of capturing each COVID-19 hospitalization in the health care system.
The data contain several key elements: patient id, which is valid across all hospitals in the
system, date-time (to the nearest minute) of admission, occurrence and date-time of ICU
admission, date-time of ICU discharge, date-times of initiation and termination of mechani-
cal ventilation (Vent), date-time of hospital discharge, and whether the exiting event was a
live discharge or in-hospital death. In addition to the above, the data include a vast array
of demographic and clinical indicators available at admission (baseline).
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This and subsequent studies using these data were approved by the University of Texas at
Austin Human Subjects Institutional Review Board.

Regarding details of data acquisition, data were extracted from the EHR database using a
custom SQL query on the hospital system (versus Dell Medical School) side, which pulls
directly from an encounter table, where there is one row per encounter, and then joins to
person level tables for person level demographics such as age, sex, race/ethnicity, etc. ICU
data are pulled from a patient bed movement table and Vent data are pulled from an orders
table. The query only pulls in the first and last instance of ICU and Vent admission/start
and discharge/end times during an encounter, and left joins those to the encounter level
data, so that any multiple ICU stays and/or uses of mechanical ventilation are considered as
one long event. Comorbidity variables were pulled from a billing table in the EHR database.
This means the comorbidity would only be present in the encounter if it was addressed and
documented my the provider in such a way as picked up by billing coders.

Additional variable creation and tidying were done in a detailed R (R Core Team, 2019)
script, sharable across our team across the hospital system and Dell Medical School. In-
consistencies in values for labs and vitals due to differences in provider documentation were
resolved and variables with similar or redundant categories were condensed and simplified.
Three important ones are mentioned here: First, only presenting labs/vitals are included.
This was defined as the first measure with a date-time stamp of that lab/vital that occurred
during the patient’s hospitalization. If that lab or vital is missing in the dataset, it was taken
to mean the lab/vital was not measured during the hospitalization. Second, some facilities
provide heart rate, whereas others document pulse. We combined these for definition of
“presenting lab”, i.e., if a patient was missing heart rate, we then pulled in pulse; a similar
approach was taken for temperature measured in F vs C. Finally, we collapse some discharge
disposition categories such as “rehab” (for rehabilitation facility) and skilled nursing facility
into as “Rehab/SNF”.

Data and analyses are presented here primarily to document and illustrate the competing
risks methodology, and hence do not exploit most of these variables. In addition, key results
used in the report by Yang et al. (2021) are included here. More in-depth, comprehensive,
and up-to-date investigations are presented in companion reports, one of which (Rathouz,
2021) combines the data from the present hospital system with those from the other two
major system in the Austin-Round Rock MSA. Other reports exploiting the detailed data
collected here are forthcoming.

3.2 Data Organization for Analysis

Preliminary manipulation involved reconfiguring the data into a format of “one row per
hospitalization”. We sought to identify transfers as pairs of hospitalizations that ended and
started within 2 days of one another on the same patient at two different facilities. Aside
from these combinations, a few patients did apparently have multiple hospitalizations. We
treated these as independent observations.
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Some minor adjustments were made to the data in the data cleaning phase. First, some
individuals appeared to be admitted directly to the ICU; for those individuals, we dialed
their hospital admission back by 30 minutes to be able to capture that event with standard
survival analysis software tools, which require all events to have a positive time of occurrence.
Similarly, in case of in-hospital death, we harmonized time of death and time of discharge
by consolidating the two potential outcomes into a single “exit” time. For patients that
expired, their exit time was set to their death time which is consistently recorded prior to
their discharge time. For (very few) expired patients with missing death times, their exit
was set to their discharge time. Remaining patients who were discharged normally had
their exit time set to discharge time. Lastly, date-times for ICU and Vent that appear to
occur following hospital discharge were also wound back to equal hospital discharge date-
time to produce a logical ordering of hospitalization events for the patient from admission
to discharge.

