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Learning Virtual View Selection for 3D Scene

Semantic Segmentation
Tai-Jiang Mu, Ming-Yuan Shen, Yu-Kun Lai, Member, IEEE, Shi-Min Hu, Fellow, IEEE

Abstract—2D-3D joint learning is essential and effective for
fundamental 3D vision tasks, such as 3D semantic segmentation,
due to the complementary information these two visual modalities
contain. Most current 3D scene semantic segmentation methods
process 2D images “as they are”, i.e., only real captured 2D
images are used. However, such captured 2D images may be
redundant, with abundant occlusion and/or limited field of view
(FoV), leading to poor performance for the current methods
involving 2D inputs. In this paper, we propose a general learning
framework for joint 2D-3D scene understanding by selecting
informative virtual 2D views of the underlying 3D scene. We then
feed both the 3D geometry and the generated virtual 2D views
into any joint 2D-3D-input or pure 3D-input based deep neural
models for improving 3D scene understanding. Specifically, we
generate virtual 2D views based on an information score map
learned from the current 3D scene semantic segmentation results.
To achieve this, we formalize the learning of the information
score map as a deep reinforcement learning process, which
rewards good predictions using a deep neural network. To
obtain a compact set of virtual 2D views that jointly cover
informative surfaces of the 3D scene as much as possible, we
further propose an efficient greedy virtual view coverage strategy
in the normal-sensitive 6D space, including 3-dimensional point
coordinates and 3-dimensional normal. We have validated our
proposed framework for various joint 2D-3D-input or pure 3D-
input based deep neural models on two real-world 3D scene
datasets, i.e., ScanNet v2 [1] and S3DIS [2], and the results
demonstrate that our method obtains a consistent gain over
baseline models and achieves new top accuracy for joint 2D
and 3D scene semantic segmentation. Code is available at
https://github.com/smy-THU/VirtualViewSelection.

Index Terms—Virtual View Selection, 2D-3D Joint Learning,
Deep Reinforcement Learning, 3D Semantic Segmentation.

I. INTRODUCTION

3
D scene semantic segmentation is fundamental and essen-

tial for many applications, including autonomous driving,

robotics, and beyond. Current designs of intelligent cars or

robots [3] usually equip complementary and heterogeneous

sensors to guarantee redundant safety. 2D cameras and 3D

range sensors are the two most common kinds of visual sensors
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in such systems, which are complementary for depicting the

underlying scene, i.e., 2D cameras capture the appearance

of the scene, and 3D range sensors obtain the 3D surface

representation of the scene.

Although 3D scene semantic segmentation can be achieved

using pure 2D or 3D information, fusing 2D and 3D informa-

tion is clearly beneficial to both 2D and 3D understanding [4],

since features that are inseparable in a low dimensional space

may be separable when mapped into a high dimensional space

or in other dimensions. For example, objects similar in color

and spatially close in the image domain may be far away to

each other in depth; a painting is close to the wall it hangs on,

but we easily separate it from the wall according to different

colors.

The most intuitive way to incorporate 2D information into

3D scene understanding is to predict the semantics for 2D

images from multiple perspectives using deep convolutional

neural networks, and then re-project them back to the corre-

sponding surface of the 3D scene via some aggregation strate-

gies, according to the camera intrinsic parameters and the pose

of each image. For these methods, the 2D view selection plays

a key role in the final performance of 3D scene understanding.

For the sake of time efficiency, choosing views that perfectly

cover the underlying 3D scene [5], clustering similar views [4]

or just uniformly sampling views from the captured sequence

of 2D images [6] is usually adopted to replace the strategy

of dense prediction on every 2D image. However, one main

drawback for using such originally captured 2D images is that,

due to the lack of freedom for capture paths and the limitation

of device, the captured 2D images may be redundant, full

of occlusion and/or with narrow/limited field of view (FoV),

leading to poor performance for current deep neural networks.

Recently, Kundu et al. [5] proposed to use virtual views,

which are rendered from the reconstructed 3D scene, to replace

the originally captured 2D images. The advantages of using

virtual views are two-fold: firstly, the FoV can be enlarged

to cover more positional relationship information between

objects; secondly, the virtual views can be controlled to avoid

occlusion. However, the method has some limitations. On the

one hand, the virtual views are directly aggregated for 3D

segmentation without using 3D geometric information; on the

other hand, the virtual view selection is determined without

clear and quantitative assessment about the quality of selec-

tion, so may result in views that are redundant, uninformative

or even having negative effects.

To overcome these limitations and to further improve the

accuracy of 3D scene understanding, this paper proposes a

general learning framework for joint 2D-3D scene under-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

standing by selecting representative virtual 2D views of the

underlying 3D scene. The generated virtual views, together

with the 3D geometry, can be fed into any joint 2D-3D-input or

pure 3D-input based deep neural models for 3D scene semantic

segmentation to make the final prediction. However, directly

predicting all the possible virtual views in the entire 6-DoF

(Degree of Freedom) space, i.e., a 3-DoF camera location

and a 3-DoF camera orientation, is prohibitively expensive.

We instead seek to predict regions that are likely to boost

the 3D scene understanding, which will be the focus for

detailed virtual view examination. Specifically, given a 3D

scene understanding task, we generate virtual 2D views based

on a learned information score map, which is estimated based

on the prediction result of the task using a neural network

called score net.

The training of score net is formalized as a deep reinforce-

ment learning process, which rewards good predictions of the

task using a convolutional scoring network. To render virtual

2D views that can jointly cover as many informative surfaces

of the 3D scene as possible with a limited number of views,

we further propose an efficient greedy virtual view coverage

strategy in the normal-sensitive 6D space, i.e., 3-dimensional

point coordinates and 3-dimensional normal. We have con-

ducted experiments on two real-world 3D scene datasets [1],

[2] with various base models to demonstrate the versatility

of our method. The results show that our method obtains

consistent gains over baseline models and achieves new top

accuracy for joint 2D and 3D scene semantic segmentation.

In summary, this paper makes the following contributions:

• We propose to exploit the information score of predic-

tion for improving 3D scene semantic segmentation and

devise a general deep reinforcement learning framework

to learn to predict the information score map effectively,

which is applicable to any joint 2D-3D-input or pure 3D-

input based deep neural networks.

• With the learned information score map of current pre-

diction, we propose a greedy virtual 2D view generation

method, which can render views that jointly cover as

many highly informative regions of the 3D scene as

possible, improving the final prediction results.

• We apply our framework to various joint 2D-3D-input or

pure 3D-input based deep neural networks, and the results

on both ScanNet v2 [1] and S3DIS [2] show that our

framework can consistently boost the prediction accuracy

of base models, achieving state-of-the-art performance for

joint 2D and 3D scene semantic segmentation.

