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Abstract

We develop an econometric modelling framework to forecast commodity

prices taking into account potentially different dynamics and linkages existing

at different states of the world and using different performance measures to

validate the predictions. We assess the extent to which the quality of the fore-

casts can be improved by entertaining different regime-dependent threshold

models considering different threshold variables. We evaluate prediction qual-

ity using both loss minimization and profit maximization measures based on

directional accuracy, directional value, the ability to predict turning points,

and the returns implied by a simple trading strategy. Our analysis provides

overwhelming evidence that allowing for regime-dependent dynamics leads to

improvements in predictive ability for the Goldman Sachs Commodity Index,

as well as for its five sub-indices (energy, industrial metals, precious metals,

agriculture, and livestock). Our results suggest the existence of a trade-off

between predictive ability based on loss and profit measures, which implies

that the particular aim of the prediction exercise carried out plays a very

important role in terms of defining which set of models is the best to use.
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1 | INTRODUCTION

This study aims at creating an econometric modelling
framework to forecast commodity prices, taking explicitly
into account the potentially different dynamics and link-
ages existing in different states of the world and using dif-
ferent performance measures to validate the predictions.
The literature on commodity price forecasts can be cate-
gorized into two broad groups depending on the

approach they take. While some studies use asset prices
as predictors of commodity prices, a more agnostic
approach exploits statistical methods to search for the
most effective set of predictors of commodity price
changes. The more common approach based on asset
prices, routinely used by central banks, creates predic-
tions of commodity prices using futures prices. Recently,
some authors argue that such a forecasting method
rather provides noisy signals about future spot prices
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(see Gorton & Rouwenhorst, 2006; Groen &
Pesenti, 2011; Hong & Yogo, 2012).

The early literature on commodity price modelling
and forecasting builds upon large macroeconometric
specifications (Just & Rausser, 1981), while modern
methods rely on univariate and multivariate time series
modelling which jointly assess the dynamics of macro-
economic variables and commodity prices (see,
e.g., Ahumada & Cornejo, 2015, 2016). Groen and Pesenti
(2011) and Gargano and Timmermann (2014) provide rel-
evant examples of the more agnostic and flexible
approach to model building in the context of commodity
price forecasting. In both studies, the authors assess
whether forecasts of commodity prices based on a large
pool of macroeconomic predictors can systematically
improve upon naive benchmarks. Groen and Pesenti
(2011) study the predictability of 10 commodity indices in
an out-of-sample forecasting experiment. They conclude
that neither commodity exchange rates nor a broad cross-
section of macroeconomic variables produce overwhelm-
ingly strong evidence of spot price predictability when
compared with random walk or autoregressive bench-
marks. Gargano and Timmermann (2014), on the other
hand, examine the out-of-sample predictability of seven
commodity indices over the period 1947–2010, using
macroeconomic and financial variables. They find that
commodity currencies have some predictive power at
short (monthly and quarterly) forecast horizons, while
growth in industrial production and the investment-
capital ratio have some predictive power at longer
(yearly) horizons, a result that resembles that by Chen
et al. (2010). Other modelling frameworks aimed at fore-
casting short-term changes in agricultural commodity
prices are employed in more recent contributions to the
literature, such as those by Xu ((2017), (2018), (2020)). In
parallel, efforts to improve forecasts of commodity prices
by explicitly modelling their volatility have also been car-
ried out (see, e.g., Bernard et al., 2008; Ramirez &
Fadiga, 2003; or the recent contribution by ; Degiannakis
et al., 2020).

In striving for modelling frameworks with good pre-
dictive accuracy for commodity prices, in this contribu-
tion, we assess the extent to which the quality of the
forecasts depends on the state of the economy. Issues
related to optimizing out-of-sample prediction in the
presence of structural breaks and parameter instability
have been particularly prevalent in the modern forecast-
ing literature (see, e.g., Giacomini & Rossi, 2010). We aim
at assessing whether, for example, models tend to provide
more accurate predictions of commodity prices in calm
than in turbulent times. First findings in this direction
were provided by Gargano and Timmermann (2014),
who observe that commodity price predictability is better

during recessions than during expansions. In stock and
bond markets, the importance of models that account for
regime-dependent parameters has often been acknowl-
edged. Recent studies (e.g., Guidolin &
Timmermann, 2005; for excess stock and bond returns or
Guidolin & Timmermann, 2009; for short-term interest
rates) have found that regime switching models may
prove extremely useful to forecast over intermediate hori-
zons, using monthly data. Guidolin and Ono () find over-
whelming evidence of regime switching in the joint
process for asset prices and macroeconomic variables.
They also find that modelling explicitly the presence of
such regimes improves considerably the out-of-sample
performance of a model of the linkages between asset
prices and the macroeconomy. Guidolin and Pedio (2021)
forecast commodity futures returns using a Markov-
switching model that identifies different volatility
regimes and maps the observations into high-volatility
and low-volatility states. In addition, they find that the
models that outperform under a statistical loss function
are not necessarily the best when an economic loss func-
tion is used to evaluate the predictive performance of the
different models. Jacobsen et al. (2019) investigate stock
return predictability and find a strong positive relation
between industrial metals and equity returns in times of
recessions and a negative relation during expansions. In
this study, we entertain different regime-dependent
models (threshold models), considering different thresh-
old variables to capture states of the world.

In addition, we assess the quality of commodity fore-
casts not only with the mean squared error (MSE), the
traditional forecast performance measure used in many
studies including Gargano and Timmermann (2014) but
also with measures that evaluate directional accuracy
(DA), directional value (DV), the ability to predict price
movements when large swings take place, and returns
implied by a trading strategy based on commodity price
forecasts. These additional measures (profit measures, as
opposed to the loss measures like mean-squared error or
mean absolute error [MAE]) do not directly assess fore-
cast accuracy but relate to other dimensions of forecast-
ing quality and may be more relevant than accuracy for
particular applications in policy and applied work.

We create models to predict commodity price dynam-
ics as captured by the changes in an overall commodity
price index, as well as in five subindices (energy, indus-
trial metals, precious metals, agriculture, and livestock),
for short- and long-term forecast horizons, using monthly
observations in the period 1980–2018. Our forecast
models include threshold models that are based on differ-
ent threshold variables, and we consider the various per-
formance measures discussed above. For the multivariate
threshold models, we use the following variables:
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composite leading indicator for the USA and real effec-
tive exchange rate of US dollar (macroeconomic vari-
ables), world stock market index (financial variable), and
stock-to-use ratio1 (fundamental variable). Based on the
extensive empirical evidence, we find overwhelming evi-
dence that allowing for regime-dependent dynamics leads
to improvements in predictive ability for commodity
prices. This is the case because the characteristics of the
dynamics and the interactions with other variables are
not constant over time but differ depending on particular
phenomena (e.g., periods of high and low volatility, good
and bad economic times, times of high/low interest rates
or inflation). To the extent that the estimated models lead
to stable dynamics, modelling the interactions in a
regime-specific fashion allows for better predictions of
commodity price changes. However, the nature of these
improvements also differs across predictive measures and
sectors.

