
DGE: Direct Gaussian 3D Editing by Consistent
Multi-view Editing

Minghao Chen, Iro Laina, and Andrea Vedaldi

Visual Geometry Group, University of Oxford
{minghao, iro, vedaldi}@robots.ox.ac.uk

silent-chen.github.io/DGE

Abstract. We consider the problem of editing 3D objects and scenes
based on open-ended language instructions. A common approach to this
problem is to use a 2D image generator or editor to guide the 3D editing
process, obviating the need for 3D data. However, this process is often
inefficient due to the need for iterative updates of costly 3D representa-
tions, such as neural radiance fields, either through individual view edits
or score distillation sampling. A major disadvantage of this approach
is the slow convergence caused by aggregating inconsistent information
across views, as the guidance from 2D models is not multi-view consis-
tent. We thus introduce the Direct Gaussian Editor (DGE), a method
that addresses these issues in two stages. First, we modify a given high-
quality image editor like InstructPix2Pix to be multi-view consistent. To
do so, we propose a training-free approach that integrates cues from the
3D geometry of the underlying scene. Second, given a multi-view consis-
tent edited sequence of images, we directly and efficiently optimize the
3D representation, which is based on 3D Gaussian Splatting. Because it
avoids incremental and iterative edits, DGE is significantly more accu-
rate and efficient than existing approaches and offers additional benefits,
such as enabling selective editing of parts of the scene.

1 Introduction

Recent breakthroughs in 2D and 3D generation [28,55,69,72] have significantly
advanced AI-based content creation and editing. This progress is particularly im-
pactful for 3D content, which traditionally requires highly specialized skills and
years of experience. Consequently, these innovations are unlocking new creative
possibilities for artists and non-professional users alike.

In this work, we consider the problem of editing 3D models based on textual
instructions. Recent progress in this area is largely due to the introduction of new
radiance field representations for objects and scenes, such as NeRFs [60], which
are both high-quality and flexible. Because they are differentiable, radiance fields
integrate well with applications of machine learning to image generation. A no-
table example is InstructPix2Pix (IP2P) [4], a denoising diffusion model [72,77]
that can edit an image based on textual instructions [4]. A significant benefit of
differentiable 3D representations, when combined with image generation mod-
els, is that they eliminate the need for 3D annotated data. As a result, several

https://silent-chen.github.io/DGE/


2 M. Chen et al.

works have repurposed such models to edit 3D content instead, primarily in two
ways. The first was pioneered by InstructNeRF2NeRF [25], which utilizes IP2P
to alternate between editing a rendered view of the 3D model and updating the
latter by training on the edited images. The second approach [34, 74, 111] is to
update the model in a distillation-like fashion [69]. Both approaches rely on it-
erative mechanisms to incorporate the edits into the 3D model, so that a single
edit often requires several minutes, or even hours, to complete.

In this paper, we introduce the Direct Gaussian Editor (DGE), a 3D editor
that addresses the shortcomings of previous attempts. We design our method
with three goals in mind: (i) high fidelity, (ii) high efficiency, and (iii) selective
editing (i.e., editing only a specific part of the scene). To achieve these goals, we
propose to change both the 3D representation and the update mechanism.

As a representation, we employ 3D Gaussian Splatting (GS) [37], a radi-
ance field model that is notably orders of magnitude faster than NeRF and
NeRF-adjacent models [7, 9, 79] for both rendering and gradient computation.
Additionally, GS offers another important advantage: as an explicit 3D represen-
tation made of local 3D primitives, the Gaussians, it supports local edits easily
and efficiently, as long as the relevant Gaussians can be identified. In practice,
one can easily identify the Gaussians by fusing the output of a 2D segmenter [39]
from several rendered views of the scene.

While GS can significantly speed up the 3D editing process, it does not
remove the bottleneck caused by the need to iterate several times between ren-
dering, reconstruction, and evaluation of the underlying image-based diffusion
model. The iterative methods used in prior works are slow because of the lack
of view-consistent edits that could be used to update the 3D model coherently.
Since 2D editors like IP2P are monocular and provide a distribution over all
possible edits, the probability of drawing independently two or more consistent
edits from different views is nearly zero. As a result, iterative dataset updates
or distillation are ways of incrementally reaching a “multi-view” consensus with
respect to the application of the monocular editor to such views.

Our main contribution is a more efficient alternative to this slow iterative
process. We propose a method to sample multi-view consistent edits such that
the 3D model can be updated by directly fitting it to the edited views. Our
approach is inspired by recent progress in video generation and editing and, in
particular, methods that extend image generators to video without additional
training [6,21,38,70,93]. The key insight is that multiple views of the 3D model
can be interpreted as an orbital video of a static scene generated by a moving
camera, making multi-view consistency analogous to temporal consistency in
video editing. To achieve multi-view consistency we adopt the spatio-temporal
attention mechanism used in the video editing literature and extend it with
additional epipolar constraints, which we can enforce due to the 3D nature of
our problem. This method ensures that edits are coherent across multiple views,
improving the efficiency and effectiveness of the 3D editing process.

Through qualitative and quantitative comparisons with prior works, we demon-
strate two key advantages of DGE, even compared to recent works such as the



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 3

GaussianEditor [13], which also uses Gaussian Splatting. First, as a direct edit-
ing approach, DGE results in a noticeable speed boost taking approximately 4
min for a single edit. Second, ensuring multi-view consistent editing in the image
space significantly simplifies the process of consolidating edits from various views
into the 3D model. This is reflected in both the number of updates required for
convergence and the higher fidelity of the final result.

2 Related Work

Image Editing. Due to the lack of large-scale training data to learn 3D editors
directly, most such editors build on top of existing 2D image editors instead,
so we discuss those first. GLIDE [65] controls 2D image generation and editing
using CLIP features [71]. Methods like [19, 42] and DreamBooth [73] consider
the problem of personalizing an image; GLIGEN [50] and others [8, 11, 17] per-
form layout control, while ControlNet [105] considers additional forms of control
such as scribbles or depth maps. DragDiffusion [75] and Drag-a-Video [81] edit
images and videos by dragging. Others [2, 27, 36, 56, 63, 67, 84] cast image edit-
ing as image-to-image translation. InstructPix2Pix (IP2P) [4] fine-tunes Stable
Diffusion [72] with image-and-text conditioning on a large synthetic dataset of
language-driven edits. The works of [104, 107] further improve InstructPix2Pix
via manual labeling, while [61] aims at improving the localization of the edits.

