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Electromagnetic radiation (EMR) affects the dynamical behavior of the nervous system, and appropriate EMR helps
to study the dynamic mechanism of the nervous system. This paper uses a sophisticated four-dimensional Hopfield
neural network (HNN) model augmented with one or more memristors to simulate the effects of EMR. We focus on the
chaotic dynamics of HNN under the influence of EMR. Complex dynamical behaviors are found and transient chaotic
phenomena have the same initial value sensitivity, showing how transient chaos is affected by EMR. Multiperiodic
phenomena induced by quasi-periodic alternations are found in the dual EMR, as well as the suppression properties of
the dual EMR for system chaos. This implies that the dynamical behavior of the HNN system can be controlled by
varying the amount of EMR or the number of affected neurons in the HNN. Finally, a strong validation of our proposed
model is provided by Multisim and FPGA hardware.

Neurons in the human brain communicate through elec-
trical and chemical signals, and these signals are subject
to interesting chaotic phenomena when they are externally
stimulated. We aim to build artificial neural networks and
introduce external stimuli to study the dynamics of the
neural networks when they are affected. We built a four-
dimensional Hopfield neural network (HNN) and experi-
mented with this problem using memristor-simulated elec-
tromagnetic radiation (EMR). As the number of EMRs in-
creases, rich chaotic dynamics such as period, chaos, tran-
sient chaos, quasi-period, and multi-period are observed,
which suggests that EMRs have a very significant effect on
the HNN. In addition, we confirmed the theory by software
simulation as well as hardware experiment. This study not
only deepens our understanding of the dynamical behav-
ior of brain neural networks but also provides more com-
prehensive insights into neuroscience and artificial intelli-
gence, thus laying a solid foundation for future research
and applications.

I. INTRODUCTION

The neural network system of the brain is a very complex
biological system that serves as an organ for humans to carry
out their thoughts, emotions, and behaviors. Its nervous sys-
tem consists of neurons, and neurons communicate with each
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other through electrochemical signals, which can perform a
variety of functions, such as information transfer and process-
ing functions1–3. Factors such as uncertainty in information
transfer between neurons, or external stimulation, can lead to
nonlinear and complex dynamical behavior in the neural net-
works of the brain. Therefore, the study of the nonlinear dy-
namics of neural networks is necessary4.

A neural network is a computational model inspired by the
structure and function of the nervous system in the brain,
where artificial neurons simulate the neural network of the
brain5. Over the years, researchers have proposed various
neural network models to simulate the dynamical behavior of
biological nervous systems to better understand the mecha-
nisms of chaos6–13.

The Hopfield neural network(HNN) model was proposed
by J.J. Hopfield in 198214. In the field of artificial neural net-
works, the remarkable nonlinearity of the activation function
endows HNNs with extraordinary capabilities in the represen-
tation of dynamical systems. As the weights of the neural
synapses change, HNN can accurately represent the detailed
features of chaotic attractors in complex bifurcation diagrams,
Lyapunov exponents, and phase portraits, reflecting the rich
dynamical behavior of the system state as a function of param-
eters. Therefore, HNN is widely used in nonlinear dynamics
studies. For example, Chen et al.15 utilized non-ideal mem-
ristive synapses to simulate electromagnetic-induced currents
and constructed a four-dimensional memristive HNN model.
They analyzed the complex dynamical behavior under dif-
ferent coupling strengths of memristive synapses. Similarly,
Chen et al.16 replaced the traditional hyperbolic function with
a ReLU function as the activation function and investigated a
three-neuron RHNN (ReLU-based HNN). They theoretically
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demonstrated its boundedness and stability and conducted nu-
merical simulations on its complex chaotic dynamics. In ad-
dition, Chen et al.17 proposed a novel RHNN model and re-
vealed its complex dynamics via numerical measurements, in-
dicating that the RHNN model can exhibit intricate and di-
verse dynamic characteristics.

The discipline of dynamics, from its humble beginnings
as a branch field of physics, has developed into a vast in-
terdisciplinary field. Benefiting from the rapid development
of modern computer technology, computers have provided re-
searchers with unprecedented convenience, enabling them to
study nonlinear systems more efficiently. In this setting, neu-
ral network dynamics have rapidly risen as an emerging re-
search field. Through mathematical modeling, computational
simulation, data analysis, and theoretical analysis, this field
is of great significance for understanding human brain func-
tions, designing advanced artificial intelligence systems, and
developing new neuroscience theories18–21. In recent years,
there has been a surge of research on neural network dynam-
ics, and in their study, Fatemeh et al.22 examined the impor-
tance of higher-order interactions in the collective dynamics
of the brain, in particular the effects of pairwise and three-
body interactions on neuronal synchronization. It was found
that even weak strengths of second-order interactions can pro-
mote synchronization at lower first-order coupling strengths.
Majhi et al.23 published a review of research on the behav-
ior of higher-order network dynamics, exploring a variety of
dynamical processes including synchronization phenomena,
propagation processes, cooperative evolution, and consensus
formation.

