
A Secure Password Manager Governance

Framework for Web User Authentication

Ali Cherry

Master of Science by Research

University of York

Computer Science

April 2024

Abstract

Existing password management frameworks fall short of providing adequate func-
tionality and mitigation strategies against prominent attacks. Unfortunately, the
architecture of these frameworks is not aligned with the distributed nature of web
applications and is vulnerable to credential theft attacks by network-side, e.g. TLS
Proxy in the Middle (TPitM), or front-end, e.g. cross-site scripting (XSS), eaves-
dropping adversaries. Browser-side frameworks, HTML Autofill and Credential
Management API, are inherently vulnerable to XSS-credential theft. ByPass, a
manager-to-server paradigm, is inherently vulnerable to TPitM-credential theft.
Furthermore, all of the aforementioned frameworks employ an inaccurate app-to-
credential mapping strategy, domain-based credential mapping, and might inadver-
tently divulge user’s credentials to unintended (e.g. deceitful) web applications.
We propose Berytus, a novel browser-based governance framework that medi-

ates between web applications and password managers to orchestrate secure and
programmable authentication sessions. It is positioned between the web applica-
tion and the password manager, operating natively in the browser, and providing
an API for each party. Berytus harmonises multiple password manager usage by
requiring available password managers to register with it. Present frameworks do
not couple specialised security facilities with their approach, rather their creden-
tial transfer security depends on the application of standardised security measures
in the web/browser landscape to mitigate against prominent attack vectors, e.g.
Content Security Policy for XSS mitigation. Conversely, the Berytus architecture
equips web applications with certified app-specific cryptographic keys to streamline
an authenticated and accurate app-to-credential mapping strategy. Furthermore,
Berytus mediates an authenticated key exchange between the web application and
the password manager to achieve app-level end-to-end encryption of credentials,
which as we show, can streamline a confidential credential transfer communication
that is immune to credential theft attacks via phishing, XSS, malicious browser
extension code injection and TPitM.
To assess the feasibility of Berytus, we extend Firefox to incorporate Berytus

and develop Secret*, a Berytus-compatible password manager for programmable
authentication and registration sessions. We make our code artefacts publicly avail-
able, provide a comprehensive security and functionality evaluation and discuss
possible future directions.

III

Acknowledgements

Over the course of the research programme, my supervisors Dr Siamak Shahan-
dashti and Dr Konstantinos Barmpis played an instrumental role in my research
and personal journey. I give my utmost thanks to them as shepherds, providing
me with needed guidance and scrutiny, but more important, for their friendship.
Completing this research programme has brought immense satisfaction; it fulfilled
my pursuit of exploring and contributing to my area of interest. Moreover, the City
of York’s natural and medieval scenes were a pleasure to the soul. I have worked in
between gardens, pastures, rivers and bridges for which I am grateful. Colleagues,
friends from York, thank you for the wonderful moments of joy and laughter. Spe-
cial thanks to my abiding companions for their camaraderie in all circumstances.
Above all, this work is a tribute to my Lord and my God, Jesus Christ; thank you.

V

Declaration

I declare that this thesis is a presentation of original work and I am the sole author.
This work has not previously been presented for a degree or other qualification at
this University or elsewhere. All sources are acknowledged as references. Part of this
work is accepted and is due to appear at the proceedings of the 2024 International
Conference on Information and Communications Security [36].

VII

Table of Contents

1. Introduction 1

1.1. Motivation . 2

1.2. Research question and objectives . 2

1.3. Contribution . 3

2. Web authentication 5

2.1. Problem overview . 5

2.2. Alternative authentication schemes 6

2.3. Multi-factor authentication . 7

2.4. Secret manager-assisted web user authentication 7

2.4.1. HTML Autofill . 7

2.4.2. Credential Management API 10

2.4.3. ByPass . 11

2.4.4. Domain-based credential mapping 12

2.4.5. Interaction problems . 13

2.5. Relevant security risks . 14

2.6. Inconsistent security of secret managers 16

2.7. Synthesis . 17

3. Proposed governance framework 20

3.1. Methodology . 20

3.2. Architectural overview . 24

3.2.1. Ingredient technologies . 24

3.2.2. Components . 24

3.2.3. Routines . 25

3.2.4. Facilities . 29

3.3. Design and implementation . 31

3.3.1. Pillars . 31

3.3.2. Operations . 32

3.3.3. Implementation . 39

3.3.4. A minimal working example 43

4. Evaluation 47

4.1. Security evaluation . 47

4.1.1. Security benefits . 47

4.1.2. Attack targets . 50

4.1.3. Attack area . 50

VIII

4.1.4. Attack payload . 51
4.1.5. Attack modes . 51
4.1.6. Attack vectors . 51
4.1.7. Attack instances . 52
4.1.8. Security comparison . 57

4.2. Functionality evaluation . 58
4.2.1. Functional compatibility . 58
4.2.2. Integration effort . 61

5. Discussion and conclusions 69
5.1. Validation . 69
5.2. Limitations . 70
5.3. Further work . 71
5.4. Amplified potential of secret managers 72
5.5. Concluding remarks . 73

References 75

A. Code samples 80

B. Sequence diagrams 83

IX

List of Tables

2.1. Comparison of provided capabilities in proposed frameworks. 18

3.1. Overview of supported account fields in Berytus. 34

4.1. Comparison of supported security policies and services. 50
4.2. Attack mitigation strategy matrix for credential theft attacks. . . . 53
4.3. Comparison of provided functional capabilities. 60
4.4. Comparison of implicated integration domains across frameworks. . 67

X

List of Figures

2.1. Architecture of secret manager-assisted authentication frameworks. . 8
2.2. Illustration of the HTML Autofill execution process on a web page. 9
2.3. Illustration of the Cred. Mgmt. API password transfer process. . . 10

3.1. Illustration of the Berytus communication model and components. . 25
3.2. Illustration of the Berytus web application authentication process. . 26
3.3. An instance of the Berytus secret manager selection prompt. 27
3.4. Sequence diagram of the Berytus channel creation process. 28
3.5. Illustration of the Berytus app-level E2E encryption pathway. . . . 30
3.6. Sequence diagram of the Berytus login operation initiation process. 32
3.7. An instance of the Secret* login operation approval prompt. 33
3.8. Berytus Web API: Auth. and Registr. operations class diagrams. . 37
3.9. Illustration of the request handler isolation process in the Liaison. . 39
3.10. Overview of component interactions during manager registration. . 41
3.11. Overview of component interactions during channel creation. 42

4.1. Illustration of a front-end adversary eavesdropper. 49
4.2. Illustration of an external middleware service model to achieve E2EE. 66

B.1. Sequence diagram of the Berytus Auth. challenge initiation process. 83
B.2. Sequence diagram of the Berytus Auth. challenge messaging pattern. 84

XI

1. Introduction

Decades after the introduction of passwords into computer systems, and after many
proposals to replace password authentication [5], passwords remain the dominant
authentication scheme despite its (inherent) poor security properties. On the web,
insecure communication channels, database breaches and password reuse exacer-
bate the threat of account break-ins when password authentication is used. A
cryptographic authentication alternative to passwords, e.g. digital signatures, can
significantly mitigate against such attacks. However, shifting towards such alterna-
tive strategy requires a behavioural and technical cost. First, in the case of digital
signature-based authentication, users have to digitally hold the necessary crypto-
graphic material to compute signatures; e.g., the material can be stored on a flash
drive. Second, the system’s existing authentication subsystem has to be amended
to replace password authentication with the desired authentication scheme. This
implies that the replacement cost is incurred on each existing system or web applica-
tion to replace passwords with a cryptographic alternative. Therefore, considering
the size and complexity of the web infrastructure, with web applications having
invested in passwords as the de facto authentication scheme, replacement in the
short term appears improbable. Accordingly, to solve the password problem, the
preliminary question is materialised as: what kind of scheme or strategy would
increase password (credential) security while incurring minimal cost?

A practical solution is to use a software tool that composes a unique and strong
password for each web application; (1) eliminating password reuse which defends
against online database leaks. And that stores the composed passwords; (2) elim-
inating the cognitive burden of memorising passwords. These tools are known as
password managers and they can operate as standalone applications or can be in-
tegrated into the browser where it acts as an agent which automatically populates
input fields with the stored credentials. Most important, the password manager,
being a client-side only solution, does not require any active cooperation from the
web application. This results in a minimal technical cost for the web application
while the user benefits from increased security and convenience. Evidently, the user
has to install this tool on his machine. However, modern browsers have a built-
in password manager which facilitates the integration without any further effort
from the user. Software-based credential management through password managers
enhances users’ security, for passwords or other credentials. Therefore, due to its
minimal cost and its practicality, it can be considered as one of the most promising
strategies to tackle insecure password behaviour effectively. Consequentially, with
software-based credential management, password managers act as agents on behalf
of users, assisting and guiding them during authentication, ensuring the avoidance

1

of common pitfalls, e.g. password reuse, where possible, and alleviating associated
burdens, e.g. digitally holding cryptographic material.

Unfortunately, while the premise of password managers is sound, in practice this
strategy has its own shortcomings due to the nature of how it operates — for good
reasons. Occasionally, as we will see later, password managers behave inaccurately,
potentially causing usability and security issues. We consider three existing ap-
proaches for secret manager-assisted web user authentication: HTML Autofill [38],
the Credential Management API [26] and ByPass [29]. Briefly, all three existing
frameworks for facilitating password manager and web app communications have
shortcomings. HTML Autofill piggybacks on insufficiently expressive markup lan-
guage; ByPass is not compatible with established user mental models and takes
away the control of user experience from web app developers; and Credential Man-
agement API is only available to built-in password managers and, similar to the
aforementioned frameworks, is prone to inadvertently divulge user credentials to
unintended web applications due to inaccurate credential suggestion approaches.

1.1. Motivation

The adoption of password managers is still primitive [17, 19, 24]. The low adoption
rate of password managers implies that the average user might resort to insecure
password behaviour — resulting in low account security. Previous studies identified
factors hindering or motivating the adoption of password managers [17, 19, 24, 33,
25, 34]. Findings included psychological and sociological factors (e.g. relinquishing
control), contextual factors (usefulness) and password manager behaviour & avail-
ability. In Oesch et al.’s study [34], participants avoided using generated passwords
in fear of having trouble inputting them in environments where the password man-
ager is not installed, e.g. a SmartTV. Therefore, password manager behaviour &
availability is a crucial factor for successful adoption and effective use of password
managers [34].

Password manager behaviour is influenced by the underlying technologies and
standards present in the web user authentication space. Its availability is a byprod-
uct of the framework in which it operates. The assumed framework’s architectural
decisions impact the feasibility of integration and determine where the password
manager can be made available. In spite of the existing password manager frame-
works being insufficient, we believe that an augmented and open framework, not
only can fill the existing gaps, but also can boost password managers to provide
highly valuable functionality; thereby empowering end-users and attracting non-
users.

1.2. Research question and objectives

We refer to password managers as secret managers due to their capability of stor-
ing various types of credentials and not just passwords. Secret managers have been

2

implemented as web-only services and stand-alone applications, but unless other-
wise specified, in this thesis we focus on in-browser secret managers. In light of
the existing gaps, we clearly recognise the dissonance and incomplete integration
(across the board) between web applications and secret managers when undertaking
authentication. Therefore, we ask, considering the factors in this landscape:

RQ: Can we harmonise the interactions between web applications and secret man-
agers to undertake programmable authentication sessions without degrading
usability, while ensuring strong security measures and correct behaviour in a
practical manner?

Based on this research question, we unravel the following research objectives:

• Placing a mediator. Secret managers and web applications are currently in
dissonance. As a preliminary step, we aim to establish a mediator between the
two, allowing them to communicate with each other through the mediator.
The mediator should handle the co-existence of multiple secret managers,
including built-in and embedded secret managers (i.e. extensions).

• Defining a mutual agreement contract. There are challenging instances
that are faced by the web application and the secret manager, e.g., agree-
ing on an appropriate credential suggestion strategy or how credentials are
transferred. Lack of agreement causes dissonance between the web app and
the secret manager. We aim to streamline a purposely built agreement spec-
ification, taking into consideration the challenging instances, enabling both
parties to work together in harmony.

1.3. Contribution

To answer the research question, we propose Berytus, a web governance frame-
work that mediates between web applications and secret managers to orchestrate
programmable registration and authentication sessions. It is positioned between
the web application front-end and the secret manager client, operating natively
in the browser. By establishing browser-based governance, Berytus ensures strong
security policies (e.g. HTTPS only) and correct behaviour across various, poten-
tially insecure implementations of secret managers [13, 28, 10]. Berytus achieves
the best of all worlds: it provides specialised and extendable APIs, it is available
to all browser-based secret managers, whether they are native or extensions, and
preserves the established modus operandi for users and control over user experience
by developers.

We instantiate our framework by extending the Mozilla Firefox browser and
implement two APIs, a WebExtensions API for secret managers and a Web API
for web applications. We develop Secret* (secret-star), a Berytus-compatible secret
manager. We deploy an example web application at https://github.com/ali

3

https://github.com/alichry/berytus
https://github.com/alichry/berytus

chry/berytus where a programmable authentication session can be undertaken
through a Berytus-compatible secret manager.
We provide comprehensive security and functionality evaluations and demon-

strate that several crucial security protections and functionalities that cannot be
or are not provided by existing solutions, can be provided by Berytus, including
protection against credential theft attacks, as well as support for account structure
design and for interactive challenge-based authentication schemes. The following
usability enhancement and security services are the main outcomes of streamlining
Berytus:

• Unified secret management (platform-agnostic) — Secret manager
extensions can now directly register with the browser using the platform-
agnostic web extensions API, addressing the usability challenge of multiple
manager usage [34, 16] through the use of secret manager selection prompts.
A web (platform-agnostic) framework paves the way towards standardisation
across different environments, regardless of the running operating system.

• Key-based credential mapping — Berytus supports web application au-
thentication against a certified public key. Consequently, web applications can
assume ownership of cryptographic public keys, serving as application identi-
fiers and, thus, replacing the troublesome domain-based credential mapping
strategy [27, 32, 31, 6]. In particular, this solves two main issues. First,
co-existence of distinct web applications under the same domain. Second, co-
existence of the same web application under distinct domains. Both of these
issues increase the risk of phishing which is now mitigated with key-based
credential mapping.

• App-level end-to-end encryption (App-level E2EE) — Berytus medi-
ates mutually authenticated key exchange mechanisms such as authenticated
Diffie—Hellman, enabling app-level end-to-end encryption between web app
backends and secret managers, using the frontend as the medium, for confiden-
tial credential transfer. App-level E2EE provides effective protection against
credential theft via code injection attacks (e.g., through cross-site scripting
[15, 13, 28] or through malicious browser extensions) and TLS proxy in the
middle attacks.

The remainder of this thesis is structured as follows: Chapter 2 introduces the
password problem, covering alternative authentication schemes, secret manager-
assisted web user authentication frameworks and the security of secret managers.
Chapter 3 presents our contribution, Berytus, and unravels its methodology, ar-
chitecture, design and implementation. Chapter 4 carries out the evaluation of
Berytus, tackling its security and functionality aspects. Chapter 5 offers a discus-
sion on the validity of Berytus, limitations, recommendations for future work and
concluding remarks.

4

https://github.com/alichry/berytus
https://github.com/alichry/berytus
https://github.com/alichry/berytus

2. Web authentication

2.1. Problem overview

A typical web user is required to maintain many passwords for her online accounts,
a task that requires unreasonable cognitive burden. Secret managers are widely rec-
ommended by the experts to relieve users of such burden, and if designed well, bring
extra security and usability benefits through the use of strong passwords and auto-
matically completing login forms on behalf of the user, respectively. In summary,
they assist users, often in an automated manner, during account authentication.
HTML Autofill [38] is the primary approach for secret manager-assisted user au-

thentication on the web. Here, the web application declaratively signals, via HTML
attributes, whether an input field can be automatically populated on behalf of the
user, and if so, what type of information is expected, e.g. a password or an email
address. The (in-browser) secret manager can then offer secrets on behalf of the
user to automatically populate the field. In some circumstances, the secret manager
has to rely on opinionated heuristics in absence of any explicit signals, causing them
to stumble — occasionally. Furthermore, the HTML standard is neither sufficiently
rich nor adequately expressive to be able to support nuanced and complex login
mechanisms such as multi-step authentication (e.g., Secure Remote Password [1]).
With the dawn of single page applications, logins are no longer necessarily tied to
traditional HTML form submissions [40] but also harnessed through the JavaScript
Fetch API [43]. This made autofill-able input field detection more difficult, requiring
additional (fallible) heuristics.
The Credential Management API [26] can be seen as a solution in this regard;

it does not necessitate field detection as it is the case in HTML Autofill. The API
is a W3C Working Draft that provides a simple mechanism to store and retrieve
user credentials (e.g., passwords). Using JavaScript, the web application can cap-
ture the username and password inputs, even when the input fields are not under a
parent HTML element, and invoke the Credential Management API to store them.
However, Credential Management API is only available to the so-called native user
agent, i.e. the browser and its native compartments such as the native secret man-
ager, as opposed to extensions. Hence, the API cannot be used to store and retrieve
credentials into and from secret manager extensions.
In 2020, Stobert et al. proposed a remodelled password manager, ByPass, where

it communicates directly with the web application’s back-end through a bespoke
API [29]. Such direct programmatic communication not only all but eliminates
issues caused by misinterpretation, but means that ByPass is able to provide en-
hanced services such as account deletion and password renewal. Furthermore, since

5

passwords are directly communicated with the back-end, they are not susceptible to
theft through front-end threats such as cross-site scripting and clipboard vulnera-
bilities. Despite all its benefits, ByPass requires both users and web app developers
to buy into a major paradigm shift. Rather than assisting users in authenticating
themselves when interacting with a web app, ByPass users need to launch their
secret manager and request that it log them into their desired web app. This re-
quires a change of the users’ established mental models in interacting with web
apps. Furthermore, as the login user interface is mandated to be that of ByPass,
it takes away the control over the login user experience that web app developers
relish today.

All three existing frameworks for facilitating secret manager and web app com-
munications for assisted authentication have shortcomings. In this chapter, we will
unpack the state of the art, discussing the existing frameworks in greater detail and
reviewing password alternatives. Ultimately, by highlighting the gaps in this space
and the persistence of the password challenge, we will demonstrate the need for an
augmented, secure and practical framework which addresses the gaps.

2.2. Alternative authentication schemes

Bonneau et al., motivated by the prevalence of passwords as the dominant au-
thentication scheme, evaluated 35 other authentication schemes [5]. Despite pro-
posal of various authentication schemes improving security, e.g., hardware tokens,
passwords remain the go-to authentication scheme for newly crafted websites [5].
Clearly, the proposed alternative authentication schemes were not massively picked
up to replace password authentication, despite some having superior security over
passwords — a desirable measure reflecting the safety of digital accounts. Bonneau
et al. consider deployability benefits of each proposed authentication scheme in their
comparison [5]. Poor deployability might explain why some authentication schemes
were not adopted.

“Server-Compatible”, the forward compatibility of a text-based (password) au-
thentication back-end system with alternative authentication schemes, is one of the
deployability benefits that the majority of considered authentication schemes do
not satisfy [5]. Hence, authentication schemes lacking Bonneau et al.’s contextu-
alised server compatibility benefit incur additional effort or technical cost on web
application developers to implement the necessary architectural changes into their
existing (password-based) authentication system.

Secret managers provide all of the deployability benefits of passwords except for
the Browser-Compatible benefit [5]; users are required to install their preferred se-
cret manager on their own browsers. Nonetheless, secret manager-assisted password
authentication is relatively easy to deploy and performs better in terms of security
benefits when compared to user-entered password authentication (e.g., protection
against phishing and password leaks) [5]. Note, here secret managers were evalu-
ated assuming they employ HTML Autofill [5] which is a client-side only approach.

6

An approach other than HTML Autofill might require web application back-end
changes, making it lack the Server-Compatible deployability benefit. On a final
note, the authors do not consider websites’ front-end compatibility, i.e. no client-
side changes needed, as a deployability factor. Perhaps it is reasonable to assume
that at a minimum, some sort of front-end modifications are needed to incorporate
any authentication scheme.

In summary, we cultivate that the secret manager/HTML Autofill scheme has
the highest deployability score and among one of the few that offer the Server-
Compatible benefit [5]. Therefore, we highlight the value of the secret manager
client-side scheme as an effective, practical strategy to increase users’ password
security on the web.

2.3. Multi-factor authentication

Password reuse and compromised passwords are major security threats. Due to the
severity of such threats and the increasing risks of online database breaches and
sophisticated password theft attacks, web applications have introduced multi-factor
authentication. It adds another layer of security on top of passwords where the user
is expected to provide, for example, a one-time code sent to his email address to
proceed with the authentication. Hence, in such instances, an adversary would
require access to the victim’s email address in addition to his password.

It is salient that multi-factor authentication is a net security positive in the
sense that it requires the adversary to attack additional domains which he might
not be successful at. However, while multi-factor authentication is an additional
security layer, it does not address the security and usability issues associated with
passwords. Therefore, we reaffirm the need of a practical scheme that directly
tackles insecure password behaviour, e.g., secret managers, instead of solely adding
additional defensive layers on top of weak or reusable passwords.