II. RELATED WORK

The techniques for 3D scene understanding have seen

significant evolution due to the demands in many real-world

applications such as robotics and autonomous driving, as well

as the release of public 3D scene datasets, such as ScanNet [1].

As it is a broad topic, we only review the most related work

in the following.

A. Joint 2D and 3D Scene Understanding

Techniques for understanding of 2D image content progress

rapidly and we have witnessed a lot of renowned models, such

as DeconvNet [7], ResNet [8], FCN [9], Mask-RCNN [10],

SSMA [11], DeepLab [12], Res2Net [13], PVT2 [14], etc.

A straightforward integration of them into 3D is to map the

semantics learned from 2D to 3D geometry along with a

dense 3D reconstruction process, e.g., SemanticFusion [15],

Semantic Reconstruction [16], PanopticFusion [17], Mask-

Fusion [18], ProgressiveFusion [19] and 2D3DNet [20]. 2D

views are also rendered from 3D representations to train 3D

foundation models [21], [22]. Inspired by PanoContext [23],

our method is most related to virtual multi-view fusion [5]

which simply fuses the unary probability of pixels’ seman-

tic label from virtually rendered 2D views into 3D points.

Concurrently, Rong et al. [24] select virtual views with active

learning to refine the 3D semantic segmentation. However,

these methods only learn the semantics from 2D views without

making full use of the complementary 3D geometry, especially

learning the geometric priors. Rong et al. [24] select the views

based on a hand-crafted information score, which considers the

cross-entropy of 2D semantic predictions, the cross-entropy

of 3D semantic predictions fused from 2D views and the

complexity of region (i.e., its point density). Our method

exploits learning an information score map of current 3D

semantic prediction to guide the virtual view selection, which

is experimentally proved to be more effective than simply

using cross-entropy of the prediction.

PointNet [25] and its variants [26], [27] have inspired the

prosperity of performing semantic segmentation of 3D scenes

directly on the 3D geometry with deep learning techniques.

The key is to define proper convolution operations for different

types of explicit representations, i.e., points [28]–[35], vox-

els [36]–[39], meshes [40]–[43], and their combinations [44].

Special attention is drawn to adapt to the irregular and

unordered properties of point and mesh data, by introducing

transformer-like structure [45]–[50]. Considering the sparsity

of input high dimensional data, SparseConvNet [51] and

MinkowskiNet [52] exploit sparse convolutions for efficient

computation. Liu et al. [53] combine self-training with active

learning for weakly supervised segmentation to reduce user

annotations. Recently, effective deep neural networks [54]–

[58] are also designed to handle large-scale scenes, such as

3D LiDAR point clouds in autonomous driving scenarios. In

principle, these pure 3D-input based networks can be further

improved with virtual 2D views using our framework, as

demonstrated in our experiments.

Instead of directly fusing 2D semantic labels onto the 3D

surface, recent joint 2D and 3D learning methods [59]–[61]

usually first extract features from 2D views, and then integrate

them with 3D features learned from the 3D geometry or simply

feed them as the descriptor for deep geometric learning. We

refer readers to [62]–[66] for comprehensive reviews on joint

2D and 3D learning for scene understanding. For the offline

understanding of the whole 3D scene, MVPNet [6] feeds

features extracted from multiple 2D views to PointNet [25]. Hu

et al. [4] boost both the 2D and 3D semantic segmentations by

explicitly fusing learned 2D features into 3D, and vice versa,

using the bidirectional projection between 2D image pixels

and 3D positions with the help of known camera intrinsic

and extrinsic parameters. Robert et al. [67] propose a multi-
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Fig. 1. The pipeline of our virtual view selection for 3D semantic segmentation. Our method takes both 3D geometry and initial 2D views as inputs and
learns an information score map about the current prediction of the 3D scene using reinforcement learning. During the inference stage, we generate virtual
views based on the information score map only once to refine the prediction.

view aggregation model to select the most relevant 2D features

for joint 2D and 3D learning. LinkNet [68] also uses 2D-3D

projection links and fuses the 2D and 3D features with an

RNN (Recurrent Neural Network) module, making it suitable

for online stable semantic segmentation. SVNet [69] is also

designed for the purpose of online segmentation by defining

convolution operations for on-surface 3D supervoxels and

with the help of progressive voxel clustering. These methods

perform 2D and 3D feature fusion with the originally captured

images, which may be redundant, full of occlusion and/or

with narrow/limited FoV, reducing the semantic segmentation

performance of the 3D scene.

B. Deep Reinforcement Learning in Computer Vision

Reinforcement learning originated from the understanding

of human decision-making process. The goal is to enable

agents to determine their behaviors, i.e., taking actions ac-

cording to the observed environment, called states. Different

from traditional machine learning, reinforcement learning is

supervised by the reward of choosing a specific action. Deep

reinforcement learning is a combination of deep learning and

reinforcement learning, which uses deep neural networks to

learn the action space based on current observations.

Mnih et al. [70] proposed the first deep learning model

supervised by a reinforcement learning method, namely a

Deep Q-Network (DQN) combining a Convolutional Neural

Network (CNN) with deep Q-learning [71], so that agents can

achieve the performance equivalent to the human level in Atari

games. From then on, deep reinforcement learning models

have been applied in various vision tasks in recent years, such

as face recognition in videos [72], video summarization [72],

finding an object instance in videos [73], video action recog-

nition [74], etc. These methods attempt to find the attentive

regions or frames that are most informative to the given tasks,

which are further formalized as a Markov decision process,

and thus a deep reinforcement learning network can be adopted

to learn the attention model to discard unwanted or misleading

regions or frames while retaining the most important ones for

the tasks.

Inspired by the above methods, we, for the first time, apply

deep reinforcement learning to 3D scene semantic segmenta-

tion. In this paper, we regard the process of finding the 3D

informative regions as a Markov decision process, and thus

a deep neural network can be built to learn to predict such

informative regions, which are further used to guide the virtual

view selection to improve the performance of joint 2D and 3D

scene understanding.

III. VIRTUAL VIEW SELECTION USING REINFORCEMENT

LEARNING

A. Overview

The general framework of our virtual view selection for

joint 2D and 3D scene understanding is illustrated in Fig. 1.

The main modules include the base model, the score network,

the reward and the virtual view selection module.

Starting from the 3D geometry and an initial set of 2D

image views of the scene as input, the base model, which can

be any joint 2D and 3D scene semantic segmentation network,

outputs an initial semantic segmentation prediction about the

underlying 3D scene. Our framework is also applicable to

methods that only take 3D geometry information as input. In

this case, the selected virtual views are treated as the input of

an added 2D semantic segmentation network, which outputs

the probabilities for each pixel to belong to different semantic

labels, thus providing additional 2D predictions. The fused

predictions from virtual 2D views and the base 3D model
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will be further used to calculate the reward. However, current

joint 2D and 3D scene semantic segmentation methods usually

directly adopt the original 2D views, which may be redundant,

uninformative, or even have negative effects.