Ad-hoc 3D Editing. Several authors have explored various types of inputs and
controls to edit 3D objects. EditNeRF [53] updates shape and color in a radiance
field based on user-provided scribbles, 3Designer [47] and SINE [1] based on a sin-
gle edited view, SKED [58] based on 2D sketches, Editable-NeRF [108] based on
keypoints and CoNeRF [35] based on attributes. The work of [53] also considers
sketch-based editing but for category-level 3D generators. NeRF-Editing [100],
NeuMesh [97] and NeRFShop [33] modify a radiance field based on meshes, Neu-
ralEditor [10] based on point clouds and [96] based on cages. N3F [83], DFF [40],
SPIn-NeRF [62], NeRF-in [52] and the work of [92] consider segmenting and re-
moving objects from a radiance field. Control-NeRF [43] allows both removing
and moving objects. Component-NeRF [51] and the works of [98, 102] consider
compositional editing. Palette-NeRF [41], RecolorNeRF [22], ICE-NeRF [44] ad-
dress recoloring and ARF [103], DeSRF [95], StylizedNeRF [31], SNeRF [64]
and the work of [15, 30] style transfer. NeRFEditor [80] integrates GAN-based
stylization in NeRF. Seal-3D [91] edits 3D scenes by learning interactive tools
like brushes, deformation, and recoloring and Seal4D-NeRF [32] extends it to dy-
namic NeRF models. SceNeRFlow [82] allows for dynamic edits using DensePose
for correspondence estimation [24].

Language-driven 3D Editing. Closer to our work, several authors have con-
sidered open-vocabulary or text-guided 3D editing. Some authors use vision-
language models based on CLIP [46, 48, 71] to edit or stylize a radiance field



4 M. Chen et al.

globally [45, 57, 87, 88] or locally [23, 40, 76, 89, 109]. TextDeformer [20] focuses
on manipulating only the shape of objects. Some like AvatarCLIP [29] consider
animations as well. Most recent works have shifted towards instruction-guided
editing employing diffusion-based image generators like Stable Diffusion [72]
or editors like Instruct-Pix2Pix [4]. There exist two main editing mechanisms
among them. Instruct-NeRF2NeRF [25], InstructP2P [94], ProteusNeRF [86],
Edit-DiffNeRF [99], and GaussianEditor [13, 90] repeatedly edit rendered views
of the 3D object and update the 3D model accordingly, a process which is referred
to as iterative dataset updates. Instead, Instruct3Dto3D [34], DreamEditor [111],
Vox-E [74], ED-NeRF [66], FocalDreamer [49], Progressive3D [14] and [101,110]
update the 3D model using score distillation sampling (SDS). While these works
rely on costly, scene-specific optimization of radiance fields, SHAP-EDITOR [12]
learns a fast, feed-forward editor in the latent space of generative models but
requires retraining for each new set of instructions. Our editor is optimization-
based, but significantly reduces the number of iterations required, up to a single
one.

Closely related to our work, ViCa-NeRF [16] focuses on multi-view consistent
editing. However, different from our method, which takes inspiration from video
models, ViCA-NeRF leverages the 3D model’s depth information to project fea-
tures from key views into others using a blending module. As a result, it cannot
handle edits that change the geometry of the original 3D shape.

Furthermore, methods like Vox-E [74] and FocalDreamer [49] consider local
3D editing, but struggle to handle both local and global ones; in contrast, our
DGE allows precise editing of small or large regions of the 3D scene.

3 Preliminaries

Gaussian Radiance Fields. A radiance field is a pair of functions σ : R3 → R+

and c : R3×S2 → R3 mapping 3D points x ∈ R3 to opacities σ(x) and directional
colors c(x,ν), where ν ∈ S2 is a unit vector expressing the viewing direction. An
image I of the radiance field is obtained via the emission-absorption equation:

I(u) =

∫ ∞

0

c(xt,ν)σ(xt)e
−

∫ t
0
σ(xτ )dτdt, (1)

where the 3D point xt = x0− tν sweeps the ray that connects the camera center
x0 to the pixel u along direction −ν (where the 3D point is expressed in the
reference frame of the world, not the camera).

Prior works have explored several representations for these functions, includ-
ing MLPs [60], voxel grids [79] and low-rank factorizations of the latter [7, 9].
Gaussian Splatting (GS) [37] proposes a particularly efficient representation as
a mixture of Gaussians G = {(σi,µi, Σi, ci)}Gi=1, where σi ≥ 0 is the opacity,
µi ∈ R3 is the mean, Σi ∈ R3×3 is the covariance matrix, and ci : S → R3 the
directional color of each Gaussian. The Gaussian functions are given by:

gi(x) = exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
. (2)



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 5

The directional colors are given by functions [ci(ν)]j =
∑L

l=0

∑l
m=−l cijlmYlm(ν),

where Ylm are spherical harmonics and cijlm ∈ R are corresponding coefficients.
The Gaussian mixture then defines the opacity and color functions as:

σ(x) =

G∑
i=1

σigi(x), c(x,ν) =

∑G
i=1 ci(ν)σigi(x)∑G

i=1 σigi(x)
. (3)

Importantly, the integral in Eq. (1) under the model in Eq. (3) can be approxi-
mated very efficiently and in a differentiable manner, as noted in [37].

Diffusion-based Generators and Editors. A diffusion-based image genera-
tor is a model that allows one to sample image I ∈ R3×H×W from a conditional
distribution p(I | y). Here the condition y is often a textual prompt, but it can
also be an image or a combination of both. Let Ik =

√
1− β2

kI+βkϵ be a noised
version of the image I one wishes to sample, where β is a sequence monotoni-
cally increasing from 0 to 1 and ϵ ∼ N is normal i.i.d. noise. The diffusion model
consists of a denoising neural network Φ that, given the noisy image Ik, the noise
level k and the conditioning y, estimates the noise ϵ̂ = Φ(I, y, k). The image I is
sampled by starting from pure noise (βT = 1) followed by iterative denoising of
the signal until I = I0 is obtained [28,77,85].

Several authors [27,56,67] have suggested using the denoising network of an
off-the-shelf image generator such as Stable Diffusion (SD) [68,72] to modify an
existing image according to a prompt y instead of generating it from scratch, thus
editing it. However, this process is somewhat suboptimal; instead, we make use of
editors specifically trained to apply such modifications. An example is IP2P [4],
which also uses diffusion but directly implements conditional a distribution p(I ′ |
I, y) where I ′ is the edited image, I is the original image, and y is a prompt
describing how I ′ should be obtained from I. IP2P is in itself derived from the
SD model by finetuning it to training triplets (I ′, I, y) which are automatically
generated using Prompt-to-Prompt [27], a slow but training-free editing method.