2.4. Secret manager-assisted web user authentication

This section offers greater detail into the state of the art in existing technologies
governing the interaction between secret managers and web apps for assisted web
user authentication and registration. We discuss HTML Autofill, Credential Man-
agement API, and ByPass as major frameworks for secret manager-assisted web
user authentication. Figure 2.1 outlines how these major frameworks are orches-
trated from a high-level point of view and the necessary software modules (if any)
to implement for a base (minimal) integration.

2.4.1. HTML Autofill

HTML Autofill is the process in which HTML input fields are filled by the browser
(technically the user agent) with relevant data (e.g., personal information and se-

7

Figure 2.1.: Overview of HTML Autofill, Credential Management API, ByPass and
Berytus architectures.

crets) on behalf of the user. Generally, the filled data would have been captured
and saved by the user agent during an earlier web browsing session, or may be
generated on the fly (e.g., a random password). Currently, built-in secret managers
(i.e. native secret managers) and embedded secret managers (i.e. web extensions
installed on the browser) are specialised agents to compose, store and fill passwords
on behalf of their users through HTML Autofill. Figure 2.2 shows how a secret
manager populates input fields with autofill-able data which could be a password
value. By delegating the responsibility of managing passwords to secret managers
implementing the HTML Autofill functionality, users benefit from additional secu-
rity measures and enhanced usability. Strong passwords are generated by secret
managers, instead of relying on the user’s potentially weak password composition
strategy, and only filled (exposed) on web pages if it has the same origin (domain
name) of when it was saved. The former ensures secure password behaviour and
relieves the user from the cognitive burden. The latter combats origin-based phish-
ing attempts. Ultimately, end-users enjoy the added convenience of expedited login
experiences without being concerned about security.

Web apps can support the filling process by integrating the HTML autocomplete
attribute into relevant input fields [38]. This aspect of the HTML Standard might
not be implemented for some login forms, leaving secret managers to the use of
ad hoc heuristics for input field classification. Hence, at a minimum, no client-
side web application code changes are needed for HTML Autofill. This results
in great deployability [5] where this security and usability-enhancing functionality
could be realized on (potentially) any website. However, the absence of the auto-
complete attribute could lead to interaction problems between web apps and secret
managers [31], causing inconvenience for users. For example, in the absence of
the autocomplete attribute and other input “hints” (id, name, type) for the user-
name field, most tested secret managers were not able to fill the field with the
saved username value [31]. Therefore, while this paradigm is highly deployable, it is

8

Figure 2.2.: Illustration of the HTML Autofill incorporation and application process
executed on a web page by browser-based secret managers.

prone to behave incorrectly. On a final note, HTML Autofill is a forceful approach
— web applications cannot officially disable its behaviour. The HTML Standard
concurrently specifies a method for web apps to disable autofill (by setting the
autocomplete attribute to off) and a suggestion for user agents to ignore such
opting-out declaration at their own discretion [38].

Stajano et al., motivated by the presence of heuristics causing secret managers to
stumble, proposed Password-Manager Friendly (PMF), an additional set of HTML
semantic labels for reliable autofill behaviour [14]. Unlike the HTML Standard’s
autofill specification, PMF aids secret managers in detecting different form types
(login, registration, password reset and password change) and submission errors.
If web applications incorporate those additional semantics into their forms, secret
managers would no longer need to use fallible heuristics and, thus, secret managers
would behave correctly when performing HTML Autofill. PMF is a positive step
towards a more robust autofill behaviour where its semantics can be adopted into
the HTML Standard in a future version. However, autofill, whether with the PMF’s
semantic labels or not, is not designed for interactive authentication challenges.
An interactive authentication challenge, such as Secure Remote Password [1], is
a multi-step authentication challenge with a bi-directional data flow. While a bi-
directional data flow can be emulated using HTML by dynamically appending ad
hoc HTML elements (e.g., with data embedded as an attribute) by both the web
application and the secret manager in a sequential fashion, it is an anti-pattern;
that is not what a markup language is designed for. A more appropriate means
of communication between two software agents is through the introduction of a

9

Figure 2.3.: Illustration of the Credential Management API password transfer
(storage and retrieval) process between the web application and the
built-in browser credential storage.

specialised API. Furthermore, both specifications (the HTML Standard and PMF)
do not address the need for customisation, e.g., the definition of additional username
or password fields in the credential structure.

To summarise, the HTML Autofill standard [38] is limited, secret managers have
inconsistent filling behaviour [31, 34], and web apps might design arbitrary autofill-
incompatible authentication protocols that require an interactive bi-directional data
flow or credential structure customisation.

2.4.2. Credential Management API

As autofill was designed for user agents to aid users in sign-in forms, it became
difficult to detect sign-in ceremonies leveraging the Fetch API [26, 43]. With the use
of the JavaScript Fetch API, credential transfer over HTTP is no longer dispatched
through traditional HTML form submission. Username and password fields are no
longer necessarily siblings under an HTML form element (parent node), making it
troublesome for HTML Autofill heuristics to detect username and password fields
since they are now separated. As such, in this scenario, and depending on the
streamlined heuristics, secret managers might fail to fill and save passwords. Lastly,
user agents lacked support for federated sign-ins, and password change could be
further supported by requiring web apps to notify user agents when credentials has
been changed [26].

The Credential Management API was proposed to ensure correct credential man-
agement and to support users with federated sign-ins [26]. The API was published

10

in 2015 as a W3C Working Draft. Fundamentally, it offers a programming inter-
face for web apps to store and retrieve credentials into and from the user agent.
Using JavaScript, a web app can insert a password credential, constituted of a login
handle (username) and the user’s plaintext password, into the browser storage (see
Figure 2.3). When the user visits the web app in the future, it can retrieve the
password credential from the browser storage, programmatically, using JavaScript.

Credential Management API is purposely designed to be simple and extensible, it
abstracts away from authentication and solely focuses on credentials [26]. Moreover,
it supports credential change through the same storage mechanism.

Web Authentication (WebAuthn) [22] is an extension to the Credential Manage-
ment API that enables digital signature-based authentication by introducing a new
credential, public key credential. Currently, some secret manager extensions act as
third-party public key credential providers by intercepting the WebAuthn API [42].

Credential Management API is implemented in modern browsers and only allows
integration with the native secret manager and not pluggable secret managers (web
extensions). It does not offer password generation, nor does it provide identity
information. Moreover, just as it is the case with HTML Autofill, it does not offer
credential customisation to address the needs of non-conventional authentication
systems. For example, since credentials are independent, i.e. no two credentials can
be combined or grouped under a single account record, and each must represent the
sufficient authentication material of an account record, a web application requiring
a composite login handle (e.g., account id and username) or a composite secret
(e.g., two or more passwords) cannot achieve that through the API as the password
credential expects a single login handle and a single secret. Note, a web app can
circumvent this limitation by concatenating the identifiers and passwords to fit in
one password credential. However, that would be considered as an anti-pattern
since the API specification does not tackle such composition and expects identifiers
and passwords to be individually atomic. Alternatively, an API that explicitly
addresses such functional requirement is more appropriate.

While the Credential Management API is simple and extendable, it is insufficient
to be a practical authentication and registration framework. It is not designed
to cover the full domain of programmable authentication and registration sessions
(e.g., identity information, account status and verification), it is not geared towards
generic authentication subsystems where accounts could span several credentials
and, at the moment, password storage is exclusively tied with the built-in browser
secret manager.

2.4.3. ByPass

Motivated to address the usability issues of secret managers affecting adoption,
Stobert et al. proposed a re-imagined password management model where the secret
manager communicates directly with the web application’s back-end whilst ensuring
sound security measures [29]. As the secret manager directly interacts with the web
app’s back-end, front-end security vulnerabilities such as cross-site scripting (XSS)

11

are now mitigated. Note, since we could not find a public repository for the ByPass
API, we did not provide an illustration for one of its account-related operations
such as account login.

In ByPass, to log into a website, the user needs to open the secret manager’s
interface instead of navigating to the website. The user then searches for the website
they wish to visit within the secret manager and the manager handles the account
registration or authentication process depending on whether an account for the
website is already stored or not. Fundamentally, all account authentication related
operations such as password change or account deletion can also be carried out by
the manager and the user only needs to interact with the secret manager’s interface.

ByPass requires users to learn to interact with their browsers quite differently
from what they are used to when navigating the web. The secret manager basically
acts as an entry portal to all websites that support ByPass and the users need to ei-
ther remember or find out via trial and error whether a website’s back-end supports
ByPass. From the developer’s point of view, ByPass requires the implementation
of new server-side components and also takes away from the developers the control
they have over the design of login pages. Stobert et al. also recognise this practical
challenge of requiring a “buy-in” from users and website developers to adopt the
new, re-imagined password management model.

2.4.4. Domain-based credential mapping

When the user is faced with a login form, under HTML Autofill, the secret manager
suggests a list of registered credentials to populate the username and password fields
with. Secret managers often use the web page’s domain name (origin) as an index
key when suggesting credentials. I.e., the secret manager would search its database
for credentials associated with a particular domain name and the found credentials
are suggested to the user. This is called app-to-credential mapping, or simply,
credential mapping.

Currently, HTML Autofill, ByPass and the Credential Management API rely
on domain-based credential mapping; the domain name is used as an index key.
Domain-based credential mapping protects against salient cases of phishing. For
example, assume the user has a registered account under pizzajoint.co.uk (do-
main A). He stumbles upon a web application hosted at pizzeria.it (domain B)
where it asks him for his domain A credential to receive a discount. In this case,
the secret manager would not suggest filling his domain A credential since the do-
main names differ. Hence, assuming domain B is unaffiliated with domain A, the
secret manager would have protected the user from this phishing attack. However,
domain-based credential mapping can be inaccurate. Domain B could be in fact
a legitimate affiliate of domain A. This causes a usability issue in secret manager-
assisted authentication. The user has to circumvent this by manually instructing
the secret manager to populate the credential of domain A on domain B.

In more technical detail, the same web application’s authentication portal can be
deployed to several, distinct domains. Moreover, domain names can be recycled,

12

e.g., due to domain name expiration, which might lead to accidental credential leak-
age by secret managers. Conversely, distinct authentication portals can be deployed
to the same domain. For instance, consider a web forum hosting multiple, distinct
web applications under the same domain name. Under the forum’s domain, the
secret manager would suggest all registered credentials to all hosted applications.
Therefore, the secret manager would not be able to protect the user from phishing
web applications hosted in the forum.

We identify the three aforementioned troublesome instances for domain-based
credential mapping. First, unconnected (distinct) authentication portals can re-
side in the same domain. Second, the same authentication portal can reside in
multiple domains. Third, an authentication portal residing under one domain can
detach from it. These realisable instances clearly demonstrate the ineptitude of
domain-based credential mapping of serving as an accurate app-to-credential map-
ping strategy for the web. While it protects against potential cases of phishing,
it might hinder the usability of secret manager-assisted authentication and, worse,
might regress credentials security (e.g., by leaking credentials as a result of domain
recycling). The upside of domain-based credential mapping is that it does not re-
quire any supervision or involvement from web applications — the secret manager
assumes that credentials registered under a specific domain are to be suggested (e.g.,
under HTML Autofill) for any web page in the domain. To summarise, we can see
the practical benefit of domain-based credential mapping: a deployable credential
mapping strategy that functions fairly well in practice. However, its indeterminis-
tic security and usability outcomes underline another significant gap in the secret
manager-assisted authentication space. This raises a question on the possibility of
streamlining a more accurate credential mapping strategy that is indifferent to the
aforementioned instances. This is aligned with previous related work on the absence
of an appropriate web standard for “Using Credentials in Multiple Environments”
[31] (i.e. multiple domains).

2.4.5. Interaction problems

In Sections 2.4.1 and 2.4.4, we have referred to a few cases where secret managers,
under HTML Autofill, fail to detect input fields or fail to accurately suggest cre-
dentials; or more generally, fail to function correctly. In previous work, Huaman et
al. systematically identified 39 “interaction problems”, i.e. challenging instances,
between web applications and secret managers based on a collected set of user re-
views and GitHub issues linked to 30 secret managers [31]. In a challenging instance,
the user might be able to circumvent the problem through manual intervention to
achieve the desired secret management behaviour. For example, when the suggested
credentials are not relevant, the user can manually instruct the secret manager to
use a credential associated with a different domain. Other instances might be fatal,
user intervention does not lead to desired secret management behaviour, e.g., when
the generated password is bigger than the input field’s max-length [31]; forcing some
users to compose their own passwords.

13

More important, secret managers behave differently from one another. A chal-
lenging instance for one secret manager might be fatal for another. This unsettling
fact is problematic and has several complications. First, it introduces a new di-
mension when adopting a secret manager. Which secret manager would be the
most effective in handling these edge cases? For some users, awareness of this
fact might discourage them altogether from adopting a secret manager while oth-
ers might have to spend some effort in being diligent when choosing a preferred
secret manager. Second, each secret manager therefore implements HTML Autofill
in an opinionated way, making it difficult to compare HTML Autofill with other
approaches; which implementation of HTML Autofill are we comparing against?
The polymorphism of (potentially insecure [13, 28, 10] and unusable [31]) HTML
Autofill implementations clearly highlights the potential benefit of regulating se-
cret management behaviour to guarantee secure and predictable credential transfer
behaviour regardless of the secret manager implementation.

On a final note, the authors report problematic instances where web applica-
tions have used “obscure” JavaScript routines, e.g., manipulating user input using
JavaScript. Therefore, since web apps have the autonomy to implement arbitrary
front-end processing routines, regardless of its kind, a programmable approach to se-
cret manager-assisted authentication (e.g., the Credential Management API) would
be more interoperable than a declarative and forceful approach (e.g., HTML Aut-
ofill).

2.5. Relevant security risks

Cross-site scripting (XSS) and man-in-the-middle (MitM) attacks are typical web
attacks that can be used to steal a user’s credentials whether provided by the
secret manager or manually inputted by the user. A less common attack vector,
but has similar implications as XSS, is the use of a malicious browser extension
to inject JavaScript code. Fundamentally, all of those attack vectors are capable
of delivering a malicious HTML/JavaScript payload to steal the user’s credentials.
Apart from web attack vectors, clipboard vulnerabilities in the user’s environment
place an additional security risk when the credentials are copied to the clipboard;
e.g., copied due to interaction problems (Section 2.4.5) or when using standalone
secret managers.

Generally, XSS relies on vulnerable web applications that do not sanitise user
input, causing potentially malicious payload to traverse across the website to tar-
get users. Generally, the MitM attack relies on vulnerable network nodes that are
in between the website and the user which can be used to manipulate the web-
site’s HTML/JavaScript and inject potentially malicious payload. As it is widely
known, TLS protects against HTTP MitM. However, TLS Proxies [11] can be eas-
ily deployed in an IT-managed environment, e.g., in corporate offices, enabling an
adversary with access to the TLS Proxy to eavesdrop and manipulate the HTTPS
response payload without users’ awareness; we call this attack vector TLS Proxy

14

in the Middle (TPitM). Moreover, malicious browser extensions leverage the use
of privileged browser facilities to inject malicious scripts into a web page’s execu-
tion context. Lastly, for clipboard attacks, an adversary capable to run a software
process on the user’s machine (or with physical access to a locked machine [27]),
leverages any clipboard vulnerabilities or loose security measures in the user’s op-
erating system to steal the copied credentials. For example, in instances where a
secret manager cannot transfer the user’s credentials to the web application, the
user is forced to copy his credentials to the clipboard and paste them manually [7];
thereby exposing his credentials to adversaries with access to the clipboard. The
following strategies can be used to mitigate against the aforementioned JavaScript
code injection attack vectors (XSS and malicious browser extensions).

Content Security Policy. This is a standardised HTTP security policy, con-
veyed using HTTP headers or specified in the HTML meta tag. It is a preventive
mitigation strategy that aims to defend against cross-site scripting and adjacent
attack vectors. Through using Content Security Policy, web apps can specify re-
strictions on the sources from which the page code gets loaded. For instance, if the
policy default-src: ’self’ is in place, the execution of imported scripts will be
restricted to those that are loaded from the same origin, and all network requests
sent through the fetch directive [37] that are not destined to the website origin will
be aborted. Using such tight security policies may be too restrictive in some cases
where components of a web app may need to be imported from multiple origins
which are not fixed in advance, e.g., web apps that use third-party services such as
web analytics. Furthermore, Content Security Policy can only limit the execution
of imported or embedded (inline) scripts in cross-site scripting attacks but does not
prevent malicious browser extensions from injecting JavaScript code into the web
page.

Credential Tokenisation. This is a mitigation strategy, initially proposed by
Stock and Johns [15], where credentials are provided on the user interface (HTML
document) as tokens and substituted (detokenised) with the genuine credentials in
the dispatched HTTP request body using a search and replace algorithm. Tokenisa-
tion ensures that the credentials are not available in the clear to the front-end, and
by extension any front-end eavesdropping adversaries, including malicious browser
extensions1. In Stock and Johns’ [15] credential tokenisation approach, the secret
manager examines the HTTP request’s destination origin and the password param-
eter name in the application/x-www-form-urlencoded (URL-encoded) HTML
form. If the origin or parameter name does not match the ones stored in the secret
manager (which have been captured during registration), detokenisation does not
occur. Unfortunately, their approach is designed for HTML form submission and
is not compatible with asynchronous JavaScript data submission (e.g., using Fetch
API). Nonetheless, an alternative, theoretical approach for Credential Tokenisa-

1This implication is true in browsers where extensions cannot capture HTTP request payloads.

15

tion which supports HTML form submissions and the JavaScript Fetch API [43] is
sufficient to combat front-end adversaries from stealing the credentials, including
malicious browser extensions, assuming detokenisation exclusively occurs in HTTP
requests destined to endpoints owned by the legitimate web application.

2.6. Inconsistent security of secret managers

Oesch and Ruoti [28] re-evaluated previously studied and vulnerable secret man-
agers [10, 13, 15, 6]. Such vulnerable secret managers inadvertently expose cre-
dentials to adversaries leveraging cross-site scripting [13, 15], man-in-the-middle
attacks [13, 15] or specially crafted HTML-only email phishing forms [6]. In these
aforementioned attacks, the credentials are exposed following the autofill process.
The impact and effectiveness of these attacks is exacerbated when autofill is per-
formed automatically, without the user’s consent in absence of proper security mea-
sures [28, 13, 15, 6]. When combined with automatic autofill, injected cross-origin
iframes were abused to steal user’s credentials under targeted websites [28, 8, 13].
The embedded, potentially invisible, iframe loaded external web content containing
input fields of another domain (the targeted website, e.g., a bank). Consequently,
naive secret managers have automatically autofilled the user’s credentials into the
iframe for which the adversary stealthily stole.

Fortunately, secret managers have improved and adopted a stricter policy when
dealing with cross-origin iframes [28]. Generally, third-party browser-based secret
managers (extensions) do not autofill cross-origin iframes, or at least require user
consent in the case of native browser-based secret managers excluding Firefox [28].
Oesch and Ruoti [28] hunted for XSS-safe secret managers [15] (implementing the
credential tokenisation strategy discussed in Section 2.5) and unfortunately, no se-
cret manager implemented such defensive strategy. They justify the absence of such
XSS-safe secret managers by highlighting the limitation imposed by browsers, the
inability of extensions to manipulate the request body to replace the tokens with
the genuine passwords2 [28]. While it is a limitation in one sense, it is a security
measure in another sense. It prevents malicious browser extensions from eavesdrop-
ping and manipulating HTTP request payloads. Nonetheless, native browser-based
secret managers operating with higher privileges have not implemented it either;
perhaps because of the common understanding that websites expect a valid pass-
word instead of a token to feed into client-side routines, e.g., for the Secure Remote
Password protocol [35].

Overall, many of the reported vulnerabilities in previous works have been resolved
by third-party browser-based secret managers [32]. However, XSS remains a po-
tential threat along with shortage of security warnings from the secret manager on
the key URL or domain name discrepancies between previously encountered form
(from which the credentials were created) and the to-be-filled form (into which the

2When Stock and Johns’ XSS mitigation strategy was proposed, it was possible for Mozilla Firefox
extensions to replace tokens with the genuine credentials in the request body.

16

credentials are filled) [28] — the credential mapping strategy (see Section 2.4.4).
For the latter, and from a security point of view, the user should be warned of the
potential credential leakage as a result of loose credential mapping.
Having discussed the security of secret managers, their shortcomings due to weak

security measures and the persistence of the XSS threat over password security, we
make a noteworthy remark. While some secret managers have adopted a strong
security policy for HTML Autofill, there is no guarantee that every secret manager
would have strong security measures due to their autonomy over implementing
HTML Autofill in the way they see fit. Hence, this clearly highlights a security gap
which could be improved by introducing a browser routine that ensures strong secu-
rity policies are met before the delegation of credential transfer to secret managers
takes place.

2.7. Synthesis

Having covered the existing frameworks, we take a step back from the high-level
outcomes of each framework and notice that each assumed a design pathway. Re-
gardless of the means of communication, PMF and ByPass consider authentication
and registration ceremonies in their design, distinguishing between the two cere-
monies, while HTML Autofill and the Credential Management API abstract away
from account-related ceremonies and focus on credential storage and transmission.
This key architectural decision influences the functional outcomes of the streamlined
approach. A specialised API enables secret managers to complete account-related
operations on behalf of users (e.g., credential recovery). Conversely, a generalised
API, one that abstracts from operations and focuses on credentials, might limit
secret managers into credential creation without coupling the other steps in an op-
eration (e.g., querying for identity information and handling account status and
verification). ByPass is an instance of a specialised architecture capable of facil-
itating account-related operations such as account deletion. The downside of a
specialised API is that it increases complexity since web application developers
have to handle the operations and its stages. However, this added complexity is
justifiable as a specialised architecture enables secret managers to offer valuable
functionality to end-users, providing them with visibility over the type of operation
being held and with assistance on completing the operation, including its inner
steps.
Table 2.1 highlights the capability gaps in the existing frameworks for secret

manager-assisted authentication. Each of the following capability has security or
usability benefits.