To select more informative 2D views to improve the current

predictions, the score network is adopted to learn an informa-

tion score map, indicating the quality of the current prediction

of the base model. Actions, i.e., the selected virtual views,

will be generated based on the information score map and

fed back to the base model to produce new predictions. This

score net is trained using reinforcement learning with the aim

of maximizing the reward computed from the current and last

predictions of the base model. During the inference, the 2D

virtual view selection module renders virtual views of selected

informative regions with poor prediction results implied by

the learned score map. We then feed these virtual views into

the base model for better prediction. This inference process is

performed only once to save computational cost, as repeating

this process does not give significant benefits in practice.

These core modules will be introduced in detail in the

following subsections.

B. Score Network for Information Score Prediction

The base model can be any joint 2D and 3D neural network

for 3D semantic segmentation, which takes the 3D geometry

and the associated 2D views of the scene as input, such as

BPNet [4] and MVPNet [6].

For those pure 3D methods such as VMNet [44], we

introduce an extra 2D segmentation network and an extra 2D-

3D fusion stage to get the final prediction. In this way, the

whole method can still be viewed as a joint 2D and 3D learning

process.

Given current 2D views and the 3D geometry, a typical base

model for 3D semantic segmentation will first extract per-voxel

features from the input and produce a probability of each voxel

belonging to different classes with a classifier, e.g., in the form

of a fully-connected layer followed by softmax activation. As

our method is flexible with base models, for simplicity and

fair evaluation, the base models we choose will be trained

according to the settings reported in their original published

papers, but the 2D feature extractors of the base models will

be trained with rendered virtual views instead of the originally

captured views. The parameters of the base models are fixed

while training the score net.

Due to the limited FoV of ordinary cameras and use of a

small set of 2D views during traditional 3D reconstruction,

the original 2D views cannot perfectly cover the whole 3D

scene from informative angles, leading to poor or even wrong

predictions for uncovered regions. Although the input 3D

geometry is complementary to 2D views, an informative

selection of 2D views is still crucial for the final prediction,

especially for those regions previously predicted poorly. Our

method seeks to find the regions currently informative for the

semantic prediction network. The philosophy of this idea is

similar to the attention mechanism widely used in existing

deep neural networks, but here the attentive regions are those

with poor or even wrong predictions.

An intuitive way to find those poor predictions is to estimate

their confidence by computing the entropy of the predicted

probability of the semantic labels. Usually, one can assume the

prediction is reliable when the confidence is high. However,

there exist regions that are confidently predicted with wrong

semantics, especially for those observed with few 2D views.

Another way is to directly generate the information map using

the cross-entropy between ground truth and predicted results;

however, the ground truth labels are not available in real-world

tests. We thus propose to learn a more indicative information

score by encouraging correct and confident predictions, and

penalizing wrong predictions.

We formulate this process as a reinforcement learning

problem, as depicted in Fig. 1. Specifically, the agent, i.e.,

score net, learns by maximizing the total expected reward to

generate the information score map for the current prediction,

which is further used to select virtual views, updating the state

and providing the reward. Next, we will give details about the

core modules of the reinforcement learning for our task. We

refer readers to [71] for a technical description about deep

reinforcement learning in general.

State. The state here is the concatenation of the per-voxel

features and the per-voxel semantic prediction of the 3D scene

generated by the base model. These two components are

complementary: the features contain the visual and geometric

information about the 3D scene, and the predicted probability

of the semantic segmentation provides an initial guess about

the results. More specifically, we compute the entropy for each

3D voxel from its probability of semantic labels, instead of the

probability itself, to provide an initial information score for the

agent.

Agent. The agent makes decisions based on the reward. It

is estimated via a 3D-UNet [75], followed by a Multi-Layer

Perceptron (MLP). We choose a 3D-UNet architecture because

we aim to predict the score for each nonempty voxel, and

therefore the output should have the same spatial resolution as

the input. 3D-UNet ensures details at the voxel level are better

reserved, and is also compatible with sparse 3D convolution to

better cope with the sparsity of the input (i.e., only available

for voxels on the surface of the 3D scene). The 3D-UNet takes

the state as input and produces a 64-dimensional feature fi
for each voxel i. To produce an information score in [0, 1]
for each nonempty voxel, we apply a shared MLP on each

fi. This information score also serves as the action selection

probability P a
i for each voxel i.

Action. We define two types of actions for indicating the

selection of each voxel: “discarding” and “keeping”. Unlike

the action recognition of a video sequence, where the action

can be performed on each frame, discarding or keeping one

voxel is not informative enough to determine a virtual view.

The regions matter. We thus perform the action selection on

regions. We first cluster voxels into K regions with the k-

means clustering algorithm in the normal-sensitive space, i.e.,

a 6-dimensional space consisting of a 3-dimensional position

q and a 3-dimensional normal n, to ensure that voxels in each

cluster are sharing similar normals, so that we can render views

that are frontally facing the surface of informative regions for

better 2D feature extraction. Formally, the distance between
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voxel v1 = (q1, v1) and v2 = (q2, v2) is defined as d(v1, v2) =
||q1 − q2||2 +wn · ||n1 − n2||2, where wn controls the weight

of normal similarity. K is determined proportional to the area

of the underlying scene Ascene with a ratio of rcluster as K =
min(20, rcluster · Ascene), ensuring at least 20 clusters. Then

we compute the average information score P̂ a
j ∈ [0, 1] for

each region j, representing the probability of choosing action

“keeping” for the region. More specifically, we keep or discard

a region by Bernoulli sampling:

aj ∼ Bernoulli(P̂ a
j ) (1)

where aj = 1 (with probability P̂ a
j ) means that region j is

kept, and otherwise region j is discarded. We then render

virtual views for each kept region (details will be given later)

to update the state and provide reward for the agent.

Reward. Once the action for each region is determined,

we feed the new virtual views of the selected region into the

base model and obtain a new prediction p1 for the 3D scene.

The reward is used to evaluate how good the selected actions

are and guide the training of the agent. Denoting the initial

prediction as p0, we define the reward r for each voxel i as:

r(i) = pc1(i)− pc0(i) (2)

where c is the ground truth label of voxel i and pc(i) is the

probability of choosing label c for voxel i.

