nature astronomy

Article

https://doi.org/10.1038/s41550-024-02230-x

Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

In the format provided by the authors and unedited

Supplementary Information Tables

· · · ·	v		v
GCM Name	Radiative Transfer	Post-processing	References
Generic PCM	non-grey correlated k	Pytmosph3R	69-73
SPARC/MITgcm	non-grey correlated k	gCMCRT	9,33,83,84
expeRT/GCM	non-grey correlated k	petitRADTRANS	16,77,91
RM-GCM	double-grey	$unnamed^{116,117}$	8,35,108 - 110
THOR	double-grey	HELIOS	4,118,119,126,128,198

Supplementary Table 1: Summary of the five GCMs used in this study.

Supplementary Information Figures

Supplementary Fig. 1: Broadband light curve obtained from the four independent reductions. Each colour indicates a different reduction. Data points at the original time sampling are shown as small open circles and a binning with 40 points per orbital period (170 integrations per bin, \sim 30 minute sampling) is shown as filled circles, computed using the biweight location function from astropy. Thin lines show the phase curve model. The 1σ uncertainties in each bin are obtained from the standard deviation of the residuals (data – model) divided by the square root of the number of points in that bin (170 integrations). The flux measured during the eclipse, which is the stellar flux only, is used as a reference and is shown as a dashed horizontal line.

Supplementary Fig. 2: Comparison of the phase-resolved and transmission spectra from different reductions. Panels a–d show the phase resolved emission spectra from our four reductions with 1σ error bars, and panel e shows each of our transmission spectra with 1σ error bars. In general, there is good agreement about the phase-resolved spectra between our four semi-independent reductions. Larger differences arise >10.5 μ m due to the "shadowed region effect" (indicated with red hatching). The transmission spectrum appears flat (within uncertainties) and shows no significant differences between reduction methods.