Our results show that an interesting trade-off appears
between loss and profit measures, which implies that the
particular aim of the prediction exercise carried out plays
a very important role in terms of defining which set of
models is the best to use. Our results indicate a system-
atic correlation between loss-based and profit-based pre-
dictive error measures that suggests that correctly
predicted directions of change tend to happen in periods
where MSEs are particularly large. The optimal specifica-
tions for applications where the metrics for success are
related to systematically predicting the direction of
change of commodity prices accurately may thus be sys-
tematically different from those aimed at providing point
predictions with an absolute minimal distance to the
realized values. In the context of the existing literature,
we employ a relatively large model space in terms of
potential covariates and threshold variables, which can
explain the differences in results as compared to other
studies where the predictive performance of nonlinear
models is humble compared with that of simpler linear
specifications.

The paper is structured as follows. In Section 2, we
present the forecast models, where we describe the class
of threshold models, which are our main focus, in more
detail. In Section 3, we introduce the commodity price
data and the explanatory and threshold variables. We
present forecast performance measures, including tradi-
tional and new measures, in Section 4. The following
section presents and discusses the empirical results, and
Section 6 concludes the study.

2 | METHODOLOGY

In order to address our research question, which deals
with how different states of the economy (like recessions/

expansions, high/low volatility, high/low inflation, high/
low interest rates, market sentiment, …) affect the price
forecasting performance of different commodity classes,
we assess threshold models (both univariate and multi-
variate). These types of models allow their parameters to
change in different regimes (states of the world), whose
occurrence depends on the value of a given threshold var-
iable. In principle, there is a large universe of potential
threshold variables that could be used as a trigger quan-
tity which determines the regime where the process
resides at a given moment. It has often been suggested,
for example, that variables may behave differently in
booming and declining markets. Hence, indicators
describing different stages of the business cycle
(e.g., business cycle indicators, economic sentiment indi-
cators, inflation, spreads between long- and short-term
interest rates) may prove useful in defining the corre-
sponding states of the economy. On the other hand, the
behaviour of economic variables may vary in periods of
high and low risk, which are usually identified by a high
or low volatility in the equity markets. The level of oil
price inflation may also induce different types of dynam-
ics in commodity prices. We also examine whether the
use of threshold variables based on the rolling correlation
between stock and government bond markets, as well as
the correlation between stock and oil markets (which are
both relevant in portfolio diversification) may lead to dif-
ferences in the quality of commodity price forecasting
models. Finally, we are interested in whether the level of
the target variable itself, that is, the commodity index,
may be useful to define different states of the world.

In our application, the set of variables that are
assessed as potential drivers of the threshold-nonlinearity
and thus define the states of the economy is given by te
following: the composite leading indicator for the USA
(CLI), the consumer confidence indicator for the
USA (CCI), the USA inflation rate (INF), the spread
between long-term and short-term US interest rates
(spread), the volatility of the US stock market (VOLA),
oil price inflation (Δoil), the correlation between the US
stock and government bond markets based on a 6-month
rolling window (COR), the correlation between the world
stock market and the oil price based on a 6-month rolling
window (COR-oil), the S&P Coldman Sachs commodity
index (GSCI), and its subindices. For more details, see
Table A2 in Appendix A.

As the set of potential specifications aimed at fore-
casting commodity prices, we consider a large battery of
model classes, including autoregressive models, Bayesian
vector autoregressive models, GARCH models, and vec-
tor error correction models. In addition to these specifica-
tions, which do not allow for threshold effects, we
consider univariate and multivariate two-regime thresh-
old models. In a preliminary analysis, we recursively
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tested for the optimal number of regimes in different
threshold specifications making use of the test by Bai and
Perron (2003). The data appear to strongly support two-
regime models against threshold specifications with a
higher number of regimes, which leads us to fix the num-
ber of thresholds to one throughout the study, thus
reducing the computational costs involved in the analy-
sis.2 All the models employed are listed in Table 1. The
simplest threshold model is the threshold autoregression
in levels with p lags and with k lags in the threshold vari-
able, TAR(p,k),

yt ¼
ϕ01þ

Pp
i¼1

ϕi1yt�iþ εt, forzt�k ≤ γϕ

ϕ02þ
Pp
i¼1

ϕi2yt�iþ εt, forzt�k > γϕ

8>>><
>>>:

ð1Þ

where yt is the log of the Goldman Sachs commodity
index (or its subindex) at time t, z�Z, with Z being the
set of above mentioned threshold variables, namely,
Z¼fy, CLI, CCI, INF, spread, VOLA, Δoil, COR, COR-

oilg. Finally, εt �NIDð0,σ2εÞ. The estimator of γϕ is the
value of z that minimizes the sum of squared residuals in
the nonlinear regression (1), that is,

γ̂ϕ ¼ argmin
z

X
ε̂ðzÞ2

n o
: ð2Þ

Once the estimator of γϕ is found, (1) can be esti-
mated in a straightforward manner making use of OLS.

Given that the objective of the analysis is to assess the
relative performance exclusively in terms of out-
of-sample predictive power and exploiting a large space
of specifications, we entertain both models with variables
in first differences and models where the variables are
included in levels. We also consider threshold autoregres-
sions in first differences with p lags and with a k-th lag in
threshold variable, TDAR(p,k)

Δyt ¼
θ01þ

Pp
i¼1

θi1Δyt�iþϵt, forzt�k ≤ γθ

θ02þ
Pp
i¼1

θi2Δyt�iþϵt, forzt�k > γθ

8>>><
>>>:

ð3Þ

TABLE 1 Model description.

Abbreviations Model description

AR(p) Autoregression in levels with p lags

DAR(p) Autoregression in first differences with p lags

s-AR(p) Subset autoregression in levels with p lags

s-DAR(p) Subset autoregression in first differences with p lags

ARCH(p,q) Autoregression conditional heteroskedasticity in levels with p lags in mean equation

and q lags in variance equation

DARCH(p,q) Autoregression conditional heteroskedasticity in first differences with p lags in mean equation

and q lags in variance equation

GARCH(p,q) Generalized autoregression conditional heteroskedasticity in levels with p lags in mean equation

and q lags in variance equation

DGARCH(p,q) Generalized autoregression conditional heteroskedasticity in first differences with p lags in mean equation

and q lags in variance equation

TAR(p,k) Threshold autoregression in levels with p lags and with k-th lag in threshold variable

TDAR(p,k) Threshold autoregression in first differences with p lags and with k-th lag in the threshold variable

VAR(p) Vector autoregression in levels with p lags

DVAR(p) Vector autoregression in first differences with p lags

VEC(p, c) Vector error correction model with p lags and c cointegration relationships

s-VAR(p) Subset vector autoregression in levels with p lags

s-DVAR(p) Subset vector autoregression in first differences with p lags

BDVAR(p) Bayesian vector autoregression in first differences with p lags

TVAR(p,k) Threshold vector autoregression in levels with p lags and with k-th lag in threshold variable

TDVAR(p,k) Threshold vector autoregression in first differences with p lags and with k-th lag in threshold variable

RW Random walk
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where ϵt �NIDð0,σ2ϵÞ, γ̂θ ¼ argmin z
P

ϵ̂ðzÞ2� �
and z�Z.