4 Method

In this section, we describe our method for text-guided 3D scene editing —the
Direct Gaussian Editor (DGE). Our main objective is 3D editing that is (i)
faithful to the text instructions (high fidelity), (ii) fast and efficient, and (iii)
partial to specific scene elements when desired. Next, we introduce our approach
and discuss how these criteria are met.

4.1 Direct Gaussian Editor

DGE is motivated by the following key observation: given several images ren-
dered from an existing 3D model, if one can obtain multi-view consistent edits
in image space, then the 3D model can be updated directly and efficiently by



6 M. Chen et al.

fitting it to the edited images. This approach is an alternative to slow iterative
techniques like SDS [49, 69, 74] and iterative dataset updates (IDU) [13, 18, 25]
that work around inconsistent image-level edits. Thus, the main challenge for
enabling direct 3D editing is to improve image-based editors to produce several
consistent edits across a number of images.

In more detail, consider an initial reconstruction of a 3D scene as a mixture
of Gaussians G (Sec. 3) and consider a camera trajectory (πt)

T
t=1 consisting

of T viewpoints. We first render the corresponding views I = (It)
T
t=1 where

It = Rend(G, πt) is obtained with Eq. (1). Let y be the textual prompt describing
the desired edits and let I ′ = (I ′t)

T
t=1 be the images obtained by editing I as

according to y. We can then update the 3D model G by fitting it to I ′ as

G′ = argmin
G

T∑
t=1

∥I ′t − Rend(G, πt)∥ (4)

This rendering loss is often used to reconstruct a 3D scene from multiple views,
and here it is used to update it. In practice, GS makes this optimization efficient.

The key question is how to obtain the edited views I ′. A standard approach
is to apply a diffusion-based image editor E , such as IP2P [94] to individual
views, obtaining edited views I ′. However, each of these views would then be
drawn independently from the distribution I ′t ∼ p(I ′t | It, y). Hence, even though
the initial views It are consistent by construction, the edited views would not
be as this method disregards their statistical dependency. As a result, updating
the 3D model G according to Eq. (4) would fuse inconsistent views, yielding a
blurry outcome. We thus seek to modify the image editor to account for the
mutual dependency of the views and approximately draw samples from the joint
distribution p(I ′1, . . . , I

′
T | I1, . . . , IT , y).

In summary, as shown in Figure 1, we divide the 3D editing process into two
parts, detailed next: (a) multi-view consistent editing with epipolar constraints,
and (b) the 3D reconstruction from edited images.

4.2 Consistent Multi-view Editing with Epipolar Constraint

To achieve multi-view consistent edits, we render multiple views I from G and
reorder them based on their camera positions to create a relatively smooth cam-
era trajectory, forming a video. This approach leverages recent advances in video
generation and editing, and in particular, the idea of extending image genera-
tors to video without additional training [6,21,38,70,93]. Treating the sequence
I as a video of a static scene and applying these techniques to image editors,
consistency across views is analogous to temporal consistency in video editing.

Our multi-view editing process includes two sequential steps, key-view editing
and feature injection. Specifically, during each denoising step, we first jointly edit
select key views with spatio-temporal attention. Then, we inject the feature of
the key views to other views using correspondences that are obtained from visual
features guided by the epipolar constraint.



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 7

. . . 

Key Views Editing Diffusion Network

All views Editing

. . . 

Self-attention
 Output

Injection

Output

Injection

Input Views

Feature InjectionMulti-view Consistent Editing

3D Fit

Diffusion Network

Self-attention

“Make�the�man�wear�
fashion�sunglasses”

“Make�the�man�wear�
�fashion�sunglasses”

Spatial-Temp attn

Keyframe
Frame of interest
Epipolar Line
Point of interest

Input Views Edited Views Edited 3D

Correspondence

Cross-attention

Feature Injection
w/ Epipolar Constraints

3D Fitting 

Fig. 1: Overview. As shown on the left, our method is divided into two main parts:
multi-view consistent editing with epipolar constraints and direct 3D fitting. In the
multi-view editing stage, key views are randomly selected and jointly fed to the editing
diffusion network to extract features with the spatial-temporal attention. To edit other
frames, the features of key views are injected into the diffusion network through cor-
respondence matching on feature maps with epipolar constraints. The detailed feature
injection process is shown on the right; only features with a red border (i.e., the points
following epipolar constraints) are considered for correspondence matching.

Key-view editing. Let E be a diffusion-based image editor that utilizes self-
attention (e.g ., SD-based). Based on the above observations, we extend E with
a modified, spatio-temporal version of self-attention, which jointly considers all
images in I, effectively turning the single-image editor into a multi-image editor
Emv. Specifically, given queries {Qt}Tt=1, keys {Kt}Tt=1, and values {Vt}Tt=1 for
each viewpoint t, the spatio-temporal attention block ensures that each frame
attends to every other frame and is given by:

STAttn(Q,K, t) = Softmax

(
Qt · [K1, . . . ,KT ]√

d

)
, (5)

where d is the embedding dimension of keys and queries. The corresponding out-
put features for frame t are then computed as Φt = STAttn(Q,K, t)·[V1, . . . , VT ]
(at each layer). As the underlying image editor E , we utilize IP2P [4], which is
a common choice in the literature [13, 25, 90]. However, the attention can be
computationally expensive for longer sequences. Therefore, Emv is only applied
to select key views randomly selected from T = {1, . . . , T}, where T is the total
number of images in the sequence. In practice, we sample a random subset K ⊂ T
at each denoising iteration. We detail the selection process in the supplement.
This step results in roughly consistent edits across all key views.

Feature injection. The goal of this step is to propagate the edited key view
features to all other views to ensure the consistency of the edits. Specifically,



8 M. Chen et al.

we inject the features by finding inter-frame correspondences with epipolar con-
straints. To find the correspondences between key views and other views, we
first extract visual features Ψt for all views in different layers of the denoising
network Φ, using the intermediate outputs of Φ (i.e., the inputs to each self-
attention block). Then, point correspondences across views can be established
by simply comparing their respective features at all spatial locations, and the key
view features can be injected (based on these correspondences) into all remaining
views, avoiding expensive self-attention blocks.

In addition, we can also leverage the fact that we can directly use 3D in-
formation to constrain the correspondence problem. In fact, we have multiple
views of the scene available, and the pose and calibration matrix of cameras are
known. This is without loss of generality since these assumptions are required to
apply GS for scene reconstruction in the first place. Therefore, we can estimate
the fundamental matrix F between two views and constrain the correspondence
problem to points along an epipolar line.

