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Abstract: We present a novel methodology to search for intranuclear neutron-antineutron transition
(𝑛 → �̄�) followed by �̄�-nucleon annihilation within an 40Ar nucleus, using the MicroBooNE liquid
argon time projection chamber (LArTPC) detector. A discovery of 𝑛 → �̄� transition or a new best
limit on the lifetime of this process would either constitute physics beyond the Standard Model
or greatly constrain theories of baryogenesis, respectively. The approach presented in this paper
makes use of deep learning methods to select 𝑛 → �̄� events based on their unique features and
differentiate them from cosmogenic backgrounds. The achieved signal and background efficiencies
are (70.22 ± 6.04)% and (0.0020 ± 0.0003)%, respectively. A demonstration of a search is performed
with a data set corresponding to an exposure of 3.32 × 1026 neutron-years, and where the background
rate is constrained through direct measurement, assuming the presence of a negligible signal. With
this approach, no excess of events over the background prediction is observed, setting a demonstrative
lower bound on the 𝑛 → �̄� lifetime in 40Ar of 𝜏m ≳ 1.1 × 1026 years, and on the free 𝑛 → �̄� transition
time of 𝜏𝑛→�̄� ≳ 2.6 × 105 s, each at the 90% confidence level. This analysis represents a first-ever
proof-of-principle demonstration of the ability to search for this rare process in LArTPCs with high
efficiency and low background.

Keywords: Data analysis; Image processing; Noble liquid detectors (scintillation, ionization,
double-phase); Time projection Chambers (TPC)
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1 Introduction

Processes such as neutron-antineutron transition [1] can provide a unique test of theoretical extensions
to the Standard Model of particle physics that allow for the violation of baryon number conservation [2].
The transition of a neutron to antineutron (𝑛 → �̄�) is a theoretically motivated beyond-Standard Model
process which violates baryon number by two units [3–7]. The process of intranuclear 𝑛 → �̄� involves
the transformation of a bound neutron into an antineutron. This antineutron then annihilates with a
nearby nucleon (neutron or proton) and produces, on average, 3–4 final state pions [8, 9]. The branching
ratios of �̄�𝑝 and �̄�𝑛 annihilation products are based on past measurements of 𝑝𝑛 and 𝑝𝑝 interactions,
respectively [8–11]. In a vacuum, the final state pions produced by a motionless and unbound
annihilating pair are expected to have zero total momentum and a total invariant mass corresponding
to the sum of the masses of the two (anti)nucleons. Deviations from this expectation are due to nuclear
effects — specifically, intranuclear Fermi motion of the annihilating (anti)nucleons, their nuclear
binding energy, and final state interactions as the initial state mesons traverse the nuclear medium —

– 1 –
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leading to smearing effects of the observed final state kinematics. The annihilation has a star-like,
spherical topological signature, which can be used to differentiate it from background interactions.

An experimental discovery or stringent lower bound, surpassing the current best limits [8, 12],
on the rate of intranuclear 𝑛 → �̄� would make an important contribution to our understanding of the
baryon asymmetry of the Universe. To date, limits have been placed on the mean lifetime of this
process by various experiments using either free neutrons or neutrons bound in nuclei [13–22]. The
free-neutron 𝑛 → �̄� lifetime (𝜏𝑛 → �̄� ) and bound-neutron 𝑛 → �̄� lifetime (𝜏m) are related through a
factor (𝑅) [23–25] as shown in eq. (1.1), which accounts for the high suppression of the transition
due to differences in the nuclear potentials of neutrons and antineutrons within the nucleus where
this process could take place,

𝜏m = 𝑅𝜏2
𝑛 → �̄� . (1.1)

For 40Ar nuclei, 𝑅 is expected to take on a value of 5.6 × 1022 s−1 with an uncertainty of 20% [23].
The most stringent limit on the free neutron transition time is provided by ILL in Grenoble [12] at
0.86 × 108 s at the 90% confidence level (CL), while the Super-Kamiokande experiment [19], using
oxygen-bound neutrons and an associated suppression factor of 5.17 × 1022 s−1 [24, 25], corresponds
to 𝜏𝑛 → �̄� > 4.7 × 108 s at the 90% CL [8].

The future Deep Underground Neutrino Experiment (DUNE) will be able to provide competitive
limits on the lifetime of this process because of its much larger detector mass [26–28]. The preliminary
simulation studies from DUNE [29] show the ability of deep-learning (DL) networks when combined
with high-resolution images from liquid argon time projection chamber (LArTPC) detectors to extend
the sensitivity reach for 𝑛 → �̄� process. However, the DUNE simulation studies do not account for
detector mismodeling, a simplified assumption that is not the reality. Therefore, it is crucial to develop
and validate DL-based techniques to select 𝑛 → �̄� like signals using real LArTPC data.

