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Abstract. This paper addresses the problem of object category retrieval
in large unannotated image datasets. Our aim is to enable both fast
learning of an object category model, and fast retrieval over the dataset.
With these elements we show that new visual concepts can be learnt
on-the-fly, given a text description, and so images of that category can
then be retrieved from the dataset in realtime.

To this end we compare state of the art encoding methods and introduce
a novel cascade retrieval architecture, with a focus on achieving the best
trade-off between three important performance measures for a realtime
system of this kind, namely: (i) class accuracy, (ii) memory footprint,
and (iii) speed.

We show that an on-the-fly system is possible and compare its perfor-
mance (using noisy training images) to that of using carefully curated
images. For this evaluation we use the VOC 2007 dataset together with
100k images from ImageNet to act as distractors.

1 Introduction

Over the last decade there have been great strides forwards in large scale image
retrieval and classification. On the one hand methods have been developed for
instance search [1–3] and near duplicate image search [4] which have been scaled
to millions of images. These methods, which include Google Goggles, cast the
problem as one of nearest neighbour matching to a query vector, with the entire
dataset searchable in real time. On the other hand methods have been devel-
oped for image classification where the approach proceeds in two stages: first, a
classifier is trained on a set of annotated data for a category; and, second, the
dataset is ranked based on the classifier score [5–7].

However, as the size of datasets has increased, so it has become more evident
that the expensive training of a proportionally increasing number of tailor-made
classifiers, with all of the data annotation that implies, is not a sustainable
approach. For example, for the ImageNet dataset [8] there are 14M images and
22k classes (concepts) to train for. This paper attempts to bridge these two
classes of methods, and facilitate on-the-fly retrieval of object categories (rather
than just object instances). We use as a basis for this work recent advances in
both large-scale image classification [5–7] and large-scale retrieval [9, 8], with the
key distinction being that we train object category models in realtime using the
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web as a source of training images. This allows semantic queries to be made (e.g.
‘retrieve all images containing cars’) without limiting the queries to a bank of
pre-trained classifiers. This is made possible by speeding up the training stage
so that it can operate ‘on-the-fly’, training new concepts as they are needed.

The general methodology is as follows – we allow the user to specify a text
query describing the object category of interest, and this is then used to query
Google Image Search. The top N images returned (in our case N = 150 ∼ 200)
are then used as positive training images for the class, with an SVM trained
against a predefined pool of negative training images (see Figure 1). Our recent
work on on-the-fly person retrieval also makes use of Google Image search in a
similar way but for a different purpose [10].

This is not the first time Google Image Search has been used in the literature
as a source of images [11–15], but often the goal has been simply to re-rank the
downloaded images to promote the target class. In contrast to this previous
work, we take the next logical step and use the images to build new object class
models on-the-fly. Although many of the problems with such an approach, as
described in Schroff et al. [15], remain (in particular the problem of polysemy —
e.g. ‘Jaguar’ the car versus ‘Jaguar’ the cat) the results of Google Image Search
have improved significantly since these papers were published, presumably as a
result of the incorporation of click-through data by Google, to the extent that
for most queries the first 100 or so top ranking images are for the most part free
of non-class images.

As in the case of large-scale instance retrieval [16], the two main considera-
tions which are most critical when scaling up to web-scale datasets are: the time
taken for the search itself, which tends to increase as the size of the dataset in-
creases, and the memory usage per image, as this determines the overall memory
footprint. Whilst in the case of instance (specific object) search, the search time
is primarily determined by the generation of a ranked list of results, in the more
general case of object category recognition we must also take into account the
time required to train an object category model for each query.

In this paper, we make the following three contributions: (i) we compare a
number of image representations (Section 2) and evaluate their suitability for
use in large-scale object category retrieval, specifically considering their relative
accuracy, memory requirements and computation speed (Section 5); (ii) we de-
velop a method for fast ranking based on a cascade of classifiers, which results in
a 50% increase in ranking speed with minimal performance penalty (Section 3);
and (iii), we propose and demonstrate a method for on-the-fly training of object
category classifiers using images sourced from the web (Section 6).