To encourage the action selections that turn the prediction

from incorrect to correct and to penalize those selections that

turn the prediction from correct to incorrect, we give a large

reward or penalty, respectively, as:

R(i) =







A , turning incorrect to correct

−A , turning correct to incorrect

r(i) , otherwise

(3)

The final reward R is the sum of the rewards of all voxels:

R =
∑

i

R(i) (4)

Training. Since we have K regions for a 3D scene, the size

of the action set is exponential, making it too computationally

expensive for DQN [71]. Inspired by [74], we train the agent

with the policy gradient method. Similar to [74], we ran

the agent on the same 3D scene for N = 10 episodes to

approximate the gradient of expected reward by taking the

average among episodes, and normalize the reward for easier

convergence by subtracting the reward with a fixed baseline

b, which was simply computed as the moving average of the

rewards expected so far for the 3D scene. We refer readers

to [74] for the details of training the agent.

C. Virtual View Generation

With the predicted information score map available for

current 3D geometry and input 2D views, we can now gen-

erate virtual 2D views to improve the final prediction at the

inference stage. Our goal is to render as few 2D views as

possible that can cover as many regions of high information

as possible. This is the classical camera placement problem,

usually formulated as the Set Covering Problem (SCP), which

is an NP-complete problem.

Algorithm 1 Virtual View Generation at inference stage

input: 3D scene in voxels {v = (q, n)}, information score map
{σ}, the number of clusters K, covering threshold τ ∈ [0, 1],
information score threshold τ0, virtual views per cluster nviews

output: virtual 2D views covering informative regions
Cluster the voxels {v = (q, n)} into K regions {ci, i =
1, 2, . . . ,K};
Denote the total number of voxels whose information score is
larger than τ0 in the K clusters as N ;
Count the number ni of voxels whose information score is larger
than τ0 for each cluster ci and calculate their total information
score si;
Sort clusters in descending order {i1, i2, · · · , iK} by information
score si;
TMP = 0;
for k = 1 to K do

TMP = TMP + nik

if TMP > N × τ then
break

end if
end for
for j = 1 to k do

Calculate the virtual camera parameters for cluster cij ;
Render nviews virtual 2D images {Ij} with virtual camera
parameters;

end for
return {{Ij}, j = 1, 2, . . . , k}

For training, we keep or discard each region by Bernoulli

sampling described in the previous section to get the reward,

train our score net, and generate virtual views for all the kept

regions. At the inference stage, we only select as few regions

as possible to cover as many regions of high information as

possible. This SCP problem can be approximately solved by a

greedy method. Specifically, we first sort the clusters of voxels

in a descending order according to the total information score

of voxels in the cluster. Then we find the minimal k, such

that the regions covered by the top k clusters surpass a given

covering threshold τ . Finally, we render a virtual view for

each of the top k clusters by setting the fixation direction as

the opposite of the average normal of the region, with an FoV

just covering the whole region. In practice, due to the noise in

real-world scans and the reconstruction error on the 3D scene,

instead of using the opposite normal view, we render nviews

virtual views for each region with the fixation directions

evenly surrounding the average normal of the region and at

an angle of 30◦ to the normal. We also perform the virtual

view generation only for voxels whose information score is

larger than a threshold τ0, for the consideration of efficiency

and focusing on informative regions. The above process of

generating virtual 2D views is also listed in Algorithm 1.

Fig. 2(a) demonstrates several virtual views rendered for

selected locations indicated by the information score map.

The segmentation results in both the red box and cyan box

of Fig. 2(b) show that after performing the prediction with se-

lected virtual views, the segmentation performance of regions

with high information scores is improved.

IV. EXPERIMENTS

In this section, we first demonstrate that our method can

serve as a general framework for joint 2D and 3D scene
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information score map
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virtual view

virtual view

virtual view

Fig. 2. (a) Virtual views rendered for highly informative regions in the scene, indicated by the yellow boxes. (b) the input 3D geometry, the groundtruth
semantic segmentation, the prediction without virtual views (baseline), and the prediction with selected virtual views (ours). Note that we only present parts
of the virtual views for clarity. Regions where significant improvements are achieved with our method are highlighted using colored boxes.

understanding (and for pure 3D methods by introducing a

2D semantic segmentation branch and 2D-3D fusion) by

evaluating it with different base models and datasets. Then,

we will justify the parameters of our method with ablation

studies.

A. Implementation Details

1) Datasets: We train and evaluate our method on two pub-

lic real-world datasets, i.e., ScanNet v2 [1] and the Stanford

3D Indoor Scene Dataset (S3DIS) dataset [2].

ScanNet v2 is built with manually recorded RGB-D video

sequences and uses BundleFusion [76] to reconstruct 3D

scenes with both voxel and triangular mesh representations.

ScanNet v2 contains both 2D and 3D data, including about

2.5 million RGB-D images and 1,513 reconstructed 3D indoor

scenes. The camera poses and camera intrinsic parameters of

all RGB-D images are also annotated. The 1,513 scenarios are

divided into 1,045 as the training set, 156 as the validation set,

and 312 as the hidden test set.

S3DIS contains 6 reconstructed large-scale indoor areas

from 271 different scans. The reconstructed 3D textured

meshes and colored point clouds are generated based on RGB-

D images collected by a Matterport camera. The point clouds

are annotated with 13 semantic labels. We follow previous

works which use Fold-1 split with Area5 as the test set.

2) Metric: We use the mean of class-wise intersection

over union (mIoU) to evaluate the accuracy of 3D semantic

segmentation, which is computed as the mean of 20 class IoUs

for the ScanNet v2 dataset and the mean of 13 class IoUs for

S3DIS dataset.

3) Other details: The virtual 2D views are rendered using

Python’s Open3D module [77] with the scene’s mesh model

provided by the datasets. Since our method performs 3D

semantic segmentation using virtual views, our 2D-3D joint

base models also need to be trained with rendered virtual

views. So, we sample one frame from every 20 frames and

render virtual views with the same camera parameters as the

original frames to re-train the base model (It takes 104 minutes

and 26 minutes to render these virtual views for ScanNet v2

and S3DIS, respectively). This ensures that the base model

is consistent with our method where virtual views are used.

As we can later see in Table I, our re-trained base model

performs almost the same as the original one trained with real

views, showing that virtual views also work well for semantic

segmentation.

The MLP for information score prediction has one hidden

layer with the size of 16, and the size of the output layer is

set to 1, ending with a sigmoid activation function. A is set

to 10 to give a large reward or penalty. During the training of

the score net, points in each scene need to be clustered into

K groups. To achieve this, we first randomly down-sample

the point cloud of each scan to 10,000 points for efficiency,

and then cluster the down-sampled points into K groups using

the k-means algorithm based on the Euclidean distance in the

6-dimensional space combining the coordinates and normal

vectors of the points. Since the clustering is independent of

the training process, this is pre-computed only once for each

scene. It takes 42 seconds and 57 seconds on average to

down-sample and cluster a scene in ScanNet v2 and S3DIS,

respectively.

The training, rendering, and inference of the method de-

scribed in this paper were all carried out in a Ubuntu server

environment equipped with 8 Titan RTX GPUs.

