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Abstract

Collecting data for an individual participant data meta-analysis (IPDMA) pro-

ject can be time consuming and resource intensive and could still have insuffi-

cient power to answer the question of interest. Therefore, researchers should

consider the power of their planned IPDMA before collecting IPD. Here we

propose a method to estimate the power of a planned IPDMA project aiming to

synthesise multiple cohort studies to investigate the (unadjusted or adjusted)

effects of potential prognostic factors for a binary outcome. We consider both

binary and continuous factors and provide a three-step approach to estimating

the power in advance of collecting IPD, under an assumption of the true prog-

nostic effect of each factor of interest. The first step uses routinely available

(published) aggregate data for each study to approximate Fisher's information

matrix and thereby estimate the anticipated variance of the unadjusted prog-

nostic factor effect in each study. These variances are then used in step 2 to

estimate the anticipated variance of the summary prognostic effect from the

IPDMA. Finally, step 3 uses this variance to estimate the corresponding

IPDMA power, based on a two-sided Wald test and the assumed true effect.

Extensions are provided to adjust the power calculation for the presence of

additional covariates correlated with the prognostic factor of interest (by using

a variance inflation factor) and to allow for between-study heterogeneity in

prognostic effects. An example is provided for illustration, and Stata code is

supplied to enable researchers to implement the method.
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Highlights

What Is Already Known?
• The use of individual participant data (IPD) for a meta-analysis can increase

the quantity and quality of data, often improving the power available to
examine the effects of a prognostic factor over using a single study or a tradi-
tional meta-analysis.

• However, IPD meta-analysis studies can be costly and time consuming,
hence reassurance is needed that the project will be worth the additional
resource and time, especially with respect to the power available.

What Is New?
• We provide analytic solutions to estimate the power of a planned IPD meta-

analysis project, where the primary objective is to examine the (unadjusted
or adjusted) effect of a prognostic factor on a binary outcome.

• The calculations provided allow the power to be estimated prior to IPD col-
lection, using data that is usually reported in study publications such as the
total number of events, participants in each group of a binary prognostic fac-
tor, or characteristics of a continuous factor (e.g., mean and standard
deviation)

Potential Impact for Research Synthesis Methods Readers
• The methods provided can be used by researchers in any field conducting

an IPD meta-analysis to analyse the effects of a binary or continuous factor
on a binary outcome, helping them decide on the benefit of the IPD
approach in advance of collecting their IPD.

• It could potentially save years' worth of wasted time, or provide reassurance
to both researchers and funders that the project will be valuable.

1 | INTRODUCTION

There is a growing demand for meta-analyses that use
individual participant data (IPD), which refers to partici-
pant level data in a research study. The availability of
IPD from existing studies can increase the quantity and
quality of data,1 often improving the power to examine
the effects of a covariate compared to using single studies
or a traditional meta-analysis of published aggregate
data. However, IPD meta-analysis studies can be costly
and time consuming. They can take upwards of 2 years
to obtain, clean, harmonise and then meta-analyse the
IPD. Researchers and funders therefore need reassurance
that IPD meta-analysis projects are worth the additional
resource and time, especially with respect to the number
of studies that are likely to provide IPD and the power of
an IPD meta-analysis using this data.

Power and sample size calculations are seldom con-
sidered in protocols and publications of IPD meta-

analysis projects, but if known prior to data collection
that the project would have high power, it could give
reassurance to researchers and funders that the project is
worth investing in. Conversely, if the planned IPD meta-
analysis has low power to detect a clinically important
effect then researchers may reconsider the design or fun-
ders may reconsider investing in the project.

Previous work has focused on calculating (before IPD
collection) the power of an IPD meta-analysis of random-
ised trials to identify a treatment-covariate interaction for
continuous,2 binary3 and survival outcomes.4 However,
IPD meta-analysis projects have many other potential
research questions, enabling many types of analysis to be
performed that are not feasible with only aggregate data.
One common application is to identify prognostic
factors—variables (covariates) whose values are associ-
ated with changes in outcome risk (e.g., stage of disease
in cancer prognosis). Prognostic factors inform clinical
decision making and the development of prognostic
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models.5,6 IPD improves meta-analysis of prognostic
effects allowing for better modelling of continuous prog-
nostic factors (e.g., without dichotomisation) and routine
adjustment for known prognostic factors already used in
practice.