• Consistent behaviour. The framework should not permit inconsistent
or unpredictable behaviour to occur; e.g., due to not defining or enforcing a
strict credential transfer specification, leaving secret managers to implement
it the way they see fit, including the implementations of fallible heuristics (see
Section 2.4.5).

17

Capability HTML Autofill Cred. Mgmt. ByPass

Consistent behaviour -
Integrates with web extensions -
Consistent security measures -
Safe from XSS-password theft - -
Safe from TPitM-password theft - - -
Secure credential mapping - - -
Supports stateful challenges - - -
Supports credential customisation - - -
Preserves web apps’ Auth UI -
Preserves users’ mental model -

= provides capability; - = lacks capability

Table 2.1.: Comparison of provided (notable) capabilities for a secure and practi-
cal secret manager-assisted user authentication framework in proposed
frameworks. Absence of a capability in a solution signals a significant
gap.

• Integrates with web extensions. The framework should officially support
third-party secret manager (web) extensions. A crucial feature that would
make the framework open and not exclusive to first-party (built-in) secret
managers (see Section 2.4.2).

• Consistent security measures. The framework should enforce a fixed
set of security measures prior to the delegation of credential transfer to the
secret manager (see Section 2.6).

• Safe from XSS-password theft. The framework should be immune to
password theft attacks via cross-site scripting (see Section 2.5).

• Safe from TPitM-password theft. The framework should be immune to
password theft attacks via TLS Proxy in the Middle (see Section 2.5).

• Secure credential mapping. The framework should enable a secure
app-to-credential mapping strategy for which the secret manager, under the
assumed credential mapping strategy, would not divulge the user’s credentials
to unintended parties (see Section 2.4.4).

• Supports stateful challenges. The framework should facilitate interactive
authentication challenges capable of maintaining states across the lifetime of
the challenge. The traditional password challenge is a stateless challenge
whereas a more sophisticated and secure challenge such as the Secure Remote
Password [1] protocol is a stateful challenge (see Section 2.4.1).

18

• Supports credential customisation. The framework should be interop-
erable with generic authentication subsystems that might design an arbitrary
credential structure with composite login handles or require multiple creden-
tials per account (see Section 2.4.2).

• Preserves web apps’ Auth UI. The framework should not eliminate the
web application’s authentication user interface (see Section 2.4.3).

• Preserves users’ mental model. The framework should not require the
user to cultivate a divergent method to interact with the web application (see
Section 2.4.3).

Overall, we argue that all of these capabilities should be offered to realise a prac-
tical and secure secret manager-assisted web user authentication framework. We
can see from Table 2.1 that for some capabilities, it is offered by one framework but
missing in another. For other capabilities, it is lacking from all frameworks. This
calls for future work exploring an augmented framework that addresses these (se-
curity and usability) gaps while preserving the benefits of the present frameworks.

19

3. Proposed governance framework

To effectively mediate between web applications and secret managers, we propose
Berytus, a browser-based governance framework for programmable account registra-
tion and authentication sessions through secret managers. Berytus’s experimental
design offers two integration pathways for web applications: (1) base integration
requiring front-end changes only; (2) complete integration with enhanced security
services requiring front-end and back-end changes. In this chapter, we will discuss
the methodology, architecture, design and implementation of Berytus.

3.1. Methodology

Our methodology is constituted of three phases: conceptualisation, implementation
and evaluation.

Conceptualisation. In essence, our method for conceptualising Berytus is based
on the research goals listed in Section 1.2. We will now discuss the three pillars
of our conceptualisation method: the positioning of Berytus, the target applica-
tion scope of secret managers and the means of communication between the web
application and secret manager.

1. To mediate the interactions between secret managers and web applications, we
positioned Berytus to be between the secret manager and the web application.
Moreover, we tailored the framework for client-side orchestration to preserve
the fundamental notion and application of secret managers as local (i.e. client-
side) credential management tools.

2. We only consider browser-based secret managers, not standalone applications
or web-based secret managers. Both first-party (i.e. built-in) and third-party
(i.e. extension) secret managers operating within the browser can register with
the framework. Hence, placing Berytus in the browser is a natural choice, it is
a client-side environment where web applications are loaded and where secret
managers predominantly operate.

3. By recognising the need of a programming interface for both parties, the web
application and the secret manager, we designed two separate APIs. Web de-
velopers can leverage the framework’s web application-side API and the Web
Components/HTML Custom Elements technology [39] to conceive a declar-
ative approach, i.e. a custom markup language, for invoking the framework.
Each API is exposed in the appropriate and corresponding execution context

20

as it is the case with other (standardised) browser APIs, i.e. in the web appli-
cation’s or secret manager’s page scripts. Furthermore, the communication
flow is a round trip sequence, from the web application to the secret man-
ager, compromised of outbound secret management commands and inbound
secret management responses. Hence, in Berytus, secret managers function
as processing agents callable by the web application.

Implementation. Following the basic conceptualisation of Berytus as a mediator
between web applications and secret managers offering two APIs, one for web apps
and one for secret managers, we decided to extend the Mozilla Firefox browser
to implement Berytus as a native solution. Extending a browser is necessary to
provide a native (first-party) solution for the user, freeing him from the need to
install the framework as a plugin. We chose Mozilla Firefox since it is a popular
and open source browser. During the early phases of research, the primary goal
was to connect web applications with secret managers. As such, we will describe
below the method we took to establish a browser bridge between web applications
and secret managers.

1. We began by introducing two entry points, one for web applications and one
for secret manager extensions. We followed the instructions listed in Mozilla
source code documentation to introduce a new API for browser extensions
and a new API for web applications.

2. After creating the two points of entries, we needed a service that could connect
the web application API implementation with a secret manager extension.
Accordingly, we developed a component we call the Liaison as a centralised
registry that keeps track of installed secret managers and is able to relay
instructions to a targeted manager.

3. Following the introduction of the Liaison, both API implementations needed
a proxy to reach the Liaison as they reside in child processes while the Liaison
is in the parent process. As such, we developed the necessary Mozilla-specific
inter-process communication components to allow both API implementations
to reach the Liaison.

4. Last, we incorporated a new method in the secret manager extension API to
allow secret manager extensions to register with the Liaison. On the other
side, in the web application API, we did not incorporate a public method to
communicate with a specific manager, rather we enabled web applications to
communicate with a user-selected secret manager.

This established an appropriate browser bridge between the web application side
and the secret manager extension side. From there onwards, we began the design
and implementation of the web application API. On the flip side, the secret manager
extension API reflected the commands defined in the Berytus web application API

21

as requests. To complete the implementation, we developed a sample secret man-
ager extension, Secret*, that integrates with Berytus. Furthermore, we developed
a standalone web application containing HTML and JavaScript code to invoke the
Berytus web application API and simulate observable authentication and registra-
tion sessions, rendering the retrieved information from the secret manager. These
implementations allow us to assess the feasibility of Berytus as a paradigm for pro-
grammable authentication and registration sessions between web applications and
secret managers.

Evaluation. Since our conceptualised framework is designed to address the gaps
discussed in Chapter 2, we assume an evaluation method that revolves around those
gaps. We determine the soundness of our framework by assessing the gaps that it
fills. Ideally, it should offer all of the capabilities listed in Table 2.1. It should be
the best of all worlds, and not just another variation which improves in one area
but deficient in another. Ultimately, we are assessing the effectiveness of Berytus
as a secure and practical paradigm for secret manager-assisted authentication by
conducting a security evaluation and a functionality evaluation.

Security evaluation. For the security aspects of Berytus, we evaluate whether
Berytus would enable a communication between secret managers and web applica-
tions that is immune against prominent attacks. The following covers the steps we
take to carry out the analysis:

1. We explore natural attack targets by adversaries on secret manager-assisted
web user authentication frameworks. Dissecting the potential goals of such
adversaries would shed a light on the crucial aspects that secret manager-
assisted web user authentication frameworks should thrive to be secure in.

2. We identify the appropriate attack area of secret manager-assisted authenti-
cation frameworks and discuss how attack payloads can be crafted to carry
the attack target. By identifying the attack area, we determine which secret
manager-assisted authentication frameworks are implicated in the attacks.

3. We infer two attack modes, a passive, eavesdropping mode and an active,
instigating mode that can be assumed in the attack payload.

4. We consider well-known and feasible attack vectors applicable in the identified
attack area to deliver attack payloads.

5. Finally, we lay out a contextualised threat model and begin evaluating the
effectiveness of each considered attack vector and report the possible miti-
gation strategies either provided by web standards, previous works or in the
Berytus framework.

22

Our security goal for Berytus is to achieve immunity from credential theft attacks.
The criteria are listed below as the following capabilities from Table 2.1.

• “Safe from XSS-password theft”: Immunity from web page-based cre-
dential theft attacks.

• “Safe from TPitM-password theft”: Immunity from network-based cre-
dential theft attacks.

• “Secure credential mapping”: Immunity from phishing-based credential
theft attacks.

In the first two capabilities, each of the attack vectors, XSS and TPitM, should not
be sufficient on its own to steal the user’s reusable credentials. Note, authentication
schemes such as one-time password or digital signature-based authentication are
safe against credential theft since the transmitted credential is only valid for a single
session and cannot be used by the adversary at a later point in time. Nonetheless,
we will evaluate Berytus on whether it is safe from credential theft attacks regardless
of the authentication scheme including traditional password authentication.

Functionality evaluation. For the functionality aspects of Berytus, we analyse
its functional compatibility with generic web applications. Web applications have
complete autonomy over streamlining the user experience, user interface and the
authentication flow. We argue that a practical framework should aim to achieve a
high degree of functional compatibility with generic web applications. Achieving
interoperability with such web applications implies that the framework is not ex-
clusively applicable to orthodox (or a specific class of) web applications, making
Berytus an open, non-restrictive paradigm, in terms of functional compatibility, for
programmable authentication or registration sessions. Furthermore, we consider
an important user requirement, support for third-party secret manager extensions.
Based on our review of present frameworks, we identified noteworthy capabilities of
a practical paradigm and summarised them in Table 2.1. As such, our functionality
criteria for Berytus are to provide the following capabilities (see Section 2.7).

• “Integrates with web extensions”: Users can install and register third-
party secret managers.

• “Supports stateful challenges”: Web apps can conduct Secure Remote
Password [1] authentication or other stateful authentication challenges.

• “Supports credential customisation”: Web apps can create credential
structures with multiple account identifiers or secrets.

• “Preserves web apps’ Auth UI”: Web apps can design the front-end user
experience and interface during secret manager-assisted authentication.

• “Preserves users’ mental model”: Users are not required to cultivate a
new method of interaction with web applications.

23

3.2. Architectural overview

As an orchestrator, Berytus sits between the web application front-end and the
secret manager client, operating natively in the browser. Berytus introduces two
APIs, a Web API for web applications and a WebExtensions API for secret man-
agers. Essentially, Berytus relays the instructions given by the web application via
the Web API to the secret manager through the WebExtensions API. In this sec-
tion, we will unpack the ingredient technologies, foundational components, secret
management-related routines and facilitated services of Berytus.

3.2.1. Ingredient technologies

WebExtensions APIs and Web APIs. WebExtensions APIs are a collection
of APIs that serve as the primary medium of interfacing with the browser when
developing browser extensions. These APIs are available for browser extensions to
invoke. They are often described using JSON Schema. Access to certain WebEx-
tensions APIs are controlled via permissions requested by browser extensions that
may be accepted or denied by the browser depending on the browser policies and
user consent. For web page scripts, Web APIs are provided to achieve various goals,
e.g., manipulating the contents of a web page or fetching resources over HTTP. Web
APIs are often defined using WebIDL (web interface description language). Both
of these web technologies are meant to be available across browsers. However, some
browser vendors may choose not to implement specific WebExtensions/Web APIs.

3.2.2. Components

Let us now introduce the building blocks put forth by our paradigm. Based on
some aspects in the landscape covering authentication on the web, we streamline
specialised components (shown in Figure 3.1) for our approach.

We conceptualise account-related processes, e.g., authentication or registration,
as operations where each operation is a series of one-or-more actions, resembling
a form with multiple (action) steps. Furthermore, we introduce the concept of a
channel to reflect an active logical link between the web application and the secret
manager. The channel holds the two actor objects, one for the web application and
one for the secret manager, containing identifying information of each party. Both
parties would be able to mutually identify each other by exchanging actors. This
is important, e.g., for high-value web applications such as banks to interact only
with specific secret managers. And for secret managers to locate the corresponding
account records (of the web application) in its database.

There are two actor specialisations. The first specialisation is the Origin Actor
and is exclusive for web applications. It reflects the web page’s Uniform Resource
Identifier (URI). The second specialisation, Crypto Actor, can be used by both the
web application and secret manager. It requires the backing of a (cryptographic)
signing key. The primary difference between the crypto actor and the origin actor

24

Figure 3.1.: Illustration of the Berytus communication model between the web
application and the secret manager along with their components.

is the type of identifying material. Both the URI or public signing key can be
used to identify a web application. However, a web application might be accessible
through multiple URIs and not bound to a singular, constant URI. Hence, a web
application hosted at distinct resource locations will produce distinct origin actors
(one distinct actor for each distinct URI). Conversely, if a web application uses
a crypto actor, it will construct uniform actors across all of its resource locations.
Similarly, if a secret manager creates a crypto actor, it will construct uniform actors
across various desktop or mobile computing environments.

Finally, we appoint secret managers to construct a request handler function, i.e.
callback function, to process the web application’s instructions programmatically.
It is invoked to process requests such as constructing an account password field.
Programmability is a pivotal functionality for secret managers; its absence would
impose severe limitations on what secret managers can do.

3.2.3. Routines

In this section, we describe the routines that Berytus is responsible for from a
high-level perspective.

Extension access control and managing Secret Manager registration

Berytus introduces a new WebExtensions permission, berytus, for controlling ac-
cess to the Berytus WebExtensions API. This permission effectively induces a two-
tier system for extensions: those with and without access to Berytus WebExtensions
API, based on user consent. When an extension specifies the berytus permission

25

Figure 3.2.: Illustration of the Berytus web application authentication process.

entry in its manifest file, the user will be asked by the browser whether they would
want the extension to act as her secret manager, and if the user consents, the
extension will have access to the Berytus WebExtensions API.

The WebExtensions API provides two primary methods, one for registration
and one for de-registration. The secret manager passes a request handler during
registration and it gets stored in Berytus. It is invoked when Berytus Web API
calls are dispatched by the web application. The Web API call is transformed
into a request and fed to the request handler. The request encapsulates the web
application’s intent to perform a specific task, e.g. constructing an account password
field. Berytus keeps track of registered and running secret managers along with their
request handlers. At a future point in time, the secret manager can de-register and
the stored request handler would be disposed.

Authenticating Web App Crypto Actors using digital certificates

To validate the authenticity of web apps’ crypto actors, we propose a new X.509
v3 certificate extension: Berytus Signing Key Allowlist. The certificate extension
specifies a list of one-or-more signing keys that can be used by the certificate’s
subject (web application). Each list entry contains the following properties (signing
key, uris). The uris property indicates under which URIs the signing key can be
used. In Figure 3.2, during a crypto actor instantiation in the web application’s
execution context, the actor’s signing key would be validated against the allowlist.
If the passed signing key was not specified in the allowlist, an exception will be
raised and the actor object would not be instantiated. Overall, at a logical level,
the web app crypto actor signing key should be certified by a trusted certificate

26

Figure 3.3.: An instance of the Berytus secret manager selection prompt. Each
listed secret manager displays the number of registered accounts asso-
ciated with the web application. Here, domain-based credential map-
ping was used.

authority.

In the secret manager’s execution context, a crypto actor can be instantiated
using an uncertified signing key; by default, the secret manager’s crypto actor is
unauthenticated. The status quo, with secret managers being client-side tools,
does not facilitates secret manager certificates. Therefore, by default, the secret
manager’s instantiated crypto actor is not necessarily authentic. However, as we will
see in later sections, Berytus facilitates mutually authenticated Diffie—Hellman key
exchange which cryptographically authenticates both the secret manager’s signing
key and the web application’s signing key without the need of digital certificates.

Securing channel creation and prompting for Secret Manager selection

Creating a channel is the first step towards secret manager-assisted user authentica-
tion. The web application initiates the channel creation process using the Berytus
Web API. To open a channel, the web application provides its actor object and its
preferred channel configuration settings (if any).

We enforce several security measures when it comes to dealing with channels.
First, a channel can only be created from within HTTPS web pages and in top-level
browsing contexts, i.e. not in embedded, potentially invisible, web pages (iframes).
Second, browsing contexts are restricted to maintain at most one active channel at
a time. Third, user approval is necessary to open a channel. This is achieved using

27

Web App Channel Prompt Service Secret Manager

instantiate

SelectSecretManager()

ApproveChannelCreationRequest()

Figure 3.4.: (Simplified) sequence diagram showing the interactions between the
web application, channel, a specialised prompt service, and the secret
manager during the Berytus channel creation process.

native browser prompts, distinguishing them from other web application prompts.
Fourth, a channel is time-bound and cannot be kept active indefinitely. Overall,
these security measures are enforced consistently (see Table 2.1) regardless of the
secret manager implementation. This gives users additional confidence in the secu-
rity of the framework, without having to fully rely on the, varying and unregulated,
secret manager’s internal security policies.

When a channel creation instruction is executed, the user is prompted using the
browser UI to select a secret manager from the list of registered secret managers
(see Figure 3.3). The secret manager is provided with the web application’s actor
to determine the number of registered accounts. Apart from choosing a secret
manager, the browser UI secret manager selection prompt ensures user consent is
granted before opening the channel. After a secret manager is selected, the secret
manager is requested to approve channel creation, and if approved, the channel
is opened and returned to the web application (see Figure 3.4). Henceforth, one
or more account-related operations can be initiated, e.g., registration followed by
authentication.

Mediating an Authenticated Key Exchange

A Diffie–Hellman Key Exchange is a cryptographic method designed for a secure
key exchange between two parties over a public, potentially insecure, communica-
tion medium. Berytus mediates an authenticated key exchange (specifically the
elliptic curve-based X25519 [3] combined with authentication of exchanged keys by
leveraging the Ed25519 [20] signing key of each party) using the client-side as a
medium to communicate cryptographic material passed between the web applica-
tion and the secret manager. Each party’s cryptographic material is generated or

28

computed off the front-end. The process is as follows:

1. The web application transmits its session key via the front-end to Berytus.

2. Berytus drafts the session parameters, including the passed web app session
key and the following properties (session id, HKDF parameters, AES key
length).

3. The secret manager receives the session parameters draft from Berytus, in-
cludes its own session key into the parameters, signs the session parameters
using its crypto actor’s signing key and returns the session parameters and
its signature to Berytus.

4. Berytus relays the secret manager-signed session parameters to the web ap-
plication front-end.

5. The web application front-end transmits the secret manager-signed session
parameters to a secure site, such as its back-end, to verify the secret manager
signature of the session parameters, and if signature verification succeeds, the
web app signs the session parameters using its crypto actor’s signing key and
transmits it to Berytus via the front-end.

6. Berytus relays the web app-signed session parameters to the secret manager.
In turn, the secret manager verifies the web app signature of the session
parameters, and if signature verification succeeds, the secret manager informs
Berytus that the authenticated key exchange was successful.

Subsequently, both parties can compute the shared key using the mutually signed
session parameters and leverage it for end-to-end encryption.

3.2.4. Facilities

As a result of the streamlined components and routines, Berytus facilitates the
following services:

• Unified secret management. By requiring secret managers to register,
the browser keeps track of running secret manager and the user benefits from
the increased clarity and usability. Users are now able to elect a secret man-
ager on a per-session basis. This is a highly sought-after functionality for
users interacting with multiple secret managers.

• Web app-to-credential mapping. Secret managers can leverage the web
app actor’s identifying material to distinguish between web applications and
perform web app-to-credential mapping. The origin actor is used for domain-
based identification and the crypto actor is used for key-based identification.
The web application is at liberty to pick from the two actor specialisations.
However, by opting-in for a key-based app-to-credential mapping, it ensures

29

Figure 3.5.: Illustration of the Berytus app-level end-to-end encryption pathway.
The secret manager encrypts sensitive information such as credentials
before its transmission to the web app frontend. Eventually, the web
app frontend transfers the encrypted data to its backend via HTTPS.

forward compatibility for uniform identification with applications outside the
web/http realm, e.g., locally installed software, since the application would be
no longer necessarily tied to a domain name or URI, but to a more expressive
app-specific key.

• App-level end-to-end encryption. Berytus facilitates app-level end-to-
end encryption between the secret manager and the web application following
an authenticated Diffie—Hellman key exchange. Both parties can separately
compute a shared symmetric key for app-level end-to-end encryption of secrets
passed from the secret manager to the web application and vice versa (see
Figure 3.5). Encryption is done, as we call, on the application-level, ensur-
ing confidentiality over the secret manager-to-web app back-end (application)
link; as opposed to network-level (TLS) encryption, ensuring confidentiality
over the browser-to-web server (network) link. I.e., both parties maintain
the shared key and use it for encryption/decryption in a secure site, isolated
from the front-end and the web server. Traditionally, with TLS encryption,
web servers own the encryption key and the final sink of encrypted data is
at the web server process, thereafter the decrypted data is fed to the web
app back-end; e.g., via the Common Gateway Interface. Conversely, with
app-level end-to-end encryption, the web app back-end owns the encryption
key and final sink of encrypted data is, therefore, at the web app back-end
instance.

