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Abstract. Open-vocabulary segmentation is the task of segmenting any-
thing that can be named in an image. Recently, large-scale vision-language
modelling has led to significant advances in open-vocabulary segmenta-
tion, but at the cost of gargantuan and increasing training and annotation
efforts. Hence, we ask if it is possible to use existing foundation models
to synthesise on-demand efficient segmentation algorithms for specific
class sets, making them applicable in an open-vocabulary setting without
the need to collect further data, annotations or perform training. To
that end, we present OVDiff, a novel method that leverages generative
text-to-image diffusion models for unsupervised open-vocabulary seg-
mentation. OVDiff synthesises support image sets for arbitrary textual
categories, creating for each a set of prototypes representative of both
the category and its surrounding context (background). It relies solely on
pre-trained components and outputs the synthesised segmenter directly,
without training. Our approach shows strong performance on a range
of benchmarks, obtaining a lead of more than 5% over prior work on
PASCAL VOC.
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1 Introduction

Open-vocabulary semantic segmentation is the task of segmenting images into
regions matching several free-form textual categories. As the field of Computer
Vision moves towards large-scale general-purpose models, open-vocabulary “foun-
dation” models have similarly emerged. Yet, the development of ones suitable
for dense localisation tasks such as semantic segmentation incurs both enormous
training costs and requires expensive mask annotations. Instead, we show that
the open-vocabulary segmentation task can be effectively tackled starting from
a set of frozen foundation models, without requiring additional data or even
fine-tuning.

In order to do so, we introduce OVDiff, a method that turns existing founda-
tion models into a “factory” of image segmenters, i.e., using foundation models
to synthesise on-demand a segmenter for any new concepts specified in natural
language. Thus, OVDiff can be used for open-vocabulary segmentation, where
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Fig. 1: OVDiff is an open-vocabulary segmentation method that, given an image and a
free-form set of class names, can segment any user-defined classes. It is fully automatic
and does not require any further training.

it achieves state-of-the-art results in standard benchmarks. Moreover, once syn-
thesised, the segmenters can be efficiently applied to any number of images and
easily extended to new categories.

Specifically, segmenting an image using OVDiff can be done in three steps:
generation, representation, and matching. Given a textual prompt, OVDiff uses
an off-the-shelf text-to-image generator like StableDiffusion [47] to generate a
support set of images. In the representation step, we use a feature extractor (that
can be the same network as in the generation step) to extract feature prototypes
that represent the textual category. Finally, we use simple nearest-neighbour
matching scheme to segment the target image using the prototypes computed in
the previous step.

This approach differs from prior work that largely approaches the problem in
either of two ways. Starting from multi-modal representations (e.g ., CLIP [43])
to bridge vision and language, the first way relies on labelled data to fine-tune
image-level representations for the segmentation task. Hence, in line with the
zero-shot setting [9], these methods require costly dense annotations for some
known categories while also extending the segmentation to unseen categories by
incorporating language.

The second category of prior work [12,34,40,46,66,68] observes that large-
scale vision-language models such as CLIP have a limited understanding of the
positioning of objects within an image and extend these models with additional
grouping mechanisms for better localisation using only image-level captions, but
no mask supervision. This, however, requires expensive additional contrastive
training at scale. Additionally, most methods resort to heuristics to segment the
background (i.e., leave some pixels unlabelled), as it often cannot be described
as a textual category. The usual approach is to threshold the similarities to all
categories. Finding an appropriate threshold, however, can be challenging and
may vary depending on the image, often resulting in imprecise object boundaries.
Effectively handling the background remains an open issue.
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Our three-step approach departs substantially from both of these schemes.
We show that large-scale text-to-image generative models, such as StableDif-
fusion [47], can help bridge the vision-and-language gap without the need for
annotations or costly training. Furthermore, diffusion models also produce latent
spaces that are semantically meaningful and well-localised. This solves a second
problem: multi-modal embeddings are difficult to learn and often suffer from
ambiguities and differences in detail between modalities. Instead, our approach
can use unimodal features for open-vocabulary segmentation, which offers several
advantages. Firstly, as text-to-image generators encode a distribution of possible
images, this offers a means to deal with intra-class variation and captures the
ambiguity in textual descriptions. Secondly, the generative image models encode
not only the visual appearance of objects but also provide contextual priors,
which we use for direct background segmentation.