In this article, we propose methodology to estimate
the power of a planned IPD meta-analysis project, before
IPD collection, where the primary objective is to examine
the effect of a (potential) prognostic factor on a binary
outcome. The outline of the paper is as follows. In
Section 2, we lay the foundation of the work presented by
describing a two-stage approach to estimating a prognos-
tic effect in an IPD meta-analysis with a binary outcome.
Section 3 describes the method for calculating the vari-
ance of a binary and continuous prognostic effect esti-
mate in a single study. Section 4 uses these methods in a
three-step approach to estimate the power of the planned
IPD meta-analysis of prognostic factors. Briefly, the three
steps are: (1) estimate the anticipated variance of the
prognostic factor effect for each study separately; (2) esti-
mate the anticipated variance of the prognostic factor
effect from the planned IPD meta-analysis; (3) use this
estimated variance to calculate the corresponding power
of the planned IPD meta-analysis. The methods are
extended in Section 4.4, adjusting for the presence of
additional adjustment factors correlated with the prog-
nostic factor of interest by using a variance inflation fac-
tor. Section 5 provides an example illustration of the
proposed methods. Section 6 provides a further extension
to allow for between-study heterogeneity and we discuss
our work in Section 7.

2 | A TWO-STAGE APPROACH TO
ESTIMATING A PROGNOSTIC
EFFECT IN AN IPD META-
ANALYSIS WITH A BINARY
OUTCOME

Let us assume that IPD are available from multiple (S)
cohort studies with a binary outcome. In the first stage of
a two-stage IPD meta-analysis, the effect parameters are
estimated using the IPD for each study individually. In
the second stage, the prognostic effect estimates are
pooled using a meta-analysis model.7 We focus on this
two-stage approach as by only pooling prognostic effect
parameters derived from within-study information
(i.e., based at the participant-level), it automatically
avoids study-level confounding and aggregation bias that
may occur in meta-regression based on across-study
information,8,9 or in one-stage IPD meta-analysis models
that do not separate out within-study and across-study

prognostic relationships.10 Both stages of the two-stage
approach can be implemented using ipdmetan in Stata,11

or using R packages (e.g., metafor12) that implement the
second stage.

2.1 | First-stage

For each of S cohort studies, consider a variable xij denot-
ing a participant level prognostic factor of interest
(e.g., the sex of participant j in study i), observed for all
participants in each study, and a variable yij denoting a
binary outcome of interest (i.e., yij ¼ 0 or 1, where
0 denotes no event and 1 denotes event occurred). To
estimate the prognostic factor parameter in each study
separately, S logistic regression models could be fitted:

yij �Bernoulli pij
� �

ln
pij

1�pij

 !
¼ αiþβixij

ð1Þ

where pij is the probability of the outcome event for par-
ticipant j in study i, and estimated using maximum likeli-
hood estimation. The prognostic factor parameter for
each study is denoted by βi, which represents the unad-
justed log odds ratio (change in log odds) for a 1-unit
increase in xij. This first stage leads to S estimates of the
parameter, one for each of the i= 1 to S studies included
in the IPD.

For a continuous prognostic factor, the model assumes
the effect of the factor on the log odds of the outcome event
is linear. Although in practice non-linear trends might be
modelled, we provide a power calculation assuming linear
effects as this makes the approach more practical in
advance of getting the actual IPD, as specifying an assumed
linear trend is easier than a non-linear trend. However, we
suspect larger sample sizes would be needed to detect a
non-linear relationship. In this section we focus on unad-
justed effects, adjustment for additional prognostic factors
will be considered in Section 4.4.

2.2 | Second stage

The first stage of an IPD meta-analysis produces S esti-
mates of the prognostic effect parameter (β̂i) and its vari-
ance (var β̂i

� �
). In the second stage, the β̂i values are

combined using either a common-effect model (i.e., the
true prognostic effect is assumed the same in all studies,
denoted by β),
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β̂i �N β,var β̂i
� �� � ð2Þ

or a random-effects model (i.e., the true prognostic effects
are assumed random across studies, drawn randomly
from a normal distribution with a mean of β and
between-study variance of τ2):

β̂i �N βi,var β̂i
� �� �

βi �N β,τ2
� � ð3Þ

Restricted maximum likelihood (REML) is recommended
to fit model Equation (3).13 The summary estimate of β will
be a weighted average and summarises the difference in
the log odds in participants with a one unit increase in x.

For the common-effect model, the variance of the
summary prognostic effect parameter is:

var β̂
� �¼ 1PS

i¼1 var β̂i
� �� ��1 ð4Þ

where S is the total number of studies in the IPD meta-
analysis.

For the random-effects model, the variance of the
summary prognostic effect parameter is:

var β̂
� �¼ 1PS

i¼1 var β̂i
� �þ τ̂2

� ��1 ð5Þ

To consider the potential power of an IPD meta-

analysis project, the expected value of the variance of β̂

(i.e., var β̂
� �

) needs to be determined in advance. Funda-
mentally, this depends on the study variances (i.e., the

var β̂i
� �

), and so Section 3 describes how these may be
ascertained in advance of IPD collection.