Data were then organized to have several key elements to conform to the statistical frame-
work in Section 2.1. These include date-time of admission, an analysis indicator variable
for whether ICU was employed, a date-time of ICU admission, date-time of ICU discharge,
and a date-time of hospitalization discharge, along with an indicator as to whether that dis-
charge was a live discharge or represented in-hospital death. Vent occurrence and date-times
were handled similarly to ICU date-times. Here, the primary goal of the data organization
was to configure the data as closely as possible to map onto event times described in Sec-
tion 2.1, namely t0, tICU, tVent, tDisch, and tCens, along with DICU, DVent, and DDisch, from
which DDisch|ICU can also be computed. Four primary hospitalization event endpoints were
considered in the analyses presented here, which include both the estimated probability of
each event occurring and features of the times to those events, conditional on such events
occurring. These include:

• ICU use (DICU = 1) and time to ICU from admission, tICU − t0.

• discharge without (bypassing) ICU (DICU = 2) and time to discharge from admission
given this event, tDisch − t0.

• given ICU use, live discharge (DDisch|ICU = 1) and, given such, time to discharge from
ICU admission, tDisch − tICU.

• given ICU use, in-hospital mortality (DDisch|ICU = 2) and, given such, time to death
from ICU admission, tDisch − tICU.

Survival analyses were all performed in Stata (StataCorp, 2019).

3.3 Results

The data comprise hospitalizations on 766 girls/women and 872 boys/men (representing
biological sex), with the following age distribution:
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0–4 5–17 18–49 50–64 65+ Total
14 41 603 480 500 1638

Of the 1,638 admissions, 518 of those patients were also admitted to ICU, with 43 still
in hospital but not in ICU at time of administrative censoring of data. Figure 1 presents
cumulative admissions to the system for COVID-19 by date.

Tables 1 and 2, and Figure 2, present the probability of using (Table 2) or not using (Table 1)
the ICU, along with features of the time to either ICU admission or hospital discharge given
ICU use or not. As stated earlier, these parameters were chosen to support needed inputs
to mathematical epidemic modeling of the local pandemic and pandemic response. Figure 2
presents the CIF’s for both entry into the ICU (red) and discharge from hospital bypassing
ICU (blue). As can be seen, a very high proportion of ICU users are admitted to ICU
essentially upon admission to hospital, but some are delayed or a day or two. Nevertheless,
almost all users are admitted by about Day 5. Discharge without ICU use happens more
gradually, with more than 90% of those being discharged, doing so by about Day 10. Note
that the red and blue curves plateau at the estimated probability of either using ICU (0.32)
or bypassing it (0.68).

We also present results by patient age and by calendar time-window in Tables 1 and 2.
Without repeating the entire tables, main patterns are as follows: Probability of using ICU
increases with age and decreases with calendar time. Time in hospital for non-ICU users
increases with age.

Because focus here is on the methodological approach, we would like to point out how
calendar time and patient age were handled differently. For calendar time, we stratified the
data into 4 time periods based on admission date-time, and performed estimation on each
period separately. For age, we fitted a Fine and Gray (1999) proportional hazards model for
the sub-distribution hazard, and then extracted the fitted CIF at each of the three ages.

Tables 3 and 4 and Figure 3 present results only for those patients who are admitted to
ICU. Times are time since ICU admission. From the red CIF in Figure 3, it can be seen
that about 22% of COVID-19 patients who enter ICU die in the hospital, with a very high
proportion of those dying by about 30 days. Probability of in-hospital mortality is strongly
related to age, but time to death is very similar for all ages. For those who survive, length of
stay is longer for older patients. Differential results by calendar time, given ICU admission,
were not of interest for local mathematical epidemic models, so we did not generate results
stratified by time.

4 Discussion

Owing to the fact that separate models are fitted for each CIF, probabilities do not always
sum to 1.0. We see this in the age-specific estimation in Tables 3 and 4. There is nothing
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forcing the two models for the age effects to be harmonized. This is an area for further
investigation.