B. Case Study

In this section, we conduct both qualitative and quantitative

experiments by combining our virtual view generation tech-

nique with different state-of-the-art joint 2D-3D learning mod-

els (such as BPNet [4], MVPNet [6], and DeepViewAgg [67])

or pure 3D-input-based models (such as VMNet [44] and
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TABLE I
THE QUANTITATIVE SEMANTIC SEGMENTATION ACCURACY ON THE SCANNET V2 VALIDATION SET. “PT” REFERS TO THE PRETRAINED CHECKPOINT ON

REAL SCANS PROVIDED BY THE ORIGINAL PAPER; “W/ VV” REFERS TO THE RETRAINED MODEL USING VIRTUAL VIEWS RENDERED WITH THE SAME

CAMERA PARAMETERS AS ORIGINAL REAL SCANS; * INDICATES THE REPORTED SCORES FROM ORIGINAL PAPERS. + INDICATES THE RETRAINED MODEL

ON REAL SCANS USING THE CODE PROVIDED BY THE ORIGINAL PAPER.
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MVPNet w/ VV 80.7 70.5 60.8 58.2 93.1 59.6 41.8 60.2 54.9 91.9 51.3 14.7 49.8 53.4 63.4 75.0 83.6 86.3 80.9 50.2 64.0

MVPNet+ 80.5 69.9 62.1 59.2 92.7 60.1 43.4 60.3 55.2 91.9 52.2 15.3 49.4 55.2 62.5 74.8 82.5 86.1 79.5 51.1 64.2
MVPNet∗ [6] - - - - - - - - - - - - - - - - - - - - 65.0
BPNet w/ VV 83.9 79.0 77.6 66.2 90.1 64.4 50.3 61.4 56.9 93.3 55.2 21.7 54.0 62.9 67.6 80.8 74.4 88.3 82.6 56.4 68.4

BPNet PT 83.4 78.6 79.6 64.0 91.2 63.2 52.7 61.6 57.4 93.3 53.6 22.2 55.0 63.7 69.0 79.2 74.5 88.0 83.9 54.9 68.5
BPNet∗ [4] - - - - - - - - - - - - - - - - - - - - 70.6
VMNet [44] 85.2 81.9 81.2 63.6 91.7 65.3 75.1 63.6 64.5 95.9 54.8 36.8 64.5 70.4 66.5 87.0 73.1 90.9 89.0 65.1 73.3

Virtual MVFusion [5] - - - - - - - - - - - - - - - - - - - - 76.4

Ours (MVPNet) 82.4 71.8 63.7 59.8 93.1 59.4 46.7 61.8 59.3 92.5 51.2 21.2 52.6 56.0 64.5 77.8 82.7 88.3 83.3 54.9 66.2
Ours (BPNet) 84.4 80.3 79.8 67.1 90.9 66.0 56.1 62.2 60.8 93.6 57.5 24.2 57.7 65.6 69.9 81.4 76.7 88.3 86.0 58.5 70.4
Ours (VMNet) 86.3 83.9 80.3 64.8 90.4 67.1 75.7 66.2 67.6 96.0 57.9 40.6 66.5 67.9 69.1 89.2 74.1 90.1 90.8 67.9 74.6

StratifiedFormer [48]) as the base model, to demonstrate that

our proposed method can serve as a general framework to

improve the 3D scene understanding with better 2D view

selection. All results are obtained by performing the inference

stage only once.

1) BPNet: To train the score network for BPNet [4] on a

real scanned dataset, i.e., ScanNet v2, we first train BPNet

for 100 epochs with point clouds and virtual views from

the training set of the ScanNet v2 dataset. The 2D encoder

network is initialized using the weights of ResNet34 [8]

pretrained on ImageNet [78], and the 3D part is trained from

scratch. In the BPNet training process, we set the voxel size

as 0.05m and use the Stochastic Gradient Descent (SGD)

optimizer with a momentum of 0.9 and an initial learning rate

of 0.01. The learning rate decays according to the Polynomial

Learning Rate Policy with a power of 0.9. The resulting base

model is referred to as “BPNet w/ VV”, where “VV” means

Virtual Views. We then train the score network with the policy

gradient method on the training split of ScanNet v2 for 80

epochs. We use the Adam optimizer with a learning rate of

0.002, β1 of 0.9, β2 of 0.999 and ϵ of 1e-8.

Table I shows the quantitative comparison results of the

baseline method BPNet and our method on the validation split

of the ScanNet v2 dataset. We also list the result of BPNet

produced by running the pre-trained checkpoint model1 on

real scans provided by the author (referred to as “BPNet PT”)

and the one reported in their original paper (referred to as

“BPNet*”). As we can see, “BPNet PT” and “BPNet w/ VV”

perform very similarly, demonstrating that the rendered virtual

views and real scans with the same camera parameters are

almost identical for learning. Our full method improves the

IoU of most classes compared with the baseline model “BPNet

w/ VV”, and the improvement is more significant for objects

like curtains, pictures, walls and windows whose 3D shapes

are not particularly obvious, but their 2D texture features are

comparatively distinct. Overall, our framework improves the

performance of the base model “BPNet w/ VV” by 2% mIoU.

Fig. 3 shows more qualitative comparison results between our

1https://github.com/wbhu/BPNet

method and the base model, demonstrating that the virtual

views selected by our method help to correct the semantics

of regions, such as the tables and curtains, that are previously

wrongly predicted.

2) MVPNet: Similarly, we first train MVPNet [6] on Scan-

Net v2 training split with pre-processed virtual views and then

train the score network with the deep reinforcement learning

method. We first train its 2D CNN part with virtual views

(the resulting base model is referred to as “MVPNet w/ VV”)

for 80,000 iterations with a batch size of 64. We employ

the SGD optimizer with a learning rate of 0.005 and weight

decay of 1e-4. Then, the weights of the 2D feature extractor

network are frozen, while the 3D part of MVPNet is trained

for another 40,000 iterations using the Adam optimizer with a

learning rate of 0.02 and other hyper-parameters the same as

BPNet. The process of training the score network of MVPNet

is identical to BPNet.

The quantitative evaluation of MVPNet baseline “MVPNet

w/ VV” and ours is listed in Table I. We also list the reported

result of MVPNet in their original paper (referred to as “MVP-

Net*”) and the retrained result on real scans using the code2

provided by the original paper (referred to as “MVPNet+”)

here. Again, we can see that “MVPNet+” and “BPNet w/ VV”

perform very similarly, and our framework improves over the

baseline model “MVPNet w/ VV” for almost all classes, with

the mIoU increased by 2.2%.

More qualitative comparison results between our method

and MVPNet base model are shown in Fig. 3, demonstrating

that the virtual views selected by our method help to correct

the semantics of regions that are previously wrongly predicted,

such as the tables and curtains.

