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ABSTRACT: Sulfinamides are versatile, synthetically useful intermediates, and final motifs. Traditional methods to synthesize
sulfinamides generally require substrates with preinstalled sulfur centers. However, these precursors have limited commercial
availability, and the associated synthetic routes often require harsh reaction conditions and highly reactive reagents, thus severely
limiting their application. Herein, we report the synthesis of sulfinamides from aryl and alkenyl (pseudo)halides and N-
sulfinylamines, enabled by palladium catalysis. The reactions use mild conditions and are achieved without the use of highly reactive
preformed organometallic reagents, resulting in transformations of broad generality and high functional group tolerance. In
particular, substrates featuring protic and electrophilic functional groups can be used successfully. The modification of complex aryl
cores and natural product derivatives demonstrates the utility of this method.

Sulfinamides are valuable, flexible building blocks in both
organic synthesis and medicinal- and agro-chemistry. For

example, enantiopure sulfinamides have extensive applications
as ligands in transition metal and organo-catalysis,1 and as
chiral auxiliaries for the synthesis of enantioenriched amines
(Scheme 1a).2 Sulfinamides have been used as amide
bioisosteres3 and have found applications in treatments for
hepatitis C4 and leukemia.5 Importantly, sulfinamides can be
easily transformed into alternative high-value sulfur functional
groups such as sulfonamides, sulfonimidamides, and sulfoni-
midoyl fluorides.6 Sulfonamides, in particular, are prized sulfur
functional groups in medicinal chemistry,7 and there are over
150 FDA-approved sulfonamide containing drugs (Scheme
1b).8 Sulfonimidamides, the mono aza-analogues of sulfona-
mides, are yet to appear in a marketed pharmaceutical, but
feature extensively in the recent medicinal and agrochemistry
patent literature;9 Scheme 1b shows an example that is an
inhibitor of the NLRP3 inflammasome,10 as well as a
sulfonimidamide that displays herbicidal activity.9c Sulfonimi-
doyl fluorides are important electrophilic motifs in chemical
biology due to their reactivity by SuFEx pathways.11

The majority of existing methods for the synthesis of
sulfinamides require substrates with preinstalled sulfur centers;
common precursors include sulfonyl chlorides,12 thiols and
disulfides,13 as well as sulfinyl chlorides and esters.14 Methods
using these substrates show commendable scope and
efficiency; however, the precursors all have limited commercial
availability and often display compromised stability, and the
synthetic methods generally utilize highly reactive reagents and
harsh reaction conditions, thus limiting functional group
tolerance. This final point is particularly important in medicinal
and agrochemistry applications, where the synthesis of
functionalized building blocks is crucial. Approaches to
sulfinamides which rely on the use of nonsulfur containing
carbon substrates are attractive alternatives, potentially offering
solutions to many of the earlier shortcomings.15

An early example of this approach involves the addition of
preformed organometallic reagents into N-sulfinylamines, and
although efficient, the limited functional group tolerance
remains (Scheme 2a).15a Other substrates that have been
used include aryl diazonium salts, aryl potassium trifluor-
oborate salts, and aryl boroxines (Scheme 2a).6b,16 The
functional group tolerance of these approaches is improved;
however, none of these substrates are ideal, with the majority
being challenging to handle and all having only limited
commercial availability. In addition, these groups are not
amenable to multistep synthetic sequences, making their use in
the late-stages of complex molecule synthesis challenging.
Using aryl and heteroaryl halides as substrates would address
many of these issues; these are substrates with unrivaled
availability and structural diversity. In addition, although
reactive under specific, often catalytic, reaction conditions,
these substrates are stable to a diverse range of reagents and
are therefore useful in complex molecule synthesis (Scheme
2b). Using aryl halides as substrates presents a different set of
challenges: (i) unlike the redox-neutral catalytic pathways
exploited in the prior methods, these transformations will
require a metal redox shuttle in which a reductant is required
to close the catalytic cycle, however, sulfinylamines are known
to be susceptible to reduction;17 (ii) although reductive
couplings between aryl/alkenyl (pseudo) halides and SO2
(surrogates) have been developed, poisoning of the lower
oxidation state metal complexes by SO2 is often noted, and the
electronically similar R-NSO reagents will likely have related
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issues.18 To our best knowledge, there are no reports of N-
sulfinylamines in combination with metal catalysts undergoing
a redox event,18b,19 nor of the direct addition of aryl halides
into sulfinylamines. Despite these challenges, the advantages
realized from the successful union of aryl and heteroaryl

halides with sulfinylamines using metal catalysis are significant
and are the inspiration for this study.