Formally, given a feature map Ψt′ corresponding to image It′ , where t′ /∈ K,
and the features Ψk∗ of a keyframe Ik∗ , the correspondence map Mt′ is given by:

Mt′ [u] = argmin
v, v⊤Fu=0

D (Ψt′ [u], Ψk∗ [v]) , ∀ t′ ∈ T \K (6)

where D is the cosine distance, u and v index the feature maps spatially, k∗

is the index of the key view that is the closest to view t′ (in terms of camera
viewpoint), and F is the fundamental matrix corresponding to the two views t′

and k∗. Fu is the epipolar line in view k∗ along which the corresponding point of
v in view k∗ must lie [26]. Intuitively, using the epipolar constraint significantly
reduces the search space of correspondences from a plane to spatial locations
along a single line. Given this constraint, the correspondence is decided based on
the cosine distance of the features. In practice, we compute the correspondence
maps between a view t′ and its two nearest neighbors. For a given position u, we
linearly combine the features of correspondences in the nearest two key views to
obtain its edited feature.

This approach is similar in spirit to TokenFlow [21] but contributes two
noteworthy improvements that are tailored to the 3D editing task in particular.
First, using IP2P instead of the 2D editor [84] used in TokenFlow avoids the
time-consuming DDIM [78] inversion process. Second, the epipolar constraint in
Eq. (6) allows us to leverage the 3D information that is available from the original
model G when propagating edits. This, in turn, can be particularly useful in
cases where appearance is insufficient to compute correspondences (e.g ., mostly
uniform appearance, as shown in Fig. 4).

4.3 Direct Reconstruction and Iterative Refinement

After obtaining a set of edited images I with roughly consistent content, we
can directly fit the Gaussian mixture G to the resulting images using Eq. (4),
without the need for distillation (SDS). One of the notable advantages of 3D



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 9

GS over NeRF is that it enables the rendering of images at full resolution and
the application of robust image-level losses. Specifically, we optimize G using
LPIPS [106] as an objective function between the edited I ′t and the rendered Ît
views in Eq. (4). The LPIPS loss is insensitive to small inconsistencies in the
edited images, and helps to obtain a more consistent 3D output.

Finally, we observe that even though Emv results in generally consistent ed-
its, some inconsistencies and artifacts may remain, especially around fine and
detailed textures, which in turn lead to blurry results after updating G. We con-
jecture that this is due to the limited resolution of the feature space. To address
this issue, after obtaining G′, we can again render images to be edited, repeating
the process described in the previous section and re-updating the 3D model,
similar to SDEdit [56] or IM-3D [54].

4.4 Partial Editing

Because 3D GS is an explicit 3D representation, if desired, a user can selectively
edit a 3D scene by allowing only certain Gaussians to change, thus focusing on
a specific region of interest while ensuring that the rest of the scene remains
unchanged. This is a significant advantage compared to implicit radiance field
representations, where there is no direct correspondence between specific param-
eters and regions of space, so any update to the model tends to be global.

We thus propose to first obtain a mask for the Gaussians that should un-
dergo editing. This could be done following existing works [5,13]. In this paper,
we mainly adopt the approach in [13], which segments the 2D views first and
unprojects the 2D segmentation results to 3D to obtain the masks of Gaussians.

We then follow the same steps outlined in Secs. 4.2 and 4.3, but only optimize
the reconstruction objective on regions defined by the rendered segmentation
masks. This training procedure leads to the partial change of a 3D model when
a specific prompt is provided.

5 Experiments

In this section, we first provide the implementation details of our method followed
by qualitative and quantitative comparison with other methods. We then provide
an ablation study of our method.

Implementation Details. As our image editor, we use InstructPix2Pix [4] for a
fair comparison to prior methods using the same model. We use scenes from
IN2N [25] and other real-world datasets, including LLFF and Mip-NeRF360 [3,
59] to demonstrate the ability of our method to edit 3D models. We use 3D
GS [37] as the 3D representation. For editing, we use 20-30 views, which are
edited according to the approach outlined in Sec. 4.2 and then train G′ with
500-1500 iterations depending on the complexity of the scenes. We use LPIPS
and L1 loss to train the 3D GS as suggested in IN2N [25]. We also use classifier-
free guidance to control the effect strength of the editing. Most of the edits use



10 M. Chen et al.

Method 3D CLIP CLIP Directional Avg. Editing
Model Similarity Similarity Time

Instruct-N2N [25] NeRF 0.215 0.64 ∼ 51min
ViCA-NeRF [16] NeRF 0.204 0.44 ∼ 28min

GaussianEditor [13] GS 0.201 0.60 ∼ 7min
IP2P [94] + SDS [69] GS 0.206 0.61 ∼ 6min

Ours GS 0.226 0.67 ∼ 4min

Table 1: Comparison with other editing methods. Methods based on Gaussian
Splatting are much faster than NeRF-based ones. Our DGE achieves the best perfor-
mance at almost half the time compared to GaussianEditor.

the default setting, 7.5 for textual conditions and 1.5 for the image condition. We
perform the iterative refinement every 500 iterations. We provide more details
in the supplementary material.

Evaluation. We provide both qualitative and quantitative evaluations of our
method. For quantitative evaluations, we follow common practice [13, 25]. We
evaluate the alignment of edited 3D models and target text prompts with CLIP
similarity score, i.e., the cosine similarity between the text and image embed-
dings encoded by CLIP. Specifically, we randomly sample 20 camera poses from
the training dataset of the 3D models and measure the CLIP similarity between
the rendered images and the target text prompt. Additionally, to measure the
editing effect, we use the CLIP directional similarity, i.e., the cosine similarity
between the image and text editing directions (target embeddings minus source
embeddings). We evaluate all methods on 3 different scenes and 10 different
prompts. The detailed scene-prompt pairs are provided in the supplement.