In addition to univariate threshold models, we
entertain multivariate threshold models, which general-
ize the class of threshold vector autoregression in levels
with p lags and with a k-th lag threshold variable, TVAR
(p,k). Let xt be an N-dimensional vector, then the model
under consideration is

xt ¼
Ψ01þ

Pp
l¼1

Ψl1xt�lþμt, forzt�k ≤ γΨ

Ψ02þ
Pp
l¼1

Ψl2xt�lþμt, forzt�k > γΨ

8>>><
>>>:

ð4Þ

where Ψ01 and Ψ02 are N-dimensional column vectors,
Ψl1 and Ψl2 are N�N matrices, μt �NIDð0,ΣμÞ, the S&P
GS commodity index (or its sub-index) is the first element
of xt, that is, xt1 ¼ yt ¼ logðGSCItÞ and z�Z. Finally, γΨ is
estimated such that

γ̂Ψ ¼ argmin
z

X
μ̂1ðzÞ2

n o
ð5Þ

thus, the estimator of γΨ is the value of z that minimizes
the sum of squared residuals corresponding to the first
equation in (4), that is, the residuals corresponding to the
commodity index. Vector xt consists of the following
macroeconomic and financial variables: the US compos-
ite leading indicator (CLI), the real effective exchange
rate with respect to the US dollar (REER), the world
stock market index (stock), stock-to-use ratios,3 and
additionally the S&P Goldman Sachs commodity index
(GSCI) if the dependent variable is a commodity subin-
dex. With the use of these variables, the aim is to quanti-
tatively approximate shifts in the commodity demand
and supply curves and to incorporate changes in expecta-
tions for the global economic situation. Similar variables
are employed in Crespo Cuaresma et al. (2021) to forecast
agricultural commodity prices. All variables are logged,
with the exception of the stock-to-use ratios.

Finally, we consider also a variation of threshold
vector autoregression in first differences with p lags and
with k-th lag in threshold variable, TDVAR(p,k) such as

Δxt ¼
χ01þ

Pp
l¼1

χl1Δxt�lþut, forzt�k ≤ γχ

χ02þ
Pp
l¼1

χl2Δxt�lþut, forzt�k > γχ

8>>><
>>>:

ð6Þ

with parameter vectors and matrices defined analogously
to those in the model above and ut �NIDð0,ΣuÞ, z�Z.
The threshold value γχ is estimated such that

γ̂χ ¼ argmin
z

X
û1ðzÞ2

n o
ð7Þ

Thus, the estimator of γχ is the value of z that mini-
mizes the sum of squared residuals corresponding to the
first equation in (6), that is, the residuals corresponding
to the commodity index in first differences ΔGSCI. As
in (4), the regimes are implied by the first equation and
taken as given for the remaining equations in (6). With
the choice of a threshold value that minimizes the sum of
squared residuals of the commodity price regression
equation, we aim at optimizing predictive ability for our
objective variable and ensure that the nonlinearities iden-
tified are related to the dynamics of commodity prices.4

In our empirical analysis, when we compare thresh-
old and linear models, we consider up to three lags of the
variables (with p¼ 3 being the maximum lag length) and
up to 12 lags for the threshold variable under consider-
ation (with k¼ 12 being the maximum lag length).
Models are compared and selected according to out-
of-sample performance measures. We explicitly consider
all combinations of explanatory variables and all lags of
the explanatory and threshold variables up to the speci-
fied maximal lag lengths and choose the best model
according to the given forecast performance measure. It
should be noted that the space of models we address
implies that we are agnostic about the time series proper-
ties of commodity prices, with particular specifications
building upon the assumption of mean reversion, while
others assume nonstationary behaviour of the commodity
price variable. Since we address different predictive mea-
sures and use a rolling window design for the forecast
validation, exploiting short-term mean reverting
dynamics may actually lead to satisfactory predictions in
particular periods. Such an approach makes it particu-
larly difficult for nonlinear models to achieve superior
predictive ability in a systematic manner.

3 | DATA

We use the family of S&P GSCI (Standard & Poors
Goldman Sachs Commodity Index) indices to measure
commodity prices. We employ both the total aggregate
commodity index (S&P GSCI) and five subindices that
reflect the developments of certain components of the
index, namely energy (with a weight in the total com-
modity index of 63%), industrial metals (with a weight of
11%), precious metals (with a weight of 4%), agriculture
(with a weight of 15%), and livestock (with a weight of
7%). The S&P GSCI is regarded as a benchmark for
investment in commodity markets and is designed to be a
tradable index. It is calculated using a world production-
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weighted basis and includes physical commodities that
are traded in liquid futures markets. The criteria for
inclusion into the index are based on trading volume. In
addition, the contracts must be denominated in US dol-
lars and traded in an OECD country or on a trading facil-
ity that has its principal place of business in an OECD
country. The current S&P GSCI comprises 24 commodi-
ties from all commodity sectors with a high exposure to
energy. These energy contracts include crude oil, heating
oil, and gasoline traded in the US, as well as crude oil
and gasoil traded in Europe. Table A1 in Appendix A lists
all contracts included in the S&P GSCI and their respec-
tive weights and trading places. We consider the class of
total return indices.5 For more information on the S&P
GSCI, see S&P Dow Jones (2019). Some descriptive statis-
tics related to the indices are given in Table 2. Price
developments are quite heterogeneous across indices,
with only the overall and the energy indices displaying
rather similar dynamics. The volatility in returns varies
considerably as well, which has a direct impact on the
forecasting accuracy of econometric models. The monthly
returns of the energy index, for example, show a standard
deviation of 7.7% over the total data sample (1980–2018),
while the corresponding value for the livestock index is
only 3.5%. Overall, the correlations between different
commodity sector returns are low (with the exception of
the overall index and the energy index), which reinforces
the need to analyze the different sectors separately.

As macroeconomic and finance variables in our
models, we take the composite leading indicator for the
USA (CLI), the real effective exchange rate related to the
US dollar (REER), and the world stock market indicator
(stock).6 In addition, we employ fundamental variables

summarizing the forces in the commodity market: stock-
to-use ratios (stu) for oil (worldwide), wheat (USA), and
meat (USA). More precisely, we use the worldwide oil
stock-to-use ratio for the aggregate index and for the sub-
indices energy, industrial metals, and precious metals, we
use the US wheat stock-to-use ratio for the subindex agri-
culture, and we use the US meat stock-to-use ratio for the
subindex livestock. In those cases where we model com-
modity subindices, we also use the total commodity index
as an additional variable. As threshold variables, in addi-
tion to lagged values of the modelled index itself, we use
the composite leading indicator for the USA (CLI), the
consumer sentiment indicator for the US (CCI), the US
inflation measured by the consumer price index (INF),
the spread between long-term and short-term US interest
rates (spread), the volatility of the S&P 500 (VOLA), the
oil price inflation (Δoil), the correlation between the US
stock and government bond markets (COR), and the cor-
relation between the global stock market and the oil mar-
ket (COR-oil). The correlations are calculated between
daily returns in the respective markets, over a rolling
window of 130 trading days (i.e., approximately
6 months), recorded at the end of a given month. For
details on all the data we use, see Table A2.