3 | ESTIMATING THE VARIANCE
OF AN UNADJUSTED PROGNOSTIC
EFFECT ESTIMATE FOR A BINARY
OUTCOME IN A SINGLE STUDY

In the following sections we propose methods to use and
amend previous work by Demidenko et al.14 and Riley
et al.3 to estimate the variance of a prognostic factor
effect to then calculate the power of a planned IPD
meta-analysis examining prognostic effects in studies
with a binary outcome.

3.1 | Binary prognostic factor

Let xij be a binary covariate, such as xij = 1 for males and
xij = 0 for females. After fitting the logistic regression
model in Equation (1) to the IPD in a single study, the
variance of β̂i is:

var β̂i
� �¼ I�1

i 2,2ð Þ=ni ð6Þ

where ni is the total sample size of study i, and I�1
i 2,2ð Þ

denotes the 2,2 element of the inverse of Fisher's unit
information matrix (I).

Let the design matrix X ¼ 1,xij
� �0

, then the 2 by 2 unit
information matrix for a particular study can be
expressed as:

Ii ¼Exi pij 1�pij
� �

XX 0
� �

ð7Þ

where Exi pij 1�pij
� �

XX 0
� �

refers to the expected value

of pij 1�pij
� �

XX 0 over the distribution of xi, and:

pij ¼
exp αiþβixij
� �

1þ exp αiþβixij
� �

and

XX 0 ¼ 1 xij
xij x2ij

" #

Note that technically X might be labelled Xi, to
emphasise it is study-specific (as each study is analysed
in the first stage of the two-stage approach), but we retain
just X for brevity here.

Hence, recognising that xij is binary, so is equal to
either 0 or 1, the Fisher's unit information matrix in
Equation (6) can be simplified to:

Ii ¼Exi

exp αiþβixij
� �

1þ exp αiþβixij
� �� �2 1 xij

xij xij

� � !
ð8Þ

An expansion of the simplification of the Fisher's unit
information in Equation (6) to the solution in
Equation (8) can be found in the Supplementary Mate-
rial. For a binary covariate, this can be expanded to a
closed-form solution of,
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Ii ¼ exp αið Þ
1þ exp αið Þð Þ2M1Pr xij ¼ 0

� �
þ exp αiþβið Þ

1þ exp αiþβið Þð Þ2M2Pr xij ¼ 1
� �

ð9Þ

where Pr xij ¼ 0
� �

and Pr xij ¼ 1
� �

denote the marginal
probability of x being 0 and 1, respectively, and:

M1 ¼
1 0

0 0

� �
M2 ¼

1 1

1 1

� �

Thus, to derive the unit information matrix after fit-
ting the logistic regression of Equation (1) to a particular
study, the assumed values of parameters αi and βi need to
be specified along with the probabilities Pr xij ¼ 0

� �
and

Pr xij ¼ 1
� �

, which are estimated as the proportion of par-
ticipants in the study classified as x¼ 0 and the propor-
tion classified as x¼ 1. The asymptotic variance of the
prognostic effect estimate can then be derived using
Equation (6). This will be extended to the IPD meta-
analysis setting in Section 4.

3.2 | Continuous prognostic factor

For a continuous covariate, using both Equations (6) and
(8) again, the Fisher unit information matrix for each
study separately can be written as:

Ii ¼Exi

exp αiþβixij
� �

1þ exp αiþβixij
� �� �2XX 0

 !

¼Exi

exp αiþβixij
� �

1þ exp αiþβixij
� �� �2 1 xij

xij x2ij

" # !
¼Exi Bð Þ

ð10Þ

where B is a 2 by 2 matrix.
The expected value Exi Bð Þð Þ now depends on the

distribution of the continuous covariate and on the
values of the logistic regression parameters (αi and βj).
Hence, it is not possible to modify Equation (8) into a
closed form solution for Ii. One way to derive Exi Bð Þ post
estimation is to calculate each of the 4 components of B
for each participant in the study using the estimated
logistic regression parameters and then their means pro-
vide the expected values and thus form I. The asymptotic
variance of the prognostic effect parameter can then be
derived using Equation (6).

4 | ESTIMATING THE POWER OF
A POTENTIAL IPD META-ANALYSIS
PROJECT TO ESTIMATE A
PROGNOSTIC EFFECT WITH
A BINARY OUTCOME USING A
THREE-STEP PROCESS

Assuming that studies from which IPD are requested
have not reported prognostic effects for the factor of
interest (and their variances), and that information
regarding number of outcome events in each group of a
binary prognostic factor are not available, we aim to esti-
mate the power of an IPD meta-analysis project in
advance of the collecting the IPD.