30

3.3. Design and implementation

Section 3.2 covered the Berytus architecture, the high-level structure, encompassing
the foundational components, the communication model and the relevant processes.
This section describes in greater details the designed internal components to achieve
what Berytus is conceptualised for — harmonising the interactions between web ap-
plications and secret managers (through the use of specialised APIs) to undertake
account-related operations. Moreover, what is achievable between a web appli-
cation and a secret manager when undertaking an account-related operation falls
down to the assumed operational design. Apart from the operations and internal
components, we discuss the design pillars of Berytus.

3.3.1. Pillars

Design is an important aspect of any paradigm. It influences the degree of inter-
operability between systems and determines what is achievable. In Berytus, there
are five major design pillars that drove the specification forward:

• Operation-focused. Berytus is designed to facilitate programmable au-
thentication or registration sessions through secret managers. We generalise
authentication and registration sessions as account-related operations. Hence,
in our design, we aim to streamline account-related operations. The designed
operation should cover the whole process in practice, and not just one part
of it such as password composition and storage.

• Incremental and modular. To achieve a modular and incremental1

approach, we dissect a large process, e.g., an operation, into smaller (atomic)
tasks and define a method for each task. This allows web app developers
to perform, in between tasks, dynamic conditional branching (based on the
received data) and execute condition-specific processes.

• Non-blocking execution. The secret management tasks should be non-
blocking to permit web applications to execute its own processes while the
task has not finished yet. Similarly, for secret managers, a received secret
management task should not disable them from invoking other functions such
as prompting the user to unlock the vault.

• Customisation and flexibility. Developers often assume a fixed data
organisation structure that might not be interoperable with universal APIs.
We recognise this challenge and attempt to facilitate a venue for customisation
of relevant structures. In general, when relevant, we aim to provide web app
developers with flexibility to assume their own structure or desired paradigm.

1In an incremental API, the developer is capable of issuing several instructions (such as creating
several password fields) at different points in time. Its counterpart is, what we call, a combined
oneshot approach, where the data is bundled into one method call to accomplish a large task.

31

Web App Channel Operation Secret Manager

Login()

ApproveLoginRequest()

return user intent

instantiate

return
operation

Figure 3.6.: (Simplified) sequence diagram showing the interactions between the
web app, channel, operation and the secret manager during the Berytus
login operation initiation process. The relayed user intent is either an
authentication intent or registration intent.

• Lock-In-Free. Prior to the integration with Berytus, a web application
has previously streamlined its preferred authentication scheme, e.g., pass-
word authentication. A successful integration should not constrain the web
application to exclusively use the Berytus orchestration apart from its exist-
ing authentication flow (e.g., password authentication using an HTML form).
Both users and non-users of Berytus should be able to authenticate themselves
under the web application.

3.3.2. Operations

We streamlined two operations, account authentication and account creation. Both
of these operations are generalised into a login operation. Additional account-related
operations can be added in a future version of the Berytus API; it is only a matter
of identifying and dissecting the new operation, in a systematic manner, to design a
usable flow for both the web application and the secret manager. In this section, we
will describe in detail the operational design of the login operation and the relevant
processes.

Operation initiation and approval

Before diving into the login operation design, let us introduce the operation initia-
tion and approval pattern. The channel instance is designed to be the entry point of
operation initiation. I.e., the web application initiates an operation by interacting
with the channel instance (calling one of its methods). Once the operation has been
initiated, the secret manager’s request handler is invoked to approve the operation
creation. The secret manager should resolve this request or reject it — to state

32

Figure 3.7.: An instance of the Secret* login operation approval prompt. The user
does not have any registered accounts, therefore, the only option is to
relay an account registration intent to the web app. Here, domain-
based credential mapping was used.

the obvious, when the request is resolved, operation initiation succeeds, when it is
rejected, it fails. Figure 3.6 illustrates this sequence of instructions for the login
operation.

Login operation intent and credential suggestion

Generally, when the user is faced with a login page, he or she proceeds to authen-
ticate his or her existing account or to register a new one. We assume a similar
design for the login operation as a branched operation that depends on the user’s
intent. The user’s intent is communicated by the secret manager when resolving
the operation approval request, as shown in Figure 3.6. Figure 3.7 shows how the
proof of concept secret manager, Secret*, cultivates the user’s intent. Note, the
secret manager is autonomous to perform any task, including prompting the user
for her intent using its own user interface. Autonomy over processing requests
also implies that the secret manager is able communicate the intent without the
user’s explicit confirmation (e.g., in cases where there are no registered accounts
in the secret manager’s database, it is logical to relay an intent to create a new
account). Alternatively, in some instances, the web application may dictate the
intent, thereby relieving the secret manager of acquiring the user’s intent. This is
useful in cases where the web application only allows authentication — therefore,
the web app does not need to do conditional branching based on the relayed intent.

33

Field Type Sample value at registration Value producible by

Identity identifier: bob123 App or Manager
Foreign Identity identifier: bob@example.org App or Manager
Password password: RyU8HxsJjk332Dg App or Manager
Secure Password (SRP [1]) salt: 0edb53.. verifier: 29c792.. Manager only
Key public key: 010101... Manager only
Private Key private key: 010101... App or Manager

Table 3.1.: Overview of supported account fields in Berytus including sample field
values and the responsible party (web application or secret manager)
for producing the field value.

We will now give an overview of the authentication and registration processes
under the login operation.

Account creation operation

Inspired by how web applications typically undertake registration, we dissect the
registration process into fields and user attributes.

Credential as Fields. An account field resembles a standalone input field in a regis-
tration form. A field typically embodies a secret (e.g., a password) or identity (e.g.,
an email address) value. An account can have multiple fields, and thus a credential
can be conceptualised as a set of fields of varying length. This enables unorthodox
web applications to streamline account credentials having multiple identity or secret
fields. This is achieved by abstracting away from credentials and solely focusing on
fields. What constitutes a credential is logically defined by the web application and
not Berytus; e.g., a web app might conceptualise a credential as (name, last name,
password, date of birth). In turn, this design choice enables web applications to
conceptualise a custom credential structure (see Table 2.1) and construct it using
a field-level approach.

Field structure. An account field is data object, embodying 4 properties (id, type,
options, value). The field id property is necessary to distinguish between the dif-
ferent fields in the account record. The field type property is a static identifier for
the specialised field structure. Table 3.1 lists the different field types that Berytus
supports. The field options property is used to describe field type-specific settings.
For example, in the Password field structure, the field options include a password
composition policy which can be specified by the web application.

Field value production. The following field properties (id, type, options) can be
seen as metadata specified by the web application. The fourth property, the field

34

value, is the significant piece of information. The field value can be produced by
either the secret manager or the web application. For example, the web application
might produce a password field value or delegate the field value production to the
secret manager. Producing a field value can be done by prompting the user for
an appropriate value (e.g., an email address) or by generating a conforming value
(e.g., a password or a key). Berytus does not interfere in the field value production
process, however, it streamlines relevant field options to aid secret managers in pro-
ducing valid values (e.g., a password composition policy). The decision to delegate
field value production to the secret manager is made by the web application. How-
ever, as shown in Table 3.1, the web application cannot produce a field value for the
Key field or Secure Password field for salient reasons, leaving field value production
to the secret manager only. The Secure Password field corresponds to the Secure
Remote Password [1] protocol where the password should not be divulged to the
verifying party. For the Key field, it is created to generate a public key/private key
pair, and the private key should remain isolated from the web app. Hence, in both
cases, the field values should not be producible by the web application and left for
the secret manager to produce.

Field constructors. For each field type, the API defines a specialised constructor
to create the data object. The web app passes the field properties as arguments,
with the value argument being optional. The web app should leave the field value
unspecified if it wishes for, or must ask, the secret manager to produce one.

Registering fields. Once a field object has been constructed, the web application
should transmit it to the secret manager to register it with the account. This is
done through the addFields method of the account operation object which accepts
a sequence of field objects in one instruction. The secret manager then processes
the received fields and produces field values for fields with an unspecified value.
The produced field values are then returned to the web application.

Rejecting and revising fields. Secret managers, similar to users, can produce field
values that are theoretically conformable but cannot be usable by the web applica-
tion. A prominent example is the username field value. A user, or secret manager,
might produce a username value which adheres to the username format, however,
it cannot be used as it is assumed by another person. For robustness, Berytus
allows the web application to reject a produced field value by the secret manager
and request a revision. When the secret manager receives a field rejection request,
it parses the rejection reason and proposes an alternative value to the web applica-
tion. This is an exhaustive process, as it is the case with registration forms; i.e. to
keep on querying the producer until it or she composes a usable value.

Retrieving identity information. Apart from fields, web applications often request
identity information such as name and address during registration. Berytus enables

35

retrieval of common user attributes (based on the OpenID Standard Claims [12,
Section 5.1]). Additionally, Berytus facilitates storage of custom user attributes
and, if predefined, their retrieval into and from the secret manager. Retrieval of
predefined custom user attributes is mostly applicable between mutually acquainted
web application and secret manager pairs. The user attribute structure has three
metadata properties (id, mime, info). Hence, an acquainted web application and
secret manager pair can agree on additional set of user attribute ids to exchange
further identity information not specified in the Berytus API. Alternatively, custom
user attribute definitions could be streamlined and put forth by the industry in a
conventional manner.

Account versioning and categorisation. Web applications can set a version and
a category on the account record. Account versioning aids web applications in
tracking and migrating account records as their authentication system evolves. Al-
though not streamlined, a specialised account-related operation could be designed
and leveraged to update account records, e.g., to create new fields and migrate the
record to the latest version. Account category is used as an arbitrary account type
identifier, e.g., a user role identifier. The account category can be specified as an
option in the account authentication operation to assist the user in selecting an
account of the desired category (role).

Verification and account status. Once all of the necessary data has been gathered,
the web application might choose to perform additional verification checks before
creating the account in its back-end database. Verification checks could be related
to the Foreign Identity fields specified in the account record, e.g., codes sent to
the user’s email for email address verification, or could be unrelated to Berytus,
e.g., Face ID verification. To distinguish between back-end account creation pre-
and post-verification, Berytus allows the setting of an account status in the regis-
tration operation. The registration operation does not tackle conventional account
verification methods (e.g., email or phone verification). The default account status
is Pending and it implies that the account is pending creation and not necessarily
reserved or stored in the web application database. From the user’s perspective, the
account is created once the information has been transferred and she is prompted
for additional verification checks. Therefore, it is important to establish an account
status for account records not just for compatibility between varying web applica-
tion back-end implementations, e.g., whether account record should be stored in its
back-end prior verification or not, but also to avoid confusing the user.

Saving the account and transitioning to account authentication. To complete the
registration operation, the web application instructs the secret manager to save the
account record into its database. The operation commitment signature is optionally
passed along the save command. The signature’s message content embodies the
account record data, signed by the web application signing key following a successful

36

AccountCreationOperation

userAttributes: Map<string, UserAttribute>
fields: Map<string, Field>
category: string
version: unsigned int
status: AccountStatus

addFields(fields: ...Field)
rejectAndReviseFields(params: —)
setCategory(category: string)
setVersion(version: unsigned int)
setStatus(status: AccountStatus)
updateUserAttributes(params: —)
save(commitmentSignature?: ArrayBuffer)
transitionToAuthOperation(): AccountAuthOperation

<<interface>>
Field

id: string
options: —
value: —

UserAttribute

id: string
mime: string
info: string
value: —

AccountAuthOperation

challenges: Map<string, Challenge>
category: string
version: unsigned int
status: AccountStatus

createChallenge(id: string, type: ChallengeType, params: —)
finish()

Challenge

id: string

sendMessage(—): —
abort(reason: string)
seal()

<<enum>>
ChallengeType

Identification
DigitalSignature
Password
SRP
OffChannelOTP
Custom

<<enum>>
AccountStatus

Pending
Created
Retired

Figure 3.8.: Overview of the account creation operation and account authentica-
tion operation class diagrams in the Berytus Web API showing class
attributes followed by class methods. For the sake of brevity, we omit-
ted showing unnecessary details.

account record insertion onto its database. This ensures that saved account records
in the secret manager are valid and not just created by any JavaScript code residing
in the web application. After a successful save command execution, the closed
operation can be transformed into an account authentication operation for the
created account record.

Account authentication operation

The account authentication operation encompasses the steps related to user au-
thentication on the web. At a minimum, a web application typically employs
two challenges, an identification challenge and an authentication challenge. In
the same spirit, we abstract this instance to streamline a challenge-based authen-

37

tication paradigm. The authentication operation permits the creation of multiple
challenges. However, only one challenge can be active at a time.

Account selection. Clearly, to process an authentication operation, the secret man-
ager must assume a registered account. Berytus does not interfere in this matter,
albeit its act of non-interference is a design element as well. It is expected that the
secret manager would prompt the user to select an account using its own UI facil-
ities. In Secret*, account selection occurs in the login operation approval process
and if the user selects an account, an intent to authenticate is relayed.

Approving the challenge. Once a web application initiates a challenge, Berytus
contacts the secret manager to approve the challenge initiation request (see Ap-
pendix Figure B.1). Following its approval, the web application can begin sending
challenge messages to the secret manager.

Challenge communication flow. The challenge is designed to facilitate passage of
a sequence of messages between the web application and the secret manager. This
model enables implementation of multi-step (or stateful) challenges such as the
Secure Remote Password protocol [1]. Multi-step challenges are challenges where
more than one message is sent back and forth between the web application and
the secret manager. Once the secret manager receives a challenge message, it can
respond to it, returning the appropriate data to proceed with the challenge. This
challenge messaging pattern is illustrated in Appendix Figure B.2.

Supported challenges. Figure 3.8 lists the supported challenges in the
ChallengeType enumeration class diagram. Identification is marked as chal-
lenge in the sense that the user, supported by the secret manager, must pro-
duce valid identification material, e.g., a valid (existing) email address. For au-
thentication challenges, Berytus supports digital signature-based authentication
(DigitalSignature), password authentication (Password), Secure Remote Pass-
word Protocol [1] authentication (SRP) and off-channel one-time password authen-
tication (OffChannelOTP, e.g., email/phone one-time password). Furthermore, web
applications can initiate custom authentication challenges by specifying the chal-
lenge type Custom, a challenge id matching the glob pattern custom:* and a mes-
saging JSON Schema, used to validate the passed messages, in the challenge param-
eters. Hence, an acquainted web application and secret manager pair can organise
custom authentication challenges at run time.

Closing or aborting the challenge. When all the messages have been sent and if
a satisfactory point has been reached by the web application, it can close (seal)
the challenge to implicitly imply challenge success. If a satisfactory point was not
reached or cannot be reached during the challenge, the web application can abort
the challenge by providing an abortion reason code. Appendix Figure B.2 also shows

38

Figure 3.9.: Illustration of the request handler isolation process in the Liaison’s get
request handler function. The underlying request handler is tucked
away in a newly created (not-shared) Isolated Handler instance.

challenge abortion or closure. In some controversial instances, web applications
mask whether a user exists or not during the authentication operation. In Berytus,
this can be achieved by closing the Identification challenge, implicitly implying
success, and aborting the following authentication challenge, signalling an incorrect
credential error.

After covering the account creation operation and account authentication opera-
tion, we make note of a salient design element, granularity. Processes are dissected
into atomic tasks. This bestows valuable, low-level access to the inner workings of
the framework. Wrapper libraries can be introduced to alleviate web app developers
from writing common boilerplate code.

3.3.3. Implementation

To demonstrate the feasibility of our framework, we streamlined and implemented a
set of internal browser components for the Mozilla Firefox browser. Additionally, we
developed a sample Berytus-compatible secret manager. All of the project artefacts
are available at https://github.com/alichry/berytus. Build instructions are
provided as well as binaries to quickly experiment with the Berytus framework.

Internal components

The following list of internal components were designed to fit into the Mozilla
(v116.0a1) architecture. The internal components are grouped together to form
the core module. In essence, the core module is responsible for the routines speci-
fied in Section 3.2.3 and other functional requirements. The core components are
implemented in TypeScript/JavaScript. The Web API is implemented in C++ and
partially acts as a wrapper, forwarding instructions to the secret manager by inter-
acting with the core components. This design can be adapted into other browser
architectures.

39

https://github.com/alichry/berytus

• Liaison. The central registry residing in the parent process that holds a
list of all registered request handlers. This is a singleton instance. Privileged
code wishing to interact with a specific secret manager would need to query
the Liaison to retrieve its request handler.

As shown in Figure 3.9, the queried request handler is wrapped by a unique
(not shared) safe handler stub that protects against manipulation of the un-
derlying request handler. The stub holds a reference to the underlying re-
quest handler (or a resolver which resolves with the request handler) in a
private member, thereby isolating the underlying request handler. The stub
implements all the methods defined in the request handler interface. In each
implemented method, the underlying request handler is accessed through the
private member and the corresponding method is called — i.e. the stub is
nothing but a proxy isolating the underlying request handler. This is to
protect against malicious JavaScript adversaries attempting to manipulate
the exposed request handler. When malicious JavaScript code re-assigns the
exposed, public, request handler method of the safe handler stub to point
to a malicious function, only that unique safe handler stub instance will be
affected. I.e., since the safe handler stub is not shared and the underlying re-
quest handler is encapsulated, the underlying request handler is not affected,
nor is all of the other retrieved safe handler stubs. In the absence of this,
JavaScript, privacy encapsulation, malicious in-browser JavaScript code can
override the presumed request handler of the targeted secret manager exten-
sion with a newly crafted one to impersonate the target secret manager and
potentially receive sensitive information. Note, we assume that the malicious
in-browser JavaScript code cannot disable the privacy encapsulation security
property of the native, running JavaScript engine.

• ExtensionAPI. This module embodies the core logic of the WebExtensions
API implementation, enabling an extension to register its request handler
with Berytus and process instructions programmatically. When an extension
interacts with the Berytus WebExtensions API namespace, two instances of
ExtensionAPI are created, one in the parent process and one in the child
process. Once the extension’s background script registers its request handler,
the child instance maintains a reference to its handler and communicate with
its parent counterpart to register with the Liaison. As the request handler is
a function, it is not serializable and cannot be message-passed through IPC.
Therefore, the parent ExtensionAPI instance will construct a handler of its
own, passing it to Liaison and registering it on behalf of the extension, and
will turn method calls into events that are passed to its child counterpart.
The child, upon receiving an event from its parent counterpart will invoke
the underlying request handler of the extension. This process is illustrated in
Figure 3.10. Last, the ExtensionAPI exposes two additional methods (apart
from registration and de-registration) for the secret manager extension, one to
resolve requests and one to reject them. Currently, when the secret manager

40

Figure 3.10.: Overview of component interactions during the secret manager’s re-
quest handler registration process.

receives a request, it has two options of processing the request. First, the
request handler returns a promise that either resolves or rejects it. Second,
the secret manager extension calls, from within its execution context, the
resolve/reject request method to process the request. This is used in instances
where the request handler, residing in the background script, would need to
open the popup page to process the request. The popup page would leverage
the available resolve/reject request method in its execution context to process
the pending request.

• Agent. Since the Liaison resides in the parent process, child processes
cannot directly interact with the Liaison nor the secret manager’s request
handler. The Agent facilitates access to the effective request handler from
the child process through the use of IPC under the hood. The Agent con-
figures inter-process communication with its parent counterpart, allowing for
proxied interaction with parent components from within the child process.
The purpose of the Agent is twofold. First, the Agent is responsible for re-
laying request handler invocations to the targeted extension, by consulting
with the Liaison, regardless of whether the Agent is instantiated in the par-
ent or child process. Second, the Agent can aggregate several invocations on
multiple extensions’ request handlers into a single response; e.g., merging all
responses into a list (see step 5 in Figure 3.11). Ultimately, code residing
in the child process can leverage the Agent to invoke the Secret Manager’s
request handler. Note, if the Agent was instantiated in the parent process,
message passing is not needed; the behaviour and interface is consistent re-

41

Figure 3.11.: Overview of component interactions during the channel creation pro-
cess.

gardless of where the instantiated Agent resides.

• ChannelManager. This module creates and tracks channels in the child
(content) process. The ChannelManager ensures that at most one channel is
active under a browsing context/window. Furthermore, it checks whether
the browsing context for which the channel is being created is a top-level
browsing context, i.e. it rejects channel creation for iframes. Currently, in
Mozilla/Firefox, multiple unrelated browsing contexts, e.g., browser tabs, can
co-exist within the same child process. To provide additional security, Chan-
nelManager does not expose a mean to fetch channel objects, created channels
are returned to the original caller and saved into a WeakMap. Hence, created
channels by the ChannelManager are isolated from malicious actors within
the same child process.

Secret manager implementation

Since we are introducing a novel WebExtensions API for secret managers, develop-
ing a secret manager that integrates with it is necessary to demonstrate feasibility.
We developed Secret* (Secret-star), a secret manager that integrates with the Bery-
tus WebExtensions API.