2 Image Representation – Review

There has been a large body of work in the area of large-scale image classification
in recent years (e.g. see the PASCAL VOC workshops). The general trend has
been to move towards using more sophisticated encoding schemes so that simple
linear SVMs can be used. Chatfield et al. [17] give an overview of recent encoding
approaches, and show that the Fisher Kernel, first proposed in [18], applied by
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Fig. 1. Architecture of our proposed on-the-fly object category retrieval system. The
user specifies a text query which is used to retrieve visual training data from Google
Images. These images are encoded in real-time, and used to train a linear SVM against
a pool of fixed negative training data (also sourced from Google Image search). The
model from the SVM is then used to rank images in the target dataset and the results
displayed to the user. The entire process from typing the query to obtaining the ranked
images takes only a matter of seconds.

Perronnin and Dance to image classification [19] and then extended in [20],
provides the best performance over the PASCAL VOC 2007 classification task.

In the rest of this section we first review three image representations (these
will be used in the comparison experiments of Section 5), and then describe the
descriptor compression that is used to reduce the disk and memory requirements.

2.1 Image descriptors and encodings

Each image is first represented by a dense set of SIFT features [21] computed on
a spatial grid over the image. At each grid node, SIFT is computed at four scales,
defined by setting the width of the SIFT spatial bins to 4, 6, 8 and 10 pixels
respectively. The rotation of the SIFT features is fixed to a constant value [22].
A total of N SIFT features are computed, x1, . . . ,xN , with N ∼ 150, 000 per
image in our case.

Histogram encoding otherwise known as bag-of-words provides the baseline en-
coding method in this paper. The construction of the encoding starts by learning
a k-means visual vocabulary µ1, . . . , µK . Given a set of SIFT features sampled
from an image, let qki be the assignments of each descriptor xi to the correspond-
ing visual word as given by qki = argmink ‖xi − µk‖2. The histogram encoding
of the set of local descriptors is the non-negative vector fhist ∈ RK such that
[fhist]k = |{i : qki = k}|. The descriptor is a K-dimensional vector.

Fisher encoding [20] captures the average first and second order differences be-
tween the SIFT features and the centres of a Gaussian Mixture Model (GMM),
which can be thought of as a soft visual vocabulary. The construction of the
encoding starts by learning a GMM model θ with K components. Let qki,
k = 1, . . . ,K, i = 1, . . . , N be the soft assignments of the N SIFT features
to the K Gaussian components. For each k = 1, . . . ,K, define the vectors uk =
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scriptor is a 2dK-dimensional vector, where d is the dimension of the SIFT
feature (128). Note, in general, K which is here the number of mixture compo-
nents, can be much smaller than the number of visual words used in histogram
encoding, so the final descriptor vector need not be extremely high dimensional.
This method has been shown to produce excellent performance both for the
image classification task [20] and for large-scale retrieval [20, 7].

PiCoDes [23]1 is an alternative encoding scheme which, unlike both histogram
and Fisher encoding, was designed specifically to be compact. As a result, even
without applying the compression methods described below in Section 2.2, a
very low-dimensional image representation is obtained. The PiCoDes encoding
is based on the classeme idea of Torresani et al. [24] where a pre-learnt set of
non-linear image classifiers are applied to a feature vector computed from the
image (using vector quantized dense SIFT as above, together with other fea-
tures). In PiCoDes, the thresholded output of the individual classifiers form the
components of the image descriptor vector. Consequently, the PiCoDes encoding
is a binary vector.

Compared to both histogram and Fisher encoding, which generally result in
floating point image descriptors of thousands of dimensions, PiCoDes can be
stored in as little as 128-bits. Here we use the PiCoDes-2048 encoding described
in Bergamo et al. [23], which is a 2048-bit (256 byte) encoding.