The overall power of the IPD meta-analysis is a func-
tion of the estimated variances of the study-specific prog-
nostic factor effects (var β̂i

� �
), rather than simply the sum

of the power of each study. We now propose a three step
approach to calculate the power.

Step 1 describes how to derive an estimate of the antic-
ipated variance of the prognostic factor (var β̂i

� �
) for each

study using routinely reported aggregate data from
study publications, alongside assumptions about the
prognostic effect size in each study and (for continuous
factors) the distribution of the prognostic factor. Step
2 uses these estimated variances to derive an estimate
of the anticipated variance of the meta-analysis sum-
mary result for the prognostic effect parameter. Then
step 3 derives the power of the planned IPD meta-
analysis using the values obtained in step 1 and step 2.

4.1 | Step 1: Estimate the variance of the
prognostic factor effect separately for each
study in the planned IPD meta-analysis

4.1.1 | Binary prognostic factor

The first step is to apply Equation (9) in each study prom-
ising IPD, followed by Equation (6) to obtain an estimate
of var β̂i

� �
:

To approximate this before IPD collection, the follow-
ing aggregate data are needed from each study:

1. Total participants in the study (ni)
2. Total number of events (ei)
3. Total participants with xij ¼ 1 (ni,1)
4. Total participants with xij ¼ 0 (ni,0)

Assumptions need to be made about the values of
parameters αi and βi. Previous work

3,6,15 suggests identi-
fying a minimally important value for βi via discussion
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with clinical experts within the IPD meta-analysis project
team. It is possible to consider a range of potential βi
values and assess the change in power dependent on the
assumed value of βi. It is simplest to assume β is common
for all studies (i.e., βi ¼ β).

Based on the assumed value of β, and the aggregate
data extracted, αi can be estimated using the number of
outcome events, the total number of participants and the
proportion of xij = 1. If pi,0 is defined as the risk
(i.e. number of events / total number of participants) of
the event occurring in participants with x = 0 in study i,
and pi,1 is the risk of the outcome occurring in patients
with x = 1 in study i, then by definition:

αi ¼ ln
pi,0

1�pi,0

� 	
¼ ln

pi,1
1�pi,1

� 	
�βi

ð11Þ

Note that a weighted average of pi,0 and pi,1 can be
taken to give an approximation of the overall log odds,

ln
pi

1�pi

� 	
¼

ln pi,0
1�pi,0

� �
ni,0þ ln pi,1

1�pi,1

� �
ni,1

� �
ni

ð12Þ

where pi is the overall risk in study i, which is assumed
to be available alongside ni,0 and ni,1.

By rearranging Equation (12), an approximation of
the log odds in participants with x = 1 can be derived:

ln
pi,1

1�pi,1

� 	
¼

ln pi
1�pi

� �
ni�αini,0

� �
ni,1

ð13Þ

where pi represents the overall risk, ni is the total sample
size, and ni,0 and ni,1 represent the numbers in each
group, in study i. Equation (13) can then be substituted
into Equation (11) to obtain an estimate of αi:

αi ¼ ln
pi

1�pi

� 	
�ni,1

ni
βi ð14Þ

Further details on Equation (14) are provided in the
Supplementary Materials.

Based on the values of αi (derived from Equation 14)
and βi (assumed based on clinical discussion), and the
necessary aggregate data extracted (i.e., pi, ni and ni,1)
from each study, Equation (9) can then be applied fol-
lowed by Equation (6) to obtain an estimate of var β̂i

� �
in

each study.

4.1.2 | Continuous prognostic factor

The approach to estimate var β̂i
� �

for a continuous covari-
ate is similar, with added specification of the assumed
distribution of the continuous prognostic factor. For sim-
plicity, we can assume this to be a normal distribution,
with mean and standard deviation (SD) of continuous
prognostic factors often reported in study publications.

The aggregate data required from each study publica-
tion are:

1. Total participants in the study (ni)
2. Number of outcome events (ei)
3. Characteristics to define the continuous prognostic

factor's assumed distribution (e.g. mean and SD)

As with the binary prognostic factor setting, assump-
tions are needed about the values of parameters αi and βi.
Centring the prognostic factor, xij, by its mean allows αi
to be approximated by the overall log-odds of the out-
come in study i, which is a transformation of the overall
risk and should be available from the study publication.
Again, it is advised to identify a minimally important
value of βi via discussion with clinical experts or to con-
sider a range of values.