Secret* has three compartments: (1) The background script, instantiating a re-
quest handler and registering it with Berytus to process secret management in-
structions; (2) The user interface facility, hosting the extension pop up page and
external windows to prompt the user to approve operations, provide necessary input
and configure secret management settings; (3) The storage facility, to store and re-

42

trieve data when processing requests. We use Dexie.js as a wrapper for IndexedDB;
a client-side (browser) storage facility. We use React/TypeScript as the UI frame-
work for Secret*. The background script is also implemented in TypeScript.

In Secret*, the request handler saves the incoming request data (which includes
the request parameters, e.g., document URI, session ID, public keys, etc.) into the
database and opens the user interface page, either through the popup page or an
external browser window. Choosing between the popup page or an external win-
dow is a build-time configuration setting. Either way, the request gets fulfilled from
within the UI page; it is possible since the WebExtensions APIs (including Bery-
tus) are also available in the extension pages. Secret* has a configurable setting
“seamless onboarding”. When enabled, Secret* would not require explicit confir-
mation of every request but will process them automatically when possible. At a
minimum, operation approval and transfer of identity information always require
user confirmation. For the remaining requests, unless user input is necessary, they
would be processed automatically without requiring explicit user confirmation.

To actualise a rounded implementation, Secret* has additional secret manage-
ment pages. Secret management pages include an account list page, an account
record page and setting configuration page (where identity information is inputted).
Lastly, in the prototype, Secret* serves a sample web application that is not in-
tended to be part of Secret* but runs an end-to-end authentication or registration
simulation using the Berytus Web API.

3.3.4. A minimal working example

The following listings embodies a minimal working example to conduct a login oper-
ation. In Listing 3.1, the web application creates the channel instance and starts the
login operation. This would prompt the user to select a secret manager (Figure 3.3)
and to approve the login operation, relaying her login intent (Figure 3.7).

1 /*! Domain-based credential mapping */

2 const originActor = new BerytusAnonymousWebAppActor();

3 /*! Alternatively, for key-based mapping, e.g.: */

4 const cryptoActor = new BerytusCryptoWebAppActor(

5 'MCowBQYDK2VwAyEAamy324oIpAIek6KAwHuhIvbpLUq4x6FB33eyZkEeN9w='
6);

7
8 const channel = await BerytusChannel.create({

9 webApp: originActor

10 });

11 const operation = await channel.login({

12 requiredUserAttributes: {

13 name: true,

14 picture: false,

15 gender: true,

16 birthdate: true,

17 address: true,

18 },

19 });

43

20
21 if (operation.intent === 'Authenticate') {

22 /*! handle authentication */

23 } else { /*! => operation.intent === 'Register' */

24 /*! handle registration */

25 }

Listing 3.1: A working example of creating a channel and initiating a login opera-
tion.

Next, the web application should branch out depending on the user’s login intent.

Account creation. Assuming the intent is to register, Listing 3.2 shows how
a web application can create and register a username field, an email field, a secure
(remote) password [1] field and a password field. See Appendix Listing A.1 for
creation of all supported fields.

1 const fields = await operation.addFields(

2 new BerytusIdentityField("username", {

3 private: false,

4 humanReadable: true,

5 maxLength: 24,

6 }),

7 new BerytusForeignIdentityField(

8 "email",

9 {

10 private: true,

11 kind: "EmailAddress",

12 },

13 "bobby@example.org", /*! Web app-produced field value */

14),

15 new BerytusSecurePasswordField("srp", {

16 identityFieldId: "username",

17 }),

18 new BerytusPasswordField("password", {

19 passwordRules: "minlength: 16;", /*! Apple's password rules format */

20 }),

21);

22 fields.username.value; //! => (e.g.) "bobby"

23 fields.email.value; //! => "bobby@example.org"

24 fields.srp.value; //! => (e.g.) { salt: "0edb53...", verifier: "29c792..." }

Listing 3.2: A working example of creating and registering account fields.

Similar to a registration form, the web application should validate provided val-
ues, see Appendix Listing A.2 for a sample exhaustive validation of the username
field. Finally, following field value validation, the web application should close
the operation by instructing the secret manager to save the account (Listing 3.3).
Optionally, before closing the operation, the web application can set an account
version or category. Once the account creation operation has been closed, with the
account saved in the secret manager, the web application can request a transition
to an account authentication operation for the newly registered account.

44

1 await operation.setVersion(1);

2 await operation.setCategory("Employee");

3 await operation.setStatus("Created");

4 await operation.save();

5
6 const authOperation = await operation.transitionToAuthOperation();

Listing 3.3: A working example of setting account metadata, saving the record and
transitioning into an authentication operation.

Account authentication. Assuming the user’s intent is to authenticate, or if
the web application requested a transition from an account creation operation to
an account authentication operation, Listing 3.4 shows how a web application can
start and process an identification challenge and a password challenge.

1 /**! @var accountExists & login - from the webapp codebase. E.g.: */

2 const accountExists = () => false; const login = () => true;

3
4 const idCh = await operation.createChallenge("id", "Identification");

5 const { payload: { username, email } } = await idCh.sendMessage(

6 {

7 name: 'GetIdentityFields',
8 payload: ['username', 'email'] /*! identity field ids */

9 }

10);

11 username; //! => "bobby"

12 email; //! => "bobby@example.org"

13
14 if (accountExists(username)) {

15 await idCh.abort("Identification:IdentityDoesNotExists");

16 throw new Error("User failed to pass identification challenge");

17 }

18
19 await idCh.seal();

20
21 const passCh = await operation.createChallenge("pass", "Password");

22 const { payload: { password } } = await passCh.sendMessage(

23 {

24 name: "GetPasswordFields",

25 payload: ["password"] /*! password field ids */

26 }

27);

28 password; //! => eq45asp0d...

29
30 if (! login(username, password)) {

31 await passCh.abort("Password:IncorrectPassword");

32 throw new Error("User failed to pass password challenge");

33 }

34 await passCh.seal();

Listing 3.4: A working example of conducting identification and password chal-
lenges.

45

Finally, as shown below in Listing 3.5, the account authentication operation can
be closed to communicate authentication success to the secret manager.

1 await operation.finish();

Listing 3.5: Closure of the account authentication operation.

This concludes the minimal working example for account creation and authentica-
tion operations. For the sake of brevity, we have not shown examples of conducting
a Secure Remote Password authentication challenge or one-time password chal-
lenge, however, the pattern is identical. Note, this challenge messaging instruction
pattern is unnecessarily verbose. An improvement for this API draft could be the
introduction of specialised challenge interfaces embodying the various send message
parameters as explicit methods.

46

4. Evaluation

In this chapter, we will evaluate Berytus’s security aspects, covering the offered
benefits and available mitigation strategies, and its functionality aspects, covering
functional compatibility and integration effort.

4.1. Security evaluation

To evaluate the security aspects of Berytus, we will uncover its security benefits
and perform a security analysis of prominent attacks in the secret manager-assisted
web user authentication space against it. When relevant, we will compare Berytus
with HTML Autofill, Credential Management API and ByPass.

4.1.1. Security benefits

As an orchestrator, Berytus is able to provide security services to web apps and
secret managers, including authentication of web apps and mediation of authenti-
cated key exchanges. In this section, we discuss the security benefits provided by
Berytus.

Protection from web application impersonation. Safeguarding against
imposters is an important security measure in many systems. In secret manager-
assisted authentication, the secret manager must not transfer the user’s credentials
to unintended parties, including deceitful or impersonating web applications. Bery-
tus’s web app authentication routine (Figure 3.2) assures the secret manager that
the web app party it is communicating with is legitimate. The condition for web
application authentication to occur is that the web application opts into using a
crypto actor backed by an app-specific signing key. This enables a secure web
app-to-credential mapping strategy using cryptographic keys as indices; serving as
a superior alternative to the tried-and-busted domain-based credential mapping.
With secure credential mapping, the user does not have to manually copy his cre-
dentials to the clipboard (decreasing the risk of credential theft via clipboard attacks
discussed in Section 2.5) and the secret manager would not suggest credentials for
irrelevant or deceitful web applications (mitigating against phishing attacks includ-
ing ones in a forum context or due to domain name reuse discussed in Section 2.4.4);
all due to an accurate credential mapping strategy. By shifting from domain names
to authenticated app-specific keys, secure credential mapping not only increases se-
curity, but also maintains usability, addressing the previously discussed interaction
problems (Section 2.4.5) related to domain-based credential mapping (e.g., multiple

47

domain usage by a single web application, ensuring the corresponding credentials
are suggested regardless of where the web application is hosted). There are two
security levels for secure credential mapping:

Secure credential mapping level 1. The first line of defence is certificate-based
authentication of the web app signing key. To assume a crypto actor signing key,
the web application must have a certificate that includes the Berytus Signing Key
Allowlist extension (see authenticating web app actors in Section 3.2.3). Therefore,
if a web application tries to assume a signing key that is not defined in the Berytus
Signing Key Allowlist extension of the certificate, web app authentication fails. In
essence, the Certificate Authority is the responsible body for validating certificate
issuing requests which includes proof of possession validation of Berytus Signing
Keys. Thus, in this level, web app authentication relies on the security of the
public key infrastructure model.

Secure credential mapping level 2. The second line of defence is cryptographic
authentication of the signing key. Signing key authentication can also occur during
an authenticated Diffie—Hellman Key Exchange between the web application and
the secret manager. In the key exchange process (see Section 3.2.4), the web app
session parameters signature serves as the present proof that the web application
owns the assumed signing key. Hence, the secret manager can verify the web app-
signature of the session parameters, asserting whether the web application owns
the assumed signing key. If signature verification fails, the secret manager would
not transmit the credentials. This could be an attack detection mechanism; the
secret manager was assured that it is communicating with the legitimate web app
using certificate-based authentication (level 1), however further verification using
cryptographic authentication of the signing key indicates that the web app does
not own the assumed signing key (level 2).

Protection from eavesdroppers. Another crucial security measure is miti-
gating against eavesdroppers. The secret manager might indeed be communicating
with the legitimate party, however, an adversary in the middle could intercept the
communication link and steal sensitive information such as credentials. The web
app client-side (front-end) context, the medium for web application—secret man-
ager communication, is a hazardous area in terms of security. Attack vectors such
as cross-site scripting (XSS) enable an adversary to inject scripts into the client-side
context. Therefore, it is not realistic to consider the client-side context as inherently
secure. Due to the high security risk of using the client-side as a medium, Bery-
tus facilitates app-level end-to-end encryption between the web application and the
secret manager following an authenticated Diffie—Hellman Key Exchange, specifi-
cally X25519 [3, 9]. In Berytus’s app-level end-to-end encryption, the final sink of
ciphertext is at the web application back-end. The ciphertext is decrypted off the
web application—secret manager communication context, in the web application

48

Figure 4.1.: Illustration of a front-end adversary eavesdropping over the web
application—secret manager channel using a purposely crafted attack
payload. The adversary cannot steal the credentials since it was en-
crypted off the front-end by the secret manager.

back-end. Hence, any adversaries eavesdropping over the transmitted credentials
whether on the web app client-side or on the network-side would not be able to
steal credentials. This is illustrated in Figure 4.1.

Safe password-entry interface. Ruoti et al., motivated by the persistence
of passwords following years of scholarship on alternative authentication schemes,
suggest a formula to strengthen password authentication: “strong password pro-
tocols and safe password entry” [18]. In a strong password protocol such as the
Secure Remote Password (SRP) [1] protocol, the user’s password is not commu-
nicated in the clear during user authentication. Instead of the clear password, a
zero-knowledge proof is transmitted, permitting the web application to verify that
the user has knowledge of the password without her conveying it. To compute the
zero-knowledge proof, the user has to enter the password on the web app client-side.
Therefore, while the password is not transmitted to the web app server-side in the
clear, it is still accessible on the web page before the proof gets computed. This
is problematic since such strong password protocols on their own are insufficient
to combat XSS-credential theft attacks; the password is temporarily accessible in
the clear on the web app client-side. Ruoti et al. recommend using a safe password
entry interface, isolated from the web page, such as the browser interface to enter
the password and compute the proof [18]. Berytus supports a strong password
protocol such as SRP and facilitates a safe password entry interface isolated from
the web page, the secret manager’s interface. This combination mitigates against

49

Criterion C
re
d.
M
gm
t.
A
PI

H
T
M
L
A
ut
ofi
ll
¶

B
yP
as
s

B
er
yt
us

HTTPS only
Top-level document only /
Domain-based credential mapping
Web App Authentication - - -
Key-based credential mapping - - -
Authenticated Key Exchange - - -

¶: we assume the most theoretically secure secret manager under HTML Autofill.
= supported; - = not supported; / = not applicable;

Table 4.1.: Comparison of supported security policies and services.

XSS-credential phishing without the need to use end-to-end encryption.

4.1.2. Attack targets

We identified the following attack targets against users utilising Berytus or other
solutions in the secret manager-assisted authentication space:

• Credential theft. The attacker steals the credentials of an account be-
longing to the targeted web application.

• Identity information theft. The attacker accesses the user’s personal
information stored in the secret manager.

• User authentication hijacking. The attacker is not necessarily interested
in the user’s credentials, rather he captures valid (potentially encrypted) au-
thentication request payloads to authenticate himself as the user under the
targeted web application (impersonation of the user to the web app).

4.1.3. Attack area

Berytus being a browser-based framework, the attack area is naturally the client-
side. The attack payload, to carry on a target (see Section 4.1.2), could reside in
a web application front-end, in a secret manager extension, in a malicious browser
extension or in the privileged execution context of the browser. This is also the case
for the other browser-side solutions, HTML Autofill and the Credential Manage-
ment API. ByPass is safe from attacks in this area as it is designed for server-side
integration without the involvement of the web app front-end. However, in a later
section, we will highlight a security shortcoming of ByPass which Berytus solves.

50

4.1.4. Attack payload

In Berytus and the Credential Management API, communication with the secret
manager (storage) is performed through Web APIs. Any means of instruction capa-
ble of interfacing with Web APIs is plausible for crafting an attack payload against
Berytus or the Credential Management API, e.g., JavaScript. For HTML Aut-
ofill, credential or identity information is delivered to HTML input fields. Hence,
any means of harvesting the transmitted data in input fields is feasible to craft
a payload. JavaScript can be leveraged to create HTML autofill-able input fields
using the DOM Web API and to steal the transmitted autofill data. Ultimately, an
attack payload crafted using JavaScript is sufficient to attack secret managers im-
plementing HTML Autofill or the Berytus API or to attack the browser credential
storage when the Credential Management API is available. Thus, we will assume
JavaScript code to be, effectively, the driving code of the attacks.

4.1.5. Attack modes

The attack payload can be designed to assume two attack modes: active mode and
passive mode.

In active mode, the payload invokes the API (Berytus API or Credential Man-
agement API) to initiate credential transmission. The attacker directly invokes the
corresponding API and has liberty over specifying the desired arguments to pass.
In HTML Autofill, active mode could be conceptualized as the render of additional
input fields for which the secret manager would autofill. Active mode might cause
a user interface dialog to open which could alarm the user if he is not expecting it.
Conversely, passive mode is a stealthy approach for credential theft.

In passive mode, the attacker patiently awaits for the credential transmission pro-
cess to begin and intercepts it. Techniques such as JavaScript “monkey patching”,
i.e. augmenting the semantics of APIs at run-time, may be employed to intercept
the data passed between a secret manager and a web app through Web APIs [23,
21]. Monkey patch-interception is transparent and done on the fly; the first-party
scripts of a web application would not be able to notice it. In HTML Autofill,
passive mode can be assumed by patiently awaiting for an existing input field to be
filled with the password. Similar to monkey patch-interception, neither the web ap-
plication nor the user would be able to detect adversaries (under typical instances)
utilising the DOM API to access the autofilled input fields.

4.1.6. Attack vectors

After crafting the attack payload, the question then becomes, how to transmit this
payload? I.e., what would be the potential attack vectors for this payload? We
consider the following attack vectors and group them into three categories.

• JavaScript Code Injection. This group includes attack vectors capable
of injecting malicious JavaScript code into legitimate websites. Cross-site

51

scripting (XSS), TLS Proxy in the Middle and malicious browser extension
code injection (ExtInj) were covered in Section 2.5. Note, TPitM can be
leveraged to inject code into a loaded web page (TPInj). These attack vectors
are relevant for all browser-side solutions and individually sufficient to deliver
the attack payload into legitimate web applications.

• Certificate Spoofing. This group encapsulates attack vectors capable of
assuming an illegitimate certificate to impersonate another web application.
We consider one attack vector under Certificate Spoofing which is only appli-
cable for Berytus web app authentication instances, App key Impersonation
(AppImp). In our proposed X.509 extension, a Berytus signing key allow list
(see web app actor authentication routine in Section 3.2.3) can be defined to
facilitate key-based credential mapping. An attacker can spoof a certificate
containing the same Berytus public signing key as the one of a different web
application. For example, this certificate could be signed by a corrupt or
negligent certificate authority.

• Composite Vector. This group represents instances where multiple attack
vectors are leveraged at once. We combine two independent attack vectors,
Certificate Spoofing and DNS Poisoning, to form a composite attack vec-
tor, website impersonation (SiteImp). In website impersonation, the attacker
spoofs a certificate to impersonate another website’s origin (domain name)
and poisons a DNS resolver to redirect users visiting a legitimate web appli-
cation to his malicious web application. Note, both website impersonation
and web app impersonation attack vectors are used for credential phishing.
However, website impersonation is far more difficult to achieve as the attacker
has to be able to poison a DNS resolver in addition to spoofing a certificate.

4.1.7. Attack instances

In this section, we specify the threat model and the attack contexts we consider,
cover the most prominent attacks within the threat model, and in each case discuss
corresponding mitigation strategies. Table 4.2 shows a summary of the contextu-
alised attack vectors alongside effective mitigation strategies.

Threat Model. There are three broad types of entities in the web authentica-
tion and secret management ecosystem: web apps, the browser (limited to its native
code, encompassing Berytus as a component), and browser extensions (including
secret managers). We assume that the browser’s native code (and its privileged
execution context), including Berytus, is trusted. We also assume that secret man-
agers are trusted entities, but other browser extensions could be malicious. Web
apps could be legitimate or malicious. We do not assume an extra-vigilant user, so
the user may visit and not distinguish malicious websites and may install malicious
browser extensions. However, note that if the user consents to an extension being
given the secret management permission, the extension is considered to be a secret

52

Attack
Vector

Attack Context

Legitimate Web App Malicious Web App

Website
Auth

Web App
Auth

Website
Auth

Web App
Auth

JavaScript
Code

Injection

XSS CSP/CT CSP/CT/E2EE

TPInj ✕ E2EE

ExtInj CT CT/E2EE

Certificate
Spoofing AppImp E2EE

Composite
Vector SiteImp ✕

✕ = cannot be mitigated; / = or; = inapplicable;
CSP = Content Security Policy; CT = Credential Tokenisation;

E2EE = App-level end-to-end encryption;

Table 4.2.: Attack mitigation strategy matrix for credential theft attacks. See Sec-
tion 4.1.6 for a description of the attack vectors and Section 4.1.7 for
the contexts.

manager and hence trusted. Moreover, we assume that the user’s secret manager
will only transfer credentials under the same credential mapping strategy of when
it was saved; e.g., if the credential was registered under domain-based credential
mapping, it will only be transferred when domain-based credential mapping is used.
We assume this to be true for the two levels of secure credential mapping as well
(see Section 4.1.1).

Attack Contexts. We define the following contexts, shown in Table 4.2, distin-
guishing between legitimate web applications and malicious web applications, and
between website authentication and web application authentication.

• Legitimate Web App / Attacker’s Malicious Web App. This factor influences
the types of attack vectors that the attacker can leverage. The user either
visits a legitimate web application or, somehow, ends up on the attacker’s ma-
licious web application. Some attack vectors are only applicable under a legit-
imate web application or under a malicious web application only. JavaScript
Code Injection is used to execute malicious code on websites which the at-
tacker does not control. Hence, JavaScript Code Injection attack vectors are
irrelevant on web applications which the attacker controls. Similarly, in web-
site impersonation and web app impersonation attack vectors, the attacker
spoofs a certificate exclusively under her malicious web app, impersonating
another website’s origin or another web application’s signing key, respectively.

53

• Website authentication / Web application authentication. An important
factor that determines the possible mitigation strategies against considered
attack vectors and the secret manager’s app-to-credential mapping strategy.
Website authentication is certificate-based authentication of the website’s ori-
gin (domain); i.e. HTTPS. The Credential Management API, HTML Autofill
and ByPass all require website authentication, and thus employ a domain-
based app-to-credential mapping strategy. Web application authentication,
a step following website authentication, is certificate-based authentication of
the assumed web app key, e.g., Berytus’s web app crypto actor authenti-
cation. Essentially, web app authentication is exclusive to Berytus as it is
the only framework that considers web applications and app-specific keys as
opposed to websites. Hence, exclusively under Berytus’s web app authenti-
cation instances, key-based app-to-credential mapping strategy is employed.
Moreover, Berytus’s app-level end-to-end encryption can only be used as a
mitigation strategy under web app authentication. Note, in the Berytus’s
experimental design, web app authentication is a choice left for web app de-
velopers. A web app is free to opt in for (Berytus) web app authentication in
addition to the default (HTTPS) website authentication.

Credential and identity information theft attacks

In the attack instances below, the attacker’s target is to steal the user’s credential(s)
or his identity information. For the sake of brevity, we will assume it is credential
theft as the pathway is similar. Both attack modes, active or passive, can be used.