Based on exploring the nonlinear dynamics in HNN, a key
element in understanding network nonlinearity is the concept
of attractors. Attractors can range from simple to extremely
complex, and it is this complexity that lies at the heart of chaos
theory research. In the study of chaotic systems, attractors are
divided into two main categories: trivial attractors and strange
attractors24–28. A trivial attractor is a relatively simple form
of attractor in a chaotic system, whose structure usually man-
ifests as a point, a straight line, or a simple periodic orbit.29

Although the dynamical behavior of the trivial attractors is
relatively simple and there is predictability, it still plays an
important role in chaotic systems. Singular attractors, also
known as strange attractors, have extremely complex struc-
tures and non-periodic dynamical behaviors30 and have been
studied and applied in various scenarios31–37, contrary to triv-
ial attractors. From the point of view of the phase-plane di-
agram, the trajectory of the strange attractor is an irregular
motion, presenting its highly complex, nonlinear, and chaotic
character. A typical example is the Lorenz attractor38,39. In re-
cent years, Lin et al. constructed a class of Lorenz-like Mul-
tivariate Weighted Chaotic Systems (MWCS) based on non-
polynomial functions. They conducted a nonlinear dynamic
analysis of the system and explored its application in image
encryption40.

According to the above description, the nonlinear prop-
erties in the original HNN are primarily manifested in the
synaptic weights. These variations in weights are analogous
to synaptic changes within the neural systems of the human

brain41–43. But at the same time, we all know that from the
neuron point of view, adding some external stimuli to the neu-
ron will lead to some unexpected changes in the neuron, that is
to say, these external stimuli can directly affect the neuron be-
havior and the state of the whole neural network44–47. In 2016,
LV et al. first proposed the Hindmarsh-Rose neuron model by
introducing a combination of magnetic flux and memristive
current as an external stimulus48. Thereafter, there has been
a surge in research on the memristive neuron model. Electro-
magnetic Radiation (EMR) is one of the external stimuli, that
activates the neural network through electromagnetic waves
generated by the interaction of electricity and magnetism. In
recent years, the research on the influence of external stimuli
such as EMR on neural networks has opened up new direc-
tions for the nonlinear dynamics of neural networks. Wan et
al. established a three-neuron-based HNN. They introduced
electromagnetic induction or bias current into the other two
neurons under the influence of a single EMR. They found
that, with the variation of memristor coupling strength, the
HNN could exhibit complex dynamical behaviors49,50. Sim-
ilarly, Lin et al. also constructed a three-neuron neural net-
work under EMR. They discovered that a neural network with
periodic attractors could generate numerous chaotic attractors
by applying EMR to one of its neurons. Furthermore, they
found that when this neuron simultaneously received stimula-
tion from EMR and multi-layer logic pulses, the neural net-
work could produce multiple-scroll attractors51,52.

Therefore, it is extremely challenging and important to
deeply study the nonlinear dynamical behaviors of brain neu-
ral networks and the mechanism of external stimuli affecting
them53–55. Through in-depth understanding and exploration
of the complex behavior of neural networks, we can provide
more comprehensive knowledge and insights into the fields
of neuroscience and artificial intelligence, thus laying a solid
foundation for future research and applications.

Inspired by the above considerations, this paper establishes
a four-dimensional HNN. A memristor is utilized to simulate
EMR, serving as an external stimulus for the HNN. EMR in-
terference is applied to the first and second neurons of the
HNN. Through simulation experiments in Matlab, employ-
ing mathematical methods such as bifurcation diagrams, Lya-
punov exponents, time domain waveform diagrams, Poincaré
maps, and phase portraits, we have observed a rich variety
of dynamical behaviors in the HNN system, including period,
transient chaos, and multiperiod. It was also found that minor
variations in the initial state can affect the dynamics of tran-
sient chaos. This indicates that EMR has a significant impact
on the HNN.