This work presents a DL-based analysis of MicroBooNE data, making use of a sparse convolutional
neural network (CNN) [30, 31], to search for 𝑛 → �̄� like signals using primarily their topological
signature. The results reported in this paper use the MicroBooNE off-beam data (data collected when
the neutrino beam was not running) with a total exposure of 372 s corresponding to 3.32×1026 neutron-
years. The limited exposure is attributed to the design of the MicroBooNE detector, whose primary
requirement was the study of neutrinos from a pulsed accelerator beam, thus restricting the data
collection to short periods of time associated with beam and other external triggers.

2 Experimental setup

The MicroBooNE LArTPC detector [32] employs an active volume of 85 metric tonnes of liquid
argon (LAr). The detector is a 10.4 m long, 2.6 m wide, and 2.3 m high LArTPC and is located
on-surface and on-axis to the Booster Neutrino Beamline [33] at Fermilab. Due to its on-surface
location, the MicroBooNE detector is exposed to a large flux of cosmic rays, leading to a variety of
cosmogenic activity in the detector. Charged particles produced from interactions within the LAr
leave a trail of ionization electrons which drift, under the effect of a uniform electric field, with
a maximum electron drift time (time taken by ionization electrons to drift to the anode wires) of
2.3 ms towards anode wire planes. Three anode wire planes named 𝑈, 𝑉 , and 𝑌 , with 𝑈 and 𝑉

plane wires oriented at ±60◦ relative to vertical, and 𝑌 plane wires oriented vertically, sense and

– 2 –
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collect the ionization charge. A light detection system composed of photomultiplier tubes (PMT)
detects scintillation light produced in the interaction which in turn helps to determine the drift time,
achieving 3D particle reconstruction. Data was collected from 2015–2021 and includes off-beam
data during periods when there was no neutrino beam.

3 Analysis overview

The methodology used to search for a 𝑛 → �̄� intranuclear transition in MicroBooNE was developed
using off-beam data that were recorded using an external, random trigger. Each trigger corresponds to
an exposure of 2.3 ms (an “event”), the standard readout length of MicroBooNE. The readout window
(or exposure interval) ensures that all ionization information associated with a given interaction
at trigger time occurring anywhere in the active volume is collected by the readout. During this
period, light and unbiased (raw) ionization charge data were collected and analyzed, searching for
interaction “clusters” with a characteristic star-like topology. The dominant source of interactions
during these short beam-off exposures comes from cosmic ray muons (straight track-like features) and
other cosmogenic activity, and/or products of their electromagnetic and hadronic showers, which are
expected to contribute as the dominant background to this 𝑛 → �̄� search. This source of background
is a unique issue to a search using the MicroBooNE detector, due to its on-surface location, whereas
searches with detectors located deep underground, such as DUNE, are expected to be limited by
atmospheric neutrino backgrounds [27].

3.1 Data-driven background

MicroBooNE does not use a dedicated Monte Carlo simulation for cosmic backgrounds (which
includes any activity produced by primary cosmic muons, cosmic neutrons, cosmic antineutrons,
and cosmic antiprotons) but instead relies on in situ measurements to directly measure and thus
constrain the rate of these interactions as backgrounds to beam-related analyses. As such, a data-driven
approach was followed to search for 𝑛 → �̄� under the assumption of negligible signal being present in
the data. In this approach, the off-beam data sample was divided into four statistically independent
sub-samples, where 40% was reserved for analysis development and, in particular, to train machine
learning algorithms, 50% was reserved as the test sample to determine signal selection efficiency
and predict background rates, 5% was set aside for the development validation of a blinded analysis
using “fake data”, and the remaining 5% corresponding to 372 s of exposure was reserved as the
“data” sample for the final measurement and reported results. This analysis was performed blind, with
final data distributions and extracted 𝑛 → �̄� limits obtained only after the review of the analysis and
its validation using fake data as will be described in section 7. The data-driven approach used to
generate the signal and background samples automatically enables accurate “modeling” of cosmogenic
activity and noise sources, including any time dependence in the detector response. However, this
approach assumes that there are < 10−6 𝑛 → �̄� interaction events in the off-beam data corresponding
to 372 s of exposure. This is a safe assumption given the current best limits on 𝑛 → �̄� from the
Super-Kamiokande experiment [8] and MicroBooNE’s low exposure as explained in section 1.