We used stratification to model the effect of calendar time, and regression to model that
of age. The former is likely somewhat statistically inefficient, while the latter could be
subject to bias if the effect of age is not linear on the log-hazard scale and/or the reference
hazard function does not hold across the entire age range. A compromise approach would
be to model age in the regression part of the model more flexibly, possibly using indicator
variables for different ranges, while still maintaining the proportional hazards assumption
(i.e., still assuming that that all the age strata share a common reference hazard function).

A related issue is the subtle interpretation of the proportional sub-distribution hazards
model (4). We believe we have now located a more interpretable model for the effect of
predictors and covariates based on the logistic transformation (Eriksson et al., 2015), which
yields parameters on the traditional log-odds scale. This will be exploited and illustrated in
future reports.
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Table 1: Probability of bypassing ICU and time to hospital discharge given no ICU. Cohort
of COVID-19 hospitalized patients, single multi-hospital system, Austin, TX. Admits from
19 March through 08 August, 2020.

Time to Discharge (d)
Pr q25 q50 mean q75

All .68 1.9 3.2 4.4 5.8
Age-specific (y) 35 .78 1.9 3.0 4.2 5.4

55 .68 2.0 3.2 4.5 5.9
70 .61 2.0 3.5 4.7 6.1

Time-specific 3/19-5/20 .55 1.7 2.9 4.3 5.4
5/21-6/25 .64 1.8 2.9 4.1 5.2
6/26-7/17 .71 2.1 3.4 4.5 5.9
7/18-8/09 .74 1.9 3.0 4.4 5.7

qX=quantile at X%. All: All ages and times.
See text for age method. Regression on age does not

force Tables 1 and 2 probabilities to sum to 1.0.

Table 2: Probability of ICU admission and time to ICU admission given ICU admission.
Cohort of COVID-19 hospitalized patients, single multi-hospital system, Austin, TX. Admits
from 19 March through 08 August, 2020.

Time to ICU Admit (d)
Pr q25 q50 mean q75

All .32 .11 .22 1.3 1.6
Age-specific (y) 35 .26 .11 .23 1.3 1.7

55 .32 .11 .22 1.3 1.6
70 .36 .10 .21 1.2 1.6

Time-specific 3/19-5/20 .45 .13 .19 .76 .76
5/21-6/25 .35 .12 .23 1.0 1.1
6/26-7/17 .28 0 .22 1.5 2.0
7/18-8/09 .24 .07 .24 1.8 2.3

p1=proportion in ICU by 1d.
qX=quantile at X%.
All: All ages and times.
See text for age and time methods.

Note: Additional parameters estimated for the entire cohort include the proportion being
admitted to ICU within the first day: 0.68; and the time to admission given admission is
>1d: 2.9d.
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Table 3: Probability of live hospital discharge and time from ICU admission to hospital
discharge, given ICU admission ending in live discharge. Cohort of COVID-19 hospitalized
patients, single multi-hospital system, Austin, TX. Admits from 19 March through 08 Au-
gust, 2020.

Time to Discharge (d)
Pr q25 q50 mean q75

All .78 5.8 10.8 17 23
Age-specific (y) 35 .91 5.0 9.1 14 17

55 .80 6.0 11 17 24
70 .70 6.7 12 19 28

qX=quantile at X%. All: All ages.
See text for age method. Regression on age does not

force Tables 3 and 4 probabilities to sum to 1.0.

Table 4: Probability of in-hospital death and time from ICU admission to death, given ICU
admission ending in in-hospital death. Cohort of COVID-19 hospitalized patients, single
multi-hospital system, Austin, TX. Admits from 19 March through 08 August, 2020.

Time to Death (d)
Pr q25 q50 mean q75

All .22 4.6 10 12 19
Age-specific (y) 35 .06 5.0 11 13 21

55 .16 4.9 11 13 19
70 .31 4.8 10 13 19

qX=quantile at X%. All: All ages.
See text for age method.
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Figure 1: Cumulative system admissions by time. Cohort of COVID-19 hospitalized pa-
tients, single multi-hospital system, Austin, TX. Admits from 19 March through 08 August,
2020.