3) VMNet: VMNet [44] is a network architecture that

operates on the voxel and mesh representations leveraging both

Euclidean and geodesic information. It is a pure 3D-input-

based method. To make it compatible with our framework,

we introduce a 2D segmentation network CMX [79] and use

the fusion of VMNet and CMX predictions as our final result.

CMX is a vision-transformer-based cross-modal fusion method

2https://github.com/maxjaritz/mvpnet
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v

Fig. 3. More qualitative results of our method on the ScanNet v2 validation set. Our method improves semantic segmentation results of the base models
(“+VV” means trained with virtual views). For each scene (column), please note the regions indicated by black boxes.

for RGB-X semantic segmentation. CMX uses an RGB image

and another X modal image as input.

To train CMX on ScanNet v2, we render virtual views

with the same camera pose as the original scan images.

Then, we calculate the correspondence of pixels and voxels

with the camera parameters. For each pixel, we record the

corresponding xyz coordinates. The xyz-coordinates, together

with the depth of each pixel, form the other modalities of the

CMX network.

We train the 2D semantic segmentation network with ren-

dered virtual views. We use MiT-B5 [80] as the backbone and

use 1/20 of frames of rendered views as the training set. We

train VMNet as the base model for 200 epochs with scenes of

the ScanNet v2 dataset. In the training process, we keep the

same settings as the VMNet paper. Input meshes are voxelized

at a resolution of 2 cm with data augmentation. The network is
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TABLE II
THE QUANTITATIVE 3D SEMANTIC SEGMENTATION RESULTS ON

SCANNET V2 HIDDEN TEST SET.

Method Publication mIOU(%)

Mix3D [81] 3DV’21 78.1
OccuSeg [38] CVPR’20 76.4
O-CNN [37] SIGGRAPH’17 76.2
VMNet [44] ICCV’21 74.6
LPRNet [39] CVPR’23 74.2

MinkowskiNet [52] CVPR’19 73.6

PointTransformerV2 [46] NeurIPS’22 75.2
PointConvFormer [47] CVPR’23 74.9
StratifiedFormer [48] CVPR’22 74.7

KPConv [30] ICCV’19 68.4
PointASNL [32] CVPR’20 66.6

PointNet [25] CVPR’17 55.7

Virtual MVFusion [5] ECCV’20 74.6

BPNet [4] CVPR’21 74.9
CSC [82] CVPR’21 73.8

MVPNet [6] ICCV’19 64.1
SVNet [69] TOG’21 63.5

Ours(MVPNet) / 66.4
Ours(BPNet) / 75.7
Ours(VMNet) / 76.1

trained end-to-end by minimizing the cross entropy loss using

Momentum SGD with Poly scheduler decaying from learning

rate 0.1.

During the fusion of 2D prediction results and 3D results,

each voxel can be projected to pixels of several virtual views.

However, some of these views are not suitable for predicting

the semantic label of the voxel, e.g., when the corresponding

pixel is located at the edge of the view, or the view from

that perspective is difficult to identify the classification of the

object the voxel belongs to. So, for each voxel, we need to

select some of the views that can better predict the label of

its corresponding pixels.

Specifically, for each voxel, we calculate the cross entropy

of all the 2D prediction label probabilities of its corresponding

pixels and select the top 5 of those pixels (or views). After

averaging the top 5 result probability vectors, we perform the

fusion between the 2D averaged label probability vector and

3D semantic segmentation label probability vector by a 2-layer

MLP.

Finally, we train the score net for baseline VMNet with the

policy gradient method on the training split of ScanNet v2 for

100 epochs. We use the Adam optimizer with a learning rate

of 0.002.

Table I shows the quantitative comparison results of the

baseline method VMNet and our method on the validation

split of the ScanNet v2 dataset. Our method again boosts the

base model by 1.3% for mIoU.

4) Comparison with Other Methods: We also compare our

method with other methods using different types of convo-

lutions, including point-based convolutions [25], [30], [32],

[46]–[48], pure 3D convolutions [37]–[39], [44], [52], [81],

2D convolutions [5] and joint 2D-3D convolutions [4], [6],

[69], [82], on the ScanNet v2 hidden test set. Some results are

directly drawn from [5] and [69], and listed in Table II. As

we can see, our method improves the mIoU of the base model

VMNet by 1.5%. The performance of our method based on

TABLE III
THE QUANTITATIVE SEMANTIC SEGMENTATION ACCURACY ON THE

S3DIS TEST SET (AREA 5). FOR EACH CLASS, THE IOU IS REPORTED AND

THE NUMBERS IN BOLDFACE INDICATE THE BEST PERFORMANCE. CONV

CATEGORY: (I) POINT-BASED CONVOLUTION, (II) 3D CONVOLUTION, (III)
2D CONVOLUTION, (IV) JOINT 2D AND 3D CONVOLUTION.

Method Conv. mIoU

PointNet [25]

I

41.1
PointCNN [28] 57.3

PointASNL [32] 62.6
PointTransformerV2 [46] 71.6

StratifiedFormer [48] 72.0
Retro-FPN [35] 73.0

MinkowskiNet [52]
II

65.35
VMNet [44] 65.4
LPRNet [39] 69.1

Virtual MVFusion [5] III 65.38

MVPNet [6] w/ VV
IV

58.2
BPNet [4] w/ VV 60.9

DeepViewAgg [67] 67.2

Ours (MVPNet)

IV

60.9
Ours (BPNet) 63.0
Ours (VMNet) 66.9

Ours (DeepViewAgg) 68.4
Ours (StratifiedFormer) 73.0

VMNet exceeds most of other methods except Mix3D, a data

augmentation method mixing scenes to train a base model.

Our method is currently incompatible with Mix3D because of

the low quality of virtual views rendered from 2 overlapped

scenes. Our method achieves comparable performance as two

other pure 3D methods, i.e., O-CNN [37] and OccuSeg [38]

(the semantic segmentation version of the implementation is

unavailable), which could be further improved with our virtual

views. Although the results of BPNet and MVPNet base

models re-trained with virtual views are below their reported

scores in their original papers on the validation set of ScanNet

v2, on the hidden test set of ScanNet v2, our framework

improves BPNet and MVPNet by 0.8 and 2.3 percent mIoU,

respectively.

Different from ours, Virtual MVFusion selects denser virtual

views (typically 100∼200 views per scene) to fully cover the

scene in a heuristic manner, while ours can still achieve more

accurate segmentation results by only covering 60% of the

highly informative voxels (with information score larger than

0.6). Moreover, our framework surpasses Virtual MVFusion

by 1.5 percent mIoU on the test set, despite being dropped by

1.8 percent mIoU on the validation set, demonstrating that our

virtual view selection based on learned information score can

consistently improve joint 2D and 3D semantic segmentation.