XSS: Cross-site scripting. In this attack, an adversary injects malicious
JavaScript code (embodying the attack payload) into a benign web app’s client-side
execution context using cross-site scripting [15, 13, 28]. A tight Content Security
Policy, which limits the origin from where web app resources can be loaded and
whether inline scripts are permitted, is an effective mitigation strategy against XSS
attacks. Credential Tokenisation, in which credentials are replaced with tokens in
the front-end, has been proposed as a mitigation strategy against XSS-credential
theft [15]. However, as discussed in Section 2.5, the previously proposed credential
tokenisation technique is designed for HTML form submission [15] and is not com-
patible with JavaScript workflows. Berytus provides the possibility of setting up
app-level end-to-end encryption which provides an orthogonal mitigation strategy
against such attacks and is compatible with JavaScript workflows. In some con-
texts, Content Security Policy may be deemed too restrictive, or even infeasible
to implement in contexts such as a single page application hosting forum, hence
having an alternative mitigation strategy is useful.

TPInj: TLS Proxy code Injection. In this attack, a malicious TLS Proxy in
the Middle tampers with the web app’s delivered (HTML or JavaScript) code to
include malicious code (attack payload) before it gets to the browser. Execution

54

of this attack payload cannot be mitigated using preventive measures, such as a
restrictive Content Security Policy, specified in HTTP headers or body, as they
can be tampered by the TLS proxy. App-level end-to-end encryption facilitated by
Berytus can serve as a mitigation strategy here assuming a trusted registration of
the web application key. While a TLS proxy can effectively bypass the protection
provided by TLS encryption, initiating app-level end-to-end encryption will only
be succeed if the web app is able to prove knowledge of a secret key (during au-
thenticated key exchange) corresponding to a public key associated with the app
under Berytus at the time of registration. Therefore, establishing app-level end-to-
end encryption through Berytus effectively provides a separate independent secure
medium for credential transfer between the web app and the secret manager which
cannot be monitored by a TLS proxy.

ExtInj: Extension code Injection. In this attack, a malicious browser ex-
tension installed on the browser injects malicious JavaScript code as the attack
payload into a benign web app’s client-side execution context. Content Security
Policy is not designed to prevent code injection by browser extensions. Both Cre-
dential Tokenisation and Berytus’s facilitated app-level end-to-end encryption can
render extension code injection ineffective in stealing users’ credentials. However,
to reiterate, Stock and Johns’ [15] credential tokenisation approach is limited as it
is tied to HTML form submission. Moreover, in practice, as we have mentioned in
Section 2.6, previous work could not find any secret manager implementing it, possi-
bly due to limitations imposed by browsers on extensions [28]. Conversely, Berytus
supports secret manager extensions to establish app-level end-to-end encryption of
users’ credentials, making app-level end-to-end encryption the sole mitigation strat-
egy effective against extension code injection that is both practical and realisable
by secret manager extensions.

AppImp: Certificate Spoofing - Berytus App key Impersonation. In this
Berytus-exclusive attack, a malicious web app spoofs a certificate to impersonate a
legitimate web app’s signing key used for key-based credential mapping. Although
the attacker has managed to fraudulently pass certificate-based authentication of
signing keys (secure credential mapping level 1, see Section 4.1.1), Berytus’s app-
level end-to-end encryption serves an alternative avenue to cryptographically au-
thenticate signing keys following an authenticated key exchange (secure credential
mapping level 2). Thus, a malicious web app cannot impersonate a legitimate web
app’s signing key by spoofing the certificate if app-level end-to-end encryption was
leveraged.

SiteImp: Certificate Spoofing and DNS Poisoning - Website Imperson-
ation. In this attack, the adversary spoofs a certificate to impersonate another
website’s domain (origin) used for domain-based credential mapping and poisons a
DNS resolver to redirect users to his malicious web application. Moreover, since the

55

attacker controls the malicious web application, she is able to execute the attack
payload to steal the user’s credentials under the impersonated website. Unfor-
tunately, credentials registered exclusively under website authentication (domain-
based credential mapping) are thus at risk of phishing via site impersonation. The
impersonating website can ask the secret manager for a credential associated with
the impersonated domain name. Conversely, credentials registered under web app
authentication and app-level end-to-end encryption (secure credential mapping level
2), as described in the case of AppImp, are not at risk of credential theft.

User authentication hijacking attacks

We now look at another attack target, user authentication hijacking. The attacker
is not interested in stealing the reusable credentials, but rather in any digital mate-
rial to impersonate the user in front of the web app, e.g., an authentication token.
HTTP cookies are designed in a way that client-side scripts are not able to ac-
cess them. Therefore, injected scripts (through JavaScript Code Injection attack
vectors) are not capable of stealing HTTP cookies stored in the user’s browser.
However, injected scripts can capture the client-side authentication request pay-
load and forward it to the attacker’s server. The attacker’s server with access to
a valid authentication request payload can submit it to the legitimate web appli-
cation’s server and obtain the authentication cookie. This sophisticated (real-time
and time-limited) attack works against any authentication scheme passing through
the web app front-end, including Secure Remote Password [1] and digital signature-
based authentication. To mitigate against this, we ought to conceal the valid au-
thentication request payload and authentication token from the adversary. Clearly,
preventing cross-site scripting attacks, e.g., using CSP, disables the adversary from
retrieving the authentication payload or cookie. However, malicious browser exten-
sions can freely inject code. Hence, a mitigation strategy concealing authoritative
payloads from client-side adversaries is needed. End-to-end encryption on itself is
insufficient, as the encrypted form of a credential contained within the authentica-
tion payload is sufficient to impersonate the user.

Credential Tokenisation can conceal authentication payloads from client-side ad-
versaries. However, detokenisation should only occur on network requests destined
to the legitimate web application endpoints. Apart from Stock and Johns’ [15] cre-
dential tokenisation strategy, we describe a Berytus-specific credential tokenisation
strategy where detokenisation occurs on a signed list of HTTP endpoints. During
the key exchange, the web application could put forth a list of detokenisation end-
points in the session parameters, and since the session parameters message is signed
by the web app’s signing key, we can be assured that those endpoints are not owned
by the attacker. This credential tokenisation strategy is superior to that of Stock
and Johns. It is not limited to (URL-encoded) HTML form submission but it would
also be compatible with JavaScript workflows, e.g., leveraging the Fetch API [43]. It
enables web applications to explicitly communicate detokenisation endpoints to the
secret manager on a per-session basis instead of relying on a fixed set of filters, e.g.,

56

Stock and Johns’ [15] password parameter name. This Berytus-specific credential
tokenisation strategy is sufficient to mitigate against client-side user authentication
hijacking attacks and is listed as future work in the discussion chapter.

4.1.8. Security comparison

The unravelled attack instances convey the danger of the considered attack vectors
and the effectiveness of the relevant mitigation strategies. Noticeably, Berytus has
superior security against credential phishing attacks. Berytus’s key-based credential
mapping coupled with app-level end-to-end encryption puts an end to credential
phishing attempts. Account credentials registered and authenticated under this
combination are always safe from phishing, however, credentials registered and au-
thenticated under domain-based credential mapping are not. Hence, we declare
that HTML Autofill, the Credential Management API and ByPass are insufficient
on themselves to combat credential phishing attempts while with Berytus, and its
full fleet of security services in action, credential phishing attempts are eliminated.
ByPass is not phishing-proof as it does not mitigate against TLS MitM Proxies
capable of intercepting credentials. Moreover, Berytus protects against accidental
credential leakage by using a secure credential mapping strategy while the Cre-
dential Management API, HTML Autofill or ByPass might leak credentials as a
result of domain reuse or co-existence of separate web applications under the same
domain.

In essence, Berytus’s facilitated services highlight their importance is mitigat-
ing against JavaScript Code Injection credential theft attacks. However, app-level
end-to-end encryption is not meant to be a replacement for CSP, it ensures confi-
dentiality of the user’s credentials. Hence, in instances where CSP is too restrictive
or ineffective, e.g., against malicious browser extensions, app-level end-to-end en-
cryption provides complete protection against credential theft. For user authenti-
cation hijacking attacks, we have identified a Berytus-specific tokenisation strategy
as a countermeasure. However, injected scripts can always interfere in the user’s
browser, manipulate a web page and silently send server requests, e.g., to transfer
funds from the victim’s account to the attacker. This calls for future work to inves-
tigate this problem; i.e. can a web app assert that the operation is invoked by the
user, or at least to what degree, and not by an adversary impersonating the user?

More important, for the full security fleet to be in service, there should be a
manager that stores web application keys. We designated the secret manager for
this role. The secret manager stores web application (signing) public keys alongside
user’s credentials, and the key, being unique, is used as an index when suggesting
credentials. This is a solution that enables secure credential mapping and app-level
end-to-end encryption that does not fully rely on trusted third-parties (certificate
authorities) and mitigates against spoofed certificates as in the case of AppImp.
Hence, we emphasise the potential of secret managers to maintain web application
keys, playing this role in establishing authenticated key exchanges and app-level
end-to-end encryption. On a final note, this section corroborates the usefulness of

57

streamlining such security services into browser-side frameworks for which compat-
ible paradigms such as the Credential Management API can adopt this security
model.

4.2. Functionality evaluation

In Section 2.2, we highlighted the significance of deployability factors in security-
enhancing authentication schemes. In our proposal, we also have to consider the
deployability aspect of Berytus. We evaluate the feasibility of deployment of Bery-
tus based on the following categories.

Functional compatibility. In secret manager-assisted authentication frame-
works, the user, the web application and the secret manager are all involved in
the orchestration. Hence, it is essential to fulfil the requirements of each party.
Analysing the functional compatibility between the web application and the secret
manager is the primary step to assert the possibility of integration with Berytus.

Integration effort. Integrating with Berytus entails code tailoring. Therefore,
examining the integration effort aids in evaluating the cost of integration. One
Berytus-integrated secret manager is sufficient to provide secret management and
authentication facilities to any Berytus-integrated web application. Thus, with
the existence of millions of service-offering web applications, the integration bur-
den mostly falls on web applications to proceed with it. As such, we are mostly
interested in examining the web application integration effort with Berytus.

4.2.1. Functional compatibility

Berytus is designed for compatibility with generic web applications, i.e. web apps
with varying functional requirements. While it is difficult to offer maximum com-
patibility with generic authentication systems, Berytus strives to achieve increased
compatibility by offering a high degree of modularity and flexibility. This design
pillar enables some notable capabilities for secret managers and web apps that are
discussed below and in part have been identified following our review of previous
frameworks (see Table 2.1). In each capability, we provide its functional label and
its corresponding label from Table 2.1. A comparison between existing frameworks
and Berytus with respect to these capabilities is presented in Table 4.3.

• Support for Multi-Step and Multi-Factor Authentication (Supports
stateful challenges). Existing frameworks only support “one-shot” sce-
narios, where credentials should be transmitted in one go; i.e. one instruction.
Berytus models provision of multiple authentication credentials as indepen-
dent successive challenges, where challenges are computed in a multi-step
fashion as in multiple programming instructions, e.g., in the case of Secure

58

Remote Password [1]. And through multiple completions of challenges, Bery-
tus is able to support multi-factor authentication. Web applications imple-
menting multi-step or multi-factor authentication flows can be integrated with
Berytus. For other solutions, none offer such capability, but it can be added
in a future version release of solutions backed by an API.

• Developer Control over User Experience (Preserves web apps’ Auth
UI). The autonomy of web applications entails that they maintain control
over the user experience and user interface for its users. In the authentication
context, control over user experience implies that, inter alia, the web applica-
tion decides when and how the operation starts and unfolds, respectively. In
HTML Autofill, the web application does not have control over when the cre-
dential transfer operation starts and how it is unfolded. However, in HTML
Autofill, developers have control over the UI, and hence they only have par-
tial control over the login UX. Both the Credential Management API and
Berytus provide this capability. In Berytus, the web application initiates the
operation and reacts freely in modifying the user interface during the opera-
tion. In contrast, ByPass eradicates the web app client-side, diminishing web
applications’ control over the rendered user interface during authentication.

• Maintaining the Conventional Usage Pattern (Preserves users’ men-
tal model). A typical user expects to visit a web page on his browser to log
in to the corresponding web app. Berytus, HTML Autofill and the Credential
Management API align with this mental model, whereas more radical frame-
works like ByPass expect users to conduct all their account-related tasks with
web apps through the secret manager’s interface.

• Support for Secret Manager Extensions (Integrates with web ex-
tensions). Berytus is designed to work with third-party secret managers
that are installed as extensions. This in turn supports choice for end users
and encourages an open ecosystem. Similarly, secret manager extensions can
perform HTML Autofill or invoke the ByPass server API. However, only the
Credential Management API officially works with the native, built-in browser
secret manager. To circumvent the lack of third-party secret manager support
in the Credential Management API, secret manager extensions can redefine
the Credential Management API to “hook” into it and process the creden-
tial storage/retrieval instructions on behalf of the built-in secret manager. It
becomes problematic when multiple secret manager extensions monkey patch
the Credential Management API; an official integration pathway with secret
manager extensions is better than secret manager extensions freely hooking
into the API. Berytus supports multiple secret manager usage along with
an official integration pathway for secret manager extensions. Hence, Bery-
tus ensures interoperability between web applications and third-party secret
managers.

59

Functional Capability H
T
M
L
A
ut
ofi
ll

C
re
d
M
gm
t
A
PI

B
yP
as
s

B
er
yt
us

Multi-Step & Multi-Factor Auth ✕

Developer Control over UX ✕

Conventional Usage Pattern ✕

Secret Manager Extensions
Flexible Account Design
Custom Authentication ✕

Secret Manager Allowlisting ✕

✕: not possible, : not currently supported,
: partially supported, : supported

Table 4.3.: Comparison of provided functional capabilities.

• Flexibility over Account Design (Supports credential customisa-
tion). Berytus allows web apps to define their account structure as any com-
bination of the supported fields. Furthermore, Berytus has built-in support
for record versioning, which allows graceful handling and migration between
multiple versions of account record structures, and categorisation, which al-
lows the possibility of multiple role-based accounts for the same user on the
same web app. Solutions other than Berytus have not advised, but can in a fu-
ture version release, a functional pathway to handle account record migration
throughout the development lifetime of an authentication system.

• Support for Custom Authentication. Berytus facilitates custom au-
thentication challenges to be initiated following approval from the selected
secret manager. For custom challenges, Berytus accepts a JSON Schema
specifying the messaging data format to validate the challenge messages sent
back and forth between the web app and secret manager. Therefore, generic
web applications can implement unorthodox authentication schemes, includ-
ing authentication schemes that are not well-known or privy between an ac-
quainted web application and secret manager pair. Existing solutions do not
provide such support.

• Support for Secret Manager Allowlisting. Web apps with strict secu-
rity policies may wish to restrict the list of secret managers they trust with
user credentials. Berytus provides the facility for web apps to specify a public
key allowlist of approved secret managers. Such a facility is not provided by
any of the existing frameworks.

Each functional capability influences the degree of interoperability and either

60

fulfils a web application functional requirement or not. For instance, if a web
application employs Secure Remote Password [1] authentication, it would not be
interoperable with solutions not supporting the multi-step authentication capabil-
ity. Additionally, if a web application needs control overs the user experience, it
would not opt in for solutions which impede them from it.

This section identified noteworthy functional capabilities, serving as a blueprint
for secret manager-assisted authentication frameworks interested in functional com-
patibility with generic web applications. Berytus showed superior functional com-
patibility as it was designed in that spirit. These capabilities can be adopted in a
sibling, browser-side API, architecture such as the Credential Management API. On
a final note, the goal of satisfying the functional requirements of web applications
was to streamline a solution that is not infeasible in practice. A solution such as
Berytus has satisfied the generic functional requirements we have identified in this
space. Therefore, in Berytus, integration is not only possible with orthodox web
applications but also with slightly more generic web applications.

4.2.2. Integration effort

The functional compatibility evaluation section paved the way in answering the
possibility of integration question. In this section, we look at the cost of integration,
or simply, the integration effort. In essence, the integration effort varies based on
the undertaken design decisions. We begin by examining the integration surface to
determine which domains are affected by the Berytus integration. Following the
identification of implicated domains, we briefly conduct a localised assessment of
the implications of the Berytus security services on the affected domains. Finally,
we compare the potential implications when integrating with Berytus, taking into
account its different integration decisions, against the Credential Management API,
ByPass and HTML Autofill.

Integration surface

We have identified the following architectural domains that might be affected by
the integration:

Web app client-side. Since Berytus is a Web API, the web application front-
end (client-side) is naturally part of the integration surface. Given an existing web
app front-end, the creation of a new module is necessary; no logical changes to the
existing modules are necessary. The new module should contain instructions to cre-
ate the Berytus channel and start operations. Generally, the new module should be
instantiated following a button click (e.g., “sign in with Berytus”), sending HTTP
requests to the web app back-end when necessary (e.g., transmitting credentials to
proceed with authentication).

61

Web app server-side. As a Web (browser) API, Berytus is not interested in
the web application’s back-end (server-side) implementation or configuration. A
web application performing password-based or digital signature-based authentica-
tion does not have modify its back-end authentication logic to achieve a successful
integration. However, some integration decisions, e.g., enabling app-level end-to-
end encryption, might necessitate back-end architectural changes. Therefore, at
a minimum, the server-side is detached from the integration surface unless some
integration decisions are opted in for.

Public key infrastructure. The Berytus architectural specification suggests the
use of digital certificates, when opted in for, to authenticate web applications.
Therefore, similar to the web app server-side, public key infrastructure is not in-
volved in the integration unless the web application opts in for web app authenti-
cation.

Implications on the integration surface

After covering the integration surface, we now assess the potential implications of
the integration decisions on the identified domains. In each implication, shown as
a bullet point, we provide a Berytus-specific label followed by a generic label to
align it with implications of other secret manager-assisted authentication frame-
works. There are three integration decisions a web application has the choice of
implementing, described below.

1. Base. This is the fundamental decision for a web application to integrate
with Berytus. At a minimum, the web app client-side has to incorporate JavaScript
code to invoke the Berytus Web API.

2. Web app authentication. Opting in for web app authentication requires
the possession of a Signing Key for which its public key counterpart is specified in
the Berytus Signing Key Allowlist certificate extension (see web app actor authen-
tication in Section 3.2.3). The mere possession of a Signing Key, however, does
not necessarily have to be part of the Web App server-side. It does not have to
be stored in a database; offline storage or a key management service is an option.
Apart from key possession, the Certificate Authority (public key infrastructure)
and the web app client-side are involved in web app authentication.

Web app client-side. The implications of web app authentication for the web app
client-side are trivial; only the specification of the base64 string of the SPKI DER-
encoded Signing Key (e.g., see ECC SPKI [4]) as part of the channel creation
options is necessary, this could be hard coded.

62

Public key infrastructure. There are three implications of web app authentication
for public key infrastructure.

• Introduction of Signing Key Allowlist: Addition of a certificate ex-
tension. To achieve Web App Authentication, specification of a Berytus
Signing Key Allowlist in the web application’s certificate is necessary. Fortu-
nately, the X.509 v3 standard introduced certificate extensions to allow the
addition of custom fields within the certificate. Therefore, it is possible to
create certificates containing the Berytus Signing Key Allowlist as an exten-
sion without the need of an X.509 version update. The only requirement is to
agree on and register an Object Identifier (OID) [41] for the Berytus certifi-
cate extension. To produce a working example, we assumed an arbitrary OID
1.2.3.4.22.11.23 for the Berytus signing key allowlist extension, as shown
in Listing 4.1.

• Creation of a CSR with the Berytus extension: Modification of CSR
creation process. The Certificate Signing Request [2] (CSR) is the primary
mean to request certificates from certificate authorities. The CSR contains
information on the certificate’s subject as well as any certificate extensions.
To create a certificate with the Berytus extension, the CSR must include the
Berytus extension. Thus, system administrators should extend their CSR
creation process to include the extension before sending it to the Certificate
Authority.

• Signing Key Proof of Possession: Addition of a C.A. PoP routine.
For each specified signing key in the Berytus Signing Key Allowlist certificate
extension, the Certificate Authority (C.A.) should verify for its Proof of Pos-
session (PoP). The CSR [2] is sufficient to assert the Proof of Possession of
the certificate’s corresponding key (subject key). However, the signing key,
being distinct from the subject key, has to be checked for Proof of Possession
as well. Hence, Signing Keys Proof of Possession validation is an additional
step that Berytus-compatible certificate authorities have to undertake. The
Certificate Authority is free to streamline the Signing Key Proof of Posses-
sion process, however, digital signatures are expected to be the core method
of verification. For instance, in our proof of concept, to embed the Berytus
extension into the CSR [2], each specified signing key must sign the certifi-
cate’s subject key; see Appendix Listing A.3 for a minimal working example
of CSR generation with the Berytus extension. Therefore, by requiring each
specified signing key in the Berytus extension to sign the certificate’s subject
key, the Certificate Authority can assert the Signing Key Proof of Possession
status. On a final note, it is unrealistic to expect all certificate authorities to
perform the Berytus Signing Key PoP routine. Fortunately, at a minimum,
one certificate authority implementing this routine is sufficient for certificates
with the Berytus extension to begin rolling out.

63

1 X509v3 extensions:

2 X509v3 Basic Constraints:

3 CA:FALSE

4 X509v3 Key Usage:

5 Digital Signature, Non Repudiation...

6 X509v3 Subject Alternative Name:

7 DNS:example.tld, DNS:www.example.tld

8 1.2.3.4.22.11.23:

9 0.....key:MCowBQYDK2VwAyE...,sksig:upTIvgc...