This work presents a simple framework that achieves state-of-the-art perfor-
mance across open-vocabulary segmentation benchmarks. It combines several
off-the-shelf pre-trained networks into a segmenter “factory” that segments im-
ages into arbitrary textual categories in three simple steps. OVDiff requires
no additional data, mask supervision, nor fine-tuning. To summarise, we make
the following core contributions: (1) We introduce a method to use pre-trained
diffusion models for the task of open-vocabulary segmentation, that requires no
additional data, mask supervision, or fine-tuning. (2) We propose a principled way
to handle backgrounds by forming prototypes from contextual priors built into
text-to-image generative models. (3) A set of additional techniques for further
improving performance, such as multiple prototypes, category filtering and "stuff"
filtering.

2 Related work

Zero-shot open-vocabulary segmentation. Open-vocabulary semantic segmentation
is a relatively new problem and is typically approached in two ways. The first line
of work poses the problem as “zero-shot”, i.e., segmenting unseen classes after
training on a set of observed classes with dense annotations. Early approaches [9,
14, 22, 30] explore generative networks to sample features using conditional
language embeddings for classes. In [29,65] image encoders are trained to output
dense features that can be correlated with word2vec [38] and CLIP [43] text
embeddings. Follow-up works [19,21,32,69] approach the problem in two steps,
predicting class-agnostic masks and aligning the embeddings of masks with
language. IFSeg [70] generates synthetic feature maps by pasting CLIP text
embeddings into a known spatial configuration to use as additional supervision.
Different from our approach, all these works rely on mask supervision for a set of
known classes.

The second line of work eliminates the need for mask annotations and in-
stead aims to align image regions with language using only image-text pairs.
This is largely enabled by recent advancements in large-scale vision-language
models [43]. Some methods introduce internal grouping mechanisms such as
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hierarchical grouping [46,64,66], slot-attention [68], or cross-attention to learn
cluster centroids [33,34]. Assignment to language queries is performed at group
level. Another line of work [12,40,45,75] aims to learn dense features that are
better localised when correlated with language embeddings at pixel level. With
the exception of [45, 64, 75], thresholding is often required to determine the
background during inference. Alternatively, a curated list of background prompts
can be used [45].

Our method falls into the second category. However, in contrast to prior work,
we leverage a generative model to translate language queries to pre-trained image
feature extractors without further training. We also segment the background
directly, without relying on thresholding or curated list of background prompts.
A closely related approach to ours is ReCO [51], where CLIP is used for image
retrieval compiling a set of exemplar images from ImageNet for a given language
query, which is then used for co-segmentation. In our method, the shortcoming
of an image database is addressed by synthesising data on-demand. Furthermore,
instead of co-segmentation, we leverage the cross-attention of the generator to
extract objects. Instead of similarity of support images, we use diverse samples
and both foreground and contextual backgrounds. Follow up works [3, 4] to
OVDiff exchange contextual prior for backgrounds with compiling a database of
prototypes.

Diffusion models. Diffusion models [26,54,55] are a class of generative methods
that have seen tremendous success in text-to-image systems such as DALL-E [44],
Imagen [48], and Stable Diffusion [47], trained on Internet-scale data such as
LAION-5B [49]. The step-wise generative process and the language conditioning
make pre-trained diffusion models attractive also for discriminative tasks. They
have been recently used in few-shot classification [73], few-shot segmentation [2]
and panoptic segmentation [67], and to generate pairs of images and segmentation
masks [31]. However, these methods rely on dense manual annotations to associate
diffusion features with the desired output.

Annotation-free discriminative approaches such as [17, 28, 57] use pre-trained
diffusion models as zero-shot classifiers. DiffuMask [63] uses prompt engineering
to synthesise a dataset of “known” and “unseen” categories and trains a closed-set
segmenter with masks obtained from the cross-attention maps of the diffusion
model. DiffusionSeg [35] uses DDIM inversion [55] to obtain feature maps and
attention masks of object-centric images to perform unsupervised object discovery,
but relies on ImageNet labels and is not open-vocabulary. Our approach also
leverages the rich semantic information present in diffusion models for segmenta-
tion; unlike these methods, however, it is open-set and does not require further
training.