The data sample covers monthly observations for the
period ranging from January 1980 through December
2018. We consider rolling-window estimation for our
analysis, that is, we keep the size of the estimation sam-
ple constant and equal to 20 years and move forward the
sample by one month while re-estimating the model
parameters. The use of a rolling window for the predic-
tive assessment of the models allows our class of thresh-
old models to better identify changes in regimes if they

TABLE 2 Summary statistics for commodity returns.

All Energy Ind. met. Prec. met. Agriculture Livestock Stock

Descriptive statistics

Mean (%) 0.3771 0.6246 0.5491 0.1750 �0.0300 0.3361 0.6706

Std. (%) 4.8416 7.6745 5.4517 4.3801 4.3028 3.5431 3.6639

Skew. �0.6128 0.1151 0.1907 0.0174 0.5327 0.0220 �0.8491

Kurt. 5.6013 5.7475 6.6736 6.1019 6.5898 3.7059 7.3947

Correlation matrix

Energy 0.9406 1

Ind. met. 0.3947 0.2819 1

Prec. met. 0.2031 0.1398 0.2738 1

Agriculture 0.3274 0.1419 0.2362 0.1843 1

Livestock 0.1953 0.0780 0.0672 �0.0534 0.0611 1

Stock 0.2712 0.1922 0.3039 0.1306 0.1888 0.1180 1

Note. The table reports the mean, standard deviation, skewness, and kurtosis for monthly commodity returns over the sample period from January 1980 to

December 2018. Commodity returns are computed from the S&P GSCI commodity indices. The last column shows returns of the world stock market index.
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happen at the end of the in-sample period, which could
prove important to preserve predictive ability. The
rolling-window design should thus avoid that the
thresholds identified are exclusively driven by nonlinear
behaviour at the beginning of the available sample.
The out-of-sample period used to evaluate the forecast
performance spans from January 2005 to December
2018.7 Note that “best” models are chosen based on the
forecast performance of the individual models for all lags
(up to specified maximum lags) and all combinations of
variables under consideration.

4 | FORECAST EVALUATION

The evaluation of different commodity price forecasts are
carried out employing not only traditional loss measures,
like MAE and MSE, but also profit-based measures like
DA, DV, and DV of turning points (TP). The latter might
be more relevant in situations where getting the right
future value of commodity prices may be of lesser
importance than predicting their direction of change, in
particular if the change in prices is large. The DA indica-
tor, or hit rate, is a binary variable measuring whether
the direction of a price change was correctly forecast. The
DV incorporates the economic value of directional fore-
casts by assigning to each correctly predicted change its
magnitude. The DA of TPs describes the ability to predict
TPs in commodity price dynamics.8

The loss-based and profit-based performance
measures are formally defined as follows:

AEtþh,h ¼ logP̂tþhjt� logPtþh

�� ��
SEtþh,h ¼ logP̂tþhjt� logPtþh

� �2
DAtþh,h ¼ I sgnðPtþh�PtÞ¼ sgnðP̂tþhjt�PtÞ

� �
DVtþh,h ¼ Ptþh�Ptj j DAtþh,h

TPtþh,h ¼ DAtþh,h if sgnðPtþh�PtÞ� sgnðPt�Pt�hÞ¼�1

0 otherwise

�
ð8Þ

where Pt is the price of the commodity index at time
t, P̂tþhjt is the forecast of the price of the commodity index
for time tþh conditional on the information available at
time t, that is, h is the forecast horizon, and Ið�Þ is the
indicator function.

In addition, we consider forecast ability measures
based on the returns implied by predicting commodity
prices and using a simple “buy low, sell high” trading
strategy. This strategy is based on buying the commodity
index if its price is forecast to rise and selling it when its
price is forecast to fall. This strategy is described (for
exchange rates), for example, in Gençay (1998) and will

be used under the assumption of no transaction costs.9

Predicted upward movements of the commodity index
with respect to the actual value (positive returns) are
executed as long positions, while predicted downward
movements (negative returns) are executed as short
positions. The following discrete return rtþh,h is implied
by the “buy low, sell high” trading strategy,

rtþh,h ¼

1
Pt

Pt�Ptþhð Þ¼ 1�Ptþh

Pt
,

if P
tþhjt

< Pt

commodity index is bought at tþh
1
Pt

Ptþh�Ptð Þ¼Ptþh

Pt
�1,

if P
tþhjt

> Pt

commodity index is sold at tþh

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9Þ

Later on, we will sometimes refer to the return
implied by this trading strategy simply as the return.

The aggregate performance measures for each model
are calculated over the out-of-sample period for a given
forecasting horizon as follows:

MSEh ¼ PT2�T1

j¼0

SET1þj,h

T2�T1þ1

MAEh ¼ PT2�T1

j¼0

AET1þj,h

T2�T1þ1

DAh ¼ 100
PT2�T1

j¼0

DAT1þj,h

T2�T1þ1

DVh ¼ 100

PT2�T1
j¼0 DVT1þj,hPT2�T1

j¼0 jST1þj�ST1þj�hj

¼ 100

PT2�T1
j¼0 jŜT1þj�ST1þj�hjDAT1þj,hPT2�T1

j¼0 jST1þj�ST1þj�hj

TPh ¼ 100

PT2�T1
j¼0 TPT1þj,hPT2�T1
j¼0 TPactual

T1þj,h

where

TPactual
tþh,h ¼

1 if sgnðPtþh�PtÞ� sgnðPt�Pt�hÞ¼�1

0 otherwise

(

Rh ¼ 100
PT2�T1

j¼0

rT1þj,h

T2�T1þ1þ1

 !12=h

�1

2
4

3
5

where T0 ¼ January 1980, T1 ¼ January 2005, and T2 ¼
December 2018.

The aim of our analysis is to evaluate the potential
improvement in out-of-sample predictive ability for
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commodity prices that can be obtained by entertaining
different regime-dependent threshold models
(i.e., models where threshold effects are triggered by dif-
ferent variables). In this respect, the linear alternative
plays the role of a general benchmark, so as to answer
the question: Can threshold models improve predictions
compared to models that do not include regime depen-
dence? In addition, individual threshold models also
appear as a benchmark reference in our comparisons
when we look for an answer to the question whether par-
ticular threshold variables lead to better predictive perfor-
mance than others.

5 | RESULTS

When analyzing the precision of threshold models in
commodity price forecasting, we focus on different met-
rics. At first, we compare threshold models with linear
models, which is the most natural benchmark to find out
about the value of threshold models as predictive instru-
ment. In this context, we also analyze the differences
across threshold models implied by the use of different
threshold variables. We employ different performance
metrics to evaluate the forecasting performance and con-
sider both total and regime-specific accuracy measures.
In addition to assessing the models in terms of predictive
power, we also examine the nature of the threshold vari-
ables and selected explanatory variables in the best
threshold models and also discuss the pattern of forecast-
ing performance for the two regimes. Furthermore, we
look at the sector-specific performance of best threshold
models. Finally, we compare threshold models with a
larger set of models to find out whether threshold models
tend to outperform specifications created out of this
expanded set of covariates and consider the additional
performance measure related to forecasting TPs.