Spatial pyramids are a standard way of introducing weak geometry into the
image descriptor using spatial histograms [25, 26]. The idea is that the image
is split into overlapping spatial regions of different sizes, and one encoding is
computed for each spatial region. These encodings are then stacked to form the
final image representation, resulting in an increase in the dimensionality of the
descriptor from D to bD where b is the number of spatial bins.

In this paper, we use a spatial pyramid comprising eight regions for both
the histogram and Fisher encodings. These regions are obtained by dividing the
image in 1× 1, 3× 1 (three horizontal stripes), and 2× 2 (four quadrants) grids,
and thus the resultant descriptor is of dimensionality 8D.

2.2 Dimensionality reduction and compression

In order to facilitate fast ranking over large-scale datasets, it is desirable to
store the encodings of all images in memory. However, as the number of images
increases, it becomes less and less practical to store the full image encoding in
core. For example, for the ILSVRC 2011 dataset, which comprises around 1.2M
images, storing a bag-of-words encoding for each image with even a moderately
small vocabulary size of 4,000 and using spatial pyramids would require 143GB
of memory. When so much memory has to be visited during the ranking stage,
this also begins to have an impact on the speed of retrieval, consequently some
form of image descriptor compression is necessary.

1 http://vlg.cs.dartmouth.edu/projects/vlg_extractor/vlg_extractor/
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Product Quantization (PQ) was introduced in [9] as a compression method
for SIFT features, and has since also been applied to the compression of image
descriptors. Sánchez and Perronnin [7] provide a comprehensive review of com-
pression methods, including product quantization, and show that it offers the
best performance for a given compression ratio. Consequently, we apply product
quantization to all our codes (aside from PiCoDes which is already compact) to
reduce the storage requirements and make operation over large datasets feasible.
For the histogram encoding method, a fairly aggressive compression ratio of up
to 32 (reducing from 32K floats to 8K chars) is achievable without significant
reduction in performance, with mAP over the VOC 2007 classification task (as
described in Section 5), dropping from 52.63 for the full representation to 50.90.
We adopt a more conservative 16× compression ratio, resulting in a reduction
of our code size from a 32K dimensional floating point representation to a 8K
dimensional vector of bytes whilst incurring only a 0.07% drop in mAP.

The Fisher encoding representation results in a 327, 680 dimensional code
before compression, and as a result a more aggressive compression of eight di-
mensions per subquantizer is used giving a compression ratio of 32 and a reduc-
tion to a 40, 960 dimensional vector of bytes. Also, an additional dimensionality
reduction is applied to the SIFT features using PCA prior to encoding. This
has been shown to actually improve the performance of the resultant represen-
tation [27]. For a vocabulary of 256 a reduction to 80-dimensions was found to
be optimal (giving a further 37% reduction).

3 Speeding-up Retrieval

An image descriptor is computed (using one of the methods from the previous
section) for all images in the target dataset. To retrieve images of a particular
class (e.g. cars) from the target dataset, a linear SVM is first learnt for that class
(the training data is described in the following section) and then the learnt weight
vector is used to rank images by their distance from the decision boundary, i.e.
if the image is represented by the vector x and the learnt weight vector for the
SVM is w, then images are sorted on the value wTx (both x and w have unit
Euclidean norm). In this section we describe a cascade method to compute the
ranking more efficiently than exhaustive search.

If the learnt weight vector w was sparse, then ranking images could be carried
out efficiently using an inverted index in much the same way as large scale
instance retrieval [28, 2, 1] – both operations are just scalar products between a
vector and x. In instance retrieval the vector used is the tf-idf BoW vector of the
query image, whilst here it is the learnt weight vector w. However, in our case the
weight vector w is not sparse, and other methods must be employed. A partial
solution is offered by the use of product quantization, as the distance between
all subquantizers and the w vector can be pre-computed, reducing the scalar
product to a series of LUT lookups [29]. However, ranking time still increases
linearly with dataset size, limiting the scalability of the approach.

SVM cascade. Our solution to this problem is to propose a cascade of classi-
fiers, with only the first level of the cascade being applied to the entire dataset.
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Although the use of cascades is not uncommon in the object detection liter-
ature e.g. [30], as far as we are aware this is the first time such an approach
has been applied to speed-up retrieval across collections of images. The initial
level of the cascade operates on a simplified set of features (e.g. in the case of
histogram encoding, encodings generated using a smaller visual vocabulary or
without spatial binning). This is used to generate a shortlist of images with
a higher probability of containing the class instance, and this shortlist is then
re-ranked using the full representation.

4 Datasets and Evaluation Protocol

The following datasets are used to evaluate the performance of each method:

PASCAL VOC 2007 [31] consists of 9, 963 images split into train, validation
and test sets, and labelled with twenty object classes. Evaluation is performed
over the 4, 952 images of the test set using the standard VOC image classification
protocol (where a ranking of the test images is generated for each of the twenty
classes according to whether they contain that class or not).

PASCAL VOC 100k (VOC 2007 + distractors) is a combination of the 4, 952
images in the test set of PASCAL VOC 2007 dataset with a randomly selected
subset of 90, 694 images from the ILSVRC 2011 dataset [8], which act as dis-
tractors, to form a new dataset containing around 100, 000 images.

Evaluation protocol. The performance is computed using two standard measures:
first, the Average Precision for each class (using the VOC supplied code), and
second the precision@K, i.e. the precision at K images, which gives an indication
of the number of false positives in the first few pages of results in our retrieval
system (with K = 10, 50) and thus the subjective ‘goodness’ of the results.
In the retrieval context a good performance over the first few pages is often
more critical than achieving high recall. For the VOC 100k evaluations those
ILSVRC 2011 classes which intersect semantically with each VOC class name
are ignored in the ranking list when evaluating over that class (e.g. for the VOC
aeroplane class, all images from the plane, warplane, airliner and wing synsets
from ILSVRC 2011 are ignored in the ranking list), otherwise those images would
be counted falsely as negatives (as even though they are of the correct class, they
are not in the positive set of the VOC test images for that class).

5 Experiments

The experiments are divided into four steps. First, the performance of the image
descriptors is evaluated over the VOC 2007 test data using VOC train+val for
training. This scenario corresponds exactly to the standard VOC image classi-
fication task so that results are comparable with the published state of the art
on this dataset.

Second, the 90k distractors are added to the test data (to form the VOC 100k

dataset) and performance is evaluated. This determines how the performance
deteriorates with the addition of distractors. We select the histogram encoding
method only to compare at this stage since it is an order of magnitude quicker
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to compute than the Fisher encoding and is also of lower dimensionality, thus
being well suited to the fast online computation of codes for training images.

Up to this point evaluation has used exhaustive search. For the third set of
experiments, exhaustive search is compared to the cascade approaches of Sec-
tion 3. As well as measuring the retrieval accuracy, now the speed gain offered
by this approach is evaluated. The perfect outcome would be that for the cas-
cades there is no loss in retrieval accuracy (compared to exhaustive search) but
a considerable increase in ranking speed.

Finally, for the fourth set of experiments, the training data is changed from
VOC train+val to the Google downloaded images obtained using the class name.
In this case the comparison is between training on a well curated training set
(from VOC) and somewhat noisy images obtained from Google image search. For
the positive training set, 200 images are downloaded from Google Image Search
for each of the VOC classes. For the negative training set, a fixed pool of ∼ 1, 000
negative training images, sourced from Google using the query term ‘things’ and
‘photos’ is used. Tests are also performed using an expanded negative training
set of 10, 000 images from the ILSVRC 2011 dataset, disjoint from those images
used as distractors and with all synsets related to the VOC classes removed.

The evaluation pipeline is based on the code of [17], with the VLFeat li-
brary [32] used to compute dense SIFT features using the vl phow routine. A
Hellinger kernel is used for histogram and Fisher encodings as described in [33].