10 X509v3 Subject Key Identifier:

11 AB:6E:E8:98:4C:FD:28:B4:7A:7E:13:D7:CB:F2:...

Listing 4.1: This listing shows the extensions defined in a created certificate us-
ing the shell script in listing A.3. The assumed Berytus Signing Key
Allowlist OID [41] is 1.2.3.4.22.11.23.

3. App-level end-to-end encryption. Web app authentication is a precursor
for app-level end-to-end encryption. Therefore, the implications of web app au-
thentication are also applicable when opting in for app-level end-to-end encryption.
In app-level end-to-end encryption, both the web app client-side and the web app
server-side are involved; encrypted information traverses the web app client-side
context before arriving to the web app server-side.

Web app server-side. The implications of app-level end-to-end encryption for web
app server-side are described below. Note, the cryptographic routines, e.g., key
derivation or message signing, involved in app-level end-to-end encryption are of-
floaded to cryptographic libraries, hence the web app server-side only has to invoke
them and not implement them.

• Storage of signing and session keys: Provision of a new storage unit.
As part of the authenticated key exchange, the web application is responsible
for storing the signing key, generated session keys and session parameters.
Hence, a new storage unit is needed to maintain cryptographic material.

• Invocation of authenticated key exchange routines: Addition of
HTTP request handlers. The authenticated key exchange process (see
mediating an authenticated key exchange in Section 3.2.3) requires the web
app server-side to generate and store a session key, sign the session parameters
and compute the shared key. Consequently, from a high-level perspective, the
web app server-side has to implement additional HTTP request handlers to
invoke these functions. The web app client-side would transmit the crypto-
graphic material to the server-side by dispatching HTTP requests.

• Invocation of data encryption/decryption routines: Addition of
HTTP request handlers. Upon receiving ciphertext, the web app server-
side should invoke ciphertext decryption routines where appropriate; e.g., in

64

the authentication module to decrypt the ciphertext credentials before pro-
ceeding with the authentication. Similarly, the web app server-side should
encrypt credentials transmitted from the server-side to its client-side; e.g.,
when creating a Private Key field (see Table 3.1). We also group this impli-
cation under “Addition of HTTP request handlers” since these invocations
can be placed in a request handler that transparently decrypts or encrypts
data passing through it before reaching other request handlers; i.e. a request
handler middleware.

Web app client-side. There are two implications of app-level end-to-end encryp-
tion for web app client-side:

• Transmission of authenticated key exchange messages: Dispatch
of new HTTP requests. Throughout the authenticated key exchange
process (see mediating an authenticated key exchange in Section 3.2.3), the
client-side is used as the medium to pass key exchange material, i.e. messages,
between the web application and the secret manager. As such, the web app
client-side is responsible for transmitting the material received from the secret
manager to a secure site, the server-side. This is done by dispatching new
HTTP requests containing key exchange material from the client-side to the
server-side.

• Submission of ciphertext credentials: Dispatch of new HTTP re-
quests. Following a successful authenticated key exchange, the secret man-
ager would provide credentials as ciphertext. Hence, the web app client-side,
having previously defined an authentication request input format compati-
ble with cleartext credentials, must now define a new request input format
for ciphertext credentials. The new ciphertext request format is not neces-
sarily divergent from the cleartext request format. Generally, it is expected
that the ciphertext credential would have a different encoding than plaintext
credentials, and that ciphertext HTTP request inputs might include meta-
data in the headers; e.g., a session-specific shared key identifier used as an
index key to lookup the stored shared key for ciphertext decryption. Both
request input formats can share the same authentication endpoint. When
sharing the same endpoint, the ciphertext requests would be first handled
by the web app server-side request handler responsible for the invocation of
ciphertext decryption routines; thereafter, the request is passed to the authen-
tication request handler which verifies cleartext credentials. Conversely, the
cleartext requests would be exclusively handled by the web app server-side
authentication request handler. This cleartext/ciphertext request endpoint
sharing pattern could be applied not just to credentials but any information
encrypted by the secret manager. Overall, the web app client-side dispatches
two distinguishable sets of HTTP requests, one for plaintext payloads, and
one for ciphertext payloads, possibly sharing the same endpoint, as a result
of enabling app-level end-to-end encryption.

65

Incentives and effort amelioration

The Berytus integration effort can be regarded as an investment into the web ap-
plication’s security. Therefore, web app developers might find the Berytus security
services appealing and proceed with the integration despite the necessary effort and
architectural changes. More important, to alleviate the integration effort in the web
app server-side, we propose a middleware model, discussed below, which might en-
courage web app developers further. This benefit is similar to that of providing a
software library to support developers in adopting a proposed paradigm.

The middleware model is an excellent solution to achieve a complete integration
(web app authentication and app-level end-to-end encryption), it does not require
any changes to the authentication logic defined in the authentication module. Fig-
ure 4.2 illustrates the deployment of such a middleware. It handles ciphertext
decryption before feeding the request body to the authentication module, and thus
the authentication logic remains unchanged. In addition to data encryption/decryt-
pion, it can process authenticated key exchanges, relieving the web app developer
from implementing the necessary request handlers for the key exchange. It is a
flexible, backward-compatible solution to achieve app-level end-to-end encryption.

Figure 4.2.: Illustration of an external middleware service model to achieve end-to-
end encryption without requiring web app backend changes.

66

Implication C
re
d.
M
gm
t.
A
PI

H
T
M
L
A
ut
ofi
ll

B
yP
as
s

B
er
yt
us
B
as
e

B
er
yt
us
A
pp

A
ut
h

B
er
yt
us
E2
E

B
er
yt
us
E2
E-
m
id
lw
.

Public key infrastructure:
Addition of a certificate extension
Modification of CSR creation process
Addition of a C.A. PoP routine

Web app server-side:
Provision of a new storage unit
Addition of HTTP request handlers

Web app client-side:
Addition of HTML semantics
Addition of JavaScript code
Dispatch of new HTTP requests

Table 4.4.: Comparison of implicated software domains when integrating with the
Credential Management API, HTML Autofill, ByPass or Berytus (Base;
Web App Authentication; End-to-end encryption; End-to-end encryp-
tion using a middleware).

Although the middleware was deployed as an external service in Figure 4.2, it can
be implemented within the web application back-end as a standalone module that
exposes request handlers for the key exchange and would modify incoming HTTP
requests on the fly, decrypting ciphertext when appropriate, before the input arrives
to the authentication module. There are advantages and disadvantages depending
on where the middleware is deployed. When deployed as an external service, the
network latency is increased and the authentication module would have incoming
HTTP requests with a source IP address of the external service instead of the user’s
IP address. In a different architecture such as event-driven microservices, services
are loosely coupled and instead of sending a server-to-server HTTP request, the
authentication request is turned as an event containing the original user’s IP ad-
dress and pushed to an event stream which other services, such as an authentication
service, can pick up. Ultimately, introducing the middleware as an external service,
event-driven or not, offers increased flexibility; backward compatibility is guaran-
teed since the existing web application back-end code base remains unchanged.

In this section, we have dissected the implicated software domains when inte-
grating with Berytus at various levels. Table 4.4 summarises them along with a
high-level comparison between the existing solutions. Note, we have not consid-
ered the feasibility of a middleware model for ByPass since we could not find a

67

public repository for its API. Moreover, we have not evaluated the effort in terms
of required developer hours; however, this examination serves as a starting point
for future developer studies. Nonetheless, the use of a middleware to achieve web
app authentication and app-level end-to-end encryption is promising, requiring only
web app client-side changes, and might persuade web app developers to integrate
with Berytus due to the common understanding that, in general, client-side changes
could be easier to incorporate than server-side changes. More important, since only
one certificate authority is sufficient to issue certificates with the Berytus extension,
Berytus as a security solution is not infeasible and certainly possible.

68

5. Discussion and conclusions

In this chapter, we will validate Berytus per the evaluation method described in
the methodology (Section 3.1), discuss the limitations, recommendations for future
work and the amplified potential of secret managers.

5.1. Validation

In the security evaluation section, we dissected the prominent attack vectors on
credential theft, referring to previous mitigation strategies such as Credential To-
kenisation [15] and standardised ones such as the Content Security Policy. The
analysis showed that Berytus is superior to other secret manager-assisted authen-
tication frameworks in combating credential theft attacks. Berytus provides the
two capabilities “Safe from XSS-password theft” and “Safe from TPitM-password
theft” listed in Table 2.1. Furthermore, Berytus’s accurate and authenticated web
app-to-credential mapping combats credential phishing attacks by deceitful web
applications through the use of web app authentication and app-level end-to-end
encryption; this is listed as “Secure credential mapping” in Table 2.1. Lastly, Bery-
tus’s security policies are consistent irrespective of the secret manager implemen-
tation. Overall, the security evaluation shows that Berytus improves the security
status quo in the secret manager-assisted authentication space.
In the functionality evaluation section, we focused on functional compatibility and

integration effort, answering the important question, the feasibility of deployment
by tackling two factors: functional compatibility and integration effort. Berytus
satisfies the identified functional requirements, offering sufficient functional com-
patibility for orthodox and (slightly-) unorthodox web applications. Furthermore,
we have examined the integration effort, showing how it is logically distributed
among the implicated domains and highlighted the high-level steps required for a
base or complete integration. The integration effort assessment indicated that at
least one certificate authority is needed to buy into the Berytus certificate exten-
sion (web app authentication) for certified web app-specific keys to start rolling
out. Moreover, the assessment demonstrated that by leveraging our middleware
model (Figure 4.2), a complete integration bestowing valuable security benefits can
be realised without web app server-side changes. Hence, we assert that Berytus is
indeed feasible to deploy and, thus, a practical solution.
Our evaluation method (Section 3.1) emphasised on improving the status quo

by fulfilling all of the capabilities listed in Table 2.1 and Berytus does indeed fulfil
them. Therefore, the Berytus experiment is a success, passing the evaluation crite-
ria. Overall, Berytus is a promising secret manager-assisted web user authentication

69

framework, it is feasible to deploy and secure against prominent, credential theft at-
tacks. It addressed the existing gaps identified in Table 2.1, proposed an alternative,
app-specific credential mapping strategy through secure web application—secret
manager identification and streamlined an app-level end-to-end encryption flow to
protect against web page-based and network-based eavesdropping adversaries.

As far as we know, Berytus is the first secret manager-assisted web user authenti-
cation framework offering browser-based unified secret management, authenticated
secret manager—web application identification and app-level end-to-end encryp-
tion. Previous secret manager-assisted authentication frameworks did not consider
coupling security services in their approaches, rather they depended on the existing
web infrastructure security. ByPass is a great and significant proposal, its shift to
server-side communication shows how security is improved due to web app client-
side attack vectors being eliminated from the attack surface. Berytus sticks with
the client-side context and introduces crucial security services to mitigate against
client-side attack vectors which other browser-side frameworks such as HTML Aut-
ofill, PMF or the Credential Management API do not. Ultimately, Berytus is an
experiment, providing beneficial security services and a unified secret management
interface, both of which improves the status quo and can be adopted into sibling
architectures such as the Credential Management API.

5.2. Limitations

We identified two limitations in our work, discussed below.

Signing key revocation. During the lifetime of the Berytus Signing Key, revo-
cation might be necessary, e.g., if the cryptographic private key was compromised.
We have not conceptualised a pathway to facilitate secure key revocation. In Bery-
tus, the Signing Key is used as an application identifier. Hence, there should be two
additional facilities, one to revoke the key, and one to migrate to the new key as
the latest application identifier. Revoking a Signing Key and switching to another
should be streamlined under scrutiny, otherwise a loose approach would cause the
user’s credentials to be unusable without manual intervention. Future work could
propose an alternative Berytus extension and investigate whether standardised pro-
tocols such as the Online Certificate Status Protocol (OSCP) could be leveraged in
determining the revocation status of Berytus keys.

Multiple browser usage. Berytus offers unified secret management for secret
managers installed within the browser, not taking into consideration secret man-
agers installed on other browsers or as standalone operating system applications.
An improved, alternative design of Berytus supporting secret managers in different
environments could be worth exploring.

70

5.3. Further work

Apart from the limitations, we suggest a few recommendations for future work:

Conducting usability and developer studies. To further investigate the
integration effort, we suggest conducting developer studies examining their percep-
tion of Berytus and estimating the required number of developer hours for the three
integration pathways of Berytus; (1) base, without the use of any security service;
(2) use of web application authentication; (3) use of web application authentication,
authenticated key exchange and app-level end-to-end encryption. Furthermore, a
usability study could shed light on any shortcomings of Berytus and help us under-
stand the users’ perceptions and mental models.

Requiring full usage of Berytus’s security services. While Berytus’s exper-
imental design offers three integration levels where the security increases gradually
along with the integration effort, we now, however, recommend that the full fleet
of security services be employed at all times. Assuming the middleware solution
significantly decreases the web app integration effort, the web app integration ef-
fort of the first (base) pathway, i.e. without web app authentication or end-to-end
encryption, would be similar to that of the third pathway, web app authentication
and end-to-end encryption enabled. This assumption could be verified by compar-
ing the required number of developer hours (following a developer study) of the
first pathway with the third pathway, and if similar, we suggest requiring full us-
age of Berytus’s security services instead of providing a pick-and-choose security
paradigm.

Streamlining a Berytus-specific Credential Tokenisation strategy. Dur-
ing the early design phases of Berytus, we considered implementing credential to-
kenisation, however, we opted in for end-to-end encryption as it protects sensitive
data from being eavesdropped past the client-side, e.g., network adversaries in the
middle. In the security evaluation, user authentication hijacking attacks showed
how adversaries do not necessarily need to acquire knowledge of credentials but any
of its valid shapes to succeed in user authentication and impersonate the user. For
web page-based (web app client-side) adversaries, e.g., using JavaScript Code In-
jection, credential tokenisation is an effective mitigation strategy as the valid shape
of the credentials would not be accessible. However, detokenisation should occur in
HTTP requests destined to endpoints (i.e. resources) owned by the web applica-
tion. Hence, we suggest future work to streamline an appropriate Berytus-specific
strategy where, e.g., the session parameters during the key exchange could be used
to specify the valid HTTP endpoints where credentials should be detokenised.

71

5.4. Amplified potential of secret managers

Berytus enables secret managers to process account-related operations on behalf of
users. The streamlined operations include tasks not present in the status quo such
as the Secure Remote Password [1] protocol and one-time password email/phone
verification1. Secret managers could evolve into processing passwordless, one-time
password authentication by hosting an email server alongside its credentials vault.
Fundamentally, secret managers become robust agents for users, managing their
credentials, including email- or phone-based ones, and processing account-related
operations on their behalf. For end users, Berytus bestows a Single-Sign-On-like
experience but with increased privacy; a local (client-side) paradigm does not ne-
cessitate users to trust third-party or centralised systems with their personal infor-
mation or credentials. We identified two innovative functionality of secret managers
that could be implemented:

• Secure client-side encryption (oracle). Modern web applications are
now leveraging the client-side context to execute cryptographic functions such
as data encryption. Since the execution is on the client-side, the user is assured
that the secret asymmetric or symmetric key does not leave her device and all
the cryptographic functions are executed locally. However, there is no visible
or technical guarantee. Security-aware users might examine the source code
or analyse the network traffic to verify that their secrets are not transmitted
anywhere else. This is similar to strong password protocols such as SRP, if an
adversary “sidesteps” the protocol [18], he could steal the password (secret).
Just as Berytus enables secret managers to facilitate a safe password entry
interface, it could enable them to provide a secure programming interface for
data encryption/decryption where the (a)symmetric secret key does not leave
the secret manager. Providing a cryptographic, e.g., decryption, oracle would
assure users that their secrets do not get exposed to the web application.

• Generic resource credential storage. Some web applications communi-
cate cryptographic secrets such as SSH private keys or cryptocurrency wallet
keys to end-users. Such secrets are not necessarily coupled with an account
but given to the user. Normally, the secret material is downloaded or copied to
the clipboard. Secret managers could offer a more organised and secure stor-
age for such secrets. Users would not have to define an ad hoc organisational
method (e.g., creating a file system tree structure) or manually download
and move the secrets to an appropriate location. This is mostly beneficial
for users (e.g., consultants or developers) managing a wide range of resource
credentials.

1WebOTP [30], an extension of Credential Management API, is designed for assisted OTP ver-
ification, however, it does not provide the user agent (or secret manager) with sufficient data
such as the phone number or email address of which the OTP was sent to.

72

Fundamentally, at a very high level, web applications become identifiable systems
where account credentials (e.g., passwords), resource credentials (e.g., SSH keys)
and personal information are shared. Providing such innovative functionality would
radically transform the role and selling point of secret managers. Consequently,
users would reconsider the overall benefit of using secret managers and could drive
its adoption forward. In such an ideal world, the final security burden would be to
develop secure secret manager implementations, e.g., secure credential storage, as
the communication between the web application and the secret manager is secure
under Berytus.

5.5. Concluding remarks

In this thesis, we presented Berytus, a novel governance framework that harmonises
web application—secret manager interactions to orchestrate programmable account
authentication and registration operations. This answers our research question in
Section 1.2. It does not degrade usability, it has consistent, strong security measures
and its design tackles practical challenges to ensure correct behaviour. We have
demonstrated its feasibility, both theoretically and in practice, providing an Open
Source implementation of Berytus in Mozilla Firefox and a Berytus-compatible se-
cret manager, Secret*. We have fulfilled the research goals, we placed a mediator
between web applications and secret managers, allowing both parties to communi-
cate, and defined a mutual orchestration agreement.

The Berytus approach is not only novel, but also fills present gaps in other secret
manager-assisted web user authentication frameworks to tailor a practical solution
that fulfils significant functional and security requirements. None of the existing so-
lutions attempted to couple security services such as web application authentication
using app-specific keys or application-level end-to-end encryption. These security
services are needed because of the insecure nature of the client-side context. Instead
of focusing on preventative measures against malicious code injection (e.g., CSP),
we streamlined the communication flow to be immune from credential theft attacks
by injected code. Using application-level end-to-end encryption, credentials travel
in encrypted form, ensuring its confidentiality from its departure from the secret
manager to its arrival to the web application back-end. We have shown cases where
malicious browser extensions can inject scripts regardless of the Content Security
Policy, the primary mitigation strategy against cross-site scripting. Hence, this
emphasises the value of application-level end-to-end encryption in achieving immu-
nity against credential theft attacks, whether against cross-site scripting, malicious
browser extensions or TLS Proxies in the Middle.

We have also considered the functional requirements of generic web applications,
providing flexibility over account (credential) design, developer control over the
user experience and support for multi-step & multi-factor authentication. Bery-
tus does not force web applications to implement a new authentication scheme,
rather it streamlines, as part of its API, prominent authentication schemes such

73

as password, secure remote password, digital signatures, and one-time passwords.
The integration constitutes of connecting the secret manager as the input provider,
instead of the user, to the web application’s existing authentication module. Hence,
the web application’s authentication logic need not be changed, and can concur-
rently accommodate both users and non-users of Berytus. We have proposed a
middleware model as a practical and flexible solution to actualise the full security
fleet of Berytus. Consequently, the integration effort is significantly reduced and
web application developers are only required to perform client-side changes only.
Berytus serves as a novel foundational paradigm for secure and practical secret

manager-assisted web user authentication. We have identified two limitations which
can be addressed in future work. We suggest future work to focus on streamlining
an appropriate Berytus signing key revocation process and on exploring relevant
pathways to support secret managers in different computing environments. More-
over, we encourage researchers to conduct developer studies and usability studies
to quantify the integration effort on the developer side and to explore users’ per-
ceptions of Berytus, respectively. The security analysis covering prominent attack
targets and vectors emphasised the danger of user authentication or operation hi-
jacking attacks apart from credential theft attacks. We identified a mitigation
strategy against user authentication hijacking using a Berytus-specific credential
tokenisation strategy and recommend future work to investigate it further along
with exploring relevant security measures to achieve immunity from operation hi-
jacking.
Berytus bridged the gap between vision and practice to reveal the unexplored

potential of secret managers. Secret managers could evolve to become robust
agents processing account-related operations and managing account and resource
credentials. Users would be equipped with competent agents, helping them manage
their digital security whilst bestowing convenience. In conclusion, the experimen-
tal secret manager governance framework, Berytus, materialised the potential of
evolved secret managers by facilitating a secure and practical foundation for secret
manager—web application communication to undertake account-related operations,
and answered the research question on the possibility of achieving harmony between
the two parties without degrading usability or security. This is a significant im-
provement in the secret manager-assisted web user authentication space, positively
impacting users’ and web applications’ security, and Berytus’s design decisions and
security services can be incorporated into compatible sibling architectures such as
the Credential Management API.

74

References

[1] T. D. Wu, “The Secure Remote Password Protocol,” in Network and Dis-
tributed System Security Symposium, 1998.

[2] M. Nystrom and B. Kaliski, PKCS #10: Certification Request Syntax Speci-
fication Version 1.7, Nov. 2000. [Online]. Available: https://www.rfc-edit
or.org/rfc/rfc2986#section-3.

[3] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in Public
Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 207–228, isbn:
978-3-540-33852-9.

[4] S. Turner, D. Brown, K. Yiu, R. Housley, and T. Polk, Elliptic Curve Cryp-
tography Subject Public Key Information, Jan. 2009. [Online]. Available: htt
ps://www.rfc-editor.org/rfc/rfc5480 (visited on 2024-01-08).