5.1 Comparisons with Prior Work

We first compare our method with representative text-guided 3D editing meth-
ods, IN2N [25] and GaussianEditor [13]. They both employ the iterative dataset
updates (IDU) approach, while the former builds on a NeRF representation and
the latter on Gaussian Splatting. To edit a 3D model, they both iterate between
the 3D model training and image editing. Every 10 steps, they use the same 2D
editor (IP2P) to edit the rendered image, replace the edited image in the 3D
model training dataset, and continue the model training. In addition, we include
a baseline using the same GS framework as in our approach, but applying ed-
its via SDS with InstructPix2Pix (IP2P + SDS). This baseline enables a direct
and fair comparison between our consistent multi-view editing approach and the
popular SDS-based approach. Lastly, we compare with ViCA-NeRF [16], which
also focuses on editing different views consistently. Different from ViCA-NeRF,
which uses 3D model depth information to project features from key views into



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 11

InstructN2N GaussianEditor Ours w. IP2P + SDSInput Views

Ours

“M
ak
e�
hi
m
�w
ea
r�
a�

ve
ne
ti
an
�m
as
k”

“M
ak
e�
th
e�
m
an
��
lo
ok
�li
ke
�

a�
m
os
ai
c�
�S
cu
lp
tu
re
”

Ours

“T
ur
n�
hi
m
�in
to
�s
pi
de
r

�m
an
�w
it
h�
m
as
k”

“T
ur
n�
hi
m
�in
to
�I
ro
n�
M
an
”

ViCA-NeRF

Fig. 2: Comparison with other methods. Our method can provide fast and detailed
editing effects, such as the textures on the Venetian mask and mosaic sculpture. Other
methods, such as InstructN2N and IP2P+SD, fail to get the mosaic effects because
they average over inconsistent editing.

Multi-view Epipolar CLIP CLIP Directional
Editing Constraints Score Score

0.203 0.59
✓ 0.221 0.64

✓ ✓ 0.226 0.67

Table 2: Ablation study on different components of our methods. Without
multi-view consistency editing, both the CLIP and CLIP directional scores drop sig-
nificantly. Although the difference between with and without epipolar constraints is
small, we provide a visual comparison in Fig. 4 showing that it helps to improve the
detailed texture especially when the appearance is relatively similar in different places.

others using a blending module, our approach incorporates the constraints from
epipolar lines to avoid depth estimation errors.

In Table 1 we compare DGE to the above methods and baselines in terms
of CLIP similarity score and CLIP directional similarity score. Our approach
outperforms all prior work while cutting the editing time to almost half compared
to GaussianEditor, the second fastest alternative.

In Figure 2 we demonstrate visual comparisons with the above methods. Our
proposed method achieves realistic and detailed 3D edits. One notable advantage
of our approach is that ensuring the consistency of the edits in image space
results in 3D edits that are overall more faithful to the editing instruction. In



12 M. Chen et al.

With  Multiview Consistency 

Edited 2D Views  

W/O Multiview Consistency 

Rendered views from Edited GS
“T
ur
n�
hi
m
�in
to
�a
�r
ob
ot
”

“M
ak
e�
hi
m
�in
�a
�s
ui
t”

Input Views

Input Views

Edited 2D Views  Rendered views from Edited GS

Fig. 3: The comparison between with and without multi-view consistency. With the
proposed multi-view consistent editing, the edited 3D GS is clear and clean, while
without it, it either fails to converge or leads to blurry results.

W. Epipolar Constraint Input Views W/O Epipolar Constraint 

Fig. 4: The comparison between edited 2D images with and without epipolar con-
straints. The one with epipolar constraints successfully matches the correspondences,
while the other fails, thus resulting in inconsistent multi-view edits.

contrast, IDU and SDS work by progressively aligning the edited views of the
3D object, averaging the inconsistencies from the edited images and leading to
blurrier or lower-fidelity reconstructions and artifacts. For example, for the edit
instruction “Make him wear a Venetian mask”, the texture of the mask generated
by DGE is detailed and vivid, while other methods fail to properly generate the
texture. ViCA-NeRF results in blurry edits or even fails to produce meaningful
edits given prompts such as “Turn him into spider man with a mask ”. It is
worth noting that IN2N and ViCA-NeRF generally yield smoother results than
GaussianEditor and IP2P+SDS; this is due to the fact the NeRF is continuous,
while GS is not.

5.2 Ablation Study

Next, we ablate the effectiveness of two main components in our editing pipeline:
the multi-view consistent editing and the epipolar correspondence matching. Fi-
nally, we demonstrate the convergence speed (in terms of editing) of our approach
through a qualitative comparison with [13].

Editing without Multi-View Consistency. To demonstrate the effective-
ness of the multi-view consistent editing, we replace the multi-view consistent
editing, by independently editing the same views and use those to fit G′. Table 2
shows the importance of multi-view consistency edits, achieving higher CLIP and
CLIP directional scores. To further demonstrate this, in Fig. 3 we show some



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 13

400 iteration 800 iteration 1200 iteration

Input Views

G
aussianEditor

O
urs

1600 iteration 2000 iteration

Fig. 5: Comparison between our DGE and GaussianEditor [13] in terms of the number
of iterations. Our method achieves realistic editing results with much fewer iterations.
With more iterations, our method also gradually refines the details.

Input views Rendered of
 segmented  gaussians 

“Turn�the�skeleton�
into�robotic�style”

“Make�the�skeleton
�look�like�make�of�diamond”

“Make�the�skeleton
�on�fire”

“Make�the�skeleton
�fluffy”

Fig. 6: Partial editing results on the Horns scene. We achieve realistic editing results
only on the required object while keeping the rest unchanged.

intermediate 2D editing results with and without multi-view consistent editing.
We observe that multi-view consistent editing produces views with similar ap-
pearances, but views can be quite different without it. This is especially true
in the first example (“turn the man into a robot”), where the prompt allows for
greater variation among views and may even fail to produce sensible edits for
some of the frames (the third in this example). As expected, fitting G′ to these
edited views produces a low-quality 3D edited model. Our multi-view consistent
approach clearly alleviates these issues. We show more detailed comparisons in
supplementary material.

Effect of the Epipolar Constraints. In Table 2, we show that using the
epipolar constraints during feature injection (i.e., from key views to other views),
both the CLIP score and CLIP directional score increase. Quantitatively, the im-
pact of using the epipolar constraint appears to be relatively small. However, we



14 M. Chen et al.

conjecture that this is mainly because the CLIP score assesses the image at a
high level while the epipolar constraints help to improve the finer details in edit-
ing, such as textures. The importance of the epipolar constraint is more evident
qualitatively. In Figure 4, the resulting edits without the epipolar constraint
are inconsistent between the two views— red points (just below the bear’s ear).
The reason is that it wrongly matches the point with another point in black
which leads to failed consistent editing. The red line in the images indicates the
epipolar line corresponding to the red point on the key view.

Effect of the Number of Iterations. We additionally show a comparison
between our method and GaussianEditor in Figure 5. The figure demonstrates
that our method achieves high-quality edits after only 400 iterations, while Gaus-
sianEditor requires much longer for convergence. In particular, the results of the
400-iterations column do not use refinement and are generated in under two
minutes. With more iterations, the details of the mask in the rendered views are
gradually refined.

