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I. LIBRARIES AND PACKAGES

No minimum sample size was calculated. All significance
tests were two-tailed. Analyses were performed using R
(version 3.6.2, R Foundation for Statistical Computing,
Vienna, Austria) with packages including binom, Epi,
ggplot2, lme4, sjstats, tableone, and tidyverse and using
Python (version 3.8.0) with packages including imblearn,
matplotlib, skopt, xgboost, seaborn, shap, pandas, numpy, and
sklearn for machine learning analysis.

The code to reproduce the results as well as the
models can be obtained from the following link:
https://github.com/Munib5/ISARIC-COVID-19.git. The
notebooks contain detailed step-by-step guidance on applying
the models and processing the data.

II. BAYESIAN OPTIMISATION METHOD

Assume a Gaussian Process (GP) defined by the property
that any finite set of N points {xn ∈ X}Nn=1 induces a
multivariate Gaussian distribution on RN :

f : X → R

Assume that the observations are of the form {xn, yn}Nn=1,
where yn ∼ N (f (xn) , ν) and ν is the variance of noise.
This prior and the observations induce a posterior over
functions; the acquisition function, which is denoted by
a : X → R+, determines what point in X should be
evaluated next via optimization xnext = argmaxx a(x). In
other words, an acquisition function is a function of the
posterior distribution that describes the utility for all values
of hyperparameters. The acquisition functions depend on the
previous observations, as well as the GP hyperparameters;
the dependence noted as a (x; {xn, yn} , θ). Under the prior,
the acquisition functions depend on the model solely through
its predictive mean function µ (x; {xn, yn} , θ) and predictive
variance function σ2 (x; {xn, yn} , θ) with the best current
value as xbest = argminxn

f (xn) and the cumulative
distribution function of the standard normal as Φ(·). The
strategy is to maximize the expected improvement (EI) over
the current best and use the highest utility hyperparameter
values to compute the next loss.

When maximising the EI one samples from points for
which one expects either a higher utility, or points previ-
ously unexplored. This approach helps to save both time and
computational resources in finding the optimal combination of
hyperparameters without trying out all possible combinations.
The algorithm can be shortly described as:

1) Given observed values f(x), update the posterior using
the GP model

2) Find xnew that maximises the EI: xnew =
argmaxEI(x)

3) Compute the loss for the point xnew

III. METRICS

The metrics used to evaluate the models include:
1) Area under receiver-operating-characteristic curve (AU-

ROC): an ROC curve is a plot of true positives (TP) as
a function of false positives (FP) where each point on
the ROC curve represents a sensitivity/specificity pair
corresponding to a particular decision threshold. The
area under the ROC curve is a summary measure of
sensitivity and specificity [?].

2) Accuracy, ratio between correctly classified examples
and the total number of cases in the dataset. In our case,
can be misleading because of class imbalance where
simply assigning all examples to the majority class is
a way of achieving high accuracy

TP + TN

TP + TN + FP + FN

3) Weighted F1 score, harmonic mean of precision and
recall which penalises extreme values of each weighted
by class proportions due to imbalance

2 · PRE ·REC

PRE +REC
=

2TP

2TP + FP + FN

4) Sensitivity, the probability of a positive prediction for
patients with disease (i.e. the conditional probability of
correctly identifying diseased patients)

TP

TP + FN

PRE refers to precision (or positive predicted value) is the ratio
of correctly identified positive examples and the total number
of predicted positives:

TP

TP + FP
,

TP is true positive (correctly classified positive), TN is true
negative (correctly classified negative), FP is false positive
(falsely classified positive), and FN is false negative (falsely
classified negative) cases.

IV. INTERPRETABILITY METHODS

Every classification made by a decision tree can be
associated with a corresponding decision path and the F-score
is just the number of times a feature is used to split the data
across all trees. We use the shap library and built on the
game-theoretic concept of treating features in the final model
as players in a voting game. The method is applied on the
entire test set and is based on ideas from game theory [28],
[29]. In short, the following equation is used to calculate the
Shapley value φ for feature i:

φi(v) =
∑

S⊂N\{i}

∣∣S∣∣!(n−
∣∣S∣∣− 1)!

n!
(v(S

⋃
{xi})− v(S))

(1)
Where features have their value calculated by taking the

difference between the results of the characteristic function v
on N (the set of all features) and S (the subset of N without
feature i). The Shapley value of a particular feature i is then
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calculated by taking the average of the marginal contributions
of all possible combinations.

V. MACHINE LEARNING METHODS

VI. CLASS IMBALANCE

PE predictions for XGBoost in Figure 1. On the left we
have the XGBoost prediction incapable of learning a clear
probability boundary between the heavily imbalanced classes
using default parameters and setups.