Unsupervised segmentation. Our work is also related to unsupervised segmenta-
tion approaches. While early works relied on hand-crafted priors [15,41,62,71,72]
later approaches leverage feature extractors such as DINO [11] and perform
further analysis of these methods [23, 36, 50, 52, 53, 59–61]. Some approaches
make use of generative methods, usually GANs, to separate images in foreground
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and background layers [5–7, 13] or analyse latent structure to induce known
foreground-background changes [37, 58] to synthesise a training dataset with
labels. Some works explore interaction with different modalities such as optical
flow [16, 27] or depth [8]. Largely focused on unsupervised saliency prediction,
these methods are class-agnostic and do not incorporate language.

3 Method

We present OVDiff, a method for open-vocabulary segmentation, i.e., semantic
segmentation of any category described in natural language. We achieve this goal
in three steps: (1) we leverage text-to-image generative models to generate a
set of images representative of the described category, (2) use these to ground
representations from off-the-shelf pretrained feature extractors, and (3) match
these against input image features to perform segmentation.

3.1 OVDiff: Diffusion-based open-vocabulary segmentation

Our goal is to devise an algorithm which, given a new vocabulary of categories
ci ∈ C formulated as natural language queries, can segment any image against it.
Let I ∈ RH×W×3 be an image to be segmented. Let Φv : RH×W×3 → RH′W ′×D

be an off-the-shelf visual feature extractor and Φt : Rdt → RD a text encoder.
Assuming that image and text encoders are aligned, one can achieve segmentation
by simply computing a similarity function, for example, the cosine similarity
s(Φv(I), Φt(ci)), with s(x, y) = xT y

∥x∥∥y∥ , between the encoded image Φv(I) and an
encoding of a class label ci. To meaningfully compare different modalities, image
and text features must lie in a shared representation space, which is typically
learned by jointly training Φv and Φt using image-text or image-label pairs [43].

We propose two modifications to this approach. First, we observe that it
is better to compare representations of the same modality than across vision
and language modalities. We thus replace Φt(ci) with a D-dimensional visual
representation P̄ of class ci, which we refer to as a prototype. In this case,
the same feature extractor can be used for both prototypes and target images;
thus, their comparison becomes straightforward and does not necessitate further
training. Second, we propose utilising multiple prototypes per category instead of
a single class embedding. This enables us to accommodate intra-class variations
in appearance, and, as we explain later, it also allows us to exploit contextual
priors, which in turn help to segment the background.

Our approach, thus, proceeds in three steps: (1) a set of support images is
sampled based on vocabulary C, (2) a set of prototypes P is calculated, and (3)
a set of images {I1, I2 . . . } is segmented against these prototypes. We observe
that in practical applications, whole image collections are processed using the
same vocabulary, as altering the set of target classes for individual images in an
informed way would already require some knowledge of their contents. Steps (1)
and (2) are, thus, performed very infrequently, and their cost is heavily amortised.
Next, we detail each step.
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Fig. 2: OVDiff overview. Prototype sampling: text queries are used to sample a set of
support images which are further processed by a feature extractor and a segmenter
forming positive and negative (background) prototypes. Segmentation: image features
are compared against prototypes.The CLIP filter removes irrelevant prototypes based
on global image contents.

3.2 Support set generation

To construct a set of prototypes, the first step of our approach is to sample a
support set of images representative of each category ci. This can be accomplished
by leveraging pretrained text-conditional generative models. Sampling images
from a generative model, as opposed to a curated dataset of real images, aligns
well with the goals of open-vocabulary segmentation as it enables the construction
of prototypes for any user-specified category or description, even those for which
a manually labelled set may not be readily available (e.g ., ci = “donut with
chocolate glaze”).

Specifically, for each query ci, we define a prompt “A good picture of a
⟨ci⟩” and generate a small batch of N support images S = {S1, S2, . . . , SN | Sn ∈
Rhw×3} of height h and width w using Stable Diffusion [47].

3.3 Representing categories

Naïvely, prototypes P̄ci could be constructed by averaging all features across all
images for class ci. This is unlikely to result in good prototypes because not all
pixels in the sampled images correspond to the class specified by ci. Instead, we
propose to extract the class prototypes as follows.

Class prototypes. Our approach generates two sets of prototypes, positive and
negative, for each class. Positive prototypes are extracted from image regions
that are associated with ⟨ci⟩, while negative prototypes represent “background”
regions. Thus, to obtain prototypes, the first step is segmenting the sampled
images into foreground and background. To identify regions most associated with
ci, we use the fact that the layout of a generated image is largely dependent on the
cross-attention maps of the diffusion model [25], i.e., pixels attend more strongly
to words that describe them. For a given word or description (in our case ci),
one can generate a set of attribution maps A = {A1, A2, . . . , AN | An ∈ Rhw},
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corresponding to the support set S, by summing the cross-attention maps across
all layers, heads, and denoising steps of the network [56].

Yet, thresholding these attribution maps may not be optimal for segmenting
foreground/background, as they are often coarse or incomplete, and sometimes
only parts of objects receive high activation. To improve segmentation quality,
we propose to optionally leverage an unsupervised instance segmentation method
Γ . Unsupervised segmenters are not vocabulary-aware and may produce multiple
binary object proposals. We denote these as Mn = {Mnr | Mnr ∈ {0, 1}hw},
where n indexes the support images and r indexes the object masks (including
a mask for the background). We thus construct a promptable extension of Γ
segmenter to select appropriate proposals for foreground and background: for each
image, we select from Mn the mask with the highest (lowest) average attribution
as the foreground (background):

M fg
n = argmax

M∈Mn

M⊤An

M⊤M
, Mbg

n = argmin
M∈Mn

M⊤An

M⊤M
. (1)

Prototype aggregation. We can compute prototypes P g
n for foreground and back-

ground regions (g ∈ {fg,bg}) as

P g
n =

(M̂g
n)

⊤Φv(Sn)

mg
n

∈ RD, (2)

where M̂g
n denotes a resized version of Mg

n that matches the spatial dimensions
of Φv(Sn), and mg

n = (M̂g
n)

⊤M̂g
n counts the number of pixels within each mask.

In other words, prototypes are obtained by means of an off-the-shelf pretrained
feature extractor and computed as the average feature within each mask.

We refer to these as instance prototypes because they are computed from
each image individually, and each image in the support set can be viewed as an
instance of class ci.

In addition to instance prototypes, we found it helpful to also compute class-
level prototypes P̄ g by averaging the instance prototypes weighted by their mask
sizes as P̄ g =

∑N
n=1 m

g
nP

g
n/

∑N
n=1 m

g
n.

Finally, we propose to augment the set of class and instance prototypes using
K-Means clustering of the masked features to obtain part-level prototypes. We
perform spatial clustering separately on foreground and background regions and
take each cluster centroid as a prototype P g

k with 1 ≤ k ≤ K. The intuition
behind this is to enable segmentation at the level of parts, support greater intra-
class variability, and a wider range of feature extractors that might not be scale
invariant.

We consider the union of all these feature prototypes:

Pg = P̄ g ∪ {P g
n | 1 ≤ n ≤ N} ∪ {P g

k | 1 ≤ k ≤ K} (3)

for g ∈ {fg,bg}, and associate them with a single category.
We note that this process is repeated for each ci ∈ C and we hereby refer to

P fg (and Pbg) as P fg
ci (Pbg

ci ), i.e., as the foreground (background) prototypes of
class ci.
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Since P fg
ci (Pbg

ci ) depend only on class ci, they can be precomputed, and the
set of classes can be dynamically expanded without the need to adapt existing
prototypes.

3.4 Segmentation via prototype matching

To perform segmentation of any target image I given a vocabulary C, we first
extract image features using the same visual encoder Φv used for the prototypes.
The vocabulary is expanded with an additional background class Ĉ = {cbg} ∪ C,
for which the positive (foreground) prototype is the union of all background
prototypes in the vocabulary: P fg

cbg
=

⋃
ci∈C Pbg

ci . Then, a segmentation map can
simply be obtained by matching dense image features to prototypes using cosine
similarity. A class with the highest similarity in its prototype set is chosen:

M = argmax
c∈Ĉ

max
P∈Pfg

c

s(Φv(I), P ). (4)

Category pre-filtering. To limit the impact of spurious correlations that might
exist in the feature space of the visual encoder, we introduce a pre-filtering process
for the target vocabulary given image I. Specifically, we leverage CLIP [43] as a
strong open-vocabulary classifier but propose to apply it in a multi-label fashion
to constrain the segmentation to the subset of categories C′ ⊆ C that appear in
the target image. First, we encode the target image and each category using CLIP.
Any categories that do not score higher than 1/|C| are removed from consideration,
that is we keep the subset {P g

c′ | c′ ∈ C′}, g ∈ {fg,bg}. If more than η categories
are present, then the top-η are selected. We then form “multi-label” prompts
as “⟨ca⟩ and ⟨cb⟩ and ...” where the categories are selected among the top
scoring ones taking into account all 2η combinations. The best-scoring multi-label
prompt determines the final list of categories to be used in Equation (4).

“Stuff” filtering. Occasionally, ci might not describe a countable object category
but an identifiable region in the image, e.g ., sky, often referred to as a “stuff”
class. “Stuff” classes warrant additional consideration as they might appear as
background in images of other categories, e.g ., boat images might often contain
regions of water and sky. As a result, the process outlined above might sample
background prototypes for one class that coincide with the foreground prototypes
of another. To mitigate this issue, we introduce an additional filtering step to
detect and reject such prototypes, when the full vocabulary, i.e., the set of classes
under consideration, is known. First, we only consider foreground prototypes
for “stuff” classes. Additionally, any negative prototypes of “thing” classes with
high cosine similarity with any of the “stuff” class prototypes are simply removed.
In our experiments, we use ChatGPT [42] to automatically categorise a set of
classes as “thing” or “stuff”.

4 Experiments

We evaluate OVDiff on the open-vocabulary semantic segmentation task. First,
we consider different feature extractors and investigate how they can be grounded
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Table 1: Open-vocabulary segmentation. Comparison of our approach, OVDiff, to the
state of the art (under the mIoU metric). Our results are an average of 5 seeds ±σ.
∗results from [12].

Method Support Further VOC Context ObjectSet Training

ReCo∗ [51] Real ✗ 25.1 19.9 15.7
ViL-Seg [33] ✗ ✓ 37.3 18.9 -
MaskCLIP∗ [75] ✗ ✗ 38.8 23.6 20.6
TCL [12] ✗ ✓ 51.2 24.3 30.4
CLIPpy [45] ✗ ✓ 52.2 - 32.0
GroupViT [66] ✗ ✓ 52.3 22.4 -
ViewCo [46] ✗ ✓ 52.4 23.0 23.5
SegCLIP [34] ✗ ✓ 52.6 24.7 26.5
OVSegmentor [68] ✗ ✓ 53.8 20.4 25.1
CLIP-DIY [64] ✗ ✗ 59.9 – 31.0
OVDiff (-CutLER) Synth. ✗ 62.8 28.6 34.9
OVDiff Synth. ✗ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

TCL [12] (+PAMR) ✗ ✓ 55.0 30.4 31.6
OVDiff (+PAMR) Synth. ✗ 68.4 ± 0.2 31.2 ± 0.4 36.2 ± 0.4

by leveraging our approach. We then turn to comparisons of our method with
prior work. We ablate the components of OVDiff, visualize the prototypes, and
conclude with a qualitative comparison with prior works on in-the-wild images.

Datasets and implementation details. As the approach does not require further
training of components, we only consider data for evaluation. Following prior
work [66], to assess the segmentation performance, we report mean Intersection-
over-Union (mIoU) on validation splits of PASCAL VOC (VOC) [20], PASCAL
Context (Context) [39] and COCO-Object (Object) [10] datasets, with 20, 59,
and 80 foreground classes, respectively. These datasets include a background class
to reflect a realistic setting of non-exhaustive vocabularies. Context also contains
both “things” and “stuff” classes. We also evaluate without background on VOC,
Context, ADE20K [74], COCO-Stuff [10] and Cityscapes [18], with 20, 59, 150,
171, and 19 classes, respectively, but do not consider this a realistic setting as it
relies on knowing which pixels cannot be described by a set of categories. Similar
to [12, 66, 68], we employ a sliding window approach. We use two scales to aid
with the limited resolution of off-the-shelf feature extractors with square window
sizes of 448 and 336 and a stride of 224 pixels. We set the size of the support set
to N = 32. For the diffusion model, we use Stable Diffusion v1.5; for unsupervised
segmenter Γ , we employ CutLER [60].
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Fig. 3: Qualitative results. OVDiff in comparison to TCL (+ PAMR). OVDiff provides
more accurate segmentations across a range objects and stuff classes with well defined
object boundaries that separate from the background well.

4.1 Grounding feature extractors

Our method can be combined with any pretrained visual feature extractor for
constructing prototypes and extracting image features. To verify this quantita-
tively, we experiment with various self-supervised ViT feature extractors (Tab. 2):
DINO [11], MAE [24], and CLIP [43]. We also use SD as a feature extractor.

We find that SD performs the best, though CLIP and DINO also show
strong performance based on our experiments on VOC. MAE shows the weakest
performance, which may be attributed to its lack of semanticity [24]; yet it is still
competitive with the majority of purposefully trained networks when employed
as part of our approach. We find that taking keys of the second to last layer
in CLIP yields better results than using patch tokens (CLIP token). As feature
extractors have different training objectives, we hypothesise that their feature
spaces might be complementary. Thus, we also consider an ensemble approach. In
this case, the cosine distances formed between features of different extractors and
respective prototypes are averaged. The combination of SD, DINO, and CLIP
performs the best. We adopt this formulation for the main set of experiments.

4.2 Comparison to existing methods

In Tab. 1, we compare our method with prior work that does not rely on manual
mask annotation on three datasets: VOC, Context, Object. We include a brief
overview of the methods in the supplement. We find that our method compares
favourably, outperforming other methods in all settings. In particular, results on
VOC show the largest margin, with more than 5% improvement over prior work.

We also consider a version of our method, OVDiff (-CutLER), that does not
rely on an additional unsupervised segmenter Γ . Instead, the attention masks are
thresholded. We observe that such a version of OVDiff has strong performance,
outperforming prior work as well. CutLER is helpful, but not a critical component,
and OVDiff performs strongly without it.
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Table 2: Performance of
OVDiff based on different
feature extractors.

Feature VOCExtractor

MAE 54.9
DINO 59.1
CLIP (tokens) 51.4
CLIP (keys) 61.8
SD 64.4

SD+CLIP+DINO 66.4

Table 3: Ablation of different components. Each compo-
nent is removed in isolation, measuring the drop (∆) in
mIoU on VOC and Context datasets. Using SD features.

Configuration VOC ∆ Context ∆

Full 64.4 29.4

w/o bg prototypes 53.2 -11.2 28.9 -0.5
w/o category filter 54.4 -10.0 25.2 -4.2
w/o “stuff” filter n/a 26.9 -2.5
w/o CutLER 60.4 -4.0 27.6 -1.8
w/o sliding window 62.2 -2.2 28.6 -0.8
only average P̄ 62.5 -1.9 28.4 -1.0

In the same table, we also combine our method with PAMR [1], the post-
processing approach employed by TCL. We find that it improves results for our
method, though improvements are less drastic since our method already yields
better segmentation and boundaries.

Qualitative results are shown in Fig. 3. This figure highlights a key benefit
of our approach: the ability to exploit contextual priors through the use of
background prototypes, which in turn allows for the direct assignment of pixels to
a background class. This improves segmentation quality because it makes it easier
to differentiate objects from the background and to delineate their boundaries.
In comparison, TCL predictions are very coarse and contain more noise.

4.3 Ablations

Next, we ablate the components of OVDiff on VOC and Context datasets. For
these experiments, only SD is employed as a feature extractor. We remove individ-
ual components and measure the change in segmentation performance, summaris-
ing the results in Tab. 3. Our first observation is that background prototypes have
a major impact on performance. When removing them from consideration, we in-
stead threshold the similarity scores of the images with the foreground prototypes
(set to 0.72, determined via grid search); in this case, the performance drops
significantly, which again highlights the importance of leveraging contextual priors.

Fig. 4: PascalVOC results
with increasing support size N .

On Context, the impact is less significant, likely
due to the fact that the dataset contains “stuff”
categories. Removing the instance- and part-level
prototypes also negatively affects performance. Ad-
ditionally, removing the category pre-filtering has
a major impact. We hypothesize that this intro-
duces spurious correlations between prototypes of
different classes. On Context, “stuff” filtering is
also important.

We again consider the importance of using an unsupervised segmenter, Cut-
LER, for prototype mask extractions, using thresholding instead. We find this
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Table 4: Comparison with methods when background is excluded (decided by ground
truth). OVDiff shows comparable performance to prior works despite only relying on
pretrained feature extractors. ∗ result from [12].

Method VOC-20 Context-59 ADE Stuff Cityscapes

CLIPpy – – 13.5 – –
OVSegmentor – – 5.6 – –
GroupViT∗ 79.7 23.4 9.2 15.3 11.1
MaskCLIP∗ 74.9 26.4 9.8 16.4 12.6
ReCo∗ 57.5 22.3 11.2 14.8 21.1
TCL 77.5 30.3 14.9 19.6 23.1
OVDiff 80.9 32.9 14.1 20.3 23.4

slightly reduces performance in this setting as well. Overall, background proto-
types and pre-filtering contribute the most.