5.3 Partial Editing

Finally, in Figure 6, we showcase partial (local) editing results on the Horns scene
from the LLFF [59] dataset. First, we segment 2D renders to get 2D masks of
the skeleton we want to edit. Then, we unproject the 2D masks to 3D getting the
mask of the Gaussians. As last, we render images from different views and edit
those views with our proposed DGE. The results are realistic and only applied
to the segmented skeleton, demonstrating our method’s ability of partial editing.
We provide additional partial editing results in the supplementary material.

6 Conclusion

We have presented DGE, a robust framework for directly editing of a 3D model
by simply fitting it to a small set of views, which are edited by a text-based
image editor. The key insight of our approach is that one must obtain multi-view
consistent edits in image space, to be able to update the 3D model directly. Thus
we propose an editing mechanism that jointly considers multiple frames based on
both appearance cues (image features) and 3D cues (epipolar constraints based
on scene geometry). This approach enables 3D editing that is both more efficient
and more faithful to the text instruction in comparison to SDS-like alternatives.

Ethics. For further details on ethics, data protection, and copyright please see
https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html.

Acknowledgements. This research is supported by ERC-CoG UNION 101001212.
I. L. is also partially supported by the VisualAI EPSRC grant (EP/T028572/1).

https://www.robots.ox.ac.uk/~vedaldi/research/union/ethics.html


DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 15

References

1. Bao, C., Zhang, Y., Yang, B., Fan, T., Yang, Z., Bao, H., Zhang, G., Cui, Z.:
SINE: semantic-driven image-based NeRF editing with prior-guided editing field.
In: CVPR (2023) 3

2. Bar-Tal, O., Ofri-Amar, D., Fridman, R., Kasten, Y., Dekel, T.: Text2live: Text-
driven layered image and video editing. In: ECCV (2022) 3

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF
360: Unbounded anti-aliased neural radiance fields. In: CVPR (2022) 9

4. Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: Learning to follow image
editing instructions. In: CVPR (2023) 1, 3, 4, 5, 7, 9

5. Cen, J., Fang, J., Yang, C., Xie, L., Zhang, X., Shen, W., Tian, Q.: Segment any
3d gaussians. arXiv preprint arXiv:2312.00860 (2023) 9

6. Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2video: Video editing using image
diffusion. In: ICCV. pp. 23206–23217 (2023) 2, 6

7. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., Mello, S.D., Gallo,
O., Guibas, L.J., Tremblay, J., Khamis, S., Karras, T., Wetzstein, G.: Efficient
geometry-aware 3D generative adversarial networks. In: CVPR (2022) 2, 4

8. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. In: SIG-
GRAPH (2023) 3

9. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: Tensorial radiance fields
(2022) 2, 4

10. Chen, J., Lyu, J., Wang, Y.: NeuralEditor: Editing neural radiance fields via
manipulating point clouds. In: CVPR (2023) 3

11. Chen, M., Laina, I., Vedaldi, A.: Training-free layout control with cross-attention
guidance. In: WACV (2023) 3

12. Chen, M., Xie, J., Laina, I., Vedaldi, A.: SHAP-EDITOR: Instruction-guided
latent 3D editing in seconds. In: CVPR (2024) 4

13. Chen, Y., Chen, Z., Zhang, C., Wang, F., Yang, X., Wang, Y., Cai, Z., Yang, L.,
Liu, H., Lin, G.: Gaussianeditor: Swift and controllable 3d editing with gaussian
splatting. CVPR (2024) 3, 4, 6, 7, 9, 10, 12, 13

14. Cheng, X., Yang, T., Wang, J., Li, Y., Zhang, L., Zhang, J., Yuan, L.: Progres-
sive3d: Progressively local editing for text-to-3d content creation with complex
semantic prompts. In: ICLR (2024) 4

15. Chiang, P.Z., Tsai, M.S., Tseng, H.Y., sheng Lai, W., Chiu, W.C.: Stylizing 3D
scene via implicit representation and hypernetwork 2105.13016 (2022) 3

16. Dong, J., Wang, Y.: ViCA-NeRF: View-consistency-aware 3d editing of neural
radiance fields. In: NeurIPS (2024) 4, 10

17. Epstein, D., Jabri, A., Poole, B., Efros, A.A., Holynski, A.: Diffusion self-guidance
for controllable image generation. In: NeurIPS (2023) 3

18. Fang, J., Wang, J., Zhang, X., Xie, L., Tian, Q.: Gaussianeditor: Editing 3d
gaussians delicately with text instructions. In: CVPR (2024) 6

19. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A.H., Chechik, G.,
Cohen-Or, D.: An image is worth one word: Personalizing text-to-image genera-
tion using textual inversion. In: ICLR (2023) 3

20. Gao, W., Aigerman, N., Groueix, T., Kim, V., Hanocka, R.: TextDeformer: Ge-
ometry manipulation using text guidance. In: SIGGRAPH (2023) 4

21. Geyer, M., Bar-Tal, O., Bagon, S., Dekel, T.: Tokenflow: Consistent diffusion
features for consistent video editing. In: ICLR (2024) 2, 6, 8



16 M. Chen et al.

22. Gong, B., Wang, Y., Han, X., Dou, Q.: Recolornerf: Layer decomposed radiance
field for efficient color editing of 3d scenes. In: ACM MM (2023) 3

23. Gordon, O., Avrahami, O., Lischinski, D.: Blended-nerf: Zero-shot object gener-
ation and blending in existing neural radiance fields. ICCV (2023) 4

24. Güler, R.A., Neverova, N., Kokkinos, I.: DensePose: Dense human pose estimation
in the wild. In: CVPR (2018) 3

25. Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-
NeRF2NeRF: Editing 3D scenes with instructions. In: ICCV (2023) 2, 4, 6, 7, 9,
10

26. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision (2000)
8

27. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-or, D.:
Prompt-to-prompt image editing with cross-attention control. In: ICLR (2023) 3,
5

28. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
33, 6840–6851 (2020) 1, 5

29. Hong, F., Zhang, M., Pan, L., Cai, Z., Yang, L., Liu, Z.: AvatarCLIP: zero-shot
text-driven generation and animation of 3D avatars. SIGGRAPH 41(4) (2022) 4

30. Huang, H., Tseng, H., Saini, S., Singh, M., Yang, M.: Learning to stylize novel
views. In: ICCV (2021) 3

31. Huang, Y., He, Y., Yuan, Y., Lai, Y., Gao, L.: StylizedNeRF: Consistent 3D scene
stylization as stylized NeRF via 2D-3D mutual learning. In: CVPR (2022) 3

32. Huang, Z., Shi, Y., Bruce, N., Gong, M.: SealD-NeRF: Interactive pixel-level
editing for dynamic scenes by neural radiance fields 2402.13510 (2024) 3

33. Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Leimkühler, T., Drettakis,
G.: NeRFshop: interactive editing of neural radiance fields. Proc. ACM Comput.
Graph. Interact. Tech. 6(1) (2023) 3

34. Kamata, H., Sakuma, Y., Hayakawa, A., Ishii, M., Narihira, T.: Instruct 3d-to-
3d: Text instruction guided 3d-to-3d conversion. arXiv preprint arXiv:2303.15780
(2023) 2, 4

35. Kania, K., Yi, K.M., Kowalski, M., Trzciński, T., Tagliasacchi, A.: Conerf: Con-
trollable neural radiance fields. In: CVPR. pp. 18623–18632 (2022) 3

36. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., Irani,
M.: Imagic: Text-based real image editing with diffusion models. In: CVPR (2023)
3

37. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian Splatting for
real-time radiance field rendering. SIGGRAPH 42(4) (2023) 2, 4, 5, 9

38. Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel, R., Wang, Z.,
Navasardyan, S., Shi, H.: Text2video-zero: Text-to-image diffusion models are
zero-shot video generators. In: ICCV (2023) 2, 6

39. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
In: CVPR (2023) 2

40. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via
feature field distillation. NeurIPS 35, 23311–23330 (2022) 3, 4

41. Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: PaletteNeRF:
Palette-based appearance editing of neural radiance fields. In: CVPR (2023) 3

42. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept cus-
tomization of text-to-image diffusion. In: CVPR (2023) 3



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 17

43. Lazova, V., Guzov, V., Olszewski, K., Tulyakov, S., Pons-Moll, G.: Control-NeRF:
Editable feature volumes for scene rendering and manipulation. In: WACV (2023)
3

44. Lee, J.H., Kim, D.S.: Ice-nerf: Interactive color editing of nerfs via decomposition-
aware weight optimization. In: ICCV. pp. 3491–3501 (2023) 3

45. Lei, J., Zhang, Y., Jia, K., et al.: Tango: Text-driven photorealistic and robust 3d
stylization via lighting decomposition. NeurIPS 35, 30923–30936 (2022) 4

46. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven
semantic segmentation. In: ICLR (2022) 3

47. Li, G., Zheng, H., Wang, C., Li, C., Zheng, C., Tao, D.: 3DDesigner: Towards
photorealistic 3d object generation and editing with text-guided diffusion models
abs/2211.14108 (2022) 3

48. Li, L.H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L.,
Zhang, L., Hwang, J.N., et al.: Grounded language-image pre-training. In: CVPR.
pp. 10965–10975 (2022) 3

49. Li, Y., Dou, Y., Shi, Y., Lei, Y., Chen, X., Zhang, Y., Zhou, P., Ni, B.: Focal-
dreamer: Text-driven 3d editing via focal-fusion assembly. In: AAAI (2024) 4,
6

50. Li, Y., Liu, H., Wu, Q., Mu, F., Yang, J., Gao, J., Li, C., Lee, Y.J.: Gligen:
Open-set grounded text-to-image generation. In: CVPR (2023) 3

51. Lin, Y., Bai, H., Li, S., Lu, H., Lin, X., Xiong, H., Wang, L.: CompoN-
eRF: Text-guided multi-object compositional nerf with editable 3d scene layout
abs/2303.13843 (2023) 3

52. Liu, H., Shen, I., Chen, B.: NeRF-In: Free-form NeRF inpainting with RGB-D
priors abs/2206.04901 (2022) 3

53. Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J., Russell, B.: Editing conditional
radiance fields. In: ICCV (2021) 3

54. Melas-Kyriazi, L., Laina, I., Rupprecht, C., Neverova, N., Vedaldi, A., Gafni, O.,
Kokkinos, F.: IM-3D: Iterative multiview diffusion and reconstruction for high-
quality 3D generation. In: ICML (2024) 9

55. Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: RealFusion: 360 recon-
struction of any object from a single image. In: CVPR (2023) 1

56. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit:
Guided image synthesis and editing with stochastic differential equations. In:
ICLR (2022) 3, 5, 9

57. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2Mesh: text-driven
neural stylization for meshes. In: CVPR (2022) 4

58. Mikaeili, A., Perel, O., Safaee, M., Cohen-Or, D., Mahdavi-Amiri, A.: SKED:
sketch-guided text-based 3D editing. In: ICCV (2023) 3

59. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with pre-
scriptive sampling guidelines. ACM Transactions on Graphics (TOG) (2019) 9,
14

60. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In:
ECCV (2020) 1, 4

61. Mirzaei, A., Aumentado-Armstrong, T., Brubaker, M.A., Kelly, J., Levinshtein,
A., Derpanis, K.G., Gilitschenski, I.: Watch your steps: Local image and scene
editing by text instructions abs/2308.08947 (2023) 3



18 M. Chen et al.

62. Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K.G., Kelly, J., Brubaker,
M.A., Gilitschenski, I., Levinshtein, A.: Spin-nerf: Multiview segmentation and
perceptual inpainting with neural radiance fields. In: CVPR. pp. 20669–20679
(2023) 3

63. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion
for editing real images using guided diffusion models. In: CVPR. pp. 6038–6047
(2023) 3

64. Nguyen-Phuoc, T., Liu, F., Xiao, L.: SNeRF: stylized neural implicit representa-
tions for 3d scenes. SIGGRAPH 41(4) (2022) 3

65. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models abs/2112.10741 (2021) 3

66. Park, J., Kwon, G., Ye, J.C.: Ed-nerf: Efficient text-guided editing of 3d scene
using latent space nerf. In: ICLR (2024) 4

67. Parmar, G., Singh, K.K., Zhang, R., Li, Y., Lu, J., Zhu, J.Y.: Zero-shot image-
to-image translation. In: SIGGRAPH (2023) 3, 5

68. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: SDXL: improving latent diffusion models for high-resolution
image synthesis abs/2307.01952 (2023) 5

69. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using
2d diffusion. In: ICLR (2023) 1, 2, 6, 10

70. Qi, C., Cun, X., Zhang, Y., Lei, C., Wang, X., Shan, Y., Chen, Q.: Fatezero:
Fusing attentions for zero-shot text-based video editing. ICCV (2023) 2, 6

71. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. In: ICML. vol. 139, pp. 8748–
8763 (2021) 3

72. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022) 1, 3, 4, 5

73. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation.
In: CVPR (2023) 3

74. Sella, E., Fiebelman, G., Hedman, P., Averbuch-Elor, H.: Vox-e: Text-guided voxel
editing of 3d objects. In: ICCV (2023) 2, 4, 6