The rest of the paper is organized as follows. Section II
establishes the model of the HNN under varying amounts of
EMR stimulation and conducts a stability analysis of its equi-
librium point. Section III employs a series of mathematical
analyses to embody the dynamical behavior of the HNN sys-
tem. In section IV, the circuit is validated through experimen-
tal simulations using software and hardware implementations.
Section V summarizes the work.
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II. NEURAL NETWORK MODEL UNDER DIFFERENT
AMOUNTS OF EMR STIMULATION

A. Mathematical model description

HNN is often defined as a network that closely resembles
the structure of a biological nervous system and is a reliable
model for simulating the dynamic activity of the brain. The
following is an expression for a HNN model containing n
neurons56:

Ciẋi =−xi/Ri +
n

∑
j=1

(wi j · fi)+ Ii (1)

where Ci, xi, and Ri denote the capacitance, voltage, and resis-
tance inside and outside the cell membrane of the ith neuron,
respectively. wi j is the connection strength between neuron
i and neuron j. fi is the activation function, and since the
adopted activation function is usually an S-type function with
upper and lower limits, the activation function used in this pa-
per is the tanh function. The last Ii denotes the input bias
current.

In this paper, a memristor model is used to simulate EMR as
an external stimulus to a four-dimensional HNN57. Based on
the characteristics of the mathematical model of the memristor
and Ohm’s law, the memristor model in Eq. 2 is proposed,
namely 

i =W (ϕ)v
dϕ/dt = g(ϕ,v)

W (ϕ) = ρ
(
α +3βϕ2

)
g(ϕ,v) = µv+ εϕ

(2)

Among them, i, v, and ϕ are current, voltage, and magnetic
flux, respectively, while W (ϕ) is the memory conductance,
and the other parameters α , β , ρ , µ , and ε denote the ad-
justable parameters of the memristor model of EMR.

It is further verified below that the model is a characteristic
of the memristor model. In this paper, the parameter ε is fixed
to a value of 0, and a sinusoidal excitation is applied to the
memristor model to obtain Eq. 3, which is V = Asin(F ∗ t)

I = ρ
(
α +3βϕ2

)
∗V

dϕ/dt = µV
(3)

where A and F denote the amplitude and frequency of the
sinusoidal stimulus, respectively. When the parameters are
fixed as α=1, β=1, ρ=2, µ=1 and A=1, F is 1, 3, 6, respec-
tively, as shown in Fig. 1, it can be seen that the model has
three fingerprints of a memristor, each of them forms a hys-
teresis loop and passes through the origin, and they are pro-
gressively linear with increasing frequency. In this study, a
four-dimensional HNN model is constructed and the values of
the synaptic weights of the four-dimensional HNN are set to
appropriate weights. Additionally, the EMR model affects the
first neuron to form the model in the first case. Meanwhile,
based on the first model, we add an EMR stimulation with the
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FIG. 1: Hysteresis loops of the memristor model at A=1,
F=1;F=3;F=6.

FIG. 2: HNN model under different EMR. (a)single EMR,
(b)dual EMR.

same parameters in the second neuron. To explore their dy-
namical behavior, the physical model of HNN under EMR is
shown in Fig. 2.

Case 1: Under a single EMR, Eq. 1 and Eq. 2 are combined
to obtain an HNN model with a single EMR as follows:



ẋ1 =− x1 −1.5tanh(x1)+ tanh(x2)

−1.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2)x1

ẋ2 =− x2 +2.2tanh(x1)−0.5tanh(x2)

+2.5tanh(x3)−1.5tanh(x4)

ẋ3 =− x3 −0.5tanh(x1)+1.4tanh(x2)

+ tanh(x3)+1.5tanh(x4)

ẋ4 =− x4 +5tanh(x1)−1.5tanh(x2)

−2.5tanh(x3)+3tanh(x4)

ϕ̇ =µx1

(4)

where xi(i = 1,2,3,4), ϕ are the state variables of the sys-
tem.

Case 2: The HNN model is obtained under dual EMR as
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follows: 

ẋ1 =− x1 −1.5tanh(x1)+ tanh(x2)

−1.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2
1
)

x1

ẋ2 =− x2 +2.2tanh(x1)−0.5tanh(x2)

+2.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2
2
)

x2

ẋ3 =− x3 −0.5tanh(x1)+1.4tanh(x2)

+ tanh(x3)+1.5tanh(x4)

ẋ4 =− x4 +5tanh(x1)−1.5tanh(x2)

−2.5tanh(x3)+3tanh(x4)

ϕ̇1 =µ1x1

ϕ̇2 =µ2x2

(5)

where xi(i = 1,2,3,4), ϕ1 and ϕ2 are the state variables of
the system.

B. Stability analysis

In this paper, a combination of image and numerical analy-
sis methods are used to analyze the stability of the model. For
Case 1, making all the values on the left side of the equation
be 0, Eq. 4 becomes as follows:

0 =− x1 −1.5tanh(x1)+ tanh(x2)

−1.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2)x1

0 =− x2 +2.2tanh(x1)−0.5tanh(x2)

+2.5tanh(x3)−1.5tanh(x4)

0 =− x3 −0.5tanh(x1)+1.4tanh(x2)

+ tanh(x3)+1.5tanh(x4)

0 =− x4 +5tanh(x1)−1.5tanh(x2)

−2.5tanh(x3)+3tanh(x4)

0 =µx1

(6)

Since µ is the intensity coefficient associated with EMR,
whose value is specified here to be non-zero, it can be induced
that x1 is 0, i.e., Eq. 6 leads to Eq. 7:

0 = tanh(x2)−1.5tanh(x3)−1.5tanh(x4)

0 =− x2 −0.5tanh(x2)+2.5tanh(x3)−1.5tanh(x4)

0 =− x3 +1.4tanh(x2)+ tanh(x3)+1.5tanh(x4)

0 =− x4 −1.5tanh(x2)−2.5tanh(x3)+3tanh(x4)

(7)

From Eq. 7 we have:

tanh(x2) = 1.5tanh(x3)+1.5tanh(x4) (8)

Substituting Eq. 8 into Eq. 7 yields Eq. 9:

x2 =−0.5(1.5tanh(x3)+1.5tanh(x4))

+2.5tanh(x3)−1.5tanh(x4)
(9)

We can obtain the solutions of x3 and x4 from the following
two equations:

0 =− x3 +1.4tanh(1.75tanh(x3)−2.25tanh(x4))

+1tanh(x3)+1.5tanh(x4)

0 =− x4 −1.5tanh(1.75tanh(x3)−2.25tanh(x4))

−2.5tanh(x3)+3tanh(x4)

(10)

Denote x3 in terms of x and x4 in terms of y. The numerical
implicit function for the equilibrium point of Case 1 can be
obtained:

H1(x,y) =− x+1.4tanh(1.75tanh(x)−2.25tanh(y))
+1tanh(x)+1.5tanh(y) = 0

H2(x,y) =− y−1.5tanh(1.75tanh(x)−2.25tanh(y))
−2.5tanh(x)+3tanh(y) = 0

(11)
The numerical plots of the Eq. 11 are shown in Fig.3. It
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FIG. 3: Equilibrium point of Case 1.

is clear that the system is in the equilibrium point state when
x1 − x4 are all 0. According to Eq. 6, it can be known that
the value of ϕ will not affect the equilibrium point of the
model, therefore, ϕ can be considered to be an arbitrary value.
An infinite number of equilibrium points can be obtained,
that is, (0,0,0,0,ϕ). When the values of the state variables
x1,x2,x3,x4 are fixed to zero in all other dimensions, only
ϕ is free to vary throughout its domain of definition. A 1-
dimensional trajectory is formed in the 5-dimensional space,
which corresponds to the equilibrium line of system (4).

It is well known that in nonlinear systems, the equilibrium
point is the point at which the system does not change in some
state. By linearizing the system and calculating the Jacobi
matrix at the equilibrium point, the stability of the equilibrium
point of the system can be analyzed in terms of eigenvalues.

Before that, it is necessary to determine the parameters re-
lated to EMR, which are set in this study as follows: ρ=2,
α=1, β=-1, and µ=1. Therefore, the relevant Jacobi matrix
can be obtained as:
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J =


−0.5−6ϕ2 1 −1.5 −1.5 0

2.2 −1.5 2.5 −1.5 0
−0.5 1.4 0 1.5 0

5 −1.5 −2.5 2 0
1 0 0 0 0

 (12)

Taking the vector v = [0,0,0,0,1]T , then there is Jv = 0v,
therefore 0 is an eigenvalue. A change in the value of ϕ does
not affect the Jacobi matrix of the system to produce 0 eigen-
values. When an eigenvalue with zero real parts exists, the sta-
bility of the equilibrium point can not be directly concluded.
In this case, further analysis is required to determine the sta-
bility of the system.

For Case 2, in the same way as Case 1, setting all the values
on the left side of Eq. 5 to 0 we can obtain the equilibrium
point equation as follows:

0 =− x1 −1.5tanh(x1)+ tanh(x2)

−1.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2
1
)

x1

0 =− x2 +2.2tanh(x1)−0.5tanh(x2)

+2.5tanh(x3)−1.5tanh(x4)

+ρ
(
α +3βϕ

2
2
)

x2

0 =− x3 −0.5tanh(x1)+1.4tanh(x2)

+ tanh(x3)+1.5tanh(x4)

0 =− x4 +5tanh(x1)−1.5tanh(x2)

−2.5tanh(x3)+3tanh(x4)

0 =µ1x1

0 =µ2x2

(13)

It is easy to see that x1 and x2 are both 0, which leads to Eq.
14: 

0 =−1.5tanh(x3)−1.5tanh(x4)

0 =2.5tanh(x3)−1.5tanh(x4)

0 =− x3 + tanh(x3)+1.5tanh(x4)

0 =− x4 −2.5tanh(x3)+3tanh(x4)

(14)

Denote x3 in terms of x and x4 in terms of y. The numerical
implicit function for the equilibrium point of Case 2 can be
obtained:

H1(x,y) =−1.5tanh(x)−1.5tanh(y) = 0
H2(x,y) =2.5tanh(x)−1.5tanh(y) = 0
H3(x,y) =− x+ tanh(x)+1.5tanh(y) = 0
H4(x,y) =− y−2.5tanh(x)+3tanh(y) = 0

(15)

Eq. 15 is plotted as in Fig. 4, and it is clear that the equa-
tion holds when x3 and x4 are also zero. According to Case1,
it is also possible to obtain that ϕ1 and ϕ2 are arbitrary values.
In this 2-dimensional space, all combinations of ϕ1 and ϕ2
form a surface, and each point on this surface can represent
an equilibrium state within the 6-dimensional space. There-
fore, this set naturally forms an equilibrium surface for system

(5). Since ϕ1 and ϕ2 can vary independently, the system can
achieve equilibrium at any point on the ϕ1-ϕ2 surface, thereby
enhancing the diversity of equilibrium states.

In order to investigate the effect of EMR on the equilibrium
points of the system, the HNN without the EMR is calculated
and validated. A system of nonlinear equations is iterated and
solved using the fsolve() function in Matlab to obtain three
equilibrium points of the HNN without EMR, which are E1(0,
0, 0, 0), E2(-0.7673, -2.4927, -0.2072, 0.8744), E3(0.7673,
2.4927, 0.2072, -0.8744).

Since the value of ϕ is taken arbitrarily, then it can be as-
sumed that the equilibrium points of this HNN have changed
from a finite number of three equilibrium points, to an infi-
nite number of them, with the addition of the memristor. It
shows that the addition of the EMR memristor model makes
the HNN produce richer and more complex dynamical behav-
iors. This finding provides a solid foundation for us to explore
in depth the dynamical changes induced by the memristor in
the HNN, so we use more mathematical methods and math-
ematical tools to analyze these complex dynamical behaviors
in more detail.
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FIG. 4: Equilibrium point of Case 2.

III. ANALYSIS OF THE DYNAMICAL BEHAVIOR OF
HNN UNDER THE INFLUENCE OF DIFFERENT
AMOUNTS OF EMR

The objective of this section is to analyze the enriched
dynamical behavior of the HNN model under the influence
of different amounts of EMR. A variety of numerical stud-
ies are performed for this purpose, including bifurcation di-
agrams, Lyapunov exponents, time domain waveform dia-
grams, Poincaré maps, and phase portraits58. Bifurcation dia-
grams are very intuitive and effective tools for visualizing the
change and evolution of the system behavior. The Lyapunov
exponents are an important tool for describing and evaluating
the chaotic behavior of nonlinear dynamical systems, i.e., a
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metric to quantify the chaotic properties of nonlinear dynam-
ical systems, reflecting the rate of separation of neighboring
trajectories. Time domain waveform diagrams show the sig-
nal waveforms of the parameters in the system in time. The
phase portrait is more intuitive to the record of the system tra-
jectory. Each of the above numerical features is simulated by
Matlab R2017b and is computed using the Lunger-Kutta al-
gorithm.

A. Dynamical behavior under single EMR

An attractor usually behaves as a result of the convergence
of all neighboring trajectories in a set58. In the study, the dy-
namical behavior of the system under the condition that the
parameters of the memristor are varied shows convergence.
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FIG. 5: The α-dependent dynamics with ρ=2, β=-1 and µ=1.
(a) Bifurcation diagram under initial states (0.1,0,0,0,0), (b)

Lyapunov exponents under initial states (0.1,0,0,0,0).

FIG. 6: Phase portrait of the HNN under EMR with α=-0.15,
ρ=2, β=-1, µ=1, initial states

(x1,x2,x3,x4,ϕ) = (0.1,0,0,0,0). (a) x1 − x3, (b) x1 − x5.

First, the parameters α of the memristor model of EMR
acted as variable parameters. The variable range of the α is
[-1.5, 2], the other parameters are ρ=2, β=-1, µ=1, and the
initial values (x1,x2,x3,x4,ϕ) = (0.1,0,0,0,0). The dynam-
ical behaviors of the HNN under different EMRs are inves-
tigated, and Fig. 5(a) shows the EMR parameter bifurcation
diagram of the HNN under different α , and Fig. 5(b) shows
the Lyapunov exponents. From the bifurcation diagram and
the Lyapunov exponents, it can be known that for the parame-
ter α at -0.85, the system has an obvious chaos phenomenon.
Taking the parameter of α = -0.15 as an example, the first four
Lyapunov exponents are LE1 = 0.1043,LE2 = 0.014,LE3 =

−0.5524,LE4 = −1.106. Based on the phase portrait in Fig.
6 combined with the definition of an attractor, it is known that
the attractor is a chaotic attractor.

Transient chaos is also known as metastability chaos. Un-
like conventional attractors, where the trajectory produced by
chaos is a strange attractor, transient chaos initially looks like
a strange attractor, but eventually, its initially unstable solu-
tion decays to an equilibrium point58,59. In the following, the
transient chaos of HNN under the influence of a single EMR
will be explored.

In order to see the difference between transient chaos and
chaos more intuitively, the three dynamical behaviors of the
model are given in Fig. 7, including the phase portraits
and time domain waveforms of periodic, transient chaos, and
chaos. When the parameter α = -0.8, it can be learned from
the time domain waveform diagram in Fig. 7(a) and the phase
portrait in Fig. 7(b) that the model is in a periodic state, and
the motion trajectory approximates a closed track. When the
parameter α = -0.7, the model is in transient chaos, see Fig.
7(c), Fig. 7(d), and when parameter α = 1, the model is in a
chaotic state as shown in Fig. 7(e) and Fig. 7(f).
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FIG. 7: Time domain waveforms and phase portraits of
periods, transient chaos, and chaos under different α . (a) and

(b) α= -0.8; (c) and (d) α = -0.7; (e) and (f) α =1.

Usually, the initial value sensitivity characteristics of
chaotic phenomena are investigated in experiments. Yet,
rarely there is a study on the initial value sensitivity character-
istics of transient chaos as a dynamical behavior. In this study,
the initial value sensitivity of transient chaotic phenomena is
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investigated by time domain waveform diagrams, phase por-
traits, and Poincaré maps. Initial value variations affect the
process of transforming chaos into periods of transient chaos.
As can be seen from Fig. 8, the variation of different initial
values directly affects the time at which the period appears.
We change the initial value x1 from 0.1 to 0.15, while keep-
ing the rest of the initial values unchanged, and set the EMR
memristor parameters α=-0.7, ρ=2, β=-1, and µ=1, respec-
tively. This suggests that transient chaos is equally sensitive
to initial values. The feature can also be visualized more intu-
itively through the phase portrait in Fig. 9. The different initial
values in the figure are plotted by different colors, and it can
be seen that each color is very distinct in the phase portrait
with (x5,x3,x2) as the axis. The corresponding conclusions
can also be drawn from the Poincaré map in Fig. 10, where
the individual values are represented by different colours. It
shows that when the rest of the conditions are constant, small
changes in the initial values can lead to differences in the val-
ues for each time.
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FIG. 8: Time domain waveforms of transient chaos at
different initial values. (a) (0.10,0,0,0,0), (b)

(0.11,0,0,0,0), (c) (0.12,0,0,0,0), (d) (0.13,0,0,0,0), (e)
(0.14,0,0,0,0), (f) (0.15,0,0,0,0).

B. Dynamical behavior under dual EMR

Quasi-periodic behavior describes in nonlinear dynamics
theory a unique pattern of change in the state of a system
over time that neither conforms to a strict periodic law nor
falls into complete non-periodic chaos. This behavior exhibits
the regularity and predictability that systems exhibit as they
evolve through time while retaining a degree of complexity
and non-repeatability.60. It has important theoretical research
and application in the fields of nonlinear science and chaotic
encryption.

Including a second EMR in the HNN system of Case 1
causes the chaos to be suppressed, leading to quasi-periodic

FIG. 9: Phase portrait of transient chaos at different initial
states.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Poincaré Map

(0.10,0,0,0,0)

(0.11,0,0,0,0)

(0.12,0,0,0,0)

(0.13,0,0,0,0)

(0.14,0,0,0,0)

(0.15,0,0,0,0)

0.51 0.52 0.53

0.05

0.1

0.15

0.2

-0.55 -0.5

-0.25

-0.2

-0.15

-0.1

-0.05

FIG. 10: Poincaré maps of transient chaos at different initial
states.

behavior. All parameters in Case 1 keep constant and α=1.
In Eq. 5, the parameters of the EMR memristor model are
treated as variables. Specifically, the parameter α is allowed
to vary within the range [-1,1.5], while the other parameters
are set as follows: ρ = 2, β = -1, and µ2 = 0.05. Initial
values (x1,x2,x3,x4,ϕ1,ϕ2) = (0.1,0,0,0,0,0), and Fig. 11
shows the Lyapunov exponents of the HNN under different
α . When the parameter α = 0.75, a Poincaré map is shown
in Fig. 12, where the intersection of the model from posi-
tive to negative across the cross-section is recorded with the
axis at x4 = 0 to obtain a Poincaré cross-section. Its Lyapunov
exponents are computed as LE1 = 0.01929, LE2 = 0.004366,
LE3 =−0.02177, LE4 =−0.07165, LE5 =−3.291 and LE6 =
−13.69. The positive Lyapunov exponents LE1 and LE2 im-
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ply that the system exhibits sensitivity in certain dimensions,
with even small changes in initial conditions being amplified
over time. Similarly, the spatial alternation of quasi-periodic
phenomena can be observed very intuitively through the time-
domain waveform in Fig. 13. This peculiar phenomenon can
be judged as a Multiperiodic phenomena resulting from the
alternation of two quasi-periodic behaviors.
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FIG. 11: The Lyapunov exponents under α-dependent
dynamics with ρ=2, β=-1, µ2=0.05 and initial states

(0.1,0,0,0,0,0).

FIG. 12: Dynamics for α = 0.75, the blue color in the space
represents the Poincaré cross-section, while the black color

represents the phase portrait for (x1, x5).

With the parameter settings of Case 1, fixing the variable α

to 1 and keeping the other parameters constant, the effect of
variation of the second EMR parameter µ2 in Case 2 on the
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FIG. 13: Dynamics for α = 0.75, Time domain waveforms of
attractors.

system was explored. The Lyapunov exponential plot in Fig.
11 shows that the system exhibits a chaotic state at values of
−0.45,−0.15,0.26, and 0.5 for the parameter α , respectively.
The (x1 − x5) phase portraits for these four chaotic states are
shown in Fig. 14. Using α as the system parameters at these
chaotic states, the effect of the variation of µ2 in the interval
[0,1] on the maximum Lyapunov exponent of the system is
analyzed. According to Fig. 15, the maximum Lyapunov ex-
ponent of the HNN shows a decreasing trend with the increase
of µ2 and finally stabilizes around 0.01. This phenomenon in-
dicates that the second EMR can control the dynamical behav-
ior of the system by regulating µ2. It also shows that the µ2
parameter can increase the stability and predictability of the
chaotic system. Combining the results of Case 1 and Case 2
suggests that the EMR is able to both induce the HNN to gen-
erate a chaotic state and effectively inhibit that chaotic state.
This finding provides a new theoretical basis for medical re-
search on cerebral neurological diseases. Based on the study
and analysis of the above system, it can be found that the
stimulation of the four-dimensional HNN by different num-
bers of EMRs leads to changes in the dynamical behavior of
the chaotic attractor, while unexpected dynamical behaviors
occur under certain EMR memristor parameters, both chaotic
and periodic. These dynamical behaviors under external stim-
uli are very interesting and deserve further investigation.

IV. CIRCUIT SIMULATION AND FPGA HARDWARE
VERIFICATION

Because the mathematical model of the HNN as well as
the memristor mathematical model can be implemented with
commercial components, its circuit experimentation is equally
important in practical engineering applications. It not only
validates the numerical study of the above theoretical model
but also means that the theoretical model can be fabricated and
applied in reality. In this section, various dynamical behaviors
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FIG. 14: Chaotic phase portrait with different α parameters.
(a) α = -0.45, (b) α = -0.15, (c) α = 0.26, (d) α = 0.5.
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FIG. 15: Plot of the maximum Lyapunov exponent with
parameter µ2 when parameter α makes the system chaotic.

(a) α = -0.45, (b) α = -0.15, (c) α = 0.26, (d) α = 0.5.

of the theoretical model are effectively verified by Multisim
software as well as hardware simulations on FPGA.

Activation functions are required in neural network cir-
cuits, and a circuit design for a hyperbolic tangent function-
tanh61–63 is implemented using a pair of NPN transistors, two
amplifiers, eight resistors, and a supply voltage VCC. As shown
in Fig. 16, where the parameters R = 10kΩ, R f =520Ω, RC

=1kΩ, VCC =15V , and I0 =1.1mA. Its input-output equation
can be written as Vo =−tanh(Vi).

FIG. 16: Circuit design for tanh activation function.