Finally, we measure the effect of varying the size of the support set N in
Fig. 4. We find that OVDiff already shows strong performance even at a low
number of samples for each query. With increasing the number of samples, the
performance improves, saturating at around N = 32. which we use in our main
experiments.

4.4 Evaluation without background

One of the notable advantages of our approach is the ability to represent back-
ground regions via (negative) prototypes, leading to improved segmentation
performance. Nevertheless, we hereby also evaluate our method under a different
evaluation protocol adopted in prior work, which excludes the background class
from the evaluation. We note that prior work often requires additional considera-
tions to handle background, such as thresholding. In this setting, however, the
background class is not predicted, and the set of categories, thus, must be exhaus-
tive. As in practice, this is not the case, and datasets contain unlabelled pixels
(or simply a background label), such image areas are removed from consideration.
Consequently, less emphasis is placed on object boundaries in this setting. As
in this setting the background prediction is invalid, we do not consider negative
prototypes. This setting tests the ability of various methods to discriminate
between different classes, which for OVDiff is inherent to the choice of feature
extractors. Despite this, our method shows competitive performance accross wide
range of benchmarks Tab. 4.

4.5 Explaining segmentations

We inspect how our method segments certain regions by considering which
prototype from P fg

c was used to assign a class c to a pixel. Prototypes map
to regions in the support set from where they were aggregated, e.g ., instances
prototypes are associated with foreground masks M fg

n and part prototypes with
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Fig. 5: Analysis of the segmentation output by linking regions to samples in the support
set. Left: our results for different classes. Middle: select color-coded regions “activated” by
different prototypes for the class. Right: regions in the support set images corresponding
to these (part-level) prototypes.

centroids/clusters. By following these mappings, a set of support image regions can
be retrieved for each segmentation decision, providing a degree of explainability.
Fig. 5 illustrates this for examples of dog, cat, and bird classes. For visualisation
purposes, selected prototypes and corresponding regions are shown. On the left,
we show the full segmentation result of each image. In the middle, we select
regions that correlate best with certain class prototypes. On the right, we retrieve
images from the support set and highlight where each prototype emerged. We
find that meaningful part segmentation merges due to clustering the support
image features, and similar regions are segmented by corresponding prototypes.
However, sometimes region covered in the input image will not fully align with
the whole prototype (e.g . cat’s face around the eyes or lower belly/tail of bird).
Each segmentation is explained by precise regions in a small support set.

4.6 In-the-wild

In Fig. 6, we investigate OVDiff on chal lenging in-the-wild images with simple and
complex backgrounds. We compare with TCL+PAMR. In the first three images,
both methods correctly detect the objects identified by the queries. OVDiff has
small false positive "corgi" patches. TCL however misses large parts of the objects,
such as most of the person, and parts of animal bodies. The distinction between
the house and the bridge in the second image is also better with OVDiff. We also
note that our segmentations sometimes have halos around objects. This is caused
by upscaling the low-resolution feature extractor (SD in this case). The last two
images contain challenging scenarios where both approaches struggle. The fourth
image only contains similar objects of the same type. Both methods incorrectly
identify plain donuts as either of the specified queries. OVDiff however correctly
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Fig. 6: Qualitative comparison on challenging in-the-wild images with TCL, which
struggles with object boundaries, missing parts of objects, or including surroundings.
Our method has more appropriate boundaries and makes fever errors overall, but does
produce a small halo effect around objects due to the upscaling of feature extractors.

identifies chocolate donuts with varied sprinkles and separates all donuts from
the background. In the final picture, the query “red car” is added, although no
such object is present. The extra query causes TCL to incorrectly identify parts
of the red bus as a car. Both methods incorrectly segment the gray car in the
distance. However, overall, our method is more robust and delineates objects
better despite the lack of specialized training or post-processing.

5 Conclusion

We introduce OVDiff, an open-vocabulary segmentation method that operates in
two stages. First, given queries, support images are sampled and their features
are extracted to create class prototypes. These prototypes are then compared to
features from an inference image. This approach offers multiple advantages: diverse
prototypes accommodating various visual appearances and negative prototypes
for background localisation. OVDiff outperforms prior work on benchmarks,
exhibiting fewer errors, effectively separating objects from background, and
providing explainability through segmentation mapping to support set regions.
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