5) Comparison on S3DIS dataset: To further verify the ef-

fectiveness of our method, we tested our proposed framework

on another real-world 3D scene dataset S3DIS [2]. Most of

the hyper-parameters in Section IV-C for S3DIS are the same

as ScanNet v2 dataset.

Similarly, we first generate virtual images for each scan

according to the pose of RGB-D images. Then we train BPNet

and MVPNet using the rendered virtual views and obtain the

baseline models, referred to as “BPNet w/ VV” and “MVPNet

w/ VV”. For pure 3D-input method VMNet [44], we train the

base model using the mesh and our version of VMNet with
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TABLE IV
THE QUANTITATIVE ACCURACY COMPARISON BETWEEN DIFFERENT

VIRTUAL VIEW SELECTION POLICIES ON THE SCANNET V2 VALIDATION

SET.

Policy Random Entropy Real Scans Ours

mIOU(VMNet)/% 71.89 74.27 73.75 74.62

mIOU(BPNet)/% 66.79 68.83 67.95 70.38

Input Groundtruth Ours Entropy Random

Fig. 4. The comparison of different virtual view selection policies. In this
scene, the virtual views generated by our method help to correct the semantic
segmentation on the door and the table. Note the regions indicated by the
black and golden boxes.

additional virtual views. The agent is trained on this dataset

with deep reinforcement learning, so that at the inference

stage, we can get the desired virtual views according to the

information score map produced by the score network. We

also applied our framework to new state-of-the-art models,

including DeepViewAgg [67] and StratifiedFormer [48].

The quantitative comparison results on Area5 are

listed in Table III, showing that our framework

can also consistently boost (+2.7/+2.1/+1.5/+1.2/1.0

mIoU) the performance of the base models

(MVPNet/BPNet/DeepViewAgg/VMNet/StratifiedFormer) for

large-scale 3D scenes. We also compare our method with other

state-of-the-art methods using point-based convolutions [25],

[28], [32], [35], [46], 3D convolutions [39], [52], and 2D

convolutions [5]. Our framework using StratifiedFormer [48]

as the base model outperforms all other competitors and

achieves new top accuracy for joint 2D and 3D scene semantic

segmentation on S3DIS. We believe Retro-FPN [35] (a pure

3D-input-based model) can also benefit from our framework3.

C. Ablation Studies

During inference, several parameters affect the performance

of our method. The virtual view selection policy determines

how and where to render the virtual views; the threshold τ0
controls the total number of voxels to be covered by the virtual

views; the covering threshold τ influences the actual amount

of 2D virtual views to be integrated with 3D. The parameters

of voxel clustering and the number of virtual views per region

affect the generated virtual views. The number of inference

cycles affects the accuracy and efficiency of the method. To

justify the choice of these parameters, we perform ablation

studies on the ScanNet v2 validation set with the base model

set as VMNet [44].

The effect of virtual view selection policy. To verify

the effectiveness of selecting virtual views according to the

3Retro-FPN [35] is not open-sourced yet by the submission time of our
work.

information scores predicted by our method, a comparative

experiment is designed. We compare our selection policy

with three other view selection policies. The first one is to

randomly select regions to render virtual views. The second

one is to select views according to the information entropy of

the prediction vectors provided by the base model. The last

one is to use real scans instead of virtual views. Specifically,

for each selected region, we choose nviews real scans which

cover the most part of the region instead of generating nviews

virtual views. The quantitative comparison results are shown

in Table IV, and the qualitative comparison between different

virtual view selection policies is illustrated in Fig. 4. As we

can see, the policy that randomly selects regions for virtual

view rendering has a poor performance, and the segmentation

performance of entropy policy is lower than the result of

virtual view generation according to the information scores.

Thus, the score network trained by reinforcement learning

in this paper does play a significant role in improving the

semantic segmentation performance. Using real scans is still

inferior to our virtual views due to the incapability of covering

many regions of high information caused by the limited FoV of

real scans. Compared to the simple entropy-based baseline, the

increase in training time and memory mainly comes from the

score net. Taking BPNet as an example, the training time per

epoch on ScanNet v2 for the baseline model is 1,713 seconds,

and the extra training time for our score net is 954 seconds.

The training memory is 9,236MB and 4,682MB, respectively.

For MVPNet, the training time per epoch for the baseline

model on ScanNet dataset is 1,472 seconds, and the extra

training time for our score net is 897s. The training memory

is 7,582MB and 3,894MB respectively. Since our work is

not an online method, it is worthwhile to take extra training

time to achieve a better segmentation performance, which is

essential for further applications, such as robot grasping and

manipulation.

The effect of information score threshold τ0. The output

of our agent (score net) serves as the action selection probabil-

ity. During the inference stage, when generating virtual views,

we only consider those having an information value larger

than the given threshold τ0. Fig. 5 shows the performance

of different values of τ0 in [0.0, 1.0] with a step of 0.1. As

we can see, when a small value is set for τ0, the selected

virtual views might not be precisely targeted at the voxels of

high information, which will reduce the semantic segmentation

performance. On the other hand, when the threshold is too

high, the proportion of highly informative voxels covered by

virtual views will be small, which also limits the potential of

the method. Finally, we achieve a trade-off by selecting τ0 as

0.6.

The effect of the covering threshold τ . At the inference

stage, we select regions with high total information scores,

which contain sufficient numbers of voxels that surpass a

given covering threshold τ , to generate virtual views. The

total actual number of virtual views for each scan is thus

determined by this parameter. Since the virtual views are

rendered during the inference period and will be used as

the input to the baseline model, each additional region will

increase the prediction time and space consumed. Fig. 6 shows
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Fig. 5. The quantitative accuracy of our method on the ScanNet v2 validation
set w.r.t. different τ0 values.
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Fig. 6. The semantic segmentation mIOU w.r.t. the covering rate τ on ScanNet
val set.

the relationship between the covering rate τ and the accuracy

of segmentation prediction results. As we can see, the mIoU

of the prediction increases as the covering rate rises. However,

when the rate τ surpasses 0.6, the rate of performance gain in

the prediction becomes much slower. This is because a larger

covering rate leads to a higher proportion of regions covered

by virtual views, and when the covered regions are large

enough, most inaccurate segmentation regions will be asso-

ciated with enough 2D information. So, further increasing the

number of virtual views, equivalently increasing the covering

rate, will not bring new and useful information to the network,

even introducing redundant and contradictory information,

and causing performance degradation. Therefore, we set the

covering rate as 0.6 to obtain the final 3D segmentation results,

making a balance between accuracy and efficiency. As a result,

our method usually selects 6 regions to render virtual views

for most scenes.