3.2 Signal simulation

Signal 𝑛 → �̄� interactions are simulated across the detector’s active volume using the GENIE neutrino
event generator (GENIE v.3.00.04) [29, 34]. These interactions are simulated with annihilation

– 3 –
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vertices uniformly distributed across the active volume of the TPC and as a consequence, a significant
fraction of the signal interactions are only partially visible in the TPC. This leads to inefficiencies
which are accounted for in the reported signal efficiencies which are shown in table 3. In the model,
the (anti)nucleon’s Fermi motion and binding energy are modeled using a local Fermi gas model,
and the empirical, data-driven hA Intranuke algorithm is used to simulate final state interactions
(FSI). The 40Ar nucleus is assumed to be at rest during the 𝑛 → �̄� process. The position of a neutron
(to be oscillated into an antineutron) within the nucleus is simulated using GENIE’s density profile
of nucleons (Woods-Saxon distribution [35]),

𝜌(𝑟) = 𝜌0

1 + 𝑒
𝑟−𝑅0

𝑎

, (3.1)

where 𝑟 is the radial position inside the nucleus, 𝑅0 = 𝑟0𝐴
1
3 is the nuclear radius, with 𝑟0 defined as

1.4 fm in GENIE. 𝜌0 is normalized in order to express nuclear density as a probability distribution,
and 𝑎 is a parameter describing the surface thickness of the nucleus, set to 𝑎 = 0.54 fm.

This analysis considers the annihilation of an antineutron with either a neutron or a proton and
simulates the resulting products of annihilation (3–4 pions on an average) using the branching ratios
informed by previous measurements [8, 10, 11], reproduced in table 1, accounting for the available
kinematic phase-space on an event-by-event basis [29]. The final state particles are subsequently
propagated through the detector with Geant4 [36]. This is followed by the custom detector simulation
for the MicroBooNE detector [37–39] to take account of the detector response.

Table 1. Effective branching ratios for antineutron annihilation in 40Ar, as implemented in GENIE. The
branching ratios are adapted from analysis by the Super-Kamiokande collaboration [8] and are derived from
past antiproton annihilation measurements on hydrogen and deuterium, with a phase-space approximation [29].

�̄� + 𝑝 �̄� + 𝑛

Channel Branching ratio Channel Branching ratio
𝜋+𝜋0 1.2% 𝜋+𝜋− 2.0%
𝜋+2𝜋0 9.5% 2𝜋0 1.5%
𝜋+3𝜋0 11.9% 𝜋+𝜋−𝜋0 6.5%

2𝜋+𝜋−𝜋0 26.2% 𝜋+𝜋−2𝜋0 11.0%
2𝜋+𝜋−2𝜋0 42.8% 𝜋+𝜋−3𝜋0 28.0%
2𝜋+𝜋−2𝜔 0.003% 2𝜋+2𝜋− 7.1%
3𝜋+2𝜋−𝜋0 8.4% 2𝜋+2𝜋−𝜋0 24.0%

𝜋+𝜋−𝜔 10.0%
2𝜋+2𝜋−2𝜋0 10.0%

3.3 Overlay generation

Neutron-antineutron transition signal interactions are simulated within GENIE as described in
section 3.2 and are then overlaid onto the background (real cosmic data) at waveform level to emulate
the events used to estimate the effective signal efficiency. An example of overlay generation is
shown in figure 1 where the top panel shows the background event and the bottom panel shows the
overlay scenario where the GENIE simulated signal interaction, circled in red, is overlaid on the
same background event shown in the top panel.

– 4 –
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Because of abundant cosmogenic activity, each 2.3 ms event includes multiple reconstructed
cosmic candidate interactions in the LAr volume, referred to as “clusters”. Three-dimensional clusters
are reconstructed using the WireCell reconstruction package [40] as collections of 3D spacepoints,
where each spacepoint carries information about its corresponding wire position, time-tick, and charge
deposition. The true 𝑛 → �̄� interaction clusters are identified through the comparison of two events
(one with and one without a signal interaction) with the same background source, as depicted in
figure 1. The topological features of the signal clusters (“star-like”) and the background clusters
(“straight track-like”) are then used to develop the selection as described in the next section.

Figure 1. (top) Event display showing an event collected in MicroBooNE off-beam data. (bottom) Event display
showing the same off-beam data event with a GENIE-simulated 𝑛 → �̄� signal cluster (highlighted in the red
circle). The vertical and horizontal scales are the same. The 𝑥-axis represents the collection plane channels and
the 𝑦-axis represents the time-tick space. Color represents the amount of deposited ionization charge in units of
ADC values.

4 Analysis techniques and selection criteria

The cluster reconstruction is followed by a series of selection criteria which are applied in three
stages as discussed in the following subsections.