5.1 Analysis

Experiment 1: PASCAL VOC 2007 encodings. The results are reported in Ta-
ble 1. As expected, the Fisher Encoding offers the best performance over the
dataset, with the simpler histogram encoding trailing behind. The cost is in
computation time, with the Fisher encoding at 2 seconds per image taking more
than double the time to compute when compared to the histogram encoding in
our C++ implementation. The results are slightly lower than the state-of-the-art
reported in [17] due to the application of product quantization, and also since
the C parameter of the SVM has not been optimized here on a validation set (as
a fixed value of C = 10 is used to allow for the on-the-fly nature of the system).

The PiCoDes-2048 encoding performs well given that it produces much more
compact codes than the other encodings. Comparing with a reduced-dimension
histogram encoding (row (c)), using a visual vocabulary of size 300 and a 256-bit
PQ subquantizer for every 4-bits of the histogram output to give a code of size
75 bytes, it can be seen that the 256 byte PiCoDes encoding performs marginally
better and is also slightly more consistent between classes, in some cases achiev-
ing a higher precision@50 than even the higher-dimensional 4K+SPM histogram
encoding (compare ‘bird’ and ‘potted plant’ in (b)-(d)). However, again the cost
is in computation time, with the C implementation provided at [34] taking on
average over 3 seconds per image to compute.

Experiment 2: adding distractors. As seen in Table 2, adding the distractors
results in a substantial drop in performance as measured by the mean Average
Precision (mAP). However, when considering the performance of the system as
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Method mean

(a-1) FV 256-8 prec@10 92.5 100 100 100 100 60 100 100 100
(b-1) VQ 4K prec@10 80.0 100 100 50 100 20 100 100 90
(c-1) VQ 300 (no SPM) prec@10 56.5 100 70 30 90 20 50 90 60
(d-1) PiCoDeS-2048 prec@10 72.5 100 90 80 90 10 70 100 80

(a-2) FV 256-8 prec@50 85.1 96 94 72 100 46 96 100 96
(b-2) VQ 4K prec@50 71.8 94 88 52 96 24 70 100 82
(c-2) VQ 300 (no SPM) prec@50 47.2 86 62 28 86 10 36 76 50
(d-2) PiCoDeS-2048 prec@50 59.1 92 68 66 86 20 58 86 52

(a-3) FV 256-8 mAP 58.90 70.74 65.91 49.24 68.80 28.64 67.10 77.55 59.18
(b-3) VQ 4K mAP 45.39 66.91 50.77 31.51 62.53 14.58 45.49 67.78 44.34
(c-3) VQ 300 (no SPM) mAP 27.80 53.14 27.39 14.87 48.15 8.47 16.35 54.09 24.81
(d-3) PiCoDeS-2048 mAP 34.61 60.99 31.99 32.95 47.63 10.31 30.94 51.04 28.99

(a-1) prec@10 100 90 100 70 100 100 100 80 100 80 100 70
(b-1) prec@10 90 60 50 60 100 100 100 30 70 100 100 80
(c-1) prec@10 70 10 20 10 90 60 90 20 50 60 100 40
(d-1) prec@10 90 70 60 50 100 80 100 50 40 50 90 50

(a-2) prec@50 84 72 82 70 100 96 100 62 72 78 98 88
(b-2) prec@50 82 44 60 46 100 92 100 26 62 60 96 62
(c-2) prec@50 66 20 14 18 66 48 94 12 18 40 76 38
(d-2) prec@50 60 42 46 36 90 68 90 26 36 32 80 48

(a-3) mAP 50.32 49.07 52.82 43.35 79.23 67.94 82.81 31.92 49.37 52.07 77.66 54.26
(b-3) mAP 44.34 29.80 31.86 28.69 70.98 53.07 74.06 13.12 36.59 39.53 66.58 35.27
(c-3) mAP 35.04 10.73 10.55 15.01 35.38 21.21 67.03 7.86 15.09 22.91 47.46 20.53
(d-3) mAP 33.94 24.80 28.19 23.20 56.14 33.82 62.44 12.79 21.09 21.75 54.39 24.84

Table 1. Performance over VOC 2007 dataset, using train+val sets as training data.

measured in terms of precision@K images, although there is a drop, for many
classes (e.g. ‘car’, ‘horse’, ‘motorbike’, ‘train’ in row (a)) still over 70% of the
first 10 images are true positives, and over 50% at 50 images.