5.1 | Threshold models and linear
models

Our primary focus is to compare the performance of best
threshold models (for a given threshold variable) with
the performance of linear models. The threshold models
entertained contain (vector) autoregression threshold
models in levels and differences (TAR, TDAR, TVAR,
and TDVAR), including self-exciting threshold autore-
gressive models, and linear models, that is, (vector)
autoregressive specifications in levels and differences
(AR, DAR, VAR, and DVAR), as described in Table 1.
We examine threshold models where the threshold vari-
able presents stationary behaviour and thus restrict the

following variables to act as threshold variables: the
lagged value of the dependent variable, the composite
leading indicator for the US (CLI), the consumer senti-
ment indicator for the US (CCI), the US inflation mea-
sured by the consumer price index (INF), the spread
between long-term and short-term US interest rates
(spread), the volatility of the S&P 500 (VOLA), oil price
inflation (Δoil), the correlation between the US stock and
government bond markets (COR), and the correlation
between the global stock market and the oil market
(COR-oil).

Before we examine the relative performance of
threshold versus linear models, we investigate the perfor-
mance of threshold variables other than the dependent
variable itself and examine whether different threshold
variables imply large differences in the forecasting perfor-
mance of their corresponding specifications. We therefore
compare the performance of the best self-exciting thresh-
old model with that of the best threshold model when
the threshold variable is one of the other eight threshold
variables listed in Table A2. With this exercise, we assess
whether states of the world defined by the commodity
price itself are informative enough to capture the eco-
nomic environment implied by various other threshold
variables. Figure 1 shows how many threshold models
(from the maximum number of eight threshold variables)
outperform the self-exciting model, for different perfor-
mance measures, different forecast horizons, and the var-
ious commodity sectors. Our results suggest that the use
of other threshold variables different from the overall
commodity price index adds predictive information to
our models. The self-exciting model is only better than
any other threshold model for the index corresponding to
precious metals, agriculture, and livestock when consid-
ering profit measures (DV and return). For the overall
GSCI index, at least half of the threshold models outper-
form the self-exciting specification for all forecast hori-
zons, irrespective of which performance measure used.
This implies that explicitly acknowledging information
like economic sentiment, uncertainty, interest rate
spread, oil prices, or correlation can help to improve
commodity price forecasting. Results are somewhat less
clear-cut for energy, industrial metals and agriculture,
and they are the least strong for precious metals and live-
stock. Even in these two sectors, however, in most cases,
the best threshold models in terms of forecasting ability
are not the self-exciting ones.

We turn to comparing the performance of the best
threshold model with the performance of the linear coun-
terpart that uses the same variables and lag structure. We
compare the predictive performance over the whole out-
of-sample period, as well as in the two regimes implied
by the threshold model separately. The best threshold

8 CRESPO CUARESMA ET AL.



models with respect to specific threshold variables mostly
outperform the corresponding linear models and also the
best linear models.10 In addition, threshold models out-
perform the corresponding linear specifications in at least
one regime, mostly, however, in both regimes. In Table 3,
we show the performance of the best threshold model
and the performance of the corresponding linear
model for the aggregate GSCI, for the threshold variable
“spread” (difference between long and short-term US
interest rates), as a representative example of the results
obtained. This particular class of models was chosen
based on the best short-term forecasting performance
(MSE, 1-month ahead) for the overall GSCI index. For
horizons of 1, 3, 6, and 12 months ahead, the total perfor-
mance of the best threshold model is better than that of
the corresponding linear model. When comparing the
regime-based performance of the best threshold model
and the regime-based performance of the corresponding

linear model, the best threshold model outperforms the
corresponding linear model in both regimes in most of
the cases (17 out of 20 cases), and the threshold model is
never outperformed by the corresponding linear specifi-
cation in both regimes.11 In addition, we also present the
results of the Diebold–Mariano test of equal forecasting
accuracy of the best threshold model against the corre-
sponding linear model (Diebold & Mariano, 1995), which
indicate statistically significant differences in predictive
performance for many of the forecast error measures, in
particular, for longer term forecasting.12

As a next step, we evaluate whether the total perfor-
mance of the best threshold model is better than the total
performance of the best linear model (out of all possible
linear models, not just those including similar variables).
The best threshold model (across all threshold variables)
always outperforms the best linear model if we consider
mean values of the performance criteria over the full out-

FIGURE 1 Number of threshold models

outperforming the self-exciting threshold

specification. Note: The heatmap shows the

result of comparing the best threshold model for

a given threshold variable other than the

dependent variable with the best threshold

model for the threshold variable being the

dependent variable. The numbers indicate the

number of threshold variables where the best

model outperforms the best self-exciting

threshold model. Eight different threshold

models are employed.
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of-sample period. Furthermore, in virtually all cases, the
best threshold model for any given threshold variable
outperforms the best linear model. Figure 2 presents the
results of the analysis by showing the number of thresh-
old models that outperform the best linear models for the
different error measures, horizons, and commodity price

subindices. The superiority of threshold models is system-
atic across all dimensions and can be observed when con-
sidering the distribution of the difference in squared
prediction errors between the best linear and and the best
threshold models. Figure 3 presents boxplots of these dif-
ferences across all commodity sectors for forecast

TABLE 3 Performance of best threshold model for the spread as a threshold variable against the corresponding linear model for the

aggregate commodity price index.

MAE MSE DA DV Return

1‐month horizon TDVAR(1,8) TDVAR(1,5) TDVAR(3,2) TDVAR(1,1) TDVAR(1,1)

1100 1110 1000 1100 1100

Threshold Total 4.06 0.28 68.45∗ 76.85∗ 29.75∗

Regime 1 4.59 0.23 68.97 80.42∗ 34.98∗

Regime 2 3.84 0.29 68.18 51.11 2.06

Linear Total 4.21 0.30 63.69 68.19 20.97

Regime 1 4.83 0.27 65.52 70.72 24.85

Regime 2 3.94 0.31 62.73 49.91 ‐0.07

3‐month horizon TDVAR(1,12) TDVAR(1,12) TDVAR(2,1) TDVAR(2,5) TDVAR(2,5)

1000 1000 1110 1110 1110

Threshold Total 8.70 1.46 67.86∗ 78.34 20.70

Regime 1 15.16 4.58 66.67∗ 72.50 17.98

Regime 2 7.83 1.04 75.00 80.20 21.34

Linear Total 9.22 1.71 61.90 56.16 9.72

Regime 1 16.74 6.18 59.03 61.31 9.51

Regime 2 8.20 1.11 79.17 54.52 9.77

6‐month horizon TDVAR(3,2) TVAR(2,12) TDVAR(2,2) TDVAR(2,2) TDVAR(2,2)

1100 0010 1010 1010 1010

Threshold Total 13.27∗∗ 4.24 67.26 77.16 13.87

Regime 1 15.07 11.94 65.71 69.22 10.74

Regime 2 12.30∗ ∗ ∗ 3.25∗ 67.67 80.08 14.71

Linear Total 14.46 4.76 64.88 63.94 10.27

Regime 1 15.22 11.48 62.86 51.55 4.41

Regime 2 14.05 3.90 65.41 68.51 11.84

12‐month horizon TVAR(2,10) TVAR(2,10) TVAR(2,1) TVAR(2,11) TVAR(2,1)

1100 1100 1010 1100 1100

Threshold Total 20.21∗∗ 7.85∗ 68.45∗ 74.60∗∗ 8.87∗∗

Regime 1 18.27∗ 6.81 66.67∗ 82.68∗ 9.67∗ ∗ ∗

Regime 2 20.74 8.13 79.17 71.00 4.04

Linear Total 25.00 10.82 54.76 46.91 −0.27

Regime 1 28.02 11.14 51.39 29.36 −1.18

Regime 2 24.17 10.73 75.00 54.76 5.13

Note: ∗ (∗∗/∗ ∗ ∗) Indicates rejection of the null hypothesis of equal forecasting accuracy between the best threshold model and the corresponding linear model at

10% (5%/1%). The four‐digit combination of ones and zeros below the model shows the inclusion (1) or exclusion (0) of the explanatory variables CLI, REER,
stock market index, and oil stock‐to‐use ratio. Petrol shading indicates that the best threshold model outperforms the best linear model. Light petrol shading
shows better total performance between best threshold model and corresponding linear model. Red shading indicates better regime‐based performance
between best threshold model and corresponding linear model. Regime 1 is defined by spreadt−k < γ, while regime 2 is defined by spreadt−k > γ.
Abbreviations: DA, directional accuracy; DV, directional value; MAE, mean absolute error; MSE, mean squared error.
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horizons of one and twelve months. The average differ-
ence is always positive, and the support of the distribu-
tion varies substantially across the different commodity
sectors. The pattern observed is relatively similar for fore-
cast horizons of one and twelve months: The interquar-
tile range is largest in the energy sector and smallest in
the livestock and precious metals sectors for both forecast
horizons.

5.2 | Threshold and explanatory
variables

Analyzing the best performing threshold models with
respect to threshold variables across commodity sectors, a

pattern can be extracted (see Figure 4, which presents the
ranking of models by threshold variable). For most of
the commodity price indices, as well as for the general
index, the threshold variables which tend to systemati-
cally appear in the best forecasting models in terms of
MSE are the spread, the correlation between the US stock
and government bond markets, and the composite lead-
ing indicator and inflation. The results indicate that cap-
turing the dynamics of particular commodity markets
requires different threshold variables. For example, while
the correlation between stock and bond markets appears
as a good predictor of regime changes in industrial
metals, precious metals, agriculture and livestock, it per-
forms weakly in the energy sector. The differences
between loss and profit measures of predictive error are

FIGURE 2 Number of threshold models outperforming the best linear model. Note: The graphs show a comparison of the best

threshold model (for a given threshold variable, including the dependent variable) with the best linear model. The numbers indicate how

many of the best threshold models outperform the best linear model. The maximum possible number is nine.
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remarkable: while using the correlation between stocks
and bond markets as a threshold variable leads also to
clear return predictive gains in industrial metals, precious
metals, agriculture and livestock, in other sectors, the
best performing threshold variable changes depending on
the predictive error measure used.

In general, the forecasting performance of different
best threshold models (implied by the different threshold
variables) does not vary substantially. Table 4 provides
some information on the variability of predictive perfor-
mance across best threshold models, as compared with
that of the best linear models. In particular, the table
reports the average deviation of the predictive error of
the best threshold models for a certain threshold variable
from the best overall threshold model (“average devia-
tion”), in proportion to the deviation of the best linear
model from the best threshold model (“linear deviation”).
Note that the best threshold model is always better than
the best linear model; the “average” threshold model,
however, may be worse than the best linear model
(implied by a ratio larger than one in the table). The lat-
ter is rarely the case. In almost all cases (111 out of 120),
the average deviation is smaller than the linear deviation
(reflected by a number in the table that is smaller than
one) and often to a very large extent. In a clear majority
of all cases, the average deviation is less than half the lin-
ear deviation, implying that, in general, threshold models

seem to perform (similarly) well and considerably better
than the best linear model.

We turn to examining the nature of the variables
included in the set of best threshold models, so as to
assess the relative importance of different theoretical
drivers of commodity price dynamics. Within the group
of best linear models, one group of commodity indices
can be found whose explanatory factors are similar
among themselves but different from those of other indi-
ces. This group includes the aggregate sector, the energy
subsector, and the industrial metals subsector. Best
models in the remaining indices (precious metals, agri-
culture, livestock) tend to contain determinants different
from this group and also different from each other. In
this (first) group, the CLI indicator appears particularly
important for prediction, while information on the oil
stock-to-use ratio does not seem to systematically
improve forecasting. By contrast, the importance of the
real effective exchange rate (REER), the world stock mar-
ket index and the aggregate GSCI index (for the subsec-
tors) depends on the forecast horizon and performance
criterion used. For the best threshold models, the pattern
is relatively similar to that for best linear models. For the
aggregate sector, energy, and industrial metals, the CLI is
an important predictor, the oil stock-to-use ratio is not
particularly important, and the real effective exchange
rate, the world stock market index, and the GSCI

FIGURE 3 Difference between squared errors for best linear and best threshold models. Note: The graphs show boxplots of the

differences between the squared errors for the best linear model and the squared errors for the best threshold model, for forecast horizons of

one (left) and twelve (right) months. The differences are taken such that a higher mass in the positive region (or a positive mean) indicates a

better performance of the threshold model.
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aggregate index (for sub-sectors) are sometimes
included in the best predictive specifications but not
systematically so. Figure 5 shows how often a given
explanatory variable is included in the best threshold
model, considering the total of nine best threshold
models (one for each threshold variable under consider-
ation: commodity price, VOLA, CLI, CCI, INF, Δoil,
spread, COR, COR-oil). For the precious metals sector,
the most important variable appears to be the REER,
while for the sectors agriculture and livestock, the most
important variable is the world stock market index,
followed by the CLI. These results emphasize the need
to assess sectoral dynamics differently in commodity
markets in order to optimize the predictive power of
multivariate time series models.

5.3 | Threshold models and performance
criteria

In a next step, we investigate patterns concerning the per-
formance of threshold models across predictive criteria.
In some situations, loss measures (MAE, MSE) and

profit-based measures (DA, DV, return) behave differ-
ently when comparing predictive accuracy between
regimes. For instance, threshold models with stock mar-
ket volatility as the threshold variable perform systemati-
cally better in times of low volatility than in times of high
volatility in terms of loss measures (MAE, MSE), while
they perform better in times of high volatility than in
times of low volatility in terms of profit-based measures
(DA, DV, return). Table 5 presents the forecasting results
of the aggregate GSCI with the threshold variable being
the US stock market volatility. In the table, shading indi-
cates better performance across the two regimes implied
by the threshold model. The results suggest that, for all
forecast horizons, commodity prices can be forecast more
accurately in times of low volatility than in times of high
volatility, but DA, DV, and the returns of a simple
trading strategy (i.e., all profit measures) are higher in
times of high volatility. While the first observation can
probably be explained through lower price variability and
thus better forecasting ability in times of low uncertainty,
the second observation may be related to the chances of
making more profits in large volatility markets when the
direction of price change is forecast correctly.

FIGURE 4 Best threshold variables according to mean squared error (MSE) and return. Note: The graph indicates which threshold

variables yield the best (1), second best (2), … , to the worst (8) performance according to MSE and return.
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An analysis of the forecast errors over the period con-
firms that loss and profit measures tend to be positively
correlated over the out-of-sample period for threshold
models, with high forecast errors occurring in times
when the direction of change was nevertheless correctly
predicted. Such a behavior can be observed by comparing
the MSE with profit measures over the out-of-sample
period. Figure 6 shows the two-year rolling average of
MSEs, returns, and DVs measured over the out-of-sample
period for the threshold model using the stock market
volatility as a threshold variable, when forecasting aggre-
gate GSCI one month ahead. These results indicate that
the financial instability in the aftermath of the financial
crisis of 2008, which led to large increases in commodity

prices, caused large prediction errors in terms of MSEs.
However, threshold models based on stock market vola-
tility (and other threshold variables) were able to predict
direction of change in such times of high uncertainty and
large price changes systematically better than their linear
counterparts. The same phenomenon can be observed
(albeit in smaller magnitude) for the generalized drop in
commodity prices that started in 2015. The correlation
between the 2-year rolling-averaged MSE and the return
is 0.88, and for DV, it is 0.77. These results give evidence
that threshold models, if specified efficiently, show a high
degree of flexibility in adapting to structural changes in
the dynamics of commodity prices and are able to
achieve systematic gains in predictive ability for

TABLE 4 Deviation of average performance of threshold models from performance of the best threshold model divided by deviation of

best linear model from best threshold model.

MAE MSE DA DV return

1‐month horizon All 0.48 0.51 1.12 0.80 1.43

Energy 0.40 0.54 0.42 0.70 0.59

Industrial metals 0.58 0.40 0.66 0.45 0.47

Precious metals 0.55 0.71 0.52 0.47 0.45

Agriculture 0.79 0.89 0.49 1.54 1.45

Livestock 4.07 1.04 0.55 0.71 0.70

3‐month horizon All 0.58 0.69 0.45 0.44 0.61

Energy 0.39 0.50 0.51 0.29 0.50

Industrial metals 0.98 0.54 0.60 0.59 0.59

Precious metals 0.78 0.65 0.50 0.36 0.44

Agriculture 0.65 0.49 0.33 0.40 0.34

Livestock 0.82 0.81 0.46 0.52 0.45

6‐month horizon All 0.98 0.82 1.25 0.54 0.69

Energy 0.90 0.67 0.65 0.41 0.59

Industrial metals 0.96 0.78 0.59 0.43 0.64

Precious metals 0.54 0.43 0.46 0.49 0.63

Agriculture 0.80 0.63 0.54 0.45 0.42

Livestock 0.94 0.99 0.72 0.36 0.50

12‐month horizon All 1.15 0.89 0.35 0.50 0.54

Energy 0.94 0.90 0.36 0.31 0.27

Industrial metals 0.72 0.47 1.33 1.01 0.99

Precious metals 0.51 0.55 0.58 0.41 0.79

Agriculture 0.55 0.51 0.47 0.39 0.53

Livestock 0.77 0.91 0.50 0.55 0.64

Note: Each figure is calculated as the average deviation of performance of a threshold model (across different threshold variables) from the performance of the
best threshold model divided by the deviation of the best linear model from the best threshold model. Deviations are taken in absolute values, so the numbers
are always positive. Note that the best threshold model is always better than the best linear model; the average threshold model, however, may be worse than
the best linear model (implied by a ratio larger than one). The smaller the ratio, the better the average threshold model compared with the best linear model.

Light petrol shading indicates smallest deviation of average threshold model compared with best linear model; red shading indicates largest deviation, across
commodity sectors.
Abbreviations: DA, directional accuracy; DV, directional value; MAE, mean absolute error; MSE, mean squared error.
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directional change. In this respect, our results add to a
growing literature comparing statistical and economic
approaches to measure predictive loss and profit and that
find conflicting evidence of predictive power depending
on the measure employed (see Dal Pra et al., 2018, for
instance).

5.4 | Threshold models across sectors

Figure 7 presents MSEs and returns of the set of best
threshold models for the different commodity sectors.
Prices of livestock, precious metals, and agricultural
commodities can be predicted comparatively well
compared to the rest of the sectors and the aggregate
index, while they tend to lead to low returns. On the
other hand, prices of energy and industrial metals lead
to the highest prediction errors but yield the largest
returns.13 This observation holds over all forecast
horizons and can be explained due to the fact that
larger deviations of the forecasts from its realizations
are needed in order to increase the implied profit. To a
lower extent, this pattern persists also for the other
profit-based measures. DA and directional deviation
appear higher for commodity sectors which are harder
to predict in terms of MSE. An overview of all perfor-
mance measures across all sectors and forecast horizons
is presented in Figure 8.

Considering best threshold models, both loss mea-
sures, MAE and MSE, and the return display a clear
structure relating to the forecast horizon. The loss mea-
sures increase, that is, forecast accuracy decreases, with
an increasing forecast horizon. For example, the MSE
when forecasting aggregate commodity prices increases
from 0.28% when forecasting 1 month ahead to 6.83%
when forecasting 12 months ahead. Using the return as a
predictive ability measure, we observe the best perfor-
mance for the shortest forecast horizon, with decreasing
performance for increasing forecast horizons. While the
return implied by a simple trading strategy for the aggre-
gate commodity index is 31.46% when forecasting
1 month ahead, the corresponding return is only 12.41%
when forecasting 12 months ahead.14 The observed pat-
terns (for MAE, MSE and return) with respect to the fore-
cast horizon hold for all commodity sectors (Table 6). For
the other two profit-based measures (DA, DV), the
behavior with respect to the forecast horizon is not simi-
lar across sectors. While for precious metals and agricul-
ture, the DA and DV grow with increasing forecast
horizons, the picture is mixed for energy, industrial
metals, livestock and for the aggregate sector. In most
cases, however, the DA and value statistics are largest
when forecasting twelve months ahead. See Table 7 and
Figure 8.

Table 6 indicates that the commodity sector
whose returns dominate those of the others is most of

FIGURE 5 Inclusion of explanatory variables in best threshold model. Note: The graph shows the number of times a given explanatory

variable (CLI, REER, stock, stu, GSCI aggregate) is included in the best threshold model (aggregated over the nine different threshold

variables). The maximum number possible is nine.
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the time the industrial metals sector. Exceptions
are the energy sector for return and DV for h¼ 1
and the sector of agriculture for DA and DV for h¼ 12.
The sector with the best loss-based performance is
livestock. The smallest loss-based performance occurs
for livestock in case of one month forecast horizon,

namely, 2.42% for MAE and 0.1% for MSE, and the
largest profit-based performance occurs for agriculture
for 12 months forecast horizon, namely, 80.95% for
DA and 89.41% for DV and for energy sector where the
return of 46.74% occurs in the case of 1 month forecast
horizon.

TABLE 5 Performance of best threshold model (threshold variable = volatility) and of corresponding linear model for the aggregate

index.

MAE MSE DA DV return

1‐month horizon TDVAR(1,2) TDVAR(1,4) TDVAR(3,4) TVAR(3,4) TDVAR(3,4)

1001 1100 1100 1100 1100

Threshold Total 4.10 0.29 69.05 75.86∗ 28.63

Regime 1 3.87 0.26 68.49 75.73∗ 25.83

Regime 2 4.57 0.50 72.73 76.49 48.66

Linear Total 4.23 0.30 64.88 67.60 24.44

Regime 1 3.82 0.29 65.07 65.26 22.59

Regime 2 5.07 0.42∗ 63.64 78.52 37.40

3‐month horizon TDVAR(2,4) TDVAR(2,9) TDVAR(3,12) TDVAR(1,4) TDVAR(1,4)

1000 1011 1000 1010 1010

Threshold Total 8.88 1.55 66.67 75.20∗ 19.05∗∗

Regime 1 8.63 1.23 65.52 71.83∗ 15.63∗∗

Regime 2 10.64 3.74 73.91∗ 91.35 45.15

Linear Total 9.15 1.85 63.10 65.01 13.33

Regime 1 8.88 1.32 64.14 59.17 8.94

Regime 2 11.00 5.54 56.52 92.99 47.90

6‐month horizon TDVAR(3,10) TDVAR(2,9) TDVAR(3,4) TDVAR(2,11) TDVAR(2,4)

1100 1011 1000 1110 1100

Threshold Total 14.23 4.43 67.86 74.11 11.27

Regime 1 13.11 3.82 65.99 68.15 6.51

Regime 2 19.17 8.68 80.95 96.80 45.51

Linear Total 14.46 4.92 66.67 64.02 9.67

Regime 1 13.09 4.22 65.99 66.70 7.37

Regime 2 20.54 9.83 71.43 53.80 25.53

12‐month horizon TDVAR(3,6) TVAR(3,11) TVAR(2,4) TVAR(2,4) TVAR(2,4)

1000 0101 1010 1010 1010

Threshold Total 21.14 8.36 69.64∗∗ 75.42 9.34

Regime 1 18.10 7.47 67.35∗∗ 68.84 6.95

Regime 2 39.35 11.41∗ 85.71 88.44 26.03

Linear Total 21.65 12.70 54.76 58.38 3.77

Regime 1 18.08 8.46 52.38 54.45 2.51

Regime 2 43.06 27.20 71.43 66.15 12.58

Note. ∗ (∗∗/∗ ∗ ∗) Indicates rejection of the null hypothesis of equal forecasting accuracy between the best threshold model and the corresponding linear model at

10% (5%/1%). The four-digit combination of ones and zeros below the model shows the inclusion (1) or the exclusion (0) of the explanatory variables CLI,
REER, stock market index, and oil stock-to-use ratio. Petrol shading indicates that the best threshold model outperforms the best linear model. Light petrol
shading shows better total performance between best threshold model and corresponding linear model. Grey shading indicates better performance between the
two regimes for the best threshold model. Regime 1 is defined by VOLAt�k ≤ γ, while regime 2 is defined by VOLAt�k > γ.
Abbreviations: DA, directional accuracy; DV, directional value; MAE, mean absolute error; MSE, mean squared error.
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FIGURE 6 Mean-squared error,

return and directional value, 2-year

rolling average (threshold model with

stock market volatility as the threshold

variable, aggregate GSCI, 1-month

forecast horizon)

FIGURE 7 Returns and mean squared error (MSE) of best threshold models for different GSCI sectors. Note: The graph shows the

returns (left) and MSE (right) of best threshold models for different GSCI sectors and different forecast horizons.
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5.5 | Threshold models and larger class
of models

In addition to standard linear vector autoregressive
models, we also consider a much larger class of models in
order to find out whether threshold models also outper-
form other specifications. This class includes different
univariate GARCH models, vector error correction

models and Bayesian VAR models (see Table 1). For this
larger class of models, we choose the lag structure based
on in-sample model selection based on optimizing the
Akaike information criterion.15 We also use an additional
performance measure, namely, the proportion of cor-
rectly forecast TPs.16

Our results show that threshold models have the best
predictive performance in the vast majority of cases (see

FIGURE 8 Loss and profit measures for different S&P Coldman Sachs commodity index (GSCI) sectors. Note: The graphs show MAE,

MSE, DA, DV and return for different GSCI sectors and different forecast horizons.
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TABLE 6 Performance of best threshold model across GSCI sectors.

MAE MSE DA DV Return

h¼ 1 Best TM 2.45 0.10 70.24 79.53 42.76

TV dep dep CLI VOLA VOLA

Sector Livestock Livestock Aggregate Energy Energy

h¼ 3 Best TM 4.84 0.38 76.79 88.57 31.67

TV COR COR Δoil Δoil Δoil

Sector Livestock Livestock Industrial met. Industrial met. Industrial met.

h¼ 6 Best TM 6.58 0.64 78.57 84.83 23.43

TV COR COR CLI COR dep

Sector Livestock Livestock Industrial met. Industrial met. Industrial met.

h¼ 12 Best TM 9.84 1.61 80.95 89.41 17.01

TV CLI CLI CCI CCI VOLA

Sector Livestock Livestock Agriculture Agriculture Industrial met.

Abbreviations: DA, directional accuracy; DV, directional value; MAE, mean absolute error; MSE, mean squared error.

TABLE 7 Performance of best

threshold models for different GSCI

sectors.

MAE MSE DA DV Return

1‐month horizon All 4.00 0.28 70.24 76.90 31.46

Energy 5.45 0.50 67.26 79.53 42.76

Industrial metals 3.72 0.26 70.24 78.89 34.47

Precious metals 3.23 0.17 66.67 72.90 19.75

Agriculture 3.64 0.23 67.86 74.82 23.75

Livestock 2.45 0.10 69.05 74.27 15.79

3‐month horizon All 8.70 1.46 68.45 78.34 20.70

Energy 11.77 2.63 70.83 78.31 27.71

Industrial metals 7.42 1.03 76.79 88.57 31.67

Precious metals 5.93 0.61 70.24 75.00 13.82

Agriculture 7.36 0.97 68.45 77.47 17.07

Livestock 4.84 0.38 66.07 74.01 10.10

6‐month horizon All 13.27 3.59 70.24 82.01 14.58

Energy 17.90 5.97 68.45 83.41 20.58

Industrial metals 11.65 2.40 78.57 84.83 23.43

Precious metals 8.94 1.35 70.24 79.80 12.83

Agriculture 9.56 1.60 73.21 81.26 14.66

Livestock 6.58 0.