4.1 BDT-based preselection

The first, or preselection, stage makes use of a machine learning boosted decision tree (BDT) algorithm
using xgboost [41] to significantly reduce the number of background clusters while maintaining high

– 5 –
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signal efficiency. The BDT is trained using variables that contain information about the number
of spacepoints in each cluster, with their wire positions and times. The distributions of these input
variables are shown in figure 2, corresponding to the “No selection” stage of table 3. We define
the “extent” of a cluster as the number of wires or time-ticks over which the cluster is contained in
the 𝑈, 𝑉 , or 𝑌 wire-plane or time-tick dimension (one time-tick corresponds to 0.5 μs), respectively.
These variables enable us to distinguish between signal and background clusters based on their
topological features, such as the more localized, spherical topology for the signal 𝑛 → �̄� clusters and
the straight, track-like topology for the background clusters; effective in significantly suppressing
the cosmic muon backgrounds
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Figure 2. Distributions of topological variables from 2D cluster projections for the signal (blue) and background
(red) clusters. The background is shown along with its systematic uncertainty band (see section 5 for details
on assessing systematic uncertainties). The systematic uncertainty is small and of the order of a few percent.
The data points corresponding to 372 s of exposure are shown (after unblinding) in black along with statistical
uncertainty. The background clusters, generated with a test sample, are normalized exactly to match the data
exposure of 372 s, whereas the signal clusters, which were simulated and overlaid onto the background clusters,
are arbitrarily normalized as they cannot be precisely scaled to match the data exposure. The samples used to
obtain background prediction and data are assumed to have a negligible signal.
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The BDT training outcome exhibits a clear separation between the signal (𝑛 → �̄�) and background
(cosmic) processes, as shown in figure 3 (the BDT score distribution corresponds to the “No selection”
stage of table 3.). Therefore, a “loose” cut on the BDT score is chosen by visual inspection to meet
our primary goal of rejecting the majority of background events at this stage. Selecting clusters
with BDT score > 0.1 (see figure 3) rejects 91% of the background clusters and maintains a high
signal selection efficiency of 86%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BDT score

10

210

310

410

510

N
um

be
r 

of
 c

lu
st

er
s

Signal prediction (arb. norm.)
Data-driven background with uncertainty
Observed data

MicroBooNE
Exposure 372 s

0.2 0.3 0.4 0.5 0.6 0.7 0.8

CNN score

1

10

210

310

410

510

N
um

be
r 

of
 e

ve
nt

s

Signal prediction (arb. norm.)
Data-driven background with uncertainty
Observed data

MicroBooNE
Exposure 372 s

Figure 3. Classification performance of the BDT (left) and CNN (right) for the signal 𝑛 → �̄� (blue) and
background (red) clusters. The background is shown along with the systematic uncertainty band (see section 5
for details on assessing systematic uncertainties). The data points corresponding to 372 s of exposure are shown
(after unblinding) in black along with statistical uncertainty. The background clusters, generated with a test
sample, are normalized exactly to match the data exposure of 372 s, whereas the signal clusters, which were
simulated and overlaid onto the background clusters, are arbitrarily normalized as they cannot be precisely
scaled to match the data exposure. The samples used to obtain background prediction and data are assumed to
have a negligible signal.

4.2 CNN-based selection

The second stage of selection applies an image-based selection criterion, using a sparse CNN with
the VGG16 network architecture [30, 31, 42, 43]. Convolutional neural networks perform successive
layers of convolutions on full images to identify features and associate these features with labels [44].
A sparse CNN makes use of localized inputs within an image (star-like topology for the signal clusters
and straight track-like topology for the background clusters) that highlight features on which the
network trains rather than the full image. This selection stage makes use of 2D projections of the
preselected clusters onto three sense wire planes of the MicroBooNE detector. These projections
contain information about the wire position, time-tick, and charge deposition associated with each
cluster, and are formatted in such a way as to retain only the pixels associated with the signal or
background clusters, thus making it highly memory efficient.

The network is trained using nearly a million events. One challenge in training arises from
having a finite dataset, leading to the possible risk of overtraining (or overfitting). In overtraining, the
network learns a combination of features associated with a specific type of event and may occasionally
incorporate features that are not representative of the broader event type. Therefore, it is crucial
to validate the effectiveness of the network, which in this case is achieved by monitoring training
loss and validation accuracy. The training loss represents the classification error in the training set
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and a decreasing training loss typically indicates that the model is learning to better fit the training
data. The validation accuracy measures the performance of a model on a separate dataset that
the model has not been trained on. An increasing validation accuracy indicates that the model is
generalizing well to new data, whereas a decreasing validation accuracy may suggest overtraining.
Figure 4 shows the training loss and validation accuracy versus number of iterations which refer
to the number of updates made to the model’s parameters during the training. For CNN-based
classification, 20,000 iterations were chosen by monitoring training loss and validation accuracy.
The performance of the trained CNN on the test sample is shown in figure 3 (the right CNN score
distribution corresponds to the “Stage 1” of table 3).