The effect of the clustering parameters. During the virtual

view selection, we cluster the entire scene into K parts.

The number of clusters is linearly proportional to the area

of the scene Ascene (measured in m2) with ratio rcluster.

Specifically, the number of clusters K equals rcluster ·Ascene,

and if it is worked out as less than 20, K is set to 20.

The mIoUs of our method w.r.t. different values of rcluster
are shown in Fig. 7. We set rcluster = 0.30m−2 to ensure

clustered regions are sufficiently fine-grained but not overly

fragmented to facilitate virtual view selection.

We perform the voxel clustering in the normal-sensitive
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Fig. 7. The semantic segmentation accuracy w.r.t. rcluster .
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Fig. 8. The semantic segmentation accuracy w.r.t. the weight of normal
similarity wn.

space (a 3-dimensional position and a 3-dimensional normal),

where the weight of the normal similarity is controlled by wn.

The position parameter is the xyz-coordinates of each voxel

using meters as the unit, and the normal vector is normalized

to a unit vector. Different wn will affect the clustering quality

and further influence the final semantic segmentation result,

as shown in Fig. 8. As we can see, as wn increases, the

clustered region indeed has more consistent normals, helping

generate good virtual views. However, when wn gets too large,

the clustered region would be cluttered voxels, making the

generated virtual views less informative. To ensure each cluster

covered by one virtual view, voxels in one cluster should be

close and share similar normal directions. To achieve this,

we choose a relatively large value for the weight of normal

similarity as 16.

The effect of the number of virtual views. For each region,

a proper number of virtual views should be generated to cover

it. The virtual views need to provide enough information while

avoiding redundancy. Different numbers of views for each

region nviews can affect the final segmentation result, as shown

in Fig. 9. As we can see, the performance increases evidently

when nviews is below 4 and is almost constant when nviews

is above 4. To balance the performance and efficiency, we

choose 4 virtual views for each selected region, resulting in 24

views for most scenes. Although original base methods usually

require 3-5 images, their performance would not increase when
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TABLE V
THE TIMINGS AND ACCURACY W.R.T. THE NUMBER OF INFERNCE CYCLES.

Methods Params/M time per scene/s mIOU/%

VMNet 569.4 1.7 73.31

Ours(VMNet) 807.5 2.9 74.62

Ours(VMNet) 2cycles 807.5 3.9 74.56

Ours(VMNet) 3cycles 807.5 4.9 74.53

Ours(VMNet) 4cycles 807.5 5.4 74.58

fed with more real scans. Besides, our method still requires

fewer images than Virtual MVFusion [5].

The number of inference cycles and timings. Our infer-

ence process could be repeated by iteratively selecting virtual

views to update the model. The extra computational cost of

repeating the inference cycles consists of the running of the

extra round of the base model (plus the 2D semantic network

for pure 3D-input models), the score net, and the rendering of

virtual views. We perform the inference stage with different

numbers of cycles and list the number of network parameters,

average inference time per scene, and the mIoU of semantic

segmentation results in Table V. As we can see, the mIoU

is almost unchanged. This is because most highly informative

regions have been covered with virtual views after the first

cycle of inference. To balance the performance and efficiency,

we perform the inference stage only once.

V. CONCLUSION

In this paper, we introduce a general framework to select

virtual views for 3D semantic segmentation. Compared to orig-

inally captured images, virtual views are free of FoV limitation

and occlusion, which helps to associate more informative 2D

features for 3D semantic segmentation. Deep reinforcement

learning has been employed to train a score network to predict

the information map of the scene, guiding the selection of

virtual views with a greedy strategy. Comprehensive experi-

ments on two real-world datasets, i.e., ScanNet v2 and S3DIS

datasets show that our method can consistently boost the

performance of different base models and achieves the best

result in 3D semantic segmentation compared to other 2D-3D

joint or pure 3D learning methods.

One limitation of our method is that it does not work well

for sparse point clouds. In this case, the rendered virtual view

would be filled with many holes, leading to poor 2D feature

extraction. One possible solution is to complete the sparse

point cloud before rendering virtual views.

We believe the region selection policy based on information

score maps can be applied to the 3D domain to achieve

better performance in scene understanding. In future, we plan

to further introduce our module to another important scene

understanding task, i.e., 3D instance segmentation.
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[76] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
Fusion: Real-time globally consistent 3D reconstruction using on-the-fly
surface reintegration,” ACM Trans. Graph., vol. 36, no. 3, pp. 24:1–
24:18, 2017.

[77] Q. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv preprint: 1801.09847, 2018.

[78] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in CVPR. IEEE Computer
Society, 2009, pp. 248–255.

[79] J. Zhang, H. Liu, K. Yang, X. Hu, R. Liu, and R. Stiefelhagen, “Cmx:
Cross-modal fusion for rgb-x semantic segmentation with transformers,”
IEEE Transactions on Intelligent Transportation Systems, 2023.

[80] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation with
transformers,” NeurIPS, vol. 34, pp. 12 077–12 090, 2021.

[81] A. Nekrasov, J. Schult, O. Litany, B. Leibe, and F. Engelmann, “Mix3D:
Out-of-context data augmentation for 3D scenes,” in 3DV. IEEE, 2021,
pp. 116–125.

[82] J. Hou, B. Graham, M. Nießner, and S. Xie, “Exploring data-efficient 3d
scene understanding with contrastive scene contexts,” in CVPR, 2021,
pp. 15 587–15 597.

Tai-Jiang Mu is currently an assistant researcher
in the Department of Computer Science and Tech-
nology, Tsinghua University, where he received his
bachelor’s and doctor’s degrees in 2011 and 2016,
respectively. His research interests include visual
media learning, computer graphics and image pro-
cessing.

Ming-Yuan Shen is currently a master student in
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, where he
also received his B.S. degree in computer science
in 2021. His research interests include computer
graphics, machine learning, and image processing.

Yu-Kun Lai is a Professor at School of Computer
Science and Informatics, Cardiff University, UK. He
received his bachelor’s and PhD degrees in Com-
puter Science from Tsinghua University, in 2003
and 2008 respectively. His research interests include
computer graphics, geometric processing, computer
vision and image processing. He is on the edito-
rial boards of IEEE Transactions on Visualization

and Computer Graphics and The Visual Computer.
For more information, visit https://users.cs.cf.ac.uk/
Yukun.Lai/.

Shi-Min Hu is currently a professor in Computer
Science at Tsinghua University, Beijing, China. He
received a Ph.D. degree from Zhejiang University
in 1996. His research interests include geometry
processing, image & video processing, rendering,
computer animation and CAD. He has published
more than 100 papers in journals and refereed con-
ferences. He is Editor-in-Chief of Computational

Visual Media, and on the editorial boards of sev-
eral journals, including Computer Aided Design and
Computer & Graphics.