We initially examined the combination of p-fluoro
bromobenzene with various sulfinylamines, leading to
sulfinamides 1 (Table 1). The optimized reaction conditions

involved using 10 mol % SPhos Pd G3 as the catalyst, HCO2Cs
as the reductant, and N-triisopropylsilyl sulfinylamine (TIPS-
NSO) in 1,4-dioxane at 75 °C for 18 h, and delivered the
sulfinamide 1a in 85% isolated yield (Table 1, entry 1, see the
Supporting Information for full details). Using the alternative
N-sulfinylamine reagent Tr-NSO (entry 2) resulted in a
reduced yield, and alternative reductants and ligands were also
less successful (e.g., entry 3). Using a separate palladium salt
and ligand (and not the precomplexed G3 system), although
effective, was less efficient than using the preformed catalyst
(entry 5). Control experiments confirmed the necessity of both
the Pd complex and reductant (entries 6 and 7).

With the optimized conditions in hand, the scope of the
process with respect to aryl bromides was investigated (Table
2). Aromatics with electron-withdrawing groups at the para-
position were well tolerated (1a−1e), including functional
groups such as nitro (1c), nitrile (1d), and ketone (1e). These
are all functional groups that would be challenging to use in
approaches that rely on preformed organometallic reagents.
Meta-substituted aryl bromides also performed well (1f, 1g). A
naphthalene group (1h), and a disubstituted benzene featuring
a NH-carbamate (1i) were efficient substrates. However,
significantly lower yields were obtained with a substrate
featuring an electron-donating methoxy group positioned at
the para-position (1j). Switching the catalyst to a combination
of Pd(OAc)2 and di(1-adamantyl)benzyl phosphine, and
reducing the loading of HCO2Cs, allowed the yield of 4-
bromoanisole product 1j to increase to 61% (see the
Supporting Information for details). Using these modified
conditions allowed additional electron-rich and electron-
neutral aryl bromides to be successfully used, including p-

Scheme 1. a) Examples of Chiral Sulfinamides and
Conversion to Diverse S(VI)-Functional Groups; b)
Examples of Bioactive Sulfonamides and Sulfonimidamides

Scheme 2. a) Sulfinamide Syntheses Using Non-sulfur
Containing Aryl Substrates; b) This work, the Palladium-
Catalysed Synthesis of Sufinamides from Aryl Halides

Table 1. Optimization of the Synthesis of Sulfinamide 1aa

entry variations from standard yielda

1 none 86% (85%)
2 Tr-NSO instead of TIPS-NSO 20%
3 CataCXium A Pd G3 instead of SPhos Pd G3 61%
4 5 mol % SPhos Pd G3, 18 h 65%
5 10 mol % Pd(OAc)2 + 15 mol % SPhos 75%
6 No SPhos Pd G3 0
7 No HCO2Cs <5%

aYields determined by quantitative 19F NMR spectroscopy of the
crude reaction mixture using 1,4-difluorobenzene as the internal
standard. Isolated yields are in parentheses.
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tolyl (1k), p-succinimide (1l), dioxole (1p), and bicyclic
ketone (1q). Several ortho-substituted aryl halides were
competent substrates (1m, 1o, and 1q). Heteroaromatic
substrates were then investigated: Pyridines (1r−1u),
pyrimidine (1v), quinoline (1w), indole (1x), and thiophene
(1y) substrates were well tolerated in the reaction. Addition-
ally, several complex aryl sulfinamides, such as Celecoxib
precursor (1z), piperidine-substituted pyridine (1aa), and
chemical probe mimic (1ab), could all be synthesized.20 The

meta-ester example (1f) was scaled to a 1 mmol reaction, and
delivered 0.28 g of the sulfinamide in 78% yield using the
standard reaction conditions; using 5 mol % of catalyst on the
same scale provided sulfinamide 1f in 69% yield. Aryl chlorides
substrates were unreactive using the optimized conditions.

Having established the transformation of aryl bromides into
sulfinamides, we then extended the method to include cyclic
alkenyl (pseudo)halides as substrates (Table 3). Alkenyl
sulfonamides are of interest in medicinal chemistry,21 and

Table 2. Scope of Sulfinamide Synthesis Using Aryl and Heteroaryl Bromidesa

aReaction conditions A: aryl bromide (0.20 mmol, 1.0 equiv), TIPS-NSO (1.2 equiv), HCO2Cs (1.5 equiv), SPhos Pd G3 (10 mol %), 1,4-dioxane
(0.2 M), 75 °C, 18 h; Reaction conditions B: aryl bromide (0.20 mmol, 1.0 equiv), TIPS-NSO (1.2 equiv), HCO2Cs (1.2 equiv), Pd(OAc)2 (10
mol %), PAd2Bn (20 mol %), 1,4-dioxane (0.2 M), 75 °C, 18 h. bUsing 5 mol % catalyst. c85 °C
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using these types of substrates could also contribute to the
efforts to increase sp3-rich molecules in drug discovery.22 Using
modified reaction conditions (see the Supporting Information
for details), we found that the use of alkenyl triflate 2a, in
combination with HCO2K as the reductant, provided the
corresponding alkenyl sulfinamide in a good yield (71%, 3a).
Following this lead, the scope of alkenyl triflates was
investigated, with variation of ring size and substitution
pattern being explored. Differentially N-substituted 4-piper-
idone derived precursors, including N-Boc (3b) and N-benzyl
(3c) derivatives, delivered the products in good yields. Alkenyl
triflates based on carbocyclic frameworks, including cyclo-
pentene (3d) and cyclohexene (3e-3g) were well tolerated in
the reaction. Tetralone-derived alkenyl triflate (3h) reacted
smoothly, and bicyclic (3i, 3j) and steroid-derived (3k) alkenyl
triflates were also successful substrates. Importantly, a gram-
scale synthesis of 3a, using a reduced catalyst loading (5 mol
%) was equally efficient (88%).

With success in preparing a broad range of functional aryl
and alkenyl sulfinamides, we then chose aryl methyl ester 1f
and cyclic alkene 3a to explore derivatization strategies
(Scheme 3). The silyl group of aryl sulfinamide 1f could be
easily removed by treatment with TBAF, resulting in primary

sulfinamide 4a in excellent yield (99%). Treatment of
sulfinamide 4a with PhI(OAc)2, morpholine, and triethylamine
led efficiently to sulfonimidamide 4b.15f Ammonia- and aniline-
derived sulfonimidamides (4c and 4d) were prepared using a
chlorination/amination/deprotection sequence, in high yields
(69% and 72%, respectively). Using sulfinamide 1f in a
deprotonation/oxidative fluorination process provided sulfoni-
midoyl fluoride 4e in 90% yield. Primary sulfonamide 4f was
available using an oxidation-deprotection protocol (95%, two
steps). Importantly, in all of these transformations of the
sulfur-core, the integratory of the spectating methyl ester was
uneffected. Alkenyl sulfinamide 3a was also amenable to
manipulation; primary sulfinamide 5a was isolated from N-
TIPS derivative 3a in 85% yield, and could be smoothly
converted into sulfonimidamide 5b using an oxidative
amination. Sulfonimidoyl fluoride 5c was similarly available
in high yield by using NFSI as the oxidant following
deprotonation with NaH.

We have shown for the first time that aryl and heteroaryl
halides are viable substrates for the catalytic synthesis of
sulfinamides. This modular synthesis employs commercial
catalyst components and a commercial sulfinylamine reagent
and is achieved under mild conditions. The reaction can be
performed at gram scale with a reduced catalyst loading. The
sulfinamide products could be readily converted into high-

Table 3. Scope of Sulfinamide Synthesis Using Alkenyl
Triflate Substratesa

aReaction conditions C: alkenyl triflate 2 (0.20 mmol, 1.0 equiv),
TIPS-NSO (1.2 equiv), HCO2K (1.2 equiv), Pd(OAc)2 (10 mol %),
PAd2Bn (20 mol %), 1,4-dioxane (0.2 M), 75 °C, 18 h. bAt 5 mmol
scale using 5 mol % Pd(OAc)2, 10 mol % PAd2Bn.

c1.0 equiv HCO2K.

Scheme 3. Derivatisation of Sulfinamides 1f and 3a into
Diverse Sulfur Functional Groups
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value sulfur(VI) groups including sulfonamides, sulfonimida-
mides, and sulfonimidoyl fluorides. The wide substrate scope,
good functional group tolerance, and the broad availability of
aryl halides suggest that this transformation will find wide
application in discovery chemistry.
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