Figure 4. Distributions of training loss (left) and validation accuracy (right) versus number of iterations. The
current accuracy is shown as green solid line, whereas the best accuracy is shown as blue solid line. The best
accuracy represents the highest validation accuracy observed throughout the training process.

The CNN score criterion is optimized with respect to the projected sensitivity at 90% CL. As
a prerequisite for the sensitivity calculation, efficiencies for the signal and background events are
calculated for various CNN score criteria and are shown in table 2. For these particular CNN score
criteria (where the background rejection is ∼ 99%), individual preliminary sensitivity values were
calculated, using the TRolke statistical method in ROOT [45] following a frequentist approach and
accounting for both statistical and systematic uncertainties on the background and signal efficiency,
based on the following assumptions:

• The assumed search region statistics correspond to 372 s of exposure, and are evaluated by
scaling the test sample (containing ×10 higher statistics) by a factor of 0.1, making it equivalent
in size to the MicroBooNE “data” statistics for the analysis.

• The statistical uncertainty on the background is considered within the TRolke method, assuming
Gaussian fluctuations on the data-sized test. The sensitivity calculation within TRolke assumes
zero signal and hence no statistical uncertainty is assumed on the signal.

• For the CNN score criterion optimization study, the systematic uncertainty on the signal selection
efficiency was assumed to be 15%. The systematic uncertainty on the background is evaluated as
the statistical uncertainty on the background obtained using the test sample, as the background
is measured in situ.

Considering sensitivity (see table 2) as a figure of merit, the optimal CNN criterion is found to be 0.80.
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Table 2. Preliminary sensitivity for various CNN score criteria around the optimized score of 0.80. The signal
and background efficiencies are calculated using the test sample. The background is also estimated using the
test sample and then scaled by a factor of 0.1 to make it equivalent in size to the MicroBooNE data sample
which corresponds to 372 s of exposure. Uncertainties in the table account for finite MC statistics only.

CNN criterion Signal Efficiency
Background Efficiency

(10−4)
Normalized Background

Estimate
Sensitivity
(1025 yrs)

0.797 0.8274 ± 0.0003 1.53 ± 0.10 24.8 ± 1.6 2.62
0.798 0.8222 ± 0.0003 1.27 ± 0.09 20.5 ± 1.4 2.83
0.799 0.8012 ± 0.0003 1.08 ± 0.08 17.5 ± 1.3 2.98
0.800 0.7360 ± 0.0003 0.88 ± 0.07 14.2 ± 1.2 2.99
0.801 0.6392 ± 0.0004 0.66 ± 0.06 10.7 ± 1.0 2.95
0.802 0.5081 ± 0.0004 0.50 ± 0.06 8.1 ± 0.9 2.65
0.803 0.3490 ± 0.0004 0.43 ± 0.05 6.9 ± 0.8 1.95

4.3 Topological-based final selection

After CNN selection, approximately 2% of the remaining clusters have zero extent in time or one of
the wire dimensions, as a consequence of reconstruction inefficiencies [46]. Those clusters looked
similar before the preselection stage (as shown in figure 2), causing the BDT to be unable to distinguish
between them. Therefore, a third and final selection stage, based on topological information, is applied
to reject zero- and low-extent clusters, which cannot represent the signal topology. The distributions of
extent variables after CNN selection (“Stage 2” of table 3) are shown in figure 5 and the final selection
criteria are chosen by visual inspection of these variables. The final selection requires the extent of a
cluster in at least one of the three wire dimensions to be > 70 wires, and in the time dimension to be
> 70 time-ticks. The final selection criteria were chosen to effectively reject the majority of background
events, particularly those peaking in the range between 0 and 70 in extent as shown in figure 5.

The number of signal and background events in the test sample before and after each of the
three selection stages is shown in table 3. The analysis yields an overall signal selection efficiency of
70.22%, corresponding to the ratio of events at Stage 3 to events before any selection. At the same
time, it rejects 99.99% of the total background resulting in background efficiency of 0.0020%

Table 3. The number of predicted signal and background events in the test sample before and after each of the
three selection stages.