75. Shi, Y., Xue, C., Pan, J., Zhang, W., Tan, V.Y., Bai, S.: DragDiffusion: Harnessing
diffusion models for interactive point-based image editing 2306.14435 (2023) 3

76. Song, H., Choi, S., Do, H., Lee, C., Kim, T.: Blending-nerf: Text-driven localized
editing in neural radiance fields. In: ICCV. pp. 14383–14393 (2023) 4

77. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR
(2021) 1, 5

78. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR
(2021) 8

79. Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In: CVPR (2022) 2, 4

80. Sun, C., Liu, Y., Han, J., Gould, S.: NeRFEditor: differentiable style decomposi-
tion for full 3D scene editing. In: WACV (2022) 3

81. Teng, Y., Xie, E., Wu, Y., Han, H., Li, Z., Liu, X.: Drag-a-video: Non-rigid video
editing with point-based interaction abs/2312.02936 (2023) 3

82. Tretschk, E., Golyanik, V., Zollhöfer, M., Bozic, A., Lassner, C., Theobalt,
C.: Scenerflow: Time-consistent reconstruction of general dynamic scenes
abs/2308.08258 (2023) 3



DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing 19

83. Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural Feature Fusion Fields:
3D distillation of self-supervised 2D image representation (2022) 3

84. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features
for text-driven image-to-image translation. In: CVPR (2023) 3, 8

85. Vargas, F., Grathwohl, W.S., Doucet, A.: Denoising diffusion samplers. In: ICLR
(2023) 5

86. Wang, B., Dutt, N.S., Mitra, N.J.: ProteusNeRF: Fast lightweight NeRF editing
using 3D-aware image context abs/2310.09965 (2023) 4

87. Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: Text-and-image
driven manipulation of neural radiance fields. In: CVPR (2022) 4

88. Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: NeRF-Art: Text-driven
neural radiance fields stylization abs/2212.08070 (2022) 4

89. Wang, D., Zhang, T., Abboud, A., Süsstrunk, S.: Inpaintnerf360: Text-guided 3d
inpainting on unbounded neural radiance fields. arXiv preprint arXiv:2305.15094
(2023) 4

90. Wang, J., Fang, J., Zhang, X., Xie, L., Tian, Q.: Gaussianeditor: Editing 3d
gaussians delicately with text instructions. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 20902–20911 (2024)
4, 7

91. Wang, X., Zhu, J., Ye, Q., Huo, Y., Ran, Y., Zhong, Z., Chen, J.: Seal-3D: Inter-
active pixel-level editing for neural radiance fields. In: ICCV (2023) 3

92. Weder, S., Garcia-Hernando, G., Monszpart, A., Pollefeys, M., Brostow, G.J.,
Firman, M., Vicente, S.: Removing objects from neural radiance fields. In: CVPR.
pp. 16528–16538 (2023) 3

93. Wu, J.Z., Ge, Y., Wang, X., Lei, S.W., Gu, Y., Shi, Y., Hsu, W., Shan, Y., Qie,
X., Shou, M.Z.: Tune-a-video: One-shot tuning of image diffusion models for text-
to-video generation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 7623–7633 (2023) 2, 6

94. Xu, J., Wang, X., Cao, Y., Cheng, W., Shan, Y., Gao, S.: InstructP2P: Learning
to edit 3D point clouds with text instructions abs/2306.07154 (2023) 4, 6, 10

95. Xu, S., Li, L., Shen, L., Lian, Z.: Desrf: Deformable stylized radiance field. In:
CVPR. pp. 709–718 (2023) 3

96. Xu, T., Harada, T.: Deforming radiance fields with cages. In: ECCV (2022) 3
97. Yang, B., Bao, C., Zeng, J., Bao, H., Zhang, Y., Cui, Z., Zhang, G.: Neumesh:

Learning disentangled neural mesh-based implicit field for geometry and texture
editing. In: ECCV (2022) 3

98. Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang, G., Cui, Z.:
Learning object-compositional neural radiance field for editable scene rendering.
In: ICCV (2021) 3

99. Yu, L., Xiang, W., Han, K.: Edit-diffnerf: Editing 3d neural radiance fields using
2d diffusion model. arXiv preprint arXiv:2306.09551 (2023) 4

100. Yuan, Y., Sun, Y., Lai, Y., Ma, Y., Jia, R., Gao, L.: NeRF-editing: Geometry
editing of neural radiance fields. In: CVPR (2022) 3

101. Zhang, H., Feng, Y., Kulits, P., Wen, Y., Thies, J., Black, M.J.: Text-guided gen-
eration and editing of compositional 3d avatars. In: 2024 International Conference
on 3D Vision (3DV) (2024) 4

102. Zhang, J., Liu, X., Ye, X., Zhao, F., Zhang, Y., Wu, M., Zhang, Y., Xu, L., Yu, J.:
Editable free-viewpoint video using a layered neural representation. ACM Trans.
Graph. 40(4) (2021) 3

103. Zhang, K., Kolkin, N., Bi, S., Luan, F., Xu, Z., Shechtman, E., Snavely, N.: ARF:
Artistic radiance fields. In: ECCV (2022) 3



20 M. Chen et al.

104. Zhang, K., Mo, L., Chen, W., Sun, H., Su, Y.: Magicbrush: A manually annotated
dataset for instruction-guided image editing. In: NeurIPS (2023) 3

105. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: ICCV (2023) 3

106. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018) 9

107. Zhang, S., Yang, X., Feng, Y., Qin, C., Chen, C.C., Yu, N., Chen, Z., Wang, H.,
Savarese, S., Ermon, S., Xiong, C., Xu, R.: Hive: Harnessing human feedback for
instructional visual editing. In: CVPR (2024) 3

108. Zheng, C., Lin, W., Xu, F.: EditableNeRF: Editing topologically varying neural
radiance fields by key points. In: CVPR (2023) 3

109. Zhou, S., Chang, H., Jiang, S., Fan, Z., Zhu, Z., Xu, D., Chari, P., You, S., Wang,
Z., Kadambi, A.: Feature 3dgs: Supercharging 3d gaussian splatting to enable
distilled feature fields. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 21676–21685 (2024) 4

110. Zhou, X., He, Y., Yu, F.R., Li, J., Li, Y.: Repaint-nerf: Nerf editting via semantic
masks and diffusion models. In: IJCAI (2023) 4

111. Zhuang, J., Wang, C., Lin, L., Liu, L., Li, G.: DreamEditor: Text-driven 3D scene
editing with neural fields. In: SIGGRAPH (2023) 2, 4


	DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing

