

Fig. S1. Related to Figure 1. Roles of CWI sensors in the response to rapamycin.

A) Localisation of endogenously tagged Wsc4-GFP. Representative of 3 experiments. **B)** Drop assay of WT and $wsc1/2\Delta$ cells on YEPD and YEPD + rapamycin after 3 days of growth. Representative of 3 experiments.

C) Drop assay of WT, $wsc1/3\Delta$ and $wsc1/4\Delta$ cells on YEPD and YEPD + rapamycin after 3 days of growth. Representative of 3 experiments.

D) Mpk1 activation (P-Mpk1) and Adc17 levels following 4 h rapamycin treatment in WT and $wsc1/2\Delta$ cells. Representative of 3 experiments.

E) Mpk1 activation (P-Mpk1) and Adc17 levels following 4 h rapamycin treatment in WT, *wsc1/3* Δ , and *wsc1/4* Δ cells. Representative of 3 experiments.

Fig. S2. Related to Figure 2. Actin depolarisation following rapamycin treatment is activated by the CWI pathway independently of Mpk1 activation.

A) Effect of 1 h rapamycin treatment on actin polarisation in WT and $mpk1\Delta$ cells. Representative

- of 4 experiments. Cellular actin is labelled with rhodamine-phalloidin. Scale bars show 5 μ m. **B)** Quantification of images from A (mean with SEM, n=4, two-way anova followed by a Tukey's multiple comparisons text). Budding calls are classified as uppelorized if there are 6 or more
- multiple comparisons test). Budding cells are classified as unpolarised if there are 6 or more circular actin patches in the mother cell and polarised if not.

C) Induction of Mkk1-DD-3xHA from the Gal10 galactose inducible promoter, and consequent activation of Mpk1 (P-Mpk1) in WT cells. Representative of 3 experiments.

D) Effect of Mkk1-DD-3XHA induction (1 h galactose) on actin polarisation in WT cells.

Representative of at least 3 experiments. Cellular actin is labelled with rhodamine-phalloidin. Scale bars show 5 μ m.

E) Quantification of images from D (mean with SEM, n=3, t-test¬). Budding cells are classified as unpolarised if there are 6 or more circular actin patches in the mother cell and polarised if not.

Fig. S3. Related to Figure 3.TORC1 inhibts cell wall integrity activation through multiple pathways.

 A) TORC1 signalling to the autophagy, Tap42/PP2A phosphatase, and Sch9 effector branches. Mutants are displayed which prevent changes to each branch upon TORC1 inhibition.
B) Resistance to 45 min zymolyase treatment after 1 h rapamycin treatment in the mutants

indicated in Figure S2A (mean with SEM, n=3, one-way anova followed by a Tukey's multiple comparisons test.

C) Resistance to 45 min zymolyase treatment after 1 h rapamycin treatment in the mutants indicated in Figure S2A expressing Sch9-2D3E (mean with SEM, n=4, one-way anova followed by a Tukey's multiple comparisons test).

D) Resistance to 45 min zymolyase treatment after 1 h rapamycin treatment in the mutants indicated in Figure S2A expressing Sch9-WT (mean with SEM, n=4, one-way anova followed by a Tukey's multiple comparisons test).

Fig. S4. Related to Figure 4. Effect of Micafungin treatment on Mpk1 activation and Adc17 protein production.

A) Mpk1 activation (P-Mpk1) and Adc17 protein levels in WT and *mpk1*∆ cells after 2 h Micafungin treatment. Representative of 3 experiments.

Fig. S5. Related to Fig. 6. Effect of removing proteins regulated by TORC1 on Mpk1 activation and Adc17 production following TORC1 inhibition.

A) Mpk1 activation (P-Mpk1) and Adc17 levels in WT and the autophagy deficient $atg1\Delta$

and $atg7\Delta$ mutants after 4 h rapamycin treatment. Representative of 3 experiments.

B) Mpk1 activation (P-Mpk1) and Adc17 levels in WT, $pph21\Delta$, and $pph22\Delta$ mutants after 4 h rapamycin treatment. Representative of 3 experiments.

C) Mpk1 activation (P-Mpk1) and Adc17 levels in WT and *sit4* Δ cells after 4 h rapamycin treatment. Representative of 3 experiments.

D) Mpk1 activation (P-Mpk1) and Adc17 levels in WT and *sch9*∆ cells after 4 h rapamycin treatment. Representative of 3 experiments.

E) Quantification of Adc17 protein expression from blots shown in D (mean with SEM, n=3, twoway anova followed by a Tukey's multiple comparisons test).

F) Quantification of average number of ADC17 mRNA punctae observed per cell from Fig. 6C (mean with SEM, n=4, two-way anova followed by a Tukey's multiple comparisons test).

Ponceau

Fig. 5:

Fig. 5:

Fig. 6:

Fig. 6:

F Adc17	P-Mpk1	Ponceau

Fig. 7:

Fig. S2:

Fig. S4:

Fig. S5:

Fig. S5:

С	Adc17	P-Mpk1	Ponceau
D	Adc17	P-Mpk1	Ponceau

Fig. S6. Blot transparency igure. Full membranes, and the sections used in this manuscript (red boxes), are shown here.

Table S1. List of strains used in this article and information about their origin. Strains and
vectors can be obtained by request from TDW or AR.

Strain	Source
BY4741 (WT)	Horizon Discovery
BY4741 wsc1⊿::KanMX	Horizon Discovery
BY4741 wsc2⊿::KanMX	Horizon Discovery
BY4741 wsc3⊿::KanMX	Horizon Discovery
BY4741 wsc4⊿::KanMX	Horizon Discovery
BY4741 mid2⊿::KanMX	Horizon Discovery
BY4741 <i>mtl1∆::KanMX</i>	Horizon Discovery
BY4741 wsc1⊿::KanMX wsc2⊿::His3	This study
BY4741 wsc1 <i>∆::Leu</i> 2 wsc3 <i>∆::KanMX</i>	This study
BY4741 wsc1 <i>∆::Leu</i> 2 wsc4 <i>∆::KanMX</i>	This study
BY4741 wsc4-GFP::KanMX	This study
BY4741 wsc1⊿::Leu2 wsc3⊿::Ura3 wsc4⊿::KanMX	This study
BY4741 mpk1⊿::KanMX	Horizon Discovery
BY4741 pESC-Mkk1(S377D,T381D)-3xHA::Leu2	This study
BY4741 atg7⊿::KanMX	Horizon Discovery
BY4741 pph21⊿::KanMX	Horizon Discovery
BY4741 pph22⊿::KanMX	Horizon Discovery
BY4741 sit4⊿::KanMX	Horizon Discovery
BY4741 <i>p416-</i>	This study
BY4741 atg7∆::KanMX p416-	This study
ВY4741 pph21⊿::КалМХ p416-	This study
BY4741 pph22⊿::KanMX p416-	This study
BY4741 sit4⊿::KanMX p416-	This study
BY4741 atg7⊿::KanMX p416-Sch9-3xHA::Ura3	This study
BY4741 pph21⊿::KanMX p416-Sch9-3xHA::Ura3	This study
BY4741 pph22 []::KanMX p416-Sch9-3xHA::Ura3	This study
BY4741 sit4⊿::KanMX p416-Sch9-3xHA::Ura3	This study
BY4741 adc17-24xSL::KanMX abp1-aGFP::Leu2	
pFA6-Cyc1pr-PP7-2xeGFP::His3 pESC::Ura3	I his study
BY4741 adc17-24xSL::KanMX abp1-	This study
aGFP::Leu2 pFA6-Cyc1pr-PP7-2xeGFP::His3	This study
BY4741 adc17-24xSL abp1-mKate2-aGFP::Leu2	Williams et al., 2022
BY4741 adc17-24xSL abp1-mKate2-aGFP::Leu2	Williams et al. 2022
ede1 <i>∆</i> ::Ura3 pFA6-Cyc1pr-PP7-	
BY4741 p416::Ura3	This study
BY4741 p416-Sch9-3xHA::Ura3	This study
BY4741 adc17-	This study
24xSL::KanMX pFA6-	
BY4741 sch9⊿::KanMX	Horizon Discovery
BY4741 wsc1⊿::Leu2 wsc3∆::Ura3 wsc4∆::KanMX n416-	This study
BY4741 chc1⊿::KanMX	Horizon Discovery
BY4741 chc1 <i>\D</i> ;;KanMX p416-Sch9-3xHA::Ura3	This study
BY4741 chc1 // ::KanMX p416::Ura3	This study
BY4741 chc1⊿::KanMX p416-	This study
BY4741 pFA6-Cyc1pr-PP7-2xeGFP::His3 p416-	This study
BY4741 chc1/\::KanMX pFA6-Cvc1pr-PP7-	This study
2xeGFP::His3 p416-Adc17-24xSL::Ura3	