Selection Stage Signal Background
No selection 1,633,525 1,618,827
Stage 1 1,411,164 139,802
Stage 2 1,202,281 142
Stage 3 1,147,157 32
Signal selection efficiency 70.22% -
Background efficiency - 0.0020%
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Figure 5. The distributions of 𝑈,𝑉 ,𝑌 -plane and time-tick extents for the signal 𝑛 → �̄� (blue) and background
(red) events after the CNN score cut are shown. The data points corresponding to 372 s of exposure are shown
(after unblinding) in black along with statistical uncertainty. The background events, generated with a test
sample, are normalized to match the data exposure of 372 s, whereas the signal events, for which the clusters
are simulated and overlaid onto the background clusters, are arbitrarily normalized as they cannot be precisely
scaled to match the data exposure. The samples used to obtain background prediction and data are assumed to
have a negligible signal.

5 Systematic uncertainties

The systematic uncertainties on signal and background events are assessed independently. Systematic
uncertainties on the signal selection efficiency include contributions from GENIE, Geant4, and
detector model variations.

5.1 GENIE systematics

The default GENIE nuclear model configuration used in MicroBooNE to simulate 𝑛 → �̄� interactions
is the hA-Local Fermi Gas (hA-LFG) [47]. The signal efficiency using simulations with other possible
model variations has been evaluated. GENIE offers various models to describe the energy and
momentum of the initial state nucleon, such as Bodek-Ritchie (BR) [48] or Local Fermi Gas (LFG).
Similarly, final state interactions (FSI) are described in GENIE either through a full cascade model (hN)
or an effective model that parameterizes FSI as a single interaction (hA) [47]. For each variation, a new
independent signal sample is generated, and the entire selection, as described in section 4, is applied
to each of them to evaluate signal selection efficiency, and subsequently, the associated uncertainty.
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Table 4. The fractional uncertainty in signal efficiency 𝜂 is shown for various samples with different GENIE
models. The total uncertainty due to GENIE modeling, obtained by taking the squared sum of 𝜂, is estimated to
be 4.85%.

GENIE model 𝜂 (%)
hA-BR 1.17
hN-BR 4.56
hN-LFG 1.14
Total 4.85

Table 4 shows the quantitative estimate of uncertainty due to various GENIE models on signal selection
efficiency. The fractional uncertainty on the signal selection efficiency, 𝜂, is the uncertainty on the
efficiency for each model (𝜀) with respect to the nominal GENIE hA-LFG model (𝜀nom), defined as

𝜂 =
𝜀nom − 𝜀

𝜀nom
. (5.1)

This equation does not consider statistical uncertainty on the efficiency evaluated for each model,
which is found to be negligible (2 × 10−4). The total fractional uncertainty on the signal efficiency
due to GENIE systematic uncertainties is estimated to be 4.85%.

5.2 Geant4 systematics

Uncertainty from Geant4 accounts for hadron-40Ar reinteraction uncertainties. Charged hadrons
can interact with external 40Ar nuclei while traveling through the liquid argon volume. Inelastic
reinteractions of charged hadrons (𝜋+, 𝜋−, 𝑝) in the LAr volume are simulated by Geant4, and the
cross sections of these hadronic reinteractions are varied to account for the corresponding systematic
uncertainty. The uncertainty of these scattering processes of protons and charged pions could be
significant, especially when there are many charged hadrons in the final state, such as in 𝑛 → �̄�

interactions. The impact of hadron reinteraction uncertainty on 𝑛 → �̄� signal efficiency has been
evaluated using an event reweighting scheme [49]. The systematic uncertainty (𝜎) due to charged
hadron (𝜋+, 𝜋−, 𝑝) reinteractions is assessed using the following equation for each hadron,

𝜎 =
1
𝑁w

𝑁w∑︁
𝑖=1

(𝑊i − 𝑁)2, (5.2)

where 𝑖 runs over the number of re-weights (𝑁w = 1000) generated for each of the 𝜋+, 𝜋− and
𝑝 reinteractions. 𝑊i represents the weighted sample which takes weights generated for charged
hadrons into account and 𝑁 represents the nominal sample. Table 5 shows the fractional uncertainty
on the signal efficiency due to hadron reinteraction uncertainties with a total Geant4 uncertainty
evaluated to be 2.32%.

5.3 Detector systematics

The detector modeling and response uncertainties are evaluated for the signal sample using a novel
data-driven technique [50] to account for discrepancies between data and simulation in charge and
light response. This uses in situ measurements of distortions in the TPC wire readout signals due
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Table 5. The fractional uncertainty in signal efficiency 𝜎 is shown for various samples with different Geant4
reinteraction weights in the last column. The total uncertainty due to Geant4 modeling, obtained by taking the
squared sum of each 𝜎, is estimated to be 2.32%.