An estimate of var β̂i
� �

for each study can then be
obtained by estimating Fisher's information matrix as
described in Section 3.2. To do this, the following is
implemented for each study:

1. Generate a large dataset (e.g., 1 million participants)
that mimics the study aggregate data provided with
respect to the proportion of patients with the outcome
and the distribution of x (e.g., a normal distribution
with a specified mean and SD);

2. Calculate Ii ¼Exi Bð Þ conditional on the specified αi
and βi values for that study (Equation 10)

3. Use Equation (6) to calculate var β̂i
� �¼ I�1

i 2,2ð Þ=ni

Our Stata code automates this process.

4.2 | Step 2: Estimate the variance of the
prognostic factor effect from the planned
IPD meta-analysis

Step 1 produces S estimates of var β̂i
� �

, one for each
study. The anticipated variance of the summary prognos-
tic factor parameter estimate from an IPD meta-analysis
of these studies can then be estimated, depending on
whether step 1 assumed βi was common or random
across studies. When assuming βi is common (i.e., βi ¼ β),
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Equation (5) can be used to calculate the anticipated esti-
mate of var β̂

� �
for the IPD meta-analysis project:

var β̂
� �¼ 1PS

i¼1 var β̂i
� �� ��1 ð15Þ

4.3 | Step 3: Calculate the power of the
planned IPD meta-analysis

The final step is to calculate the power of the planned
IPD meta-analysis project to detect β. Assuming a com-
mon prognostic factor effect for all studies, and based on
a Wald-test and a 5% statistical significance level, the
power is approximately:

Power¼Φ �1:96þ β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂
� �q

0B@
1CAþΦ �1:96� β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var β̂
� �q

0B@
1CA
ð16Þ

Here, Φ zð Þ is the probability of sampling a value < z
from a standard normal distribution, var β̂

� �
is the antici-

pated variance of the summary prognostic effect estimate
(as obtained in step 2), and β̂ can be replaced with the
assumed true β (as defined in step 1). This power esti-
mate is usually multiplied by 100 and reported as a
percentage.

4.4 | Adjusting for other prognostic
factors

The proposed three-step method assumes that the prog-
nostic effect of any other covariate is zero. However,
existing prognostic factors are likely to be included and
adjusted for in the model and may be correlated with the
prognostic factor of primary interest. Hence,
the described power formulae would not be valid.15

Whittemore16 has shown that in settings where multi-
ple continuous covariates are adjusted for, the variance of
the prognostic factor of interest (var βð Þ) can be approxi-
mated by inflating the variance of β obtained in the one
covariate (unadjusted) model by the variance inflation
factor (VIF). The VIF, ranging upwards from 1, is a mea-
sure of the amount of correlation between a set of covari-
ates in a model, measuring how much the variances of
estimated regression coefficients are inflated when com-
pared to having uncorrelated covariates. The VIF is
defined as:

VIF ¼ 1
1�ρ2

where ρ is the multiple correlation coefficient, the pro-
portion of the variation in the outcome that is predictable
from the prognostic factors, and ranges from 0 to 1. Hsieh
et al.17 has shown that the same VIF also works well for
binary covariates.

Hence, to gain a more accurate estimate of the power
of a planned IPD meta-analysis when there are other
prognostic factors to be adjusted for, step 1 can be com-
pleted as described for an unadjusted prognostic effect,
but then prior to beginning step 2, each of the S estimates
of var β̂i

� �
should be multiplied by the VIF to provide esti-

mates of the inflated variances for the S studies. These
inflated estimates of var β̂i

� �
can then be used in step 2 to

estimate the anticipated variance of the summary prog-
nostic factor parameter, which can then be used in step
3 to calculate the power. To allow the estimation of the
inflated variances, an assumption of the correlation coef-
ficient value is needed. A pragmatic approach, when
information is unavailable, is to assume a moderate value
of ρ (e.g., 0.5) or to examine a range of values (e.g., 0.25
to 0.75).

5 | APPLIED EXAMPLE:
PROGNOSTIC EFFECT OF AGE AND
SEX ON GASTROINTESTINAL
BLEEDING IN PATIENTS WITH
CIRRHOSIS AND OESOPHAGEAL
VARICES

The proposed methods are now applied to an example
for illustration. The example considers the power of
an IPD meta-analysis conducted by Poynard et al.18

The project aimed to examine the efficacy of
beta-adrenergic-antagonist drugs in the prevention of
gastrointestinal bleeding for patients with cirrhosis
and oesophageal varices. IPD were obtained from four
randomised trials involving a total of 286 patients ran-
domised to active treatment and 383 to a control
(placebo).

Here we pretend that IPD are not yet available with
the aim to assess whether collecting IPD would allow suf-
ficient power to examine prognostic factors. The data in
each trial would be analysed as a cohort study to estimate
the prognostic effect of binary sex and continuous age
(individually) on the occurrence of gastrointestinal bleed-
ing (rather than treatment effects as in the original
trials).

The aggregate trial data are shown in Table 1. Aggre-
gate data in the publications were given by treatment/
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control groups, however, as the data have been combined
for the purpose of this example, a weighted mean age
was calculated as,

Overall mean¼ nCμCþnTμT
total participants

where nC and nT are the number of participants in the
control and treatment groups, respectively, and μC and
μT are the mean age reported in the control and treat-
ment groups, respectively. The corresponding SD for age
was calculated as (see Supplementary Data for more
details):

SD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nC�1ð ÞSD2

Cþ nT �1ð ÞSD2
T

nCþnT �1
þ nCnT μC�μTð Þ2

nCþnTð Þ nCþnT �1ð Þ

s

The question of interest here is: based on this aggre-
gate data, what is the estimated power of a planned IPD
meta-analysis to estimate prognostic effects of sex and
age (individually)? We use the three-step process
described in Section 4 to undertake the power
calculations.

A value (or values) of β need to be assumed to be able
calculate the power. Focusing on unadjusted prognostic
effect, we assume a range of values from β¼ ln 0:5ð Þ to
β¼ ln 3ð Þ and β¼ ln 0:95ð Þ to β¼ ln 1:05ð Þ for the sex and
age covariates, respectively. Age is assumed normally dis-
tributed in each study, with a mean and SD as given in
Table 1.

A selection of the results of the power calculations
between the ranges of assumed β values are shown in
Supplementary Table 1 for sex and Supplementary
Table 2 for age (where ρ=0, VIF= 1), and plots of the cal-
culated powers over the full range of assumed values are
given in Figure 1 (where ρ=0). There is a power of 91%
to detect the unadjusted assumed prognostic effect of sex
with an odds ratio of 0.5, and 99% power to detect an
odds ratio of 3. The power decreases significantly the
closer the assumed unadjusted odds ratio gets to 1, with
only 8% power to detect an odds ratio of 0.9 and 17%
power to detect an odds ratio of 1.25. For age (assuming a
linear prognostic effect), there is 99% power of detecting

an unadjusted odds ratio of 0.95 or 1.05, which again
decreases significantly the closer the assumed odds ratio
is to 1, with 19% power of detecting an unadjusted odds
ratio of 0.99 and 55% power of detecting an odds ratio
of 1.02.

5.1 | Adjusting for additional prognostic
factors

The methods used for the unadjusted example were
repeated for scenarios including additional covariates
correlated with the prognostic factor of interest. We
assume each factor's unadjusted and adjusted effects are
the same; sometimes adjusted effects are more attenuated
towards zero, but this is not always the case, and so we
considered them to be the same in the calculations that
follow for simplicity. Also, the assumed effect represent
clinically relevant sizes of interest.

The individual variances of βi for each study (var βið Þ)
were multiplied by a VIF prior to calculate the variance
of the summary prognostic factor effect. Three different
values of ρ (0.25, 0.5 and 0.75) were used to calculate
three VIFs, to assess the impact on the power of vary-
ing levels of correlation between the prognostic
factors.

The results of the power calculations after inflating
the variances for the sex covariate, using the same values
of β as previously, are given in Supplementary Table 1
and the results for age are given in Supplementary
Table 2. Plots of the calculated powers over the range of
values for each of the VIFs are given in Figure 1.

The results show that inflating the variances by a VIF
of 1.0666 (i.e. ρ = 0.25) has a relatively small impact on
the power, lowering it by 2.8 percentage points for an
assumed OR of 0.6 for sex. However, as ρ is increased,
the VIF has a greater impact on the power, reducing it by
over 50% when ρ is 0.75 for certain values of β. For exam-
ple, when the OR for sex is assumed to be 1.5, the power
reduces from 41.23% when no adjustment for other cov-
ariates is made to 20.98% when adjustment is made with
an assumed correlation coefficient of 0.75.