Experiment 3: cascade vs exhaustive search. Rows (b) and (c) in Table 2 show
the results of our SVM cascade experiments. In both cases, we use a reduced his-
togram encoding based on a vocabulary of 300 visual words and no SPM to rank
the results coarsely (the standalone performance of which is shown in Table 1
row (c)) followed by a re-ranking of the top Z images using our full histogram
encoding where Z = 10k in (b) and 1k in (c). For the first configuration, the
drop in accuracy through the use of the cascade can be seen to be very small.
The penalty for moving to a 1k shortlist is greater, but still in many cases the
performance drop occurs further down the ranking list, with the precision@K
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Method mean

(a-1) VQ 4K prec@10 40.0 60 40 0 60 0 50 70 20
(b-1) VQ 4K 10k casc. prec@10 39.5 60 40 0 60 0 40 70 20
(c-1) VQ 4K 1k casc. prec@10 38.0 40 50 0 60 0 40 70 30

(a-2) VQ 4K prec@50 28.5 52 36 0 28 4 40 54 16
(b-2) VQ 4K 10k casc. prec@50 28.3 52 34 0 28 6 36 58 12
(c-2) VQ 4K 1k casc. prec@50 25.2 46 22 0 28 2 20 64 14

(a-3) VQ 4K mAP 10.29 18.65 9.1 0.59 14.65 1.43 13.71 19.08 3.78
(b-3) VQ 4K 10k casc. mAP 9.54 17.56 7.22 0.42 14.42 1.34 10.73 19.69 2.71
(c-3) VQ 4K 1k casc. mAP 5.71 8.21 2.97 0.38 11.88 0.65 2.96 14.93 1.59

(a-1) prec@10 50 10 40 10 100 70 50 0 30 40 90 10
(b-1) prec@10 40 10 40 20 100 70 40 0 30 50 90 10
(c-1) prec@10 50 10 20 10 100 60 40 10 30 40 90 10

(a-2) prec@50 30 6 20 6 86 46 22 4 14 32 60 14
(b-2) prec@50 30 8 20 6 88 44 22 6 12 30 60 14
(c-2) prec@50 38 8 16 2 82 22 34 2 14 14 70 6

(a-3) mAP 8.25 2.54 8.61 1.87 35.02 14.34 9.36 1.03 4.41 9.38 25.53 4.45
(b-3) mAP 7.92 2.2 6.48 1.08 35.3 12.25 8.46 0.92 4.59 8.65 24.87 4.03
(c-3) mAP 6.89 1.14 2.22 0.7 20.36 4.01 7.24 0.6 3.26 3.04 18.92 2.19

Table 2. Performance over VOC 100k dataset, using train+val sets as training data.

measures experiencing less of a drop (e.g. ‘boat’, ‘car’, ‘horse’) despite only 1%
of the dataset being passed through the full object model.

Experiment 4: Google training images. Finally, we switch to Google Image search
as the source of our training data in Table 3. Again, taking the average across all
classes the performance drops across the board when moving away from curated
training data. However, what is interesting is that for several of the VOC classes
there is very little drop in performance at all (e.g. compare ‘bicycle’, ‘bus’, ‘car’,
‘cow’ in row (b) of Table 3 to row (a) of Table 2) indicating that even with the
compromises made with the negative training data (where a fixed pool of generic
images are used) the quality of the positive data returned from Google is in some
cases sufficient to train very good models. Adding extra negative training data
from ILSVRC 2011 does, however, improve the results as seen in row (c). The
relative performance of all of our methods, as measured by precision@50, can be
seen in Figure 2.

Retrieval accuracy vs time and memory footprint. Table 4 summarises the time
taken for each step in the computation pipeline, along with the speed gains
achieved by employing the SVM cascade. It can be seen that a greater than
50% speed increase is achievable over our dataset of 100k images with negligible
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Method mean

(a) VQ 4K + SPM prec@10 58.5 70 100 80 30 10 90 100 70
over VOC 2007 prec@50 47.1 84 72 46 36 10 66 94 68

mAP 27.36 47.59 34.24 22.06 18.04 5.65 30.75 58.33 35.73

(b) VQ 4K + SPM prec@10 15.0 0 50 0 0 0 60 80 0
over VOC 100k prec@50 12.1 8 36 0 2 0 38 66 4

mAP 3.45 2.06 7.36 0.36 2.31 0.18 11.97 17.57 1.27

(c) VQ 4K + SPM prec@10 24.5 20 80 0 0 0 70 70 30
over VOC 100k prec@50 15.9 16 50 0 4 0 38 70 18
+extra negatives mAP 4.68 3.26 12.47 0.41 2.40 0.31 11.71 18.37 3.40

(a) prec@10 20 70 70 40 60 70 70 0 80 30 100 10
prec@50 12 34 44 36 60 62 76 0 36 16 78 12
mAP 14.4 21.35 24.93 22.46 30.47 30.37 51.85 7.18 26.88 10.30 40.47 14.2

(b) prec@10 10 30 0 0 10 10 0 0 20 0 30 0
prec@50 2 14 6 0 10 8 0 0 14 4 30 0
mAP 0.52 3.58 1.57 0.99 2.19 2.97 1.82 0.31 2.49 0.59 8.23 0.55

(c) prec@10 10 20 10 0 10 40 0 0 50 30 50 0
prec@50 2 14 8 6 8 20 4 0 22 6 32 0
mAP 0.75 3.39 2.27 1.46 3.93 5.58 3.23 0.46 6.70 1.43 11.54 0.65

Table 3. Performance over both the VOC 2007 and VOC 100k datasets, using images
from Google image search as training data.

impact on performance. We have found even greater gains are achievable when
working with datasets larger than 1M+ images. For example, with 3M images,
the ranking time is reduced from around 15 seconds to around 4-5 seconds using
the cascade. Also, using PQ the footprint to store all features for 3M images in
memory is only 23GB.

Summary: given the accuracy, memory and speed trade offs, the histogram or
Fisher encoding are the methods of choice. We use these for the on-the-fly system
described in the following section.

6 The On-the-fly System

Although we have presented experimental results for the VOC 2007 classes in
the previous section, as described in the introduction the advantage of using
Google Images as a source of training data is that the user is not limited to any
fixed list of object categories. We have developed a web-based frontend which
allows the user to specify arbitrary queries which are then learnt and applied to
our target dataset ‘on-the-fly’.
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Time Memory Perf. Penalty
(s) saving (GB) saving (prec@50)

Feature Computation 14.7
Learning Linear SVM 6.49

Ranking Original Features 1.41 119.2
PQ (using LUT) 1.10 22% 7.44 93.8% 0.0
Cascade 10k 0.62 56% 7.51 93.7% -0.2
Cascade 1k 0.53 62% 7.51 93.7% -3.3

Table 4. Processing time for each stage of the system, with a comparison of the speed
of different ranking methods.
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Fig. 2. Comparison of Precision@50 for the histogram encoding method, with and
without use of a cascade and using images from the VOC 2007 train+val sets for
training (left) or images sourced from Google Image search (right).

As illustrated in Figure 1 there are four stages to the on-the-fly pipeline. First,
positive training images are obtained using Google image search starting from
text. Second, a descriptor is computed for each of the positive images. Third, a
linear SVM classifier is trained using these positive image descriptors and a pool
of negative images (with pre-computed descriptors) to obtain a weight vector w.
Fourth, the data set is ranked by the classifier.

In the following we discuss these steps and describe how they are implemented
efficiently on a multiple-core system.

Obtaining positive training images. For the positive training set, we attempt to
download around 150-200 images from Google in parallel. Given the variability of
the servers on which the images linked to from Google Image search are hosted,
we do this by first requesting around 300 results from Google, and then impose
a timeout of 100ms on the download time of each image, which ensures that
no undue time is wasted retrieving images from slow servers. Features are then
computed in real-time over multiple CPU cores (in our case 50) and stored in
memory for training. When querying Google Image search for training data, we
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ask it only to return ‘photos’, and this avoids many of the problems reported
by [15] caused by the introduction of drawings or cartoons of object categories.

Learning the classifier. A key component of our method is the training in re-
altime of new object category models. However, as a result, if we are to make
the system operate at an acceptable speed, we need to ensure this training is
completed as quickly as possible. We achieve this by parallelising the SVM stage
by splitting the negative training samples over multiple parallel SVM training
runs, with all of the positive training images used in each case. Given that for
the histogram encoding the image codes are all non-negative, we can then com-
bine the resultant models by taking the maximum of all positive values in the
w vector (which relate to upweighting features common in the positive training
instances) and taking the mean average of all negative values (relating to fea-
tures common in the negative training instances). The combined model is then
passed through a final SVM ‘polishing’ round before application. In this way, we
have found we can achieve some improvement in training speeds with minimal
adverse effect to performance. The SVM training is carried out using stochastic
gradient descent [35].

Fast retrieval. After the model has been learnt, we apply the SVM cascade
method described in Section 3 to speed up ranking, with a shortlist of 10k used
for the VOC 100k dataset a ranking time of around 500ms is possible using this
approach, with all features stored in under 10GB of memory.

Qualitative performance. Qualitatively, the system works for a very broad range
of queries, with particularly good performance over ‘scene’ type queries such
as ‘forests’, ‘underwater’ and ‘protest’ (see Figure 3). As seen in the results in
Section 5, there are also many object categories the system works well on such
as ‘car’ or ‘bus’. The overall on-the-fly system is very responsive – from typing
the text query to receiving the ranked results is only a matter of a few seconds:
∼6 seconds to train the classifier, and less than a second to rank 100k images.

Fig. 3. The result of two queries using our live demo system. Left: example of VOC
class ‘train’ Right: an example of a novel class ‘underwater’, showing how the ability
to learn new models on-the-fly allows retrieval of a far broader range of images than
possible with just a pre-trained bank of classifiers.
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We have also run the system over a dataset of 3M images extracted from
video archives over which it continues to perform well, with the ranking time
increasing slightly to 4-5 seconds over 50 CPU cores.

The problem of polysemy remains, and a query for ‘apple’, for example, will
not work well as the training data contains both ‘apple’ the fruit and images of
products of ‘Apple’ the technology company. At present, we do not attempt to
resolve this problem automatically, but instead provide the user with the option
to select a set of positives and retrain the SVM – a form of relevance feedback.

7 Summary and extensions

We have investigated encodings and cascades in terms of their accuracy, speed
and memory requirements with a view to their suitability for use within an on-
the-fly category retrieval system, and have demonstrated that such a system
is feasible. The on-the-fly system means that image datasets with no annota-
tion can be searched for any suitable object category by ‘borrowing’ annotation
information using Google image search.

There are many extensions of this work, and we conclude by mentioning a few.
First, one could attempt to deal with the problem of visual polysemy (jaguar car,
jaguar animal) in the Google training images by clustering images according to
word sense. Second, attributes or modifiers can be added to the retrieval system.
For example, adding filters on colours so that, e.g. only red cars are retrieved.
Third, in this paper we have investigated category level retrieval, but we note
that a similar on-the-fly learning method could be applied for instance search,
e.g. if looking for a particular building, like Notre Dame, multiple image examples
of the object/building could again be downloaded using a web based image search
and issued as queries, an approach investigated further in our paper [36].
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36. Arandjelović, R., Zisserman, A.: Multiple queries for large scale specific object

retrieval. In: Proc. BMVC. (2012)