Geant4 reinteractions 𝜎 (%)
𝜋+ 0.89
𝜋− 1.3
proton 1.7
Total 2.32

to various detector effects, such as diffusion, electron drift lifetime, electric field, and electronics
response, to parametrize these effects at the TPC wire level.

For each variation, a new independent signal MC sample is generated. The final selection is
applied to each of these samples and signal efficiency is calculated. Table 6 shows the fractional
uncertainty due to various detector variations on the signal selection efficiency. The fractional
uncertainty on signal selection efficiency (quoted in the last column) includes a statistical uncertainty
in efficiency, 𝜂err, and uncertainty in efficiency due to each detector variation with respect to the
nominal, 𝜂errnom, which are defined as

𝜂err =

√︂
𝜖 (1 − 𝜖)

𝑁
, (5.3)

where 𝜖 and 𝑁 are the signal efficiency and the number of generated events, respectively, for any
given model, and

𝜂errnom =
𝜖nom − 𝜖

𝜖nom
, (5.4)

where 𝜖nom represents the signal efficiency with the nominal sample. The total fractional uncertainty
due to detector modeling is evaluated to be 6.72%.

The total fractional uncertainty on the signal selection efficiency when treating GENIE, Geant4,
and detector systematics as being uncorrelated is 8.61%. The systematic uncertainty on the background
is 17.68%, and it corresponds to the statistical uncertainty on the number of final selected background
events in the test sample shown in table 3.

Table 6. The percent uncertainty in signal efficiency, 𝜂, is shown for various samples with different detector
systematic variations in the last column. The total uncertainty due to detector systematics, obtained by taking
the squared sum of the last column, is estimated to be 6.72%.

Detector variation 𝜂err % 𝜂errNom % 𝜂 %
Recombination 0.13 0.53 0.54
Light yield 0.22 1.15 1.17
Space charge effect 0.12 0.13 0.18
TPC waveform modeling 0.24 6.59 6.59
Total 6.72
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6 Sensitivity evaluation

The final event selection, as described in section 4, yields an expected background of 3.20 ±
1.79(stat.)±0.57(syst.) events corresponding to 372 s (3.32×1026 neutron-years) of exposure, obtained
by normalizing the background events reported in table 3 by a factor of 0.1 to predict the background
from the data-sized sample. A sensitivity to the intranuclear 𝑛 → �̄� lifetime in 40Ar is evaluated from
this exposure using the TRolke statistical method, following a frequentist approach and accounting
for both statistical and systematic uncertainties on the background and signal efficiency [45]. This
sensitivity is evaluated assuming the absence of any signal contribution in the sample used for
data-driven background determination, treating any observed events as indistinguishable from the
background events. The resulting 𝜏𝑚 sensitivity for 40Ar corresponds to 6.0 × 1025 years at 90% CL.

The DUNE exposure (1.3 × 1035 neutron-years) is projected to be 109 orders of magnitude
larger than MicroBooNE’s. If similar signal selection efficiency can be obtained with DUNE as
for MicroBooNE, while maintaining the atmospheric neutrino background rejection reported by
DUNE [29], then DUNE’s statistical-only sensitivity would increase seven-fold.

7 Fake-data analysis

The analysis is developed as a blind analysis and the final selection is tested on a dedicated fake-data
sample before looking at the data sample reserved for making the final measurement. The fake-data
sample corresponds to a data-sized sample of unbiased, off-beam data events (372 s of exposure),
which is statistically independent of the data sample and is prepared with a blinded fraction of 𝑥%
injected 𝑛 → �̄� signal, where 𝑥% is unknown to the analyzer. As part of the fake-data test, the 𝑥%
is estimated from the developed analysis framework by performing a fit to the fake data. The final
selection, as described in section 4, is applied to the fake-data sample. Out of 158,681 events, 268
events passed the selection, with an expected background of 3.20.

Next, the compatibility of the fake-data observation with the expectation was quantized by
constructing a 𝜒2 as follows:

𝜒2 =
(𝑂 − 𝐸)2

𝐸
, (7.1)

where 𝑂 = 268 is the observed number of events in the fake-data sample, and 𝐸 is the expected
background plus 𝑛 → �̄� signal events and is defined as

𝐸 = 𝑥fit𝑁g𝜖s + (1 − 𝑥fit)𝑁g𝜖b, (7.2)

where 𝑥fit is the assumed fraction of injected 𝑛 → �̄� events in the fake-data sample, 𝑁g = 158, 681
is the number of events in the fake-data sample, 𝜖s = 0.70 is the signal selection efficiency, and
𝜖b = 1.97 × 10−5 is the background efficiency. 𝑥fit is varied to obtain the minimum 𝜒2 value,
corresponding to the best-fit 𝑥bf. Figure 6 shows the expected number of events and 𝜒2 distribution
as a function of 𝑥fit. The best-fit fraction of 𝑛 → �̄� signal is found to be 0.23%, whereas the actual
fraction revealed after this measurement was performed is 0.25%. The estimated fraction matches the
actual fraction within the 1𝜎 uncertainty of 0.03% demonstrating the overall validity of the selection
methods and associated image-based analysis.
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Figure 6. Distributions of expected events (left) and 𝜒2 (right) of fake-data observation are shown as a function
of the fraction of injected 𝑛 → �̄� events in the fake-data sample, 𝑥fit.

8 Results

In this section, a “demonstrative” experimental lower bound on the intranuclear 𝑛 → �̄� lifetime in
40Ar is evaluated at 90% CL. Unlike the sensitivity which is evaluated in section 6, the “demonstrative”
lower bound calculation does not assume a zero-signal hypothesis and treats the number of observed
events differently from the background events. After successfully validating the developed analysis
selection using the fake-data sample as shown in section 7, the analysis examined the data sample
reserved for reporting the final measurement. Upon applying the analysis selection criteria, 2 events
are observed, consistent with an expected background of 3.20 ± 1.79(stat.) ± 0.57(syst.) events. The
observed events are shown in figure 7. The selected clusters in both of these events are localized
to tens of wires and therefore were mistaken as signal events by the network.

Figure 7. Event displays of the two data events (showing the selected interaction cluster) that pass the final
analysis selection. Only the selected cluster from the final selection is shown for both events. The 𝑥-axis
represents the collection plane channels and the 𝑦-axis represents the time-ticks. Color represents the amount of
deposited charge in units of ADC values.

The absence of an excess of events above the expected background prediction leads to a
“demonstrative” lower bound on the intranuclear 𝑛 → �̄� lifetime in 40Ar of 𝜏𝑚 ≳ 1.1 × 1026 years at
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90% CL (evaluated using the TRolke package in ROOT [45]). Using eq. (1.1) and 𝑅 = 5.6 × 1022 s−1

for 40Ar [23], a limit on the free-neutron equivalent 𝑛 → �̄� lifetime is derived as 𝜏n−�̄� ≳ 2.6 × 105 s
at 90% CL. Note that such a conversion is subject to an additional uncertainty associated with the
use of 𝑅, which is estimated at ∼ 20% [23].

9 Conclusions

We have developed and validated a novel approach to search for neutron-antineutron transitions in
40Ar using the MicroBooNE detector and derived a “demonstrative” experimental lower limit on
𝑛 → �̄� lifetime with 90% CL. This methodology, based on state-of-the-art reconstruction tools and
deep learning methods specifically tailored to LArTPC experiments showcases the high sensitivity
capabilities of LArTPCs for this topologically unique search. As a proof-of-principle demonstration,
we make use of the off-beam data from the MicroBooNE detector under the assumption that this
data contains negligible signal events, consistent with Super-Kamiokande results [8], and provide
a “demonstrative” experimental lower limit on the mean intranuclear neutron-antineutron transition
time. As expected, the “demonstrative” experimental lower limit is far lower compared to those of
previous measurements due to limited exposure and a non-competitive detector mass. The purely
topologically-based selection achieves a uniquely high signal selection efficiency of 70.0% and a
background rejection efficiency of 99.99%; the former of these represents a large improvement over
previous results, some of which reported < 10% signal efficiency [8]. With an already well-developed
methodology, this study demonstrates the future potential of enhanced sensitivities within forthcoming
LArTPC-based detectors such as DUNE as mentioned in section 6, in their searches for such rare
signals. Further improvements, such as delineating the actual kinematics of signals and backgrounds,
along with integration of particle identification, show still more promise. It is important to note that
the backgrounds in DUNE and MicroBooNE are distinct. While cosmic ray muons are the dominant
backgrounds in MicroBooNE on the surface, atmospheric neutrino interactions are expected to be the
main source of backgrounds in DUNE. Nonetheless, the presented analysis demonstrates the usefulness
of machine learning techniques, particularly when applied to simple topological extent variables. These
variables are unique to LArTPCs due to their fine spatial resolution. The demonstration presented in
this paper confirms the capabilities of larger, well-shielded LArTPCs such as DUNE in performing
future high-sensitivity searches for baryon number violation.
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