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Abstract
For large n we determine exactly the maximum numbers of induced C4 and C5 sub-
graphs that a planar graph on n vertices can contain. We show that K2,n−2 uniquely
achieves this maximum in the C4 case, and we identify the graphs which achieve the
maximum in theC5 case. This extends work in a paper by Hakimi and Schmeichel and
a paper by Ghosh, Győri, Janzer, Paulos, Salia, and Zamora which together determine
both maxima asymptotically.
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1 Introduction

An important class of problems in extremal graph theory concerns determining the
maximum number of induced copies of a small graph H that can be contained in a
graph on n vertices. These questions were first considered by Pippenger and Golumbic
in [19] where they showed among other things that for every k-vertex graph H , the
maximum number of induced copies of H in an n-vertex graph is asymptotically at

least nk

kk−k
. The maximum is now known asymptotically for all graphs H on at most

four vertices except the path of length 3, as well as for certain complete partite graphs.
See [6] and its references for a good summary of these results, and see [14] and [22]
for some results for other graphs H .

The case where H is a cycle has received particular attention. Pippenger and
Golumbic conjectured in their paper that the lower bound stated above is asymp-
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totically tight for cycles of length at least 5. This conjecture was verified for 5-cycles
by Balogh, Hu, Lidický, and Pfender in [2], where they determined exactly the max-
imum number of induced 5-cycles in a graph on n vertices when n is large. The best
upper bound known for general cycles is due to Král’, Norin, and Volec in [16], who
showed that for all n and k ≥ 5, every n-vertex graph contains at most 2nk/kk induced
k-cycles.

A closely related problem is to determine the maximum number of induced copies
of H that can be contained in a planar graph on n vertices. We will write f I (n, H)

for this quantity and f (n, H) for the corresponding quantity when the copies of H do
not have to be induced.

We consider in particular the casewhere H is a small cycle. Hakimi and Schmeichel
showed in [13] that f (n,C3) = 3n − 8 for n ≥ 3, and f (n,C4) = 1

2 (n
2 + 3n − 22)

for n ≥ 4. Since a 3-cycle in a graph is always induced, this gives f I (n,C3) = 3n−8.
Also, it is straightforward to see that the complete bipartite graph K2,n−2 contains
1
2 (n

2 − 5n + 6) induced 4-cycles, so f I (n,C4) = 1
2n

2 + O(n), as observed in [7]. In
[11] Győri, Paulos, Salia, Tompkins, and Zamora determined f (n,C5) exactly for all
n ≥ 5, showing that f (n,C5) = 2n2 − 10n + 12 for n ≥ 8, and in [7] Ghosh, Győri,
Janzer, Paulos, Salia, and Zamora showed that f I (n,C5) = 1

3n
2 + O(n).

In [3] and [4] Cox and Martin determined f (n, H) asymptotically when H is a
small even cycle, showing that f (n,C2k) = ( n

k

)k + o(nk) for k ∈ {3, 4, 5, 6}. For
n ≡ 0 (mod k), the graph Gn,k defined by replacing every second vertex in a 2k-
cycle with n

k −1 copies of that vertex contains ( nk −1)k induced 2k-cycles, hence also

f I (n,C2k) = ( n
k

)k + o(nk) for k ∈ {3, 4, 5, 6}. Cox and Martin go on to conjecture

that f (n,C2k) = ( n
k

)k + o(nk) for all k ≥ 7, which if true would similarly determine
f I (n,C2k) asymptotically for all k ≥ 7.
Much less is known for odd cycles of length greater than 5. In the same spirit as

above, by evenly blowing up k pairwise non-adjacent vertices in a (2k+1)-cycle until
the graph has approximately n vertices, one can obtain a lower bound of

( n
k

)k + o(nk)
for f I (n,C2k+1) for all k ≥ 1. One can obtain a slightly better lower bound for
f (n,C2k+1) by adding a path through each of the blown up sets of vertices in the
graph Gn,k defined above to obtain a planar graph containing 2k

( n
k

)k + o(nk) non-
induced copies ofC2k+1. These blow-up constructions were first given in [9] and [12],
and were also considered in [3] and [4]. Hakimi and Schmeichel showed in [13] that
f (n,C2k+1) = O(nk), and this seems to be the best known upper bound.
For results on f (n, H) for various other graphs H see [1, 3, 5, 9, 10, 20], and

[21]. In the general case, Huynh, Joret, and Wood proved a far-reaching result in [15]
which gives the order of magnitude of f (n, H) for all H in terms of a graph parameter
called the ‘flap-number’ of H . Very recently, in [17], Liu showed (Corollary 6.1 in
that paper) that for all graphs H , f I (n, H) = Θ( f (n, H)), thus determining the order
of magnitude of f I (n, H) for all H .

In this paper we will determine f I (n,C4) and f I (n,C5) exactly for large n, and
will identify the graphs which exhibit these maxima. Our result for 4-cycles is the
following.
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Theorem 1 For large n, f I (n,C4) = 1
2 (n

2 − 5n + 6). Moreover, for large n, the
only n-vertex planar graph which contains f I (n,C4) induced 4-cycles is the complete
bipartite graph K2,n−2.

Turning to the 5-cycle case, we first define a family of graphs which we will show
to be the only n-vertex planar graphs containing f I (n,C5) induced 5-cycles for large
n.

Definition 1 A graph G on n ≥ 19 vertices is of the required form if it contains
distinct vertices u1, u2, u3, and w such that the remainder of its vertices can be
partitioned into sets A = {a1, . . . , a|A|}, B = {b1, . . . , b|B|}, C = {c1, . . . , c|C|}, and
Z = {z1, . . . , z6} such that all of the following hold:

(1) (a) if n ≡ 1 (mod 3), then |A| = |B| = n−7
3 and |C | = n−16

3 ,
(b) if n ≡ 2 (mod 3), then |A| = n−5

3 , |B| = n−8
3 , and |C | = n−17

3 , or |A| =
|B| = n−8

3 and |C | = n−14
3 ,

(c) if n ≡ 0 (mod 3), then |A| = n
3 − 2, |B| = n

3 − 3, and |C | = n
3 − 5, or

|A| = |B| = n
3 − 2 and |C | = n

3 − 6,
(2) the edge set of G contains the edges u1u2, u1u3, u2u3, u1z1, u2z1, u1z2, u2z4,

z1z2, z1z3, z1z4, z2z3, z3z4, z2w, z3w, z4w, u2z5, u3z5, z5w, u1z6, u3z6, and z6w,
and the edges in the three complete bipartite graphs with vertex classes {u1, w}
and A, {u2, w} and B, and {u3, w} and C , and

(3) the remaining edges of G are taken from a|A|z2, z4b1, b|B|z5, z5c1, c|C|z6, z6a1,
aiai+1 for 1 ≤ i ≤ |A| − 1, bibi+1 for 1 ≤ i ≤ |B| − 1, and ci ci+1 for
1 ≤ i ≤ |C | − 1.

We refer to the edges in point 3 of Definition 1 as optional edges of a graph of the
required form, and if none of these edges are present then we say that G is a principal
graph of the required form. An illustration of a general graph of the required form is
given in Fig. 1. In this illustration red lines represent optional edges. A graph of the
required form is clearly planar. It is interesting to note that a graph of the required
form in which all optional edges are present is a maximal planar graph.

Roughly speaking, a large graph of the required form is built from a smaller graph
of the required form with n ≡ 1 (mod 3) vertices by “adding vertices to A, B, and C
as evenly as possible”. If the number of vertices in the smaller graph has some other
value modulo 3, then we need to add the first one or two vertices to particular classes
before adding the rest as evenly as possible.

In a large graph of the required form almost all of the vertices are in A, B, or C .
For each a ∈ A and b ∈ B the cycle u1awbu2 is an induced 5-cycle in the graph.
Similarly, there is an induced 5-cycle containing each pair of vertices b ∈ B and
c ∈ C , and each pair a ∈ A and c ∈ C . Since these 5-cycles are different for different
pairs of vertices, and each of A, B, and C has size 1

3n − O(1), this accounts for
3( 13n − O(1))2 = 1

3n
2 + O(n) induced 5-cycles in G.

Theorem 2 For large n,

f I (n,C5) =
{

1
3 (n

2 − 8n + 22), if n ≡ 1 (mod 3)
1
3 (n

2 − 8n + 21), if n ≡ 0, 2 (mod 3).
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Fig. 1 A graph of the required form

Moreover, for large n, if G is a planar graph on n vertices, then G contains f I (n,C5)

induced 5-cycles if and only if G is of the required form.

The conclusion of Theorem 2 does not hold for all n. Indeed, for n = 10 Theorem 2
would assert that no planar graph on 10 vertices contains more than 14 induced 5-
cycles, but the graph shown in Fig. 2 contains 16. In this figure, the colours are only
intended to highlight the structure of the graph.

For longer cycles we make the following conjecture based on the constructions
given above.

Conjecture 1 or k ≥ 6 and n sufficiently large relative to k, the n-vertex graph obtained
by blowing up

⌊ k
2

⌋
pairwise non-adjacent vertices in a k-cycle to sets of as equal size

as possible contains the largest number of induced k-cycles of any planar graph.

It would also be interesting to know how many induced k-cycles can be contained
in an n-vertex graph which can be embedded in a fixed surface other than the sphere.
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Fig. 2 A planar graph with 10 vertices and 16 induced 5-cycles

Question 1 For each k ≥ 3 and each surface Σ other than the sphere, what is the
maximum number of induced k-cycles which can be contained in an n-vertex graph
which can be embedded in Σ?

The results of Huynh, Joret, and Wood [15] and Liu [17] described above extend
to all surfaces Σ . Combined, these results show that the answer to Question 1 is
Θ(n�k/2�) for all k ≥ 3 and all surfaces Σ .
Note added.At a similar time to when this paper was first made available, the authors
of [7] updated their paper and independently proved Theorem 2 (see [8]). Also, since
the original release of this paper Lv, Győri, He, Salia, Tompkins, and Zhu [18] have
published a preprint building on Cox and Martin’s work in [3] and [4] to prove their
conjecture that f (n,C2k) = ( n

k

)k + o(nk) for all k ≥ 3.

1.1 Notation and Organisation of the Paper

In this paper all graphs are simple, and we use the following standard graph theoretic
notation and terminology. For a graph G we write V (G) and E(G) for the vertex and
edge sets of G respectively. For a vertex v of a graph G we write NG(v) for the set
of neighbours of v in G, also called the neighbourhood of v in G, and dG(v) for the
degree of v in G. In both cases we drop the subscript if the graph in question is clear.
For a graph G and a set S ⊆ V (G), we write G[S] for the induced subgraph of G
with vertex set S, and G − S for the induced subgraph with vertex set V (G)\S. We
write Ka,b for the complete bipartite graph with parts of size a and b, and we write
Ck for the k-cycle graph. For a planar graph G, by a drawing of G we mean a planar
embedding of G. We sometimes use the phrase draw G to mean fix a drawing of G.