[5] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The Quest to
Replace Passwords: A Framework for Comparative Evaluation of Web Au-
thentication Schemes,” in IEEE Symp. Security and Privacy, Edition: IEEE
Symp. Security and Privacy, IEEE, May 2012. [Online]. Available: https:
//www.microsoft.com/en-us/research/publication/the-quest-to-rep

lace-passwords-a-framework-for-comparative-evaluation-of-web-a

uthentication-schemes/.

[6] M. Blanchou and P. Youn, Password Managers: Exposing Passwords Every-
where, 2013. [Online]. Available: https://raw.githubusercontent.com/i
SECPartners/publications/master/whitepapers/password_managers.p

df.

[7] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, You, Get
Off of My Clipboard,” in Financial Cryptography and Data Security, A.-R.
Sadeghi, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 144–
161, isbn: 978-3-642-39884-1.

[8] R. Gonzalez, E. Y. Chen, and C. Jackson, “Automated password extraction
attack on modern password managers,” arXiv preprint arXiv:1309.1416, 2013.
[Online]. Available: https://doi.org/10.48550/arXiv.1309.1416.

[9] D. J. Bernstein, [Cfrg] 25519 naming, Aug. 2014. [Online]. Available: https
://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRk

sU/ (visited on 2024-02-07).

75

https://www.rfc-editor.org/rfc/rfc2986#section-3
https://www.rfc-editor.org/rfc/rfc2986#section-3
https://www.rfc-editor.org/rfc/rfc5480
https://www.rfc-editor.org/rfc/rfc5480
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://raw.githubusercontent.com/iSECPartners/publications/master/whitepapers/password_managers.pdf
https://raw.githubusercontent.com/iSECPartners/publications/master/whitepapers/password_managers.pdf
https://raw.githubusercontent.com/iSECPartners/publications/master/whitepapers/password_managers.pdf
https://doi.org/10.48550/arXiv.1309.1416
https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/
https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/
https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/

[10] Z. Li, W. He, D. Akhawe, and D. Song, “The Emperor’s New Password Man-
ager: Security Analysis of Web-Based Password Managers,” in 23rd USENIX
Security Symposium (USENIX Security 14), ser. SEC’14, event-place: San
Diego, CA, USA: USENIX Association, 2014, pp. 465–479, isbn: 978-1-931971-
15-7. [Online]. Available: https://www.usenix.org/conference/usenixse
curity14/technical-sessions/presentation/li_zhiwei.

[11] M. O’Neill, S. Ruoti, K. E. Seamons, and D. Zappala, “TLS Proxies: Friend or
Foe?” CoRR, vol. abs/1407.7146, 2014, arXiv: 1407.7146. [Online]. Available:
http://arxiv.org/abs/1407.7146.

[12] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
OpenID Connect Core 1.0 incorporating errata set 1, Aug. 2014. [Online].
Available: https://openid.net/specs/openid-connect-core-1_0.html
#StandardClaims (visited on 2024-01-16).

[13] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson, “Password Managers:
Attacks and Defenses,” in 23rd USENIX Security Symposium (USENIX Se-
curity 14), San Diego, CA: USENIX Association, Aug. 2014, pp. 449–464,
isbn: 978-1-931971-15-7. [Online]. Available: https://www.usenix.org/con
ference/usenixsecurity14/technical-sessions/presentation/silver.

[14] F. Stajano, M. Spencer, and G. Jenkinson, “Password-Manager Friendly (PMF):
Semantic Annotations to Improve the Effectiveness of Password Managers,”
in Lecture Notes in Computer Science, vol. 9393, Dec. 2014, p. 61, isbn: 978-
3-319-24191-3. doi: 10.1007/978-3-319-24192-0_4.

[15] B. Stock and M. Johns, “Protecting users against XSS-based password man-
ager abuse,” ACM, 2014. doi: 10.1145/2590296.2590336. [Online]. Avail-
able: https://dx.doi.org/10.1145/2590296.2590336.

[16] E. Stobert and R. Biddle, “Expert Password Management,” in Passwords,
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:4
0395405.

[17] N. Alkaldi and K. Renaud, “Why Do People Adopt, or Reject, Smartphone
Password Managers?” In The 1st European Workshop on Usable Security,
EuroUSEC 2016, Jan. 2016. doi: 10.14722/eurousec.2016.23011.

[18] S. Ruoti, J. Andersen, and K. Seamons, “Strengthening Password-based Au-
thentication,” in Twelfth Symposium on Usable Privacy and Security (SOUPS
2016), Denver, CO: USENIX Association, Jun. 2016. [Online]. Available: ht
tps://www.usenix.org/conference/soups2016/workshop-program/way2

016/presentation/ruoti_password.

[19] S. Aurigemma, T. Mattson, and L. Leonard, “So Much Promise, So Little
Use: What is Stopping Home End-Users from Using Password Manager Ap-
plications?” In Proceedings of the 50th Hawaii International Conference on
System Sciences, Hawaii International Conference on System Sciences, Jan.
2017. doi: 10.24251/HICSS.2017.490.

76

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
http://arxiv.org/abs/1407.7146
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/silver
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/silver
https://doi.org/10.1007/978-3-319-24192-0_4
https://doi.org/10.1145/2590296.2590336
https://dx.doi.org/10.1145/2590296.2590336
https://api.semanticscholar.org/CorpusID:40395405
https://api.semanticscholar.org/CorpusID:40395405
https://doi.org/10.14722/eurousec.2016.23011
https://www.usenix.org/conference/soups2016/workshop-program/way2016/presentation/ruoti_password
https://www.usenix.org/conference/soups2016/workshop-program/way2016/presentation/ruoti_password
https://www.usenix.org/conference/soups2016/workshop-program/way2016/presentation/ruoti_password
https://doi.org/10.24251/HICSS.2017.490

[20] S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm
(EdDSA), Issue: 8032 Num Pages: 60 Series: Request for Comments Pub-
lished: RFC 8032, Jan. 2017. doi: 10.17487/RFC8032. [Online]. Available:
https://www.rfc-editor.org/info/rfc8032.

[21] B. Pfretzschner and L. ben Othmane, “Identification of Dependency-based
Attacks on Node.js,” in Proceedings of the 12th International Conference on
Availability, Reliability and Security, ser. ARES ’17, event-place: Reggio Cal-
abria, Italy, New York, NY, USA: Association for Computing Machinery,
2017, isbn: 978-1-4503-5257-4. doi: 10.1145/3098954.3120928. [Online].
Available: https://doi.org/10.1145/3098954.3120928.

[22] D. Balfanz et al., Web Authentication: An API for accessing Public Key Cre-
dentials Level 1, Jan. 2019. [Online]. Available: https://www.w3.org/TR/20
19/PR-webauthn-20190117/ (visited on 2024-01-27).

[23] Monkey Patching: An Analysis of Code Poisoning JavaScript. Oct. 2019. [On-
line]. Available: https://jscrambler.com/blog/an-analysis-of-code-p
oisoning-monkey-patching-javascript.

[24] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor, “Why
people (don’t) use password managers effectively,” in Fifteenth Symposium
on Usable Privacy and Security (SOUPS 2019), Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 319–338, isbn: 978-1-939133-05-2. [Online]. Avail-
able: https://www.usenix.org/conference/soups2019/presentation/pe
arman.

[25] S. Seiler-Hwang, P. Arias-Cabarcos, A. Maŕın, F. Almenares, D. Dı́az-Sánchez,
and C. Becker, “”I Don’t See Why I Would Ever Want to Use It”: Analyzing
the Usability of Popular Smartphone Password Managers,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Se-
curity, ser. CCS ’19, event-place: London, United Kingdom, New York, NY,
USA: Association for Computing Machinery, 2019, pp. 1937–1953, isbn: 978-
1-4503-6747-9. doi: 10.1145/3319535.3354192. [Online]. Available: https:
//doi.org/10.1145/3319535.3354192.

[26] M. West, Credential Management Level 1, Jan. 2019. [Online]. Available: ht
tps://www.w3.org/TR/2019/WD-credential-management-1-20190117/

(visited on 2024-01-04).

[27] M. Carr and S. F. Shahandashti, “Revisiting Security Vulnerabilities in Com-
mercial Password Managers,” in ICT Systems Security and Privacy Protec-
tion, M. Hölbl, K. Rannenberg, and T. Welzer, Eds., Cham: Springer Inter-
national Publishing, 2020, pp. 265–279, isbn: 978-3-030-58201-2.

[28] S. Oesch and S. Ruoti, “That Was Then, This Is Now: A Security Evaluation
of Password Generation, Storage, and Autofill in Browser-Based Password
Managers,” in 29th USENIX Security Symposium (USENIX Security 20),
USENIX Association, Aug. 2020, pp. 2165–2182, isbn: 978-1-939133-17-5.

77

https://doi.org/10.17487/RFC8032
https://www.rfc-editor.org/info/rfc8032
https://doi.org/10.1145/3098954.3120928
https://doi.org/10.1145/3098954.3120928
https://www.w3.org/TR/2019/PR-webauthn-20190117/
https://www.w3.org/TR/2019/PR-webauthn-20190117/
https://jscrambler.com/blog/an-analysis-of-code-poisoning-monkey-patching-javascript
https://jscrambler.com/blog/an-analysis-of-code-poisoning-monkey-patching-javascript
https://www.usenix.org/conference/soups2019/presentation/pearman
https://www.usenix.org/conference/soups2019/presentation/pearman
https://doi.org/10.1145/3319535.3354192
https://doi.org/10.1145/3319535.3354192
https://doi.org/10.1145/3319535.3354192
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/

[Online]. Available: https://www.usenix.org/conference/usenixsecurit
y20/presentation/oesch.

[29] E. Stobert, T. Safaie, H. Molyneaux, M. Mannan, and A. Youssef, “ByPass:
Reconsidering the Usability of Password Managers,” in Security and Privacy
in Communication Networks, N. Park, K. Sun, S. Foresti, K. Butler, and N.
Saxena, Eds., Cham: Springer International Publishing, 2020, pp. 446–466,
isbn: 978-3-030-63086-7.

[30] S. Goto, WebOTP API, Apr. 2021. [Online]. Available: https://wicg.gith
ub.io/web-otp/ (visited on 2024-03-31).

[31] N. Huaman, S. Amft, M. Oltrogge, Y. Acar, and S. Fahl, “They Would do
Better if They Worked Together: The Case of Interaction Problems Between
Password Managers and Websites,” IEEE, 2021. doi: 10.1109/sp40001.20
21.00094. [Online]. Available: https://dx.doi.org/10.1109/sp40001.202
1.00094.

[32] S. Oesch, A. Gautam, and S. Ruoti, “The Emperor’s New Autofill Frame-
work:A Security Analysis of Autofill on IOS and Android,” in Annual Com-
puter Security Applications Conference, ser. ACSAC ’21, event-place: Virtual
Event, USA, New York, NY, USA: Association for Computing Machinery,
2021, pp. 996–1010, isbn: 978-1-4503-8579-4. doi: 10.1145/3485832.34858
84. [Online]. Available: https://doi.org/10.1145/3485832.3485884.

[33] H. Ray, F. Wolf, R. Kuber, and A. J. Aviv, “Why Older Adults (Don’t)
Use Password Managers,” in 30th USENIX Security Symposium (USENIX
Security 21), USENIX Association, Aug. 2021, pp. 73–90, isbn: 978-1-939133-
24-3. [Online]. Available: https://www.usenix.org/conference/usenixse
curity21/presentation/ray.

[34] S. Oesch, S. Ruoti, J. Simmons, and A. Gautam, ““It Basically Started Using
Me:” An Observational Study of Password Manager Usage,” in Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems, ser. CHI
’22, event-place: New Orleans, LA, USA, New York, NY, USA: Association
for Computing Machinery, 2022, isbn: 978-1-4503-9157-3. doi: 10.1145/349
1102.3517534. [Online]. Available: https://doi.org/10.1145/3491102.35
17534.

[35] SRP: What Is It? Nov. 2022. [Online]. Available: http://srp.stanford.ed
u/whatisit.html.

[36] A. Cherry, K. Barmpis, and S. F. Shahandashti, “The Emperor is Now
Clothed: A Secure Governance Framework for Web User Authentication through
Password Managers,” in Information and Communications Security: 26th In-
ternational Conference, ICICS 2024, Mytilene, Lesvos, Greece, August 26–28,
2024, Proceedings, 2024.

[37] Fetch directive. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Glossary/fetch_directive (visited on 2024-01-20).

78

https://www.usenix.org/conference/usenixsecurity20/presentation/oesch
https://www.usenix.org/conference/usenixsecurity20/presentation/oesch
https://wicg.github.io/web-otp/
https://wicg.github.io/web-otp/
https://doi.org/10.1109/sp40001.2021.00094
https://doi.org/10.1109/sp40001.2021.00094
https://dx.doi.org/10.1109/sp40001.2021.00094
https://dx.doi.org/10.1109/sp40001.2021.00094
https://doi.org/10.1145/3485832.3485884
https://doi.org/10.1145/3485832.3485884
https://doi.org/10.1145/3485832.3485884
https://www.usenix.org/conference/usenixsecurity21/presentation/ray
https://www.usenix.org/conference/usenixsecurity21/presentation/ray
https://doi.org/10.1145/3491102.3517534
https://doi.org/10.1145/3491102.3517534
https://doi.org/10.1145/3491102.3517534
https://doi.org/10.1145/3491102.3517534
http://srp.stanford.edu/whatisit.html
http://srp.stanford.edu/whatisit.html
https://developer.mozilla.org/en-US/docs/Glossary/fetch_directive
https://developer.mozilla.org/en-US/docs/Glossary/fetch_directive

[38] HTML Standard: Autofill. [Online]. Available: https://html.spec.whatwg
.org/multipage/form-control-infrastructure.html#autofill (visited
on 2024-01-24).

[39] HTML Standard: Custom elements. [Online]. Available: https://html.sp
ec.whatwg.org/multipage/custom- elements.html#custom- elements

(visited on 2024-02-16).

[40] HTML Standard: Form submission. [Online]. Available: https://html.spec
.whatwg.org/multipage/form-control-infrastructure.html#form-sub

mission-2 (visited on 2024-01-04).

[41] OID repository. [Online]. Available: http://oid-info.com/.

[42] Terms: Third-Party Passkey Provider. [Online]. Available: https://passke
ys.dev/docs/reference/terms/#third-party-passkey-provider.

[43] Using the Fetch API - Web APIs — MDN. [Online]. Available: https://d
eveloper.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

(visited on 2024-01-04).

79

https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#autofill
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#autofill
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#form-submission-2
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#form-submission-2
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#form-submission-2
http://oid-info.com/
https://passkeys.dev/docs/reference/terms/#third-party-passkey-provider
https://passkeys.dev/docs/reference/terms/#third-party-passkey-provider
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

A. Code samples

1 const fields = await operation.addFields(

2 new BerytusIdentityField("username", {

3 private: false,

4 humanReadable: true,

5 maxLength: 24,

6 }),

7 new BerytusForeignIdentityField("email", {

8 private: true,

9 kind: "EmailAddress",

10 }),

11 new BerytusForeignIdentityField("phone", {

12 private: false,

13 kind: "PhoneNumber",

14 }),

15 new BerytusPasswordField("password", {

16 passwordRules: "minlength: 6;", /*! Apple's password rules format */

17 }),

18 new BerytusSecurePasswordField("srp", {

19 identityFieldId: "username",

20 }),

21 new BerytusKeyField("key", {

22 alg: -42 /*! COSE Algorithm ID: "RSAES-OAEP w/ SHA-256" */,

23 }),

24 new BerytusSharedKeyField("sharedKey", { alg: -42 }),

25 /*! Field registration with web app-produced field values: */

26 new BerytusIdentityField(

27 "accountId",

28 { private: false, humanReadable: false, maxLength: 26 },

29 "123456",

30),

31 new BerytusForeignIdentityField(

32 "phone2",

33 { private: false, kind: "PhoneNumber" },

34 "+123456789",

35),

36 new BerytusPasswordField("pass2", {}, "helloPass"),

37 new BerytusSharedKeyField(

38 "sharedKey2",

39 { alg: -42 },

40 new BerytusSharedKeyFieldValue(new Uint8Array([1, 2, 3])),

41),

42);

Listing A.1: Example of account field creation and registration.

80

1 /**! @var usernameExists - from the webapp codebase; e.g., for a demo: */

2 const usernameExists = (username) => confirm(`${username} exists?`);
3
4 await (async () => {

5 while (usernameExists(operation.fields.get("username").value)) {

6 /*! The provided username is registered, reject it and ask

7 for a new revision. Once rejectAndReviseFields() resolves,

8 ` `operation.fields.get("username").value` reflects the new

9 field value */

10 await operation.rejectAndReviseFields({

11 field: "username" /* field id or field object */,

12 reason: "Identity:IdentityAlreadyExists",

13 /*! Specify `newValue` to propose a revised value,

14 otherwise the secret manager will produce one */

15 //newValue: "usernameThatDoesNotExists"

16 });

17 }

18 })();

19 /*! Here, `operation.fields.get("username").value` is a valid username */

Listing A.2: Example showing an exhaustive validation of the username field value.
Note, it is a good software engineering practice to implement a bailout
case in exhaustive loops, e.g., using a maximum number of attempts
limiter.

1 #!/bin/sh

2 set -e

3 # create configuration file, specifying

4 # the berytus extension

5 cat <<'EOF' > openssl.cnf

6 [req]

7 req_extensions = v3_exts

8
9 [v3_exts]

10 basicConstraints = CA:FALSE

11 keyUsage = nonRepudiation, digitalSignature, keyEncipherment

12 subjectAltName = @alt_names

13 1.2.3.4.22.11.23=ASN1:SEQUENCE:berytus_extension_format

14
15 [alt_names]

16 DNS.1 = example.tld

17 DNS.2 = www.example.tld

18
19 [berytus_extension_format]

20 allowlist=UTF8STRING:$ENV::ALLOWLIST
21 EOF

22
23 # generate a berytus signing key

24 openssl genpkey \

25 -algorithm ed25519 \

26 -out example.berytus.privkey.pem

27 openssl pkey \

28 -in example.berytus.privkey.pem \

81

29 -pubout -out example.berytus.pubkey.pem

30
31 # generate the certificate subject key

32 openssl genrsa -out example.tls.privkey.pem 4096

33 openssl rsa -in example.tls.privkey.pem -pubout \

34 -out example.tls.pubkey.pem

35 openssl pkey -pubin -inform pem \

36 -in example.tls.pubkey.pem \

37 -pubout -outform der \

38 > example.tls.pubkey.der

39
40 list=""

41 for pubkey in *.berytus.pubkey.pem

42 do

43 privkey="$(basename "$pubkey" .pubkey.pem).privkey.pem"

44 spki_b64="$(openssl pkey -pubin -inform pem -in "$pubkey" \

45 -pubout -outform der | base64)"

46 # Signing the subject key DER digest using

47 # the berytus key

48 subject_sig="$(openssl pkeyutl -sign -rawin -inkey "$privkey" \

49 -in example.tls.pubkey.der | base64)"

50 entry="key:${spki_b64},sksig:${subject_sig}"
51 if [-z "$list"]; then

52 list="$entry"
53 continue

54 fi

55 list="$list,$entry"
56 done

57
58 # create the certificate signing request

59 ALLOWLIST="$list" openssl req \

60 -new -key example.tls.privkey.pem \

61 -config openssl.cnf \

62 -subj '/C=UK/CN=Example/' \

63 -out example.tls.csr

64
65 # This where the CA would validate the CSR,

66 # checking each specified berytus key and its

67 # subject key signature.

68
69 # create the self-signed certificate

70 openssl x509 -req -in ./example.tls.csr \

71 -out example.tls.crt \

72 -key example.tls.privkey.pem \

73 -sha256 -days 365 \

74 -copy_extensions=copyall

Listing A.3: A working example of creating an Ed25519 key and including it in the
X.509 Berytus Signing Key Allowlist certificate extension.

82

B. Sequence diagrams

Web App AuthOperation Challenge Secret Manager

CreateChallenge()

instantiate

ApproveChallengeRequest()

return
response

Figure B.1.: (Simplified) sequence diagram of the Berytus account authentication
operation’s challenge initiation process.

83

Web App Challenge Secret Manager

SendMessage()

ValidateMessage()

RespondToMessage()

return response

ValidateResponse()

return
response

LoopLoop For each challenge message

Seal()/Abort() SealChallenge()/

AbortChallenge()

altalt [challenge succeeded/failed]

Figure B.2.: (Simplified) sequence diagram of the Berytus account authentication
operation’s challenge messaging pattern.

84

	Introduction
	Motivation
	Research question and objectives
	Contribution

	Web authentication
	Problem overview
	Alternative authentication schemes
	Multi-factor authentication
	Secret manager-assisted web user authentication
	HTML Autofill
	Credential Management API
	ByPass
	Domain-based credential mapping
	Interaction problems

	Relevant security risks
	Inconsistent security of secret managers
	Synthesis

	Proposed governance framework
	Methodology
	Architectural overview
	Ingredient technologies
	Components
	Routines
	Facilities

	Design and implementation
	Pillars
	Operations
	Implementation
	A minimal working example

	Evaluation
	Security evaluation
	Security benefits
	Attack targets
	Attack area
	Attack payload
	Attack modes
	Attack vectors
	Attack instances
	Security comparison

	Functionality evaluation
	Functional compatibility
	Integration effort

	Discussion and conclusions
	Validation
	Limitations
	Further work
	Amplified potential of secret managers
	Concluding remarks

	References
	Code samples
	Sequence diagrams