8/17/20, 7)44 PM

Page 5 of 20file:///Users/pjr822/Box/Datasets%20Rathouz/setonPtExp_LMgroup_200810-1.html

            Swing Bed |         0          1          0 |         1 
              Unknown |         0          8          0 |         8 
----------------------+---------------------------------+----------
                Total |       113      1,401        124 |     1,638 

Note: In subsequent analyses, we use the 3-level discharge status summary.

Patient admissions over time

Cumulative total admissions by date for all patients within the scope of our data.

Age distribution by admission date

Cross tab of age category by week; the weeks are 7 days long starting March 19

+-------------------+
| Key               |
|-------------------|
|     frequency     |
| column percentage |
+-------------------+

           |                        weekNum
    agecat |     21993      22000      22007      22014      22021 |     Total
-----------+-------------------------------------------------------+----------
       0-4 |         0          0          0          0          0 |        13 
           |      0.00       0.00       0.00       0.00       0.00 |      0.81 
-----------+-------------------------------------------------------+----------
      5-17 |         0          0          0          0          0 |        40 
           |      0.00       0.00       0.00       0.00       0.00 |      2.50 
-----------+-------------------------------------------------------+----------
     18-49 |         6         10          7         11          8 |       593 
           |     60.00      41.67      22.58      36.67      36.36 |     37.02 
-----------+-------------------------------------------------------+----------
     50-64 |         3          9         13          9          8 |       471 

Figure 2: Estimated cumulative incidence functions for discharge without ICU use and for
admission to ICU. Cohort of COVID-19 hospitalized patients, single multi-hospital system,
Austin, TX. Admits from 19 March through 08 August, 2020.

8/17/20, 7)44 PM
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Hospitalization experience: ICU vs Live Discharge

Overall time in hospital up to ICU admission: There are 1638 admits to hospital, of whom 1595 are either
discharged or go to ICU (the remainder are censored). The 25th, 50th and 75th percentiles of time to ICU or
in hospital for this sub-group are 1, 2 and 5 days,respectively. Cumulative incidence functions for non-ICU
discharges and ICU admits plotted along with the KM estimate for time from admission to either ICU admit
or hospital discharge are plotted below. We estimate that .32 of this population go into ICU.

ICU information by age group

           |            icuOn_ind
    agecat |   At risk     Occurs  Censored  |     Total
-----------+---------------------------------+----------
       0-4 |         0          1         13 |        14 
      5-17 |         0         10         31 |        41 
     18-49 |        12        138        453 |       603 
     50-64 |        10        183        287 |       480 
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Figure 3: Among patients admitted to ICU, estimated cumulative incidence functions for
time from ICU admission to either live discharge or in-hospital death. Cohort of COVID-
19 hospitalized patients, single multi-hospital system, Austin, TX. Admits from 19 March
through 08 August, 2020.

8/17/20, 7)44 PM
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    .11133102  .22030093  1.6351267
  Given event, mean time to event:
    1.2731533
 
Results for high risk = 1:
Skipping ICU:
  Proportion with event:
    .66612917
  Given event, 25th, 50th, 75th percentiles of time to event:
    1.9434225  3.2087011  5.8508274
  Given event, mean time to event:
    4.488975
Going into ICU:
  Proportion with event:
    .33329865
  Given event, 25th, 50th, 75th percentiles of time to event:
    .09991898  .21563657  1.5817245
  Given event, mean time to event:
    1.2416102

Hospitalization experience: ICU patients only

Overall time in hospital after a patient has been placed into ICU care: There are 518 admits to hospital who
eventually use the ICU, of whom 448 are discharged, including both live discharges and deaths (the
remainder are censored). The 25th, 50th and 75th percentiles of time in hospital for this sub-group are 6, 11
and 22 days,respectively. Cumulative incidence functions for live discharges and deaths plotted along with
the KM estimate for time from ICU admit to hospital discharge are plotted below. We estimate that .22 of this
population die in hospital.

Among ICU admits, fraction surviving and distribution of time to hospital discharge

  Proportion with event:
    .77579063
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