In Sect. 2 we prove Theorem 1 after stating and proving two preliminary lemmas.
Section3 contains the proof of Theorem 2, which is broken down into three small
preliminary lemmas and two larger lemmas which are proved in Sects. 4 and 5 respec-
tively. The proofs of these two lemmas contain the bulk of the work in proving the
theorem. One of these proofs involves some repetitive case checking, which is handled
in Appendix A.
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2 Proof of Theorem 1

In this section we give two preliminary lemmas and then prove Theorem 1.

Lemma 1 Let n ≥ 4 and suppose that G is an n-vertex planar graph in which every
vertex of G is in at least n − 3 induced 4-cycles. If G contains a vertex of degree 2,
then G is isomorphic to K2,n−2.

Proof Suppose that v ∈ V (G) has degree 2. Let the neighbours of v be u andw. Since
v is in at least n−3 induced 4-cycles, the remaining n−3 vertices ofG are all adjacent
to both u and w, so u and w are adjacent to all vertices of G except each other.

Suppose that x1x2x3x4 is a 4-cycle in G which doesn’t contain u or w. Then
{u, x1, x3} and {w, x2, x4} form the partite sets of a subdivision of K3,3 in G, which
contradicts the planarity of G by Kuratowski’s theorem. Hence every 4-cycle in G
contains u or w. Any induced 4-cycle in G containing u must also contain w, and
vice versa, since no vertex in an induced 4-cycle can be a neighbour of all the others
in the cycle. Hence every induced 4-cycle in G has the form uxwy for some x, y ∈
V (G)\{u, w}.

Let z ∈ V (G)\{u, w}. Then every induced 4-cycle in G containing z is of the form
uzwy where y ∈ V (G)\{u, w, z}. By assumption, there are at least n− 3 such cycles,
so z is not adjacent to any vertex in G other than u and w. Therefore G is isomorphic
to K2,n−2 as required. 	

Lemma 2 Let n be large, and suppose that G is an n-vertex planar graph in which
every vertex of G is in at least n − 3 induced 4-cycles. Then G contains no vertices of
degree 3, 4, or 5.

Proof Suppose for a contradiction that v ∈ V (G) has degree 3, 4, or 5. Let the
neighbours of v inG be x1, . . . , xd(v). The number of induced 4-cycles inG containing
v is at most

∑

1≤i< j≤d(v)

|(N (xi ) ∩ N (x j ))\({v} ∪ N (v))|. (1)

For each set of three neighbours of v, there is at most one common neighbour of
all three other than v, otherwise G has an obvious K3,3 subgraph. So for each distinct
pair of terms in (1), of which there are at most

((5
2

)

2

)
= 45,

there is at most one vertex contributing to both terms, i.e. there are at most 45 vertices
which contribute to more than one term in the sum. Each of these could contribute up
to 10 in total, since there are at most 10 terms in the sum, so the total contribution to
the sum from these vertices is at most 450.

By assumption v is in at least n − 3 induced 4-cycles, so there are at least n − 453
induced 4-cycles containing v in which the vertex opposite v in the cycle is not in any
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other induced 4-cycle containing v. This implies that there are at least n−453 vertices
in V (G)\({v} ∪ N (v)) which are adjacent to at least two neighbours of v. So there
are at most 449 vertices in V (G)\({v} ∪ N (v)) which are not adjacent to at least two
neighbours of v.

By the pigeonhole principle, we may assume that

|(N (x1) ∩ N (x2))\({v} ∪ N (v))| ≥ (n − 3)/10.

Draw G and consider the induced drawing of the complete bipartite graph with parts
{x1, x2} and (N (x1) ∩ N (x2))\({v} ∪ N (v)). Label the vertices in the latter set as
y1, . . . , yk in natural order, where k ≥ (n − 3)/10. The drawing of the complete
bipartite graph splits the plane into k regions R1, . . . , Rk , where for each i , Ri is
boundedby the cycle x1yi x2yi+1,where here andhenceforthwe take subscript addition
to be modulo k.

Let R j be the region with v in its interior. Then every vertex in N (v) is in R j

(including its boundary). Hence every vertex with a neighbour in N (v)\{x1, x2} is
in R j−1 ∪ R j ∪ R j+1 (including its boundary). There are at most 449 vertices in
V (G)\({v} ∪ N (v)) which are not adjacent to at least two neighbours of v, so there
are at most 449 values of i other than j − 1, j , and j + 1 for which the interior of
Ri contains a vertex of G. Thus, since n is large, there exists i such that Ri−1 and Ri

have no vertices in their interiors.
By assumption yi is in at least n − 3 induced 4-cycles. Since

N (yi ) ⊆ {x1, x2, yi−1, yi+1},

every such 4-cycle either contains the path yi−1yi yi+1 or the path x1yi x2. However
since n is large (so k ≥ 5), the existence of yi−2 and yi+2 implies there is no common
neighbour of yi−1 and yi+1 in G other than x1 and x2, which are both also neighbours
of yi . Hence there are no induced 4-cycles containing the path yi−1yi yi+1. Therefore
there are n − 3 common neighbours of x1 and x2 besides yi , and yi is not adjacent
to any of them. Hence yi has degree 2 in G, so by Lemma 1 G is isomorphic to
K2,n−2. But for large n this has no vertex of degree 3, 4, or 5, which gives the required
contradiction and completes the proof of the lemma. 	

Proof of Theorem 1 First, it is straightforward to see that every induced 4-cycle in
K2,n−2 contains exactly two vertices from the part of size n − 2, and that there is a
unique, distinct induced 4-cycle containing each such pair, so the number of induced
4-cycles in K2,n−2 is

(n−2
2

) = 1
2 (n

2 − 5n + 6).
By Lemmas 1 and 2, to prove the theorem it is sufficient to show that for large

n any n-vertex planar graph containing f I (n,C4) induced 4-cycles has no vertex in
fewer than n − 3 induced 4-cycles. Indeed, if this is the case, then if n is large and G
is an n-vertex planar graph containing f I (n,C4) induced 4-cycles, then the minimum
degree of G is at most 5 by the planarity of G and at least 2 since every vertex is in at
least one induced 4-cycle. So by the lemmas G is isomorphic K2,n−2.

Let n be large and suppose that G is an n-vertex planar graph in which every vertex
of G is in more than n− 3 induced 4-cycles. Then as above the minimum degree of G
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is at least 2 but at most 5, so by Lemmas 1 and 2 G is isomorphic to K2,n−2. But this
contains vertices in at most n− 3 induced 4-cycles, which is a contradiction. Thus for
large n, every n-vertex planar graph has a vertex in at most n − 3 induced 4-cycles.

For large n, deleting a vertex in at most n − 3 induced 4-cycles from an n-vertex
planar graph containing f I (n,C4) induced 4-cycles yields an (n − 1)-vertex planar
graph containing at least f I (n,C4) − n + 3 induced 4-cycles. This shows that, for
large n, we have f I (n,C4) ≤ f I (n − 1,C4) + n − 3.

We have seen that there are exactly 1
2 (n

2 − 5n + 6) induced 4-cycles in K2,n−2 for
each n, so there are n − 3 more induced 4-cycles in K2,n−2 than there are in K2,n−3.
If f I (n,C4) < f I (n − 1,C4) + n − 3 for infinitely many values of n, then for large
enough n we have 1

2 (n
2 − 5n + 6) > f I (n,C4), which is a contradiction. Hence for

large n, f I (n,C4) = f I (n − 1,C4) + n − 3. Therefore if n is large enough that this
holds, and G is an n-vertex planar graph containing f I (n,C4) induced 4-cycles but
also containing a vertex in fewer than n − 3 induced 4-cycles, then we can delete this
vertex to obtain an (n − 1)-vertex planar graph containing more than f I (n − 1,C4)

induced 4-cycles, which is a contradiction. This completes the proof of the theorem.
	


3 Proof of Theorem 2

3.1 Preliminaries to the Proof of Theorem 2

We start with the following definition.

Definition 2 Two vertices in a graph G are principal neighbours if they are adjacent
and there is an induced 5-cycle in G containing both of them.

We will use the following notation and result adapted from [7]. Let v be a vertex of
a planar graph G with distinct neighbours u and w. Let X0

uvw = N (u)\(N (w) ∪ {w})
and let Y 0

uvw = N (w)\(N (u) ∪ {u}). Then let Xuvw be the set of vertices in X0
uvw

which have a neighbour in Y 0
uvw, and similarly let Yuvw be the set of vertices in Y 0

uvw

which have a neighbour in X0
uvw. The following important lemma is a small adaptation

of Lemma 1 in [7]. We include the proof here since it is short, provides intuition, and
illustrates a method we will use repeatedly.

Lemma 3 ([7]) Let G be a planar graph with v ∈ V (G) and u, w ∈ N (v) such that
u = w. Suppose that there is an induced 5-cycle in G containing the path uvw. Define
the sets Xuvw and Yuvw as above. Then G ′, the bipartite subgraph of G with vertex
bipartition Xuvw and Yuvw, is a non-empty forest. Moreover the number of induced
5-cycles in G containing the path uvw is at most |E(G ′)|, so in particular, there are
at most |Xuvw| + |Yuvw| − 1 such cycles.

Proof Certainly any induced 5-cycle containing the path uvw contains an edge of G ′,
and each of these edges is in at most one such cycle. Since there is an induced 5-cycle
in G containing the path uvw, the graph G ′ is non-empty. Hence it is enough to show
thatG ′ is acyclic. Indeed, supposeG ′ contains a cycle x1y1x2 . . . xk yk for some k ≥ 2,
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xi ∈ Xuvw, and yi ∈ Yuvw. Then G contains a subdivision of K3,3 with vertex classes
{u, y1, y2} and {w, x1, x2} which is impossible since G is planar. 	


Our second preliminary lemma says that every drawing of a principal graph of the
required form has a particular structure.

Lemma 4 Let n ≥ 19, and let G be an n-vertex principal graph of the required
form. Given a drawing of G and a labelling of the vertices of G consistent with
Definition 1, we may assume that the boundaries of the faces in the drawing consist of
a fixed set of cycles, namely u1u2u3, u1aiwai+1 for 1 ≤ i ≤ |A| − 1, u2biwbi+1 for
1 ≤ i ≤ |B| − 1, u3ciwci+1 for 1 ≤ i ≤ |C | − 1, u1a|A|wz2, u1z1z2, z1z2z3, z2z3w,
u1u2z1, u2z1z4, z1z3z4, z3z4w, u2z4wb1, u2b|B|wz5, u3z5wc1, u2u3z5, u3c|C|wz6,
u1z6wa1, and u1u3z6.

Proof Consider the drawing ofG−Z induced by the drawing ofG. It is straightforward
to see that we can relabel the vertices within each of A, B, and C such the faces of
this drawing are bounded by the cycles u1u2u3, u1aiwai+1 for 1 ≤ i ≤ |A| − 1,
u2biwbi+1 for 1 ≤ i ≤ |B| − 1, u3ciwci+1 for 1 ≤ i ≤ |C | − 1, u1a|A|wb1u2,
u2b|B|wc1u3, and u3c|C|wa1u1.

It is clear which of these faces contains each of the vertices in Z in the drawing of
G. One by one, add the vertices in Z (and their edges to the current graph) back to the
drawing of G − Z in the order z1, . . . , z6, keeping track of the faces of the drawing
and their boundaries at each step. At each step there is a unique face to which the
next vertex can be added, and the cycles forming the boundaries of the faces in the
resulting drawing are fixed. After adding z6, the cycles forming the boundaries of the
faces are those in the list in the statement of the lemma. Clearly this new labeling of
the vertices is still consistent with Definition 1. 	


Finally, we count the induced 5-cycles in a principal graph of the required form.

Lemma 5 Let n ≥ 19. Every principal n-vertex graph of the required form contains
exactly 1

3 (n
2−8n+22) induced 5-cycles if n ≡ 1 (mod 3), and exactly 1

3 (n
2−8n+21)

otherwise. Moreover, every n-vertex graph of the required form contains at least as
many induced 5-cycles as a principal n-vertex graph of the required form.

Proof Let G be a principal n-vertex graph of the required form, and label its vertices
as in Definition 1. Let a ∈ A, then the only neighbours of a are u1 and w. Define
X = Xu1aw and Y = Yu1aw as above, then the number of induced 5-cycles in G
containing a is equal to the number of edges between these two sets. We see that
X = {u2, u3, z1} and Y = B ∪ C ∪ {z3, z4, z5}, and the number of edges between
these sets is |B| + |C | + 5. None of these 5-cycles contain another vertex in A, so
there are |A|(|B| + |C | + 5) induced 5-cycles containing a vertex in A.

Now considerG− A. By the samemethod, we see that each vertex in B is in |C |+5
induced 5-cycles in G − A, and none of these use another vertex in B, so there are
|B|(|C |+5) induced 5-cycles inG− A containing a vertex in B. Applying the method
once more to the graph G − (A ∪ B) and a vertex in C , we find that there are 2|C |
induced 5-cycles in that graph containing a vertex in C .
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It remains to count the number of induced 5-cycles in G[{u1, u2, u3, w} ∪ Z ]. Let
Γ be an induced 5-cycle in this graph and suppose that it does not contain w. Then
the only available neighbours of z5 and z6 are u2 and u3, and u1 and u3 respectively,
but both these pairs are adjacent, so neither z5 nor z6 are in Γ . Then similarly u3 is
not in Γ . Now z1 is adjacent to all the remaining vertices, so it too is not in Γ . Thus
Γ is the induced 5-cycle u1z2z3z4u2.

Now suppose Γ containsw and z5. There are exactly five such cycles (two contain-
ing the path wz5u2u1, two containing wz5u2z1, one containing wz5u3u1, and none
containing any other path of length 4 extending wz5 beyond z5). By a similar count,
there are exactly four induced 5-cycles containing w and z6 but not z5. If Γ contains
w but not z5 or z6, then it must contain z2 and z4, and we see the only such cycle is
u1z2wz4u2.

So in total there are exactly |A||B| + |A||C | + |B||C | + 5(|A| + |B|) + 2|C | + 11
induced 5-cycles inG, which is 1

3 (n
2−8n+22) if n ≡ 1 (mod 3) and 1

3 (n
2−8n+21)

otherwise. Finally, we see from this count that no induced 5-cycle in a principal graph
of the required form contains two vertices which are the endpoints of an optional edge.
Hence every n-vertex graph of the required form contains at least as many induced
5-cycles as the principal n-vertex graph of the required form that it contains. 	


3.2 Two Key Lemmas in the Proof of Theorem 2

The following two lemmas are the two key steps in the proof of Theorem 2.

Lemma 6 Let n be large, and suppose that G is an n-vertex planar graph containing

fI (n,C5) induced5-cycles. Supposealso that every vertex ofG is in at least
⌊
2(n−1)

3

⌋
−

2 induced 5-cycles. Then it contains distinct vertices u1, u2, u3, a, b, c, and w, such
that

1. u1, u2, and u3 are all adjacent to one another but none are adjacent to w, and
2. the principal neighbours of a, b, and c are exactly u1 and w, u2 and w, and u3

and w respectively.

Lemma 7 Let n ≥ 19, and suppose that G is an n-vertex planar graph containing
fI (n,C5) induced 5-cycles. Suppose also that it contains distinct vertices u1, u2, u3,
a, b, c, and w satisfying the conditions in Lemma 6. Then there exists a vertex of G in

at most
⌊
2(n−1)

3

⌋
− 2 induced 5-cycles. If moreover n ≡ 1 (mod 3) and every vertex

of G is in at least
⌊
2(n−1)

3

⌋
− 2 = 2n−8

3 induced 5-cycles, then G is of the required

form and contains exactly 1
3 (n

2 − 8n + 22) induced 5-cycles.

3.3 Proof of Theorem 2 Given the Key Lemmas

Before proving Lemmas 6 and 7 we use them to prove Theorem 2.

Proof of Theorem 2 Let n be large, and let G be an n-vertex planar graph containing
f I (n,C5) induced 5-cycles. By Lemmas 6 and 7, some vertex of G is in at most
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⌊
2(n−1)

3

⌋
− 2 induced 5-cycles. By deleting such a vertex from G we find that, for

large n, f I (n,C5) ≤ f I (n − 1,C5) +
⌊
2(n−1)

3

⌋
− 2.

Let c(n) denote the number of induced 5-cycles in an n-vertex principal graph
of the required form. By Lemma 5 this is well-defined and satisfies c(n) = c(n −
1) +

⌊
2(n−1)

3

⌋
− 2 for all n ≥ 20. Suppose that the inequality at the end of the last

paragraph is strict for infinitely many values of n. Then for large enough n, we have
c(n) > f I (n,C5)which is a contradiction since graphs of the required form are planar.

Hence for large n, f I (n,C5) = f I (n − 1,C5) +
⌊
2(n−1)

3

⌋
− 2.

Therefore, for large n, ifG is an n-vertex planar graph containing f I (n,C5) induced

5-cycles, then every vertex ofG is in at least
⌊
2(n−1)

3

⌋
−2 induced 5-cycles, otherwise

we could delete the vertex in the fewest induced 5-cycles to obtain an (n − 1)-vertex
planar graph containingmore than f I (n−1,C5) induced 5-cycles.Hence byLemmas 6
and 7, if n is large with n ≡ 1 (mod 3), and G is an n-vertex planar graph containing
f I (n,C5) induced 5-cycles, then G is of the required form. Moreover, for such n we
have f I (n,C5) = 1

3 (n
2 −8n+22). Hence for large n with n ≡ 0, 2 (mod 3)we have

f I (n,C5) = 1
3 (n

2 − 8n + 21), and so by Lemma 5, for large enough n every n-vertex
graph of the required form contains f I (n,C5) induced 5-cycles. To complete the proof
of the theorem it is sufficient to show that if n is large with n ≡ 0, 2 (mod 3), and
G is an n-vertex planar graph containing f I (n,C5) induced 5-cycles, then G is of the
required form.

Claim 1 Let n be large, with n ≡ 0 (mod 3) or n ≡ 2 (mod 3), and let G be an n-
vertex planar graph containing fI (n,C5) induced 5-cycles. Suppose that G contains
an (n − 1)-vertex graph of the required form, H, as an induced subgraph. Then G is
of the required form.

Proof Let v be the vertex we delete fromG to obtain H . Let H0 be a principal graph of
the required form on n−1 vertices contained in H . Fix a drawing ofG and consider the
induced drawings of H and H0. By Lemma 4 we can label the vertices of H according
to Definition 1 such that the boundaries of the faces in the drawing of H0 consist of
the cycles listed in that lemma.

The only non-triangular faces in the drawing of H have a boundary consisting
of a cycle from the list in Lemma 4 of the form ui ywy′ for some i ∈ {1, 2, 3} and
y, y′ ∈ A ∪ B ∪C ∪ Z . We know that v is contained in at least

⌊
2(n−1)

3

⌋
− 2 induced

5-cycles in G so it cannot be contained in a triangular face of H . Let the face of H
which contains v be bounded by cycle ui ywy′, with i , y, and y′ as above. Both y and
y′ have degree at most 5 in H so by Lemma 3, since n is large, these cannot be the
only principal neighbours of v in G. Hence v is adjacent to ui and w. Its only other
possible neighbours are y and y′, so by the planarity of G it is now clear that if n ≡ 2
(mod 3), then G is of the required form.

If n ≡ 0 (mod 3), then there is some i ∈ {1, 2, 3} for which this does not imply
that G is of the required form. If n ≡ 0 (mod 3), then by the proof of Lemma 5, one
of the vertex classes A, B, and C in H is such that all the vertices in that class are
in exactly

⌊
2(n−2)

3

⌋
− 2 = 2n

3 − 4 induced 5-cycles in H . This is strictly less than
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⌊
2(n−1)

3

⌋
− 2 = 2n

3 − 3 and hence each vertex in that class must be in an induced

5-cycle containing v in G. Suppose that A is the class to which this applies (similar
arguments hold for B and C). Then it is enough to show that i = 1 in the argument
above.

Suppose for a contradiction that v is adjacent to u1 and w in G. Vertex a3 is in an
induced 5-cycle containing v in G, and this 5-cycle cannot contain both u1 and w, so
there is a path of length at most 3 from a3 to v which avoids u1 and w. Using the list
of cycles forming the boundaries of the faces in the drawing of H0, we can deduce
that the only vertices to which there is a path in H of length at most 2 which avoids
u1 and w are a1, a2, a3, a4, and a5. Thus v is adjacent to one of these five vertices in
G. Similarly, since a9 is an induced 5-cycle containing v in G, v is adjacent to one of
a7, a8, a9, a10, and a11. However using the list of the boundaries of the faces in the
drawing of H0 again, we see that this is impossible. Hence i = 1 as required, and if
n ≡ 0 (mod 3), then G is of the required form. 	


To conclude, let n be large with n ≡ 2 (mod 3), and let G be an n-vertex pla-
nar graph containing f I (n,C5) induced 5-cycles. Then there is a vertex in exactly⌊
2(n−1)

3

⌋
− 2 induced 5-cycles in G, and deleting this vertex gives an (n − 1)-vertex

planar graph containing f I (n − 1,C5) induced 5-cycles. Since n − 1 ≡ 1 (mod 3),
this graph is of the required form. Hence by the claim, G is of the required form.
Repeating this argument, we can extend this to n ≡ 0 (mod 3). This completes the
proof of the theorem. 	


4 Proof of Lemma 6

Following the authors of [7], we say that in a drawing of a planar graph G, an empty
K2,7 is a K2,7 subgraph of G with parts {a1, a2} and {b1, . . . , b7}, with b1, . . . , b7
labelled in a natural order in the drawing, such that in the drawing of G the bounded
region with boundary a1b1a2b7 contains exactly the vertices b2, . . . , b6. Empty K2,7’s
will be useful in the proof of Lemma 6 since, with notation as above, a1 and a2 are the
only principal neighbours of b4 in the graph. Indeed, the only other possible neighbours
of b4 are b3 and b5, but there is no path of length 3 from b3 to b5 avoiding a1, a2, and
b4, so no induced 5-cycle contains the path b3b4b5. Also, no induced 5-cycle contains
the path aib4b j for i ∈ {1, 2} and j ∈ {3, 5} since ai and b j are neighbours. Similarly,
a1 and a2 are the only principal neighbours of b2, b3, b5, and b6.

The proof of Lemma6will use the following three results, proved in [7] as Lemma2,
Lemma 4, and Corollary 1 respectively.1

Lemma 8 ([7]) Let n be large and let G be an n-vertex plane graph in which every
vertex is in more than 11n

20 induced 5-cycles. Then G contains an empty K2,7.

Lemma 9 ([7]) Let n be large and let G be an n-vertex plane graph in which every
vertex is in more than 11n

20 induced 5-cycles. Let u and w be distinct vertices of G, and
let v1, . . . , v6 be some of their common neighbours, labelled in a natural order in the

1 A small correction to their Corollary 1 was given in an updated version of their paper (see [8]).
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drawing of G. Suppose that the interior of the bounded region with boundary formed
of the cycle uv3wv4 contains no common neighbours of u and w. Then if this region
contains a vertex, then it contains at least n1/5 vertices.

Lemma 10 ([7]) Let n be large and let G be an n-vertex plane graph in which every
vertex is in more than 11n

20 induced 5-cycles. If u and w are distinct vertices of G with
|N (u)∩N (w)| ≥ 7n4/5, then G contains an empty K2,7 whose part of size 2 is {u, w}.

We now prove Lemma 6. The proof is a very slight adaptation of that of Lemmas 5
and 6 from [7], but we repeat it here for completeness.

Proof of Lemma 6 Fix a drawing of G. By Lemma 8 this drawing contains an empty
K2,7. Let u and w be the vertices in the part of size 2, and let v be the ‘central’ vertex
of the seven in the other part. Then u and w are the only principal neighbours of v,
so in particular u and w are not adjacent. Let X = Xuvw and Y = Yuvw be defined

as in Sect. 3.1. Then by Lemma 3 we have |X | + |Y | ≥
⌊
2(n−1)

3

⌋
− 1. Let G ′ be the

induced bipartite graph between X and Y .

Claim 2 No vertex in V (G)\(Y ∪ {u}) is adjacent to more than two vertices in X, and
no vertex in V (G)\(X ∪ {w}) is adjacent to more than two vertices in Y .

Proof Suppose for a contradiction that a ∈ V (G)\(Y ∪ {u}) is adjacent to three
vertices in X , say x1, x2, and x3. By the definition of X , a = w and x1, x2, x3 ∈ N (u).
Moreover, there is a path of length 2 to each of x1, x2, and x3 from w, where the
middle vertex in the path is in Y . Hence there exists a vertex b ∈ Y ∪ {w} such that
G contains a subdivision of K3,3 with parts {x1, x2, x3} and {u, a, b}, contradicting
Kuratowski’s theorem. This proves the first statement, and the second is similar. 	

Claim 3 The maximum degree of G ′ is at least n5/6.

Proof Suppose otherwise. We will start by showing that u and w have a common
neighbourhood of size at least 1

3n + o(n). Let x ∈ X . By assumption, x is in at least⌊
2(n−1)

3

⌋
− 2 induced 5-cycles in G. If an induced 5-cycle contains u, x , and w, then

since neither u nor x is adjacent to w, and by the definition of Y , the 5-cycle must be
of the form uxywa for some y ∈ Y and a ∈ N (u)∩ N (w). Hence the number of such
5-cycles is at most dG ′(x)|N (u) ∩ N (w)|.

If an induced 5-cycle contains x but not both u and w, then each vertex in the cycle
which is not adjacent to x is either w or has a path of length at most 3 to x which
avoids both u and w. For a vertex z ∈ X ∪ Y , let T (z) be the number of vertices of G
from which there is a path to z of length at most 3 which avoids both u and w. Then
by Lemma 3 there are at most

(dG (x)
2

)
T (x) induced 5-cycles in G containing x but not

both u and w.
Similar arguments hold if we replace x with a vertex in Y , so for all z ∈ X ∪ Y we

have
⌊
2(n − 1)

3

⌋
− 2 ≤ dG ′(z)|N (u) ∩ N (w)| +

(
dG(z)

2

)
T (z). (2)
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To show that |N (u) ∩ N (w)| is ‘large’ we will therefore aim to show that there exists
z ∈ X ∪ Y such that dG ′(z), dG(z), and T (z) are ‘small’.

First, recall from the proof of Lemma 3 that G ′ is planar and hence has at most
|X | + |Y | − 1 edges. So if l1 is the number of vertices of degree at least 3 in G ′, then
3l1 ≤ 2(|X | + |Y | − 1), which gives

|X | + |Y | − l1 ≥ 1

3
(|X | + |Y | + 2) ≥ 1

3

(⌊
2(n − 1)

3

⌋
+ 1

)
≥ n

5
.

Hence there are at least n
5 vertices in G ′ with degree at most 2.

Next, since G is planar it has at most 3n edges. If l2 is the number of vertices of
degree at least 61 in G, then 61l2 ≤ 6n, so l2 ≤ n

10 . Thus there are at least
9n
10 vertices

in G with degree at most 60.
Finally we turn to T (z). Take a maximal matching in G ′ between X and Y . Label

the vertices in this matching as x1, . . . , xk and y1, . . . , yk where xi ∈ X and yi ∈ Y
for all i , where edge xi yi is in the matching for all i , and where the vertices x1, . . . , xk
are arranged in that order around u in the drawing of G. This matching, along with the
edges uxi and wyi for each i split the plane into k regions R1, . . . , Rk , where Ri has
boundary uxi yiwyi+1xi+1 for each i , with the addition in the subscripts taken modulo
k. Since the matching is maximal, every vertex in X ∪ Y in the interior of region Ri

is adjacent to one of the vertices in X ∪ Y on its boundary. We have assumed that the
maximum degree of G ′ is less than n5/6, so the total number of vertices in X ∪ Y in
each region Ri (including the vertices on its boundary) is at most 4n5/6.

Let q be any vertex of G which is not u or w. Then there is some 1 ≤ i ≤ k such
that q is in Ri (including possibly on its boundary). If z is a vertex in X ∪ Y such
that there is a path in G of length at most 3 from q to z avoiding u and w, then z
is in Ri−4 ∪ · · · ∪ Ri+4 (including on its boundary) where again the addition in the
subscripts is modulo k. Hence there are at most 36n5/6 vertices z for which this can
hold, and at most 36n11/6 pairs (q, z) for which this holds. Let l3 be the number of
vertices in X ∪ Y with T (z) ≥ 1000n5/6. Then there are at least 1000l3n5/6 pairs
(q, z) as above, so 1000l3n5/6 ≤ 36n11/6. Rearranging, we find l3 ≤ 36n

1000 ≤ n
20 .

Combining these three calculations, there are at least n
5 vertices z ∈ X ∪ Y with

dG ′(z) ≤ 2, of which at most n
10 have degree greater than 60 in G and at most n

20
have T (z) ≥ 1000n5/6. So there exists z ∈ X ∪ Y with dG ′(z) ≤ 2, dG(z) ≤ 60, and
T (z) < 1000n5/6. Hence by (2) we have

|N (u) ∩ N (w)| ≥ 1

2

(⌊
2(n − 1)

3

⌋
− 2 −

(
60

2

)
· 1000n5/6

)
= 1

3
n + o(n).

To complete the proof of the claimwewill show thatG contains atmost 29n
2+o(n2)

induced 5-cycles. By Lemma 5, an n-vertex principal graph of the required form
contains 1

3n
2+O(n) induced 5-cycles, so since n is large this contradictsG containing

f I (n,C5) induced 5-cycles.
Label the vertices in N (u) ∩ N (w) in the order they’re arranged around u as

v1, . . . , vt . The drawing of the bipartite graph with parts {u, w} and {v1, . . . , vt } con-
tained in the drawing of G splits the plane into t regions R1, . . . , Rt , where Ri has
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boundary uviwvi+1, with the addition in the subscript taken modulo t . By Lemma 9,
if any of the interiors of the regions R3, . . . , Rt−3 contain a vertex, then they contain
at least n1/5 vertices, so at most n4/5 of these interiors contain a vertex.

Thus for all but o(n) values of i , none of the regions Ri−3, Ri−2, . . . , Ri+2 have
any vertices in their interior, and hence the only principal neighbours of vi are u and
w. This implies that vi is in at most |X |+ |Y |− 1 ≤ n−|N (u)∩ N (w)| ≤ 2

3n+ o(n)

induced 5-cycles in G. Hence deleting all 1
3n + o(n) of these vertices vi removes at

most 2
9n

2 + o(n2) induced 5-cycles.
Let H be the graph which remains after these vertices have been deleted. Then H

contains 2
3n + o(n) vertices, and it is enough to show that it contains o(n2) induced

5-cycles. First, let S = V (H)\(X∪Y ∪{u, w}). Then since |X |+|Y | ≥
⌊
2(n−1)

3

⌋
−1,

S has size o(n). By Claim 2, no vertex in S is adjacent to more than six vertices in
X ∪Y ∪{u, w}. Since H [S] is planar, there is therefore a vertex in S of degree at most
11 in H . By Lemma 3 this vertex is in at most

(11
2

)
n induced 5-cycles in H . Hence

removing the vertices in S from H one by one, at each stage removing the vertex
with the smallest degree, we find that deleting S from H removes only o(n2) induced
5-cycles.

It remains to show that H ′ = G[X ∪ Y ∪ {u, w}] contains only o(n2) induced
5-cycles. Let Γ be an induced 5-cycle in H ′ and suppose it contains neither u nor w.
If Γ contains a path that goes from X to Y , then back X , then back to Y , then in a
similar way to in the proof of Lemma 3, this implies the existence of a subdivision
of K3,3 in G. Hence, the subgraphs of Γ induced on V (Γ ) ∩ X and V (Γ ) ∩ Y each
have at most one component. By Claim 2, given x ∈ V (Γ ) ∩ X there are only O(1)
possibilities for V (Γ ) ∩ X , and similarly for Y given y ∈ V (Γ ) ∩ Y . Moreover, if Γ

contains vertices both from X and from Y , then given V (Γ ) ∩ X there are O(n5/6)
possibilities for V (Γ ) ∩ Y , since by assumption an endpoint of the path induced on
V (Γ ) ∩ X has fewer than n5/6 neighbours in Y , and given this neighbour there are
O(1) possibilities for V (Γ )∩Y by the above. Thus, given a vertex of Γ , without loss
of generality in X , there are O(1) options for V (Γ ) ∩ X , then O(n5/6) options for
V (Γ ) ∩ Y . It follows that there are O(n11/6) = o(n2) induced 5-cycles in H ′ which
contain neither u nor v.

The final step in the proof of the claim will be to show that there are only o(n2)
induced 5-cycles in H ′ containing u orw. We do this by deleting the vertices in X ∪Y
one by one in such an order that at each stage the vertex we delete is in o(n) induced
5-cycles containing u or w. The vertex we delete at each step is a vertex in what
remains of X ∪ Y which has the lowest degree in what remains of G ′. Since G ′ is a
forest, this vertex has degree at most 1 in G ′.

Consider a particular step in the deletion process where without loss of generality
we are deleting x ∈ X . If Γ is an induced 5-cycle in H ′ containing x and one of u
and w, then it must be of the form uxyy′x ′ or wyxx ′y′ for x ′ ∈ X and y, y′ ∈ Y . If x
has degree 0 in what remains of G ′, then clearly there are no such cycles. Otherwise
let y be the unique neighbour of x in what remains of Y . By Claim 2, y has at most
two neighbours in Y , and by assumption each of these has at most n5/6 neighbours in
X . Similarly, x has at most two neighbours in X and each of these has at most n5/6
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neighbours in Y . Thus x is in o(n) induced 5-cycles containing u or w in the current
graph, as required. 	


Relabel v and u as a and u1 respectively. By Claim 3, without loss of generality
there is a vertex u2 ∈ X with at least n5/6 neighbours in Y . So the complete bipartite
graph with parts {u2, w} and N (u2) ∩ N (w) contains an empty K2,7 by Lemma 10.
Let b1, b2, and b3 be the central three vertices of the part of size 7, then u2 and w

are the only principal neighbours of each of these vertices. None of b1, b2, and b3 are
equal to u1, since u1 and w are not neighbours, and moreover at most two of these
vertices are adjacent to u1, otherwise G has a K3,3 subgraph. Let b be one of the three
which is not adjacent to u1, then b ∈ Y by the definition of Y .

Let X ′ = Xu2bw and Y ′ = Yu2bw. Then by Lemma 3, |X ′|+|Y ′| ≥
⌊
2(n−1)

3

⌋
−1, so

|(X∪Y )∩(X ′∪Y ′)| ≥ 1
4n. Clearly X∩Y ′ and X ′∩Y are empty, so |X∩X ′|+|Y∩Y ′| ≥

1
4n. If z ∈ X ∩ X ′, then z is a vertex in X which is adjacent to u2 ∈ X , so |X ∩ X ′| ≤ 2
by Claim 2. Thus |Y ∩ Y ′| ≥ 1

5n.
Let z1, z2, and z3 be distinct vertices in Y ∩Y ′. Let t1, t2, and t3 be (not necessarily

distinct) vertices in X ′ such that zi and ti are neighbours for each i = 1, 2, 3. Without
loss of generality, the cycle u2t2z2wb splits the plane into two regions, one of which
contains z1 and the other of which contains z3. Again without loss of generality, u1 is
in the same region as z1. Since z3 ∈ Y , there is a path of length 2 from u1 to z3, so u1
and z3 have a common neighbour among the vertices in the cycle u2t2z2wb. However,
u2 /∈ N (z3) since z3 ∈ Y ′, z2 /∈ N (u1) since z2 ∈ Y , w /∈ N (u1) since there is an
induced 5-cycle in G containing the path u1aw, and b /∈ N (u1) since b ∈ Y . Hence
t2 ∈ N (u1), and consequently t2 ∈ X .

Therefore all but at most two vertices in Y ∩ Y ′ have a neighbour in X ∩ X ′, but
we know there are at most two vertices in X ∩ X ′, so there exists one, say u3, with at
least 1

12n neighbours in Y ∩Y ′. Then u3 and w have a common neighbourhood of size
at least 1

12n in G, so by Lemma 10 G contains an empty K2,7 whose part of size 2 is
{u3, w}. Let c be the central vertex in the part of size 7. Since u2 ∈ X and u3 ∈ X ∩X ′,
we have that u1, u2, and u3 are all mutually adjacent and none are adjacent to w. The
principal neighbours of a, b, and c are exactly u1 and w, u2 and w, and u3 and w

respectively, and thus the lemma is proved. 	


5 Proof of Lemma 7

We now prove Lemma 7.

Proof of Lemma 7 As in the statement of the lemma, let n ≥ 19, and let G be an n-
vertex planar graph containing f I (n,C5) induced 5-cycles. Suppose that G contains
distinct vertices u1, u2, u3, a, b, c, and w satisfying the conditions in the statement of
Lemma 6. Let A be the set of vertices of G whose principal neighbours are exactly u1
andw. Let B andC be the corresponding sets for u2 andw, and u3 andw respectively.
Note that a ∈ A, b ∈ B, and c ∈ C but u1, u2, u3, w /∈ A ∪ B ∪ C .

Define H to be the graph obtained by deleting from G any edges with one endpoint
in A and the other endpoint not in {u1, w}, and also any analogous edges for B and C .
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Then H is a planar n-vertex graph which, by the definitions of A, B, and C , has the
same set of induced 5-cycles as G.

Let Z = V (H)\(A ∪ B ∪C ∪ {u1, u2, u3, w}). Then the graph H − Z consists of
the triangle u1u2u3 and the three complete bipartite graphs with parts {u1, w} and A,
{u2, w} and B, and {u3, w} and C (see Fig. 3). It is straightforward to see that a is in
exactly |B| + |C | induced 5-cycles in H which avoid Z , and analogously for b and c.
In fact, we see that there are exactly |A||B| + |A||C | + |B||C | induced 5-cycles in H
which avoid Z .

Let k1, k2, and k3 be the non-negative numbers such that a, b, and c are in exactly
|B|+ |C |+ k1, |A|+ |C |+ k2, and |A|+ |B|+ k3 induced 5-cycles in H respectively.
Let T = 2(|A| + |B| + |C |) + k1 + k2 + k3 be the sum of these numbers. Since
|A| + |B| + |C | = n − |Z | − 4, we have

T − 2n + 2|Z | + 8 = k1 + k2 + k3. (3)

Vertices a, b, and c are respectively in k1, k2, and k3 induced 5-cycles in H con-
taining a vertex of Z . If an induced 5-cycle in H contains two vertices from a, b, and
c, then it does not contain any vertices in Z , so the number of induced 5-cycles in H
which contain a vertex in Z and one of a, b, and c is k1 + k2 + k3.

Using a similar approach to that used in the proof of Lemma 4, it is straightforward
to see that for any drawing of H − Z there exists a labeling of the vertices of A
as a1, . . . , a|A| and similarly for B and C such that the faces of the drawing have
boundaries given by the cycles u1u2u3, u1a|A|wb1u2, u2b|B|wc1u3, u3c|C|wa1u1,
u1aiwai+1 for 1 ≤ i ≤ |A| − 1, u2biwbi+1 for 1 ≤ i ≤ |B| − 1, and u3ciwci+1 for
1 ≤ i ≤ |C | − 1. Fix a drawing of H , consider the induced drawing of H − Z , and
label the vertices of A, B, andC as above. We will refer to the faces whose boundaries
are the second, third, and fourth of the cycles listed as F1, F2, and F3 respectively (see
Fig. 3).

We now consider which faces of the drawing of H − Z contain vertices of Z in the
drawing of H . Suppose |A| ≥ 2, and let Z0 ⊆ Z be the set of vertices in the face with
boundary u1a1wa2. Then the only vertices in V (H)\Z0 which could be adjacent to a
vertex in Z0 are u1 and w. The only neighbours of a|A| in H are u1 and w, so we can
redraw H with no vertices in the face with boundary u1a1wa2 by moving the vertices
in Z0 into F1. Repeating this process for the other faces of H − Z whose boundaries
are 4-cycles, we see that way may assume that all vertices of Z are in F1, F2, F3, or
the triangular face.

If z ∈ Z is in an induced 5-cycle in H containing one of a, b, and c, then z is at
distance 1 or 2 from w. Therefore z is not in the triangular face of H − Z , so it is in
one of F1, F2, or F3. Note that no induced 5-cycle in H containing one of a, b, and c
can contain vertices in Z from two of F1, F2, and F3. Hence the number of induced
5-cycles in H containing one of a, b, and c and a vertex in Z is the sum over F1, F2,
and F3 of the number of such cycles containing a vertex of Z in that face.

Let Z1 ⊆ Z be the set of vertices in F1. For each S ⊆ {u1, u2, w}, let LS be the
set of vertices in Z1 whose neighbours among u1, u2, and w are exactly the vertices
in S, and let lS = |LS|. The number of induced 5-cycles containing c and a vertex in
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A

B

C

u1

u2

u3

w

a|A|

a1

b1

b|B|

c1

c|C|

F1

F2

F3

Fig. 3 Illustration of the drawing of H − Z , with faces F1, F2, and F3 labelled

Z1 is 2l{u1,u2,w} + l{u1,w} + l{u2,w}. The number of induced 5-cycles containing b and
a vertex in Z1 is l{u1,w} plus the number of paths u2z1z2w where z1, z2 ∈ Z1 are such
that z1 /∈ N (w) and z2 /∈ N (u2). The number of such paths is the number of edges
between L{u2} ∪ L{u1,u2} and L{w} ∪ L{u1,w}. By a similar argument to that used in the
proof of Lemma 3, the bipartite graph between these two sets is a forest. Moreover,
it is straightforward to use the planarity of H to show that there can be at most one
vertex in L{u1,w} which has a neighbour in L{u2} ∪ L{u1,u2}.

Hence the number of paths u2z1z2w is at most l{u2} + l{u1,u2} + l{w}, with equality
only if one of the following holds:

(i) there is a vertex in L{u1,w} which has a neighbour in L{u2} ∪ L{u1,u2}, every
vertex in L{u1,u2} has a neighbour in L{w} ∪ L{u1,w}, and every vertex in L{w}
has a neighbour in L{u2} ∪ L{u1,u2}, or

(ii) l{u2} = l{u1,u2} = l{w} = 0.

Indeed, if there is no vertex in L{u1,w} with a neighbour in L{u2} ∪ L{u1,u2}, then
since the bipartite graph between L{u2} ∪ L{u1,u2} and L{w} is a forest it contains at
most l{u2} + l{u1,u2} + l{w} edges, with equality if and only if it has no vertices. If
instead there is a vertex p ∈ L{u1,w} which has a neighbour in L{u2} ∪ L{u1,u2}, then
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the number of edges in the bipartite graph between L{u2} ∪ L{u1,u2} and L{w} ∪ L{u1,w}
is the same as the number of edges between L{u2} ∪ L{u1,u2} and L{w} ∪ {p}. Again,
this is at most l{u2} + l{u1,u2} + l{w} with equality if and only if the forest is connected,
which in particular implies that (i) is satisfied.

So the number of induced 5-cycles containing b and a vertex in Z1 is at most
l{u1,w} + l{u2} + l{u1,u2} + l{w} with equality only if one of (i) or (ii) holds. We can
similarly bound the number of induced 5-cycles containing a and a vertex in Z1 by
swapping the roles of u1 and u2. Let the conditions corresponding to (i) and (ii) in
this setting be called (i)′ and (ii)′. Summing, we find that the total number of induced
5-cycles that contain one of a, b, and c and a vertex in Z1 is at most 2l{u1,u2,w} +
2l{u1,w} + 2l{u2,w} + l{u2} + 2l{u1,u2} + 2l{w} + l{u1}, with equality only if one of each
of (i) and (ii), and (i)′ and (ii)′ hold.

Repeating for F2 and F3, and recalling that no vertices in the triangular face of
H − Z are in an induced 5-cycle in H containing any of a, b, and c, we find that
there are at most twice as many induced 5-cycles in H containing one of a, b, and c
and a vertex in Z as there are vertices in Z . Recall that the number of such cycles is
k1 + k2 + k3, which is equal to T − 2n + 2|Z | + 8 by (3). Hence

T ≤ 2n − 8. (4)

Suppose that all the vertices in G, so in particular a, b, and c, are in at least⌊
2(n−1)

3

⌋
− 1 induced 5-cycles. Then this is also true in H , so

T ≥ 3

⌊
2(n − 1)

3

⌋
− 3 =

⎧
⎪⎨

⎪⎩

2n − 6, if n ≡ 0 (mod 3)

2n − 5, if n ≡ 1 (mod 3)

2n − 7, if n ≡ 2 (mod 3).

This is a contradiction, so there is a vertex of G in at most
⌊
2(n−1)

3

⌋
− 2 induced

5-cycles, which proves the first part of the lemma.
We now prove the second part of the lemma, so assume that n ≡ 1 (mod 3) and

every vertex of G is in at least
⌊
2(n−1)

3

⌋
− 2 = 2n−8

3 induced 5-cycles. Then the same

is true in H , so T ≥ 2n − 8. So in fact we have T = 2n − 8, and each of a, b, and c
are in exactly 2n−8

3 induced 5-cycles. Moreover, the fact that we have equality in (4)
implies that there are exactly twice as many induced 5-cycles in H containing one of
a, b, and c and a vertex in Z as there are vertices in Z . Hence there are no vertices of
Z in the triangular face of H − Z , and in F1 we must have l∅ = l{u2} = l{u1} = 0 and
one of each of conditions (i) and (ii), and (i)′ and (ii)′ must hold (and analogously in
F2 and F3).

We now use these conditions on the vertices in Z1 to show that H [Z1∪{u1, u2, w}]
must belong to one of three families of graphs. The same will hold for faces F2 and
F3 by symmetry. The first possibility is that Z1 = ∅, in which case we will say that
F1 is of type 1. The second possibility is that Z1 contains a single vertex z which is
adjacent to all of u1, u2, and w, in which case we will say that F1 is of type 2.
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u1

u2

w

a|A|

b1

(a) Type 1

u1

u2

w

a|A|

b1

z

(b) Type 2

u1

u2

w

a|A|

b1

z1

z2

z3

zm

(c) Type 3

Fig. 4 The possible configurations of vertices in F1

The final possibility is that Z1 contains m ≥ 3 vertices z1, . . . , zm and H [Z1 ∪
{u1, u2, w}] contains the edges u1u2, u1z1, u2z1, u1z2, and u2zm , and the edges z1zi
and ziw for all 2 ≤ i ≤ m. The remaining edges of H [Z1 ∪ {u1, u2, w}] form a
subset of {zi zi+1 : 2 ≤ i ≤ m − 1}. In this case we say that F1 is of type 3. The
three possibilities for F1 are illustrated in Fig. 4, where red lines indicate edges each
of whose presence does not affect whether the face is of that type.

Claim 4 Face F1 is of type 1, 2, or 3. By symmetry, the same is true for F2 and F3.

Proof We know that l∅ = l{u2} = l{u1} = 0 and one of each of conditions (i) and
(ii), and (i)′ and (ii)′ hold. First, if condition (ii) holds, then l{u1,u2} = l{w} = 0.
So all vertices in Z1 are adjacent to exactly the vertices in one of {u1, w}, {u2, w},
and {u1, u2, w} among u1, u2, and w. In particular all the vertices are adjacent to w.
Suppose there exists z ∈ L{u1,w}. Then since z is not in A, there is some z′ ∈ Z1 which
is a principal neighbour of z.

LetΓ be an induced 5-cycle in H containing both z and z′. ThenΓ does not contain
w since it is a common neighbour of z and z′. If every vertex in Γ is in Z1, then all its
vertices are adjacent to u1 or u2 so without loss of generality, some two non-adjacent
vertices in Γ , say p1 and p2, are both adjacent to u1. Let q1 and q2 be two other
distinct non-adjacent vertices of Γ . Then {w, p1, p2} and {u1, q1, q2} form the partite
sets of a subdivision of K3,3 in G, which is a contradiction.

Thus Γ must contain a vertex which is not in Z1, so without loss of generality it
contains u1. If it doesn’t contain u2, then the rest of its vertices are in Z1, and the two
which are not adjacent to u1, say p1 and p2, must be adjacent to u2. Let q1 and q2 be
the other two vertices in Γ . Then {u1, w, p1} and {u2, q1, q2} form the partite sets of
a subdivision of K3,3 in H , giving a contradiction. If Γ does contain u2, then since
u1 and u2 are neighbours, the other three vertices in Γ are in Z1. One of these three
must be adjacent to neither u1 nor u2, but no such vertex exists. Hence l{u1,w} = 0.
Similarly l{u2,w} = 0. If l{u1,u2,w} = 0 then F1 is of type 1. It is straightforward to use
the planarity of H to show that l{u1,u2,w} ≤ 1, so if l{u1,u2,w} = 0, then F1 is of type 2.

If condition (ii) doesn’t hold, then neither does condition (ii)′, so conditions (i) and
(i)′ both hold. In particular,

(a) there is a vertex in L{u1,w} which has a neighbour in L{u1,u2},
(b) there is a vertex in L{u2,w} which has a neighbour in L{u1,u2},
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Fig. 5 Illustration of the drawing
of H [{u1, u2, w, a|A|, b1, z1,
z2, zm }] with the edge z2zm
deleted if present

u1

u2

w

a|A|

b1

E1

E3

E2

z1

z2

zm

(c) every vertex in L{u1,u2} has a neighbour in L{w} ∪ L{u1,w}, and
(d) every vertex in L{w} has a neighbour in L{u1,u2}.

Condition (a) implies that l{u1,u2} ≥ 1, and it is straightforward to deduce from (c)
and the planarity of H that l{u1,u2} ≤ 1. It is also straightforward to use (a) and the
planarity of H to deduce that l{u1,u2,w} = 0. It remains to determine l{u1,w}, l{u2,w}
and l{w}.

Let z1 be the unique vertex in L{u1,u2} and let z2 be a vertex in L{u1,w} which is
adjacent to z1. Letm = l{w}+3 and let zm be a vertex in L{u2,w} which is adjacent to z1.
Consider H [{u1, u2, w, a|A|, b1, z1, z2, zm}]with the edge z2zm deleted if present, and
the drawing of this induced by our drawing of H . Face F1 is split into six faces whose
boundaries are the cycles in a fixed list. Let E1, E2, and E3 respectively be the faces
whose boundaries are formed of the cycles u1a|A|wz2, u2b1wzm , and z1z2wzm (see
Fig. 5). Any vertices in L{u1,w}\{z2} must be in E1 and any vertices in L{u2,w}\{zm}
must be in E2. By (d), every vertex in L{w} is in E3.

Suppose there exists some z ∈ L{u1,w}\{z2}. Then since z /∈ A, z has a principal
neighbour other than u1 and w, say z′. Then z′ is either z2 or is in the interior of
E1, so in particular z′ ∈ L{u1,w}. Let Γ be an induced 5-cycle in G containing z and
z′. Then Γ does not contain u1 or w since these are common neighbours of z and
z′. Hence every vertex in Γ is either z2 or is in the interior of E1, so they are all
adjacent to u1 and w. By an argument similar to that used in the proof of Lemma 3,
this implies the existence of a subdivision of K3,3 in H , which is a contradiction.
Therefore L{u1,w} = {z2} and similarly L{u2,w} = {zm}.

Consider adding the vertices in L{w} and their edges to w and z1 to the drawing
of H [{u1, u2, w, a|A|, b1, z1, z2, zm}]. We see that we can label them as z3, . . . , zm−1
such that to preserve planarity the only other edges which could be present in F1 are
of the form zi zi+1 for 2 ≤ i ≤ m − 1. Hence F1 is of type 3. This completes the proof
of the claim. 	


To summarise, we know that:

– there are exactly |A||B| + |A||C | + |B||C | induced 5-cycles in H − Z ,
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– a, b, and c are in |B| + |C |, |A| + |C |, and |A| + |B| induced 5-cycles in H − Z
respectively,

– each of a, b, and c is in exactly 2n−8
3 induced 5-cycles in H ,

– every vertex of Z is in F1, F2, or F3,
– each of F1, F2, and F3 is of type 1, 2, or 3,
– there are no induced 5-cycles in H containing two vertices in A ∪ B ∪ C and a
vertex in Z , and

– there are no induced 5-cycles in H containing one of a, b, and c and vertices in Z
from two of F1, F2, and F3.

For each assignment of types 1, 2, and 3 to faces F1, F2, and F3 and for each
x ∈ {a, b, c}, we now count how many induced 5-cycles there are in H containing x
and a vertex in Z . After that, we will count how many induced 5-cycles there are in
H [{u1, u2, u3, w} ∪ Z ] for each of these assignments. We will then use the second
and third points above to calculate the sizes of A, B, and C in each case. We can then
use all of this information to determine the total number of induced 5-cycles in H in
each case.

For the first of these steps it is sufficient by symmetry to count the induced 5-cycles
containing x and a vertex in F1 for each x ∈ {a, b, c} and each assignment of a type
to F1. If F1 is of type 1, then there are clearly no induced 5-cycles containing a and
a vertex in F1, and similarly for b and c. If F1 is of type 2, containing a single vertex
z, then u1zwcu3 and u2zwcu3 are induced 5-cycles in H . We know there are at most
twice as many induced 5-cycles in H containing one of a, b, and c and a vertex in F1
as there are vertices in F1, so there are exactly two induced 5-cycles containing c and
z, and none containing a and z or b and z.

Finally, if F1 is of type 3 with m ≥ 3 vertices labelled as in the definition of a
type 3 face (and Fig. 4c), then H contains the induced 5-cycles u1z2wbu2, u1z2wcu3,
u2zmwau1, u2zmwcu3, u1z1ziwa for 3 ≤ i ≤ m, and u2z1ziwb for 2 ≤ i ≤ m − 1.
We have identified 2m suitable induced 5-cycles, so as above we know this is all of
them. So a and b are each in exactly m − 1 induced 5-cycles in H containing a vertex
in F1, and c is exactly in two.

We now determine the number of induced 5-cycles in H [{u1, u2, u3, w} ∪ Z ] in
each case. Note that every induced 5-cycle in this graph contains a vertex of Z , and
no induced 5-cycle can contain a vertex of Z from each of F1, F2, and F3. Let
Z1 ⊆ Z be the set of vertices in F1 as before, and let Z2 ⊆ Z be the set of ver-
tices in F2. Then by symmetry it is sufficient to calculate the number of induced
5-cycles in H [{u1, u2, u3, w} ∪ Z1] in each case, and the number of induced 5-cycles
in H [{u1, u2, u3, w} ∪ Z1 ∪ Z2] which contain vertices from both Z1 and Z2 in each
case.

We first count the number of induced 5-cycles in H [{u1, u2, u3, w} ∪ Z1]. Clearly
there are none if F1 is of type 1 or 2. Suppose F1 is of type 3 with m ≥ 3 vertices
labelled as in the definition of a face of type 3. The graph H [{u1, u2, u3, w} ∪ Z1]
is illustrated in Fig. 6a, where a red line indicates an edge which may or may not be
present.

In this graph u3 is only adjacent to u1 and u2 and these are themselves neighbours,
so u3 is not in an induced 5-cycle in this graph. Next, z1 is adjacent to all the remaining
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u1

u2

w
z1

z2

z3

zm

u3

(a) H[{u1,u2,u3,w}∪Z1] if F1 is of type 3

u1

u2 w

u3

z

z′

(b) H[{u1,u2,u3,w}∪Z1 ∪Z2] if F1 and F2 are
both of type 2

u1

u2

w
z1

z2

z3

zm

u3

z

(c) H[{u1,u2,u3,w}∪Z1 ∪Z2] if F1 is of type 3
and F2 is of type 2

u1

u2

z1

z2

z3

zm w

z′
1

z′
2

z′
3

z′
m′u3

(d) H[{u1,u2,u3,w}∪Z1 ∪Z2] if F1 and F2 are
both of type 3

Fig. 6 Certain subgraphs of H

vertices exceptw, so it also cannot be in an induced 5-cycle in this graph. If an induced
5-cycle contains w, then it contains exactly two of the vertices z2, . . . , zm , and these
two must not be neighbours. The remaining two vertices must be u1 and u2, and hence
the only possible induced 5-cycle containing w is u1z2wzmu2. This induced 5-cycle
is realised if and only if m ≥ 4, or m = 3 and z2 and z3 are not neighbours.

Now suppose Γ is an induced 5-cycle which does not contain w. Then it must
contain at least 3 vertices from z2, . . . , zm . Clearly it cannot only contain vertices
from z2, . . . , zm , so it contains at least one of u1 and u2. Each of these only has
one neighbour in {z2, . . . , zm}, so in fact Γ contains both u1 and u2. Hence it also
contains z2 and zm , and the remaining vertex is a common neighbour of these two
among z3, . . . , zm−1. So for such a cycle to appear we must have m = 4, and the
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edges z2z3 and z3z4 must be present. This condition is also sufficient for the induced
cycle u1z2z3z4u2 to appear.

For each assignment of types 1, 2, and 3 to faces F1 and F2, we now count the
number of induced 5-cycles in H [{u1, u2, u3, w} ∪ Z1 ∪ Z2] which contain vertices
from both Z1 and Z2. If either face is of type 1, then clearly there are no such cycles.
If both faces are of type 2, then label the vertex in F1 as z and the vertex in F2 as z′.
The graph H [{u1, u2, u3, w} ∪ Z1 ∪ Z2] is illustrated in Fig. 6b. It is straightforward
to see (for example by considering whether or not the cycle contains w) that there is
exactly one induced 5-cycle of the required form, namely u1zwz′u3.

Now suppose that F1 is of type 3 with m ≥ 3 vertices and F2 is of type 2. Label
the vertices in F1 as z1, . . . , zm in the usual way, and the vertex in F2 as z. The graph
H [{u1, u2, u3, w} ∪ Z1 ∪ Z2] is illustrated in Fig. 6c, where a red line indicates an
edge which may or may not be present.

Let Γ be an induced 5-cycle in the graph containing z and one of z1, . . . , zm . Then
since Γ contains z it must also contain w. Suppose Γ contains z1, then since z1 is not
adjacent to w the cycle must also contain a common neighbour of z1 and w, i.e. one
of z2, . . . , zm . So Γ contains the path zwzi z1 for some 2 ≤ i ≤ m. The only common
neighbour of z and z1 is u2, so Γ is zwzi z1u2 for some 2 ≤ i ≤ m. This induced
5-cycle is realised if and only if i = m, so there are exactly m − 2 such 5-cycles.

Now suppose Γ does not contain z1. Then it must contain one of z2, . . . , zm , and
since these are all neighbours of w it must in fact contain exactly one of them. For
3 ≤ i ≤ m − 1, zi has no neighbours outside {w, z1, . . . , zm}, so Γ must contain z2
or zm . If it contains zm , then it also contains u2, but this is a neighbour of z. Hence
Γ contains the path zwz2u1. The only common neighbours of u1 and z are u2 and
u3, and the induced 5-cycle is realised in both cases. So in total there are m induced
5-cycles in the graph containing a vertex from Z1 and a vertex from Z2.

Finally, suppose F1 and F2 are both of type 3, containingm ≥ 3 andm′ ≥ 3 vertices
respectively. Label the vertices in F1 as z1, . . . , zm in the usual way, and the vertices
in F2 as z′1, . . . , z′m′ in the analogous way, as illustrated in Fig. 6d. As usual, red lines
in the figure indicate edges which may or may not be present.

Let Γ be an induced 5-cycle in the graph containing a vertex from Z1 and a vertex
from Z2. Since Γ contains vertices in both F1 and F2, it must contain two vertices on
the boundaries of each. Therefore it contains a vertex which is on the boundary of both
faces, i.e. w or u2. If it does not contain w, then in order to contain two vertices on
the boundary of each face it must contain u1, u2, and u3 which is impossible. Hence
Γ contains w.

SupposeΓ contains z1. If it does not also contain one of z2, . . . , zm , then it contains
u1 and u2 as these are the only other vertices adjacent to z1. But thenΓ contains u1, u2,
and z1, which form a triangle, giving a contradiction. So Γ contains one of z2, . . . , zm .
It cannot contain more than one of z2, . . . , zm since these are all common neighbours
of z1 and w.

It follows that Γ contains a path ui z1z jw for some i ∈ {1, 2} and j ∈ {2, . . . ,m}.
There are no common neighbours of u1 and w which are not adjacent to z1, and the
only common neighbour of u2 and w which is not adjacent to z1 is z′2. Hence if Γ

contains z1, then it is of the form u2z1z jwz′2 for some j ∈ {2, . . . ,m}. This induced
5-cycle is realised if and only if j ∈ {2, . . . ,m−1}, so there are exactlym−2 induced
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cycles of the required form containing z1. Similarly there are exactlym′−2 containing
z′1.

Now suppose Γ contains neither z1 nor z′1. Then it contains one vertex from
z2, . . . , zm and one from z′2, . . . , z′m′ . All of these vertices are neighbours of w, so
in fact Γ must contain exactly one from each list. The remaining two vertices in Γ

must be picked from u1, u2, and u3. None of z3, . . . , zm−1 or z′3, . . . , z′m′−1 are adja-
cent to any of these vertices, so the neighbours of w in the cycle must be one of z2 and
zm and one of z′2 and z′m′ . For each such combination except zm and z′2, we see there
is a single induced 5-cycle of the required form, and for zm and z′2 there are none. So
in total there are m + m′ − 1 induced 5-cycles in the graph containing a vertex in Z1
and a vertex in Z2.

To summarise our findings:

– if F1 is of type 1, then there are no induced 5-cycles containing a vertex in F1,
– if F1 is of type 2, then there are no induced 5-cycles containing a or b and a vertex
in F1, and there are exactly two containing c and a vertex in F1,

– if F1 is of type 3 with m ≥ 3 vertices, then for x ∈ {a, b} there are exactly
m − 1 induced 5-cycles containing x and a vertex in F1, and there are exactly two
containing c and a vertex in F1,

– H [{u1, u2, u3, w} ∪ Z ] contains exactly
– one induced 5-cycle per face of type 3 with m ≥ 5 vertices, four vertices but
not both optional edges present, or three vertices with the optional edge not
present,

– two induced 5-cycles per face of type 3 with four vertices and both optional
edges present,

– one induced 5-cycle per pair of faces of type 2,
– m induced 5-cycles per pair of faces where one is of type 2 and the other is of
type 3 with m vertices,

– m + m′ − 1 induced 5-cycles per pair of faces of type 3, where one has m
vertices and the other has m′,

and no further induced 5-cycles.

For each assignment of types to F1, F2, and F3, we can now calculate the sizes of
A, B, and C and thence can determine the total number of induced 5-cycles in H in
each case. The details of this process are laid out in Appendix A, where the following
claim is proved.

Claim 5 H is the principal graph of the required form on n vertices.

Label the vertices of H according to Definition 1. Fix a drawing of G, then by
Lemma 4 we may assume that the boundaries of the faces in the induced drawing
of H consist of the cycles listed in the statement of that lemma. Consider adding
the edges in E(G)\E(H) back to this drawing of H . Clearly no edge is added to a
triangular face. The remaining faces’ boundaries are cycles of the form ui ywy′ for
some i ∈ {1, 2, 3} and y, y′ ∈ A∪ B ∪C ∪ Z . Hence every edge in E(G)\E(H) is of
the form uiw for some i ∈ {1, 2, 3}, or yy′ for some y, y′ ∈ A ∪ B ∪C ∪ Z such that
there exists i ∈ {1, 2, 3} such that cycle ui ywy′ appears in the list in Lemma 4. The
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sets of induced 5-cycles inG and H are the same, and there is an induced 5-cycle in H
containing ui and w for each i ∈ {1, 2, 3}, so uiw /∈ E(G)\E(H) for all i ∈ {1, 2, 3}.
Analysing the list of cycles in Lemma 4, we see that G is of the required form.

By Lemma 5, H contains exactly 1
3 (n

2 −8n+22) induced 5-cycles. We know that
G has the same set of induced 5-cycles as H , so G contains exactly 1

3 (n
2 − 8n + 22)

induced 5-cycles too. 	


A Proof of Claim 5

Let K1 = n
3 − |A|, K2 = n

3 − |B|, and K3 = n
3 − |C |. For each assignment of types

to F1, F2, and F3 (ignoring symmetric cases), we will assume that H follows this
assignment and go through the following process. We know that each of a, b, and c
is in exactly 2n−8

3 induced 5-cycles in H . We also know that a is in exactly |B| + |C |
induced 5-cycles which avoid Z , and for each assignment of types to faces we know
how many induced 5-cycles there are which contain a and a vertex of Z . Repeating
for b and c gives three linear equations which we can solve to find K1, K2, and K3.

Once we know the sizes of A, B, and C , we can use our earlier findings to
determine the total number of induced 5-cycles in H in each case. There are
|A||B| + |A||C | + |B||C | induced 5-cycles avoiding Z , |A| ( 2n−8

3 − |B| − |C |) +
|B| ( 2n−8

3 − |A| − |C |) + |C | ( 2n−8
3 − |A| − |B|) induced 5-cycles containing a ver-

tex of A ∪ B ∪ C and a vertex of Z , and in each case we know how many induced
5-cycles there are avoiding A ∪ B ∪C . Note that by our earlier findings, for a face of
type 3 with three vertices the number of induced 5-cycles in H can only increase if
the optional edge is not present, so we may assume this is always the case. Similarly,
for a face of type 3 with four vertices we may assume that both optional edges are
present.

Of the below cases, case 7 withm = 4 uniquely gives the most induced 5-cycles, so
since H contains f I (n,C5) induced 5-cycles we have f I (n,C5) ≤ 1

3 (n
2 − 8n + 22)

for this n. By Lemma 5, in fact f I (n,C5) = 1
3 (n

2 − 8n + 22) for this n, and hence
case 7 withm = 4 must occur. In other words, H is the principal graph of the required
form on n vertices.

Case 1 F1, F2, and F3 type 1:Vertices a, b, and c are in 2n
3 −K2−K3, 2n3 −K1−K3, and

2n
3 −K1−K2 induced 5-cycles respectively. Solving, we obtain K1 = K2 = K3 = 4

3 .
There are no induced 5-cycles avoiding A ∪ B ∪ C . Hence there are 3( n−4

3 )2 =
1
3 (n

2 − 8n + 16) induced 5-cycles in H .

Case 2 F1 type 2, F2 and F3 type 1: Vertices a, b, and c are in 2n
3 − K2 − K3,

2n
3 − K1 − K3, and 2n

3 − K1 − K2 + 2 induced 5-cycles respectively. Solving, we
obtain K1 = K2 = 7

3 and K3 = 1
3 . There are no induced 5-cycles avoiding A∪ B∪C .

Hence there are 2( n−7
3 )( n−1

3 )+( n−7
3 )2+2( n−1

3 ) = 1
3 (n

2−8n+19) induced 5-cycles
in H .

Case 3 F1 and F2 type 2, F3 type 1: Vertices a, b, and c are in 2n
3 − K2 − K3 + 2,

2n
3 − K1 − K3, and 2n

3 − K1 − K2 + 2 induced 5-cycles respectively. Solving, we
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obtain K1 = K3 = 4
3 and K2 = 10

3 . There is exactly one induced 5-cycle avoiding
A∪ B ∪C . Hence there are 2( n−4

3 )( n−10
3 )+ ( n−4

3 )2 +4( n−4
3 )+1 = 1

3 (n
2 −8n+19)

induced 5-cycles in H .

Case 4 F1, F2, and F3 type 2: Vertices a, b, and c are in 2n
3 − K2 − K3 + 2, 2n

3 −
K1−K3+2, and 2n

3 −K1−K2 +2 induced 5-cycles respectively. Solving, we obtain
K1 = K2 = K3 = 7

3 . There are exactly 3 induced 5-cycles avoiding A ∪ B ∪ C .
Hence there are 3( n−7

3 )2 + 6( n−7
3 ) + 3 = 1

3 (n
2 − 8n + 16) induced 5-cycles in H .

Case 5 F1 type 3 with m vertices, F2 and F3 type 1: Vertices a, b, and c are in
2n
3 − K2 − K3 + m − 1, 2n

3 − K1 − K3 + m − 1, and 2n
3 − K1 − K2 + 2 induced

5-cycles respectively. Solving, we obtain K1 = K2 = 7
3 and K3 = m − 2

3 . There
is exactly one induced 5-cycle avoiding A ∪ B ∪ C for m = 4. Hence there are
2( n−7

3 )( n+2
3 −m)+( n−7

3 )2+2(m−1)( n−7
3 )+2( n+2

3 −m)+1 = 1
3 (n

2−8n+28−6m)

induced 5-cycles in H for m = 4. Since m ≥ 3, this is at most 1
3 (n

2 − 8n + 10). For
m = 4 there is one more induced 5-cycle, so there are 1

3 (n
2 − 8n + 7) in total.

Case 6 F1 type 3 with m vertices, F2 type 2, F3 type 1: Vertices a, b, and c are in
2n
3 − K2 − K3 + m + 1, 2n

3 − K1 − K3 + m − 1, and 2n
3 − K1 − K2 + 2 induced

5-cycles respectively. Solving, we obtain K1 = 4
3 , K2 = 10

3 , and K3 = m + 1
3 . There

are exactly m + 1 induced 5-cycles avoiding A ∪ B ∪ C for m = 4. Hence there
are ( n−4

3 )( n−10
3 ) + ( n−4

3 )( n−1
3 − m) + ( n−10

3 )( n−1
3 − m) + (m + 1)( n−4

3 ) + (m −
1)( n−10

3 ) + 2( n−1
3 −m) +m + 1 = 1

3 (n
2 − 8n + 25− 3m) induced 5-cycles in H for

m = 4. Since m ≥ 3, this is at most 1
3 (n

2 − 8n + 16). For m = 4 there is one more
induced 5-cycle, so there are 1

3 (n
2 − 8n + 16) in total.

Case 7 F1 type 3 with m vertices, F2 and F3 type 2: Vertices a, b, and c are in
2n
3 − K2 − K3 + m + 1, 2n

3 − K1 − K3 + m + 1, and 2n
3 − K1 − K2 + 2 induced

5-cycles respectively. Solving, we obtain K1 = K2 = 7
3 and K3 = m + 4

3 . There are
exactly 2m + 2 induced 5-cycles avoiding A ∪ B ∪ C for m = 4. Hence there are
2( n−7

3 )( n−4
3 − m) + ( n−7

3 )2 + 2(m + 1)( n−7
3 ) + 2( n−4

3 − m) + 2m + 2 = 1
3 (n

2 −
8n + 19) induced 5-cycles in H for m = 4. For m = 4 there is one more, so there are
1
3 (n

2 − 8n + 22).

Case 8 F1 type 3 with m vertices, F2 type 3 with m′ vertices, F3 type 1: Vertices a, b,
and c are in 2n

3 −K2−K3+m+1, 2n3 −K1−K3+m+m′−2, and 2n
3 −K1−K2+m′+1

induced 5-cycles respectively. Solving, we obtain K1 = m′ + 1
3 , K2 = 10

3 , and
K3 = m + 1

3 . There are exactly m + m′ + 1 induced 5-cycles avoiding A ∪ B ∪ C if
m,m′ = 4. Hence there are ( n−1

3 −m′)( n−10
3 )+( n−1

3 −m′)( n−1
3 −m)+( n−10

3 )( n−1
3 −

m)+ (m+1)( n−1
3 −m′)+ (m+m′ −2)( n−10

3 )+ (m′ +1)( n−1
3 −m)+m+m′ +1 =

1
3 (n

2 − 8n + 28− 3mm′) induced 5-cycles in H for m,m′ = 4. Since m,m′ ≥ 3, this
is at most 1

3 (n
2 − 8n + 1). If one or both of m and m′ is 4, then this increases by at

most 2, to give a total of at most 1
3 (n

2 − 8n + 7).

Case 9 F1 type 3 with m vertices, F2 type 3 with m′ vertices, F3 type 2: Vertices a, b,
and c are in 2n

3 −K2−K3+m+1, 2n3 −K1−K3+m+m′, and 2n
3 −K1−K2+m′+1
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induced 5-cycles respectively. Solving, we obtain K1 = m′ + 4
3 , K2 = 7

3 , and K3 =
m + 4

3 . There are exactly 2m + 2m′ + 1 induced 5-cycles avoiding A ∪ B ∪ C if
m,m′ = 4. Hence there are ( n−4

3 −m′)( n−7
3 )+ ( n−4

3 −m′)( n−4
3 −m)+ ( n−7

3 )( n−4
3 −

m) + (m + 1)( n−4
3 −m′) + (m +m′)( n−7

3 ) + (m′ + 1)( n−4
3 −m) + 2m + 2m′ + 1 =

1
3 (n

2 − 8n + 19 + 3(m + m′ − mm′)) induced 5-cycles in H for m,m′ = 4. For
m,m′ ≥ 3 we see that m + m′ − mm′ is decreasing in m and m′, so this is at most
1
3 (n

2 − 8n + 10). If one or both of m and m′ is 4, then this increases by at most 2, to
give a total of at most 1

3 (n
2 − 8n + 16).

Case 10 F1, F2, and F3 type 3 with m, m′, and m′′ vertices respectively: Vertices a, b,
and c are in 2n

3 −K2−K3+m+m′′, 2n3 −K1−K3+m+m′, and 2n
3 −K1−K2+m′+m′′,

induced 5-cycles respectively. Solving, we obtain K1 = m′ + 4
3 , K2 = m′′ + 4

3 , and
K3 = m+ 4

3 . There are exactly 2m+2m′ +2m′′ induced 5-cycles avoiding A∪ B∪C
if m,m′,m′′ = 4. Hence there are ( n−4

3 −m′)( n−4
3 −m′′) + ( n−4

3 −m′)( n−4
3 −m) +

( n−4
3 − m′′)( n−4

3 − m) + (m + m′′)( n−4
3 − m′) + (m + m′)( n−4

3 − m′′) + (m′ +
m′′)( n−4

3 −m)+ 2m + 2m′ + 2m′′ = 1
3 (n

2 − 8n+ 16+ 3(2m + 2m′ + 2m′′ −mm′ −
m′m′′ − mm′′)) induced 5-cycles in H for m,m′,m′′ = 4. For m,m′,m′′ ≥ 3 we see
that 2m + 2m′ + 2m′′ −mm′ −m′m′′ −mm′′ is decreasing in m, m′, and m′′, so this
is at most 1

3 (n
2 − 8n − 11). If any of m, m′, and m′′ are 4, then this increases by at

most 3, to give a total of at most 1
3 (n

2 − 8n − 2).
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10. Grzesik, A., Győri, E., Paulos, A., Salia, N., Tompkins, C., Zamora, O.: The maximum number of
paths of length three in a planar graph. J. Graph Theory 101(3), 493–510 (2022). https://doi.org/10.
1002/jgt.22836
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