Due to the characteristics of the model in this study, Case 2
adds EMR to the second neuron of Case 1, so the circuit vali-
dation is done by adding switches to the circuit model of Case
2. When the switch is fully closed, it represents the circuit
under Case 2, and when the switch is fully open, it represents
the circuit design of Case 1. According to Kirchhoff circuit
law, the corresponding circuit state equation is shown by Eq.
14. 
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(16)

The circuit design is shown in Fig. 17. The design can be
divided into several modules connected with each other, de-
scribed by Eq. 16, where RC is the circuit time constant in the
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FIG. 17: HNN neural network circuit design.

integral circuit module. V1,V2,V3,V4,V5,V6 are denoted as the
initial values in the mathematical model, which are the initial
voltages on the capacitors of the integral circuit in the basic
unit circuit module. In the simulation, the initial values of ca-
pacitors C1-C6 in Fig. 17 are set as (V1,V2,V3,V4,V5,V6) =
(0.1,0,0,0,0,0). The −Va, −Vb, −Vc, −Vd in the figure are
the outputs of the respective circuit module, i.e., the values
of Va, −Vb, −Vc, and Vd are inverted and outputted by the re-
spective circuit of 1 : −1. The memristor circuit module is
connected to the basic unit circuit and consists of two ampli-
fiers and an integral circuit. Several modules are combined
with the -tanh circuit module to form the final circuit design.

In the circuit, the resistance of all resistors R is set to 10kΩ

and the capacitance of all capacitors C is set to 10nF , so the
value of the circuit time constant RC is 100µs. Based on the
system parameters of the HNN, the value of each resistor in
the basic unit circuit module is taken as R1 =R3 =R9 =R15 =
R17 = R20 = R/1.5 = 6.6667kΩ, R2 = R/0.45 = 22.2222kΩ,
R4 = R10 = R/1 = 10kΩ, R13 = R14 = R/2 = 5kΩ, R16 =
R/10 = 1kΩ, R18 = R19 = R/0.5 = 20kΩ. In addition, the
values of the components of the memristor circuit module
R5 = R11 = R/ |αρ|, R6 = R12 = R/ |3βρ|, R21 = R/ |µ1|, and
R22 = R/ |µ2|.

Since the parameters of the two EMRs are the same and the
rest of the parameters of the EMRs are the same in the two
different cases, the memristor parameters in the circuit model
are fixed and their associated resistance values in the circuit
are fixed, that is, ρ=2, β=-1, and µ=1, R6 = R12 = 1.6667kΩ,
R21 = 10kΩ and R22 = 200kΩ.When the switches S1, and S2
are fully open, the circuit verifies the chaotic attractor under
Case 1. Taking Fig. 7(f) as an example, when parameter α is
1 and the R5 resistance value is 10kΩ, the time domain wave-
form diagram of X1 is shown in Fig. 18(a), and its phase por-
trait is shown in Fig. 18(b). When the two switches are turned
off, the circuit at this time is impacted by dual EMR. Taking

Fig. 13 as an example, when parameter α is 0.75, the time
domain waveform diagram of the X3 is shown in Fig. 18(c),
and its phase portrait is shown in Fig. 18(d). Similarly, the
dynamical behavior of the neural network under the influence
of EMR was verified in FPGA hardware experiments. Numer-
ical computation and timing differences are not considered in
the FPGA environment. Results are shown in Fig. 19, where
Fig. 19(a) is the environment of FPGA hardware implemen-
tation. The periodic and chaotic phenomena under a single
EMR in Fig. 19(b-d) are the same as in Fig. 7. The chaotic
phenomenon under double EMR in Fig. 19(e, f) is the same
as in Fig. 14.

V. CONCLUSION

This paper investigates the chaotic dynamics of HNN under
the influence of different amounts of EMR. The cases of a sin-
gle EMR affecting one neuron and a dual EMR affecting two
neurons are presented respectively. Through the study, it is
firstly found that the evolution of chaotic phenomena can be
seen in the bifurcation and Lyapunov exponents of the four-
dimensional HNN under the influence of EMR. Under the in-
fluence of dual EMR, the Poincaré map and the time-domain
waveform diagrams are analyzed. Chaos and multiperiodic
phenomena appeared, and the suppression properties of the
dual EMR on system chaos are also analyzed by the maxi-
mum Lyapunov exponent. The results show that the external
stimulus represented by EMR can affect the inherently chaotic
system. It can both make it have more complex dynamical be-
havior and suppress the complex chaotic behavior. Finally, the
feasibility of the theory is verified by circuit experiments and
FPGA, and the results of this study have potential applications
for the control of chaotic phenomena.
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FIG. 18: Time domain waveforms and phase portraits of
MULTISIM software simulations. (a) and (b) Chaotic

attractor with single EMR; (c) and (d) multiperiodic attractor
with dual EMR.

FIG. 19: FPGA hardware implementation. (a) Experimental
environment during validation of chaotic phenomena; (b), (c)
and (d) period, transient chaos and chaos under single EMR;

(e) and (f) chaos under dual EMR.
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