Fig. 1. Confusion Matrices of XGBoost Before And After Imbalance
Adjustment

Another example of the need for thresholding can be seen
in the prediction probabilities on the training set of the logistic
regression model in Figure 2 below. Clearly, the 0.5 default
probability threshold will not prove sufficient to capturing
the discrimination between the two classes and a lower one
would be more suitable. The most optimal threshold, however,

would still require increasing the presence of false positives
as there is an overlap in the probability densities of the two
classes. In our case, luckily, our main care is the level of
sensitivity coupled with the AUROC which would capture
the majority of true positive cases in rare disease occurrence.

Fig. 2. Probability Prediction Density of Logistic Regression for PE Reveals
Trade-off of Sensitivity and Specificity

VII. CORRELATIONS

A more detailed representation of the top correlation
coefficients is included in Tables II and III.

Fig. 3. Correlation of Features with PE (Only Spain and UK Data)
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TABLE I
MACHINE LEARNING METHODS DEPLOYED DURING STUDY

Models Brief Description

Logistic Regression Maps a linear relationship taking into account correlations between covariates
Linear Discriminant Analysis Maps a linear relationship assuming the covariates are independent and normally distributed
Naive Bayes A probabilistic estimator assuming conditional independence between covariates ignoring correlations
Random Forest An ensemble of decision trees whose predictions are aggregated for the final prediction
XGBoost Using extreme gradient-boosting to improve ensembles of random forests for prediction
Ensemble Using AdaBoosted decision trees, similar to XGBoost but with different boosting mechanism, in an ensemble
Ensemble with XGBoost Using our XGBoost as the base estimator in the ensemble hierarchy instead of AdaBoost

Fig. 4. Correlation of Features with Death

VIII. AGE SKEW FOR UK AND SPAIN PATIENTS

It is important to note that the patient populations from
Spain and UK are different, especially in their age distribution.
When we look at Figures 5 and 6, we see that the patients
in Spain are far more likely to be in the 40-80 years band
while those in the UK in the <40 and >80 years categories.
As age can be an impactful predictor for both PE occurrence
and death, it is to be expected that the model results for these
two patient populations can differ.

TABLE II
CORRELATIONS OF FEATURES WITH PE (LEFT) AND WITH DEATH

(RIGHT)

Feature PE Death

D-dimer 0.132 0.012

Shortness of Breath 0.069 0.026

C-Reactive Protein 0.059 0.162

Respiratory Rate 0.048 0.130

Chest Pain 0.043 -0.040

Symptomatic 0.042 -0.011

Neutrophils 0.041 0.099

Cough 0.040 -0.014

Obesity 0.038 0.001

White Blood Cells 0.032 0.090

Heart Rate 0.031 0.014

Fatigue 0.028 -0.002

Sex 0.026 0.044

ALT 0.025 0.009

Fever 0.024 -0.014

Loss of Smell 0.024 -0.040

Loss of Taste 0.022 -0.035

Hypertension 0.018 0.110

Muscle and Joint Pain 0.016 -0.042

Diarrhoea 0.012 -0.024

Smoking 0.010 0.021

Diastolic Blood Pressure 0.010 -0.071

Bilirubin 0.008 0.056

Headache 0.005 -0.054

Wheezing 0.005 0.025

Lymphadenopathy 0.004 0.005

Asthma 0.003 -0.008

Bleeding 0.003 0.006

Malignant Neoplasm 0.002 0.055

Severe Dehydration 0.002 0.033

AIDS 0.001 0.004
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TABLE III
CORRELATIONS OF UK AND SPAIN PATIENT FEATURES WITH PE (LEFT)

AND ALL PATIENTS WITH DEATH (RIGHT) (CONTINUED)

Feature PE Death

Runny Nose 0.001 -0.022

Haematological Disease -0.001 0.020

Liver Disease -0.001 0.012

Rheumatologic Disorder -0.001 0.023

Tuberculosis -0.001 0.006

Conjunctivitis -0.001 -0.007

Sore Throat -0.001 -0.027

Vomiting -0.001 -0.039

Platelets -0.001 0.087

Pulmonary Disease -0.002 0.064

Systolic Blood Pressure -0.002 -0.006

Ear Pain -0.003 -0.006

Lymphocytes -0.003 -0.018

Skin Rash -0.004 0.014

Urean -0.006 0.220

Diabetes -0.007 0.102

Malnutrition -0.007 0.020

Abdominal Pain -0.007 -0.023

Temperature -0.007 -0.009

Seizures -0.008 -0.001

Neurological Disorder -0.010 0.033

Kidney Disease -0.013 0.092

Age -0.014 0.278

Confusion -0.014 0.085

Cardiac Disease -0.019 0.096

Dementia -0.024 0.075

Oxygen Saturation -0.035 -0.109

Fig. 5. Age Distribution for UK Patients

Fig. 6. Age Distribution for Spain Patients

IX. MACHINE LEARNING MODEL SPECIFICATIONS FOR
OPTIMISATION

REFERENCES

[1] WHO. Novel coronavirus (2019-ncov): situation report, 11. (2020).
[2] University, J. H. Covid-19 dashboard by the center for systems science

and engineering (csse) (2022).
[3] Yang, X. et al. Clinical course and outcomes of critically ill patients with

sars-cov-2 pneumonia in wuhan, china: a single-centered, retrospective,
observational study. The Lancet Respiratory Medicine 8, 475–481
(2020).

[4] Liao, S.-C., Shao, S.-C., Chen, Y.-T., Chen, Y.-C. & Hung, M.-J. Inci-
dence and mortality of pulmonary embolism in covid-19: a systematic
review and meta-analysis. Critical care 24, 1–5 (2020).

[5] Knight, S. R. et al. Prospective validation of the 4c prognostic models
for adults hospitalised with covid-19 using the isaric who clinical
characterisation protocol. Thorax (2021).

[6] Jones, A. et al. External validation of the 4c mortality score among
covid-19 patients admitted to hospital in ontario, canada: a retrospective
study. Scientific reports 11, 1–7 (2021).

[7] Tabata, S. et al. Clinical characteristics of covid-19 in 104 people with
sars-cov-2 infection on the diamond princess cruise ship: a retrospective
analysis. The Lancet Infectious Diseases 20, 1043–1050 (2020).

[8] Susen, S. et al. Prevention of thrombotic risk in hospitalized patients
with covid-19 and hemostasis monitoring. Critical care 24, 1–8 (2020).

[9] Whiteley, W. & Wood, A. Risk of arterial and venous thromboses after
covid-19. The Lancet Infectious Diseases (2022).

[10] Katsoularis, I. et al. Risks of deep vein thrombosis, pulmonary
embolism, and bleeding after covid-19: nationwide self-controlled cases
series and matched cohort study. bmj 377 (2022).

[11] Marcos, M. et al. Development of a severity of disease score and
classification model by machine learning for hospitalized covid-19
patients. PloS one 16, e0240200 (2021).

[12] Venturini, S. et al. Classification and analysis of outcome predictors
in non-critically ill covid-19 patients. Internal Medicine Journal 51,
506–514 (2021).

[13] Zhou, F. et al. Clinical course and risk factors for mortality of adult
inpatients with covid-19 in wuhan, china: a retrospective cohort study.
The lancet 395, 1054–1062 (2020).

[14] Xie, J. et al. Development and external validation of a prognostic
multivariable model on admission for hospitalized patients with covid-
19. (2020).

[15] Alaa, A., Qian, Z., Rashbass, J., Benger, J. & van der Schaar, M.
Retrospective cohort study of admission timing and mortality following
covid-19 infection in england. BMJ open 10, e042712 (2020).

[16] van de Sande, D. et al. Predicting thromboembolic complications in
covid-19 icu patients using machine learning. Journal of Clinical and
Translational Research 6, 179 (2020).
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Dataset Model Parameters
UK
Spain

Logistic
Regression

C
Regularisation
Solver

0.1
Lasso (l1)
liblinear

UK
Spain

Naive
Bayes

Smoothing alpha = 0.0

UK
Spain

Linear
Discriminant
Analysis

Shrinkage
Solver

0.17
Eigen

UK
Spain

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
sqrt
10
5
10
False

UK
Spain

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

150
0.1
3
0.5
0
hist

UK
Spain

AdaBoost Ensemble
Ensemble
(XGBoost)

Estimators
Estimators

150
80

TABLE IV
MODEL ARCHITECTURE DETAILS FOR PE

Dataset Model Parameters
UK
Spain

Logistic
Regression

C
Regularisation
Solver

1.0
Lasso (l1)
liblinear

UK
Spain

Naive
Bayes

Smoothing alpha = 1e-5

UK
Spain

Linear
Discriminant
Analysis

Shrinkage
Solver

0.1
Eigen

UK
Spain

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
sqrt
None
10
10
True

UK
Spain

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

200
0.3
2
0.06
0
hist
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Dataset Model Parameters
UK
Spain

Logistic
Regression

C
Regularisation
Solver

0.01
Lasso (l1)
liblinear

UK
Spain

Naive
Bayes

Smoothing alpha = 0.0

UK
Spain

Linear
Discriminant
Analysis

Shrinkage
Solver

0.0
lsqr

UK
Spain

Random
Forest

Estimators
Features
Max Depth
Minimum Splits
Minimum Leaf
Bootstrap

150
auto
None
10
10
False

UK
Spain

XGBoost Estimators
Learning Rate
Max Depth
Minimum Splits
Maximum Delta
Tree Method

350
0.1
4
0.45
1
hist

UK
Spain

AdaBoost Ensemble
Ensemble
(XGBoost)

Estimators
Estimators

20
50

TABLE VI
MODEL ARCHITECTURE DETAILS FOR MORTALITY
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