In practice, without other information, assuming a
moderate correlation of 0.5 may be a pragmatic choice.
In this scenario, this IPD meta-analysis project would be

TABLE 1 Aggregate data from four

randomised trials included in the IPD

meta-analysis project of Poynard et al.18

Trial Total participants Total Events Age in years: mean (SD) Male, %

1 230 49 54 (10) 71

2 174 44 54 (11) 70

3 79 12 54 (8) 72

4 106 26 56 (11) 75
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unlikely to provide enough power to test the prognostic
ability of sex, as for an OR of 0.6, there would only be
56% power, and the OR would likely be much closer to
one than this in reality (Poynard et al.18 found a hazard
ratio of 0.89). However, there may be enough power to
detect a prognostic effect of age, dependent on the
expected size of the effect. It is estimated that there
would be 93% power to detect an OR of 1.04, which may
be a reasonable OR to expect (however, in practice, this
would require clinical input).

6 | EXTENSION: ALLOWING FOR
HETEROGENEITY

So far, we have assumed a common-effect model in the
second stage of the meta-analysis, which assumes
the true prognostic effect is the same in each study. We
now allow for between-study heterogeneity in the prog-
nostic factor effect, based on the proposed approach by
Riley et al.3 for an IPD meta-analysis of interactions.

To allow for between-study heterogeneity, a random-
effects model must be assumed (Equation 3), which
requires additional assumptions about the magnitude of
the heterogeneity. The power calculation can be extended
to allow for between-study heterogeneity in the prognos-
tic effect:

Power¼ T �tS�1,0:975þ β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂
� �q

0B@
1CA

þ T �tS�1,0:975� β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂
� �q

0B@
1CA

ð17Þ

where T xð Þ is the probability of sampling a value < x
from a t-distribution with a mean of zero and S�1
degrees of freedom, and S is the number of studies
expected to provide their IPD. The variance of the prog-

nostic factor, var β̂
� �

,now needs to be estimated from
Equation (5), hence, an assumed value of τ̂ (the between-
study SD of the prognostic factor effect) must also be
given.

As with the Hartung-Knapp-Sidik-Jokman (HKSJ)
approach for deriving 95% confidence intervals after fitting a
random-effects meta-analysis,19,20 which uses a t-distribution
rather than a normal distribution, a t-distribution is used
here to help reflect the extra uncertainty due to τ̂ being esti-
mated rather than already known.

Riley et al.3 suggest that Equation (17) is likely to
over-estimate the power as it assumes τ is known, when
actually it will be estimated. This will be of greatest con-
cern when there are small numbers of studies providing

FIGURE 1 Results of the power calculations for the applied example for a range of beta values (presented as odds ratios) for different

values of the VIF. VIF, variance inflation factor.
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IPD, and when the true τ is close to zero, as then τ would
be poorly estimated and often too high (as the estimate is
bounded at zero). A simulation-based approach would be
a better reflection of the uncertainty in that situation.2

Returning to the example from Section 5, Table 2
below shows the estimated power to detect a prognostic
factor effect of β=ln(1.04) for age, both before and after
adjustment for other covariates. For the random-effects
model, the power calculation from Equation (17) was
used, deriving the variance using Equation (5) for a range
of assumed τ values. When adjusting for other covariates,
the correlation coefficient (ρ) was assumed to be 0.5. For
an assumed τ of 0.005, the power is now estimated to be
72.7% when not adjusting for other covariates, which is
considerably lower than when assuming a common-effect
model (97.9%). This is even further reduced when adjust-
ing for other covariates, to 57.1% (from 93.4% for the
common-effect model). As expected, the greater the value
of τ, the greater the reduction in the estimated power.
The drop off in power is slightly greater for this example
when τ increases above 0.005.

7 | DISCUSSION

Power and sample size are important considerations
when planning and funding IPD meta-analysis projects.
In this article, we have proposed a new method to esti-
mate the power when designing an IPD meta-analysis
project to estimate the effect of a prognostic factor for a
binary outcome. We have extended this method to enable
the power to be adjusted for the presence of additional
correlated adjustment factors and to allow for between-

study heterogeneity. An example was provided illustrat-
ing the use of the proposed methods.

A three-step approach is proposed using an asymp-
totic solution for calculating variances of prognostic fac-
tor effect estimates, which allow the power of the
planned IPD meta-analysis project to be calculated in
advance of IPD collection, using aggregate data that are
frequently reported in study publications. The three-step
approach first uses the aggregate data to derive the Fish-
er's information matrix and an approximate estimate of
the variance of each studies prognostic factor effect esti-
mate, which then enables the variance of the summary
effect estimate to be calculated from a two-stage IPD
meta-analysis and finally the power of the IPD MA pro-
ject can then be calculated.

If these results from the power calculations are
known in advance of IPD collection, this would allow the
researchers planning the project and the potential fun-
ders to decide whether the project would be worth their
investment. It could also provide incentive to pursue IPD
from additional studies, if they exist, to increase the
power if necessary.

As with any power calculation, the approach is prag-
matic to help gauge potential power under plausible
assumptions, and the actual power will change depend-
ing on various modelling assumptions. For example, the
power could change if not all the available IPD can be
obtained. Other reasons that the power could change are
if the assumed prognostic factor effects are incorrect, if
the assumed distribution of a continuous covariate is
wrong, if there is larger heterogeneity in prognostic
effects than expected, or if the amount of correlation
between the prognostic factor and adjustment covariates

TABLE 2 Comparison of the power in the common-effect model and random-effect model for an assumed OR for age of 1.04 in the

applied example, considering a range of values for τ:

τ

Without adjustment for other covariates (ρ¼ 0) With adjustment for other covariates (ρ¼ 0:5)

SE bβ� � Power SE bβ� � Power

Common-effect model

- 0.00981 97.93% 0.01132 93.37%

Random-effect model

0.001 0.00982 76.45% 0.01134 60.38%

0.0025 0.00990 75.63% 0.01141 59.63%

0.005 0.01018 72.71% 0.01165 57.05%

0.0075 0.01064 67.91% 0.01205 53.04%

0.01 0.01123 61.53% 0.01258 48.03%

0.015 0.01274 46.64% 0.01396 37.19%

0.02 0.01454 33.56% 0.01564 27.95%

Note: α: Trial 1=�1.307, Trial 2=�1.083, Trial 3=�1.720, Trial 4=�1.124.
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is incorrect. Hence, for funding applications it would be
wise to display a range of power calculations based on a
range of assumptions, as shown in the example in this
article.

A key issue when applying the proposed methods is
the ability to obtain the necessary aggregate data for each
of the potential studies to be included. Basic study infor-
mation, such as the number of participants and number
of outcome events should be available from study publica-
tions. However, information about covariate distributions
may be more difficult to obtain, particularly for covariates
other than the standard covariates such as age and sex,
which are likely to be summarised in the baseline charac-
teristics. In this situation, the study investigators can be
contacted and asked to provide the summary information
needed, which should hopefully be a reasonable request if
they have already agreed to provide their IPD.

A further limitation of the proposed approach is the
need to approximate α for the binary covariate scenario.
It is approximated by using a weighted average of the
risks in each group as an approximation for the overall
log-odds of the outcome in study i, which can then be
rearranged to approximate α. Further work is needed to
evaluate how robust the power calculation is to devia-
tions from this approximation of α. Extension to non-
linear effects of continuous prognostic factors is also
needed.

Consideration should also be given to the amount of
correlation between the prognostic factor and adjustment
variables, as it has been shown in the example above that
this can have a substantial impact on the power of the
project, and therefore the presence of additional adjust-
ment covariates should not be ignored when calculating
the power of a planned IPD meta-analysis project. Addi-
tionally, the assumption about the true effect size may
need to change when adjusting for other prognostic fac-
tors, as the adjusted effect may sometimes be lower than
the unadjusted effect, which would in turn lower the
power. However, this is difficult to gauge in advance and
so in our examples we assumed the size of clinically rele-
vant effects was the same for unadjusted and adjusted sit-
uations, but recognise that further research on this issue
would be welcome.

For the main part of this article, a common-effect
meta-analysis model was assumed, which assumes the
true prognostic effect is the same in each study. This
approach taken was for pragmatic reasons, as using a
random-effects model, as demonstrated in Section 6,
would require additional assumptions about the magni-
tude of the heterogeneity, which may be difficult to ascer-
tain. Section 6 extended the approach to allow for
heterogeneity, which showed a dramatic change in the
estimated power dependent on what value of τ is
assumed. This further highlights the need for allowing

for heterogeneity in the power calculations. However, it
also highlights the potential for drastically overestimating
the power of the planned IPD meta-analysis project if
heterogeneity is not accounted for.

Although this paper focused on the power of an IPD
meta-analysis, there are many reasons why an IPD
meta-analysis might still be taken even if the power is
insufficient. For example, without IPD, meta-analysis of
prognostic factor studies would be restricted by poor pre-
sentation of aggregate data in primary studies, selective
outcome reporting, and dichotomisation of continuous
factors, whereas IPD would allow more complex analyses
allowing all outcomes to be assessed and continuous vari-
ables to modelled more appropriately.5

In summary, we have proposed a novel analytic
method to estimate the power of an IPD meta-analysis to
examine prognostic factor effects with binary outcomes,
based on published study aggregate data, and we hope
that researchers will use this to help them decide on the
benefit of the IPD approach in advance of collecting IPD,
potentially savings years worth of wasted time, or provid-
ing reassurance to both researchers and funders that the
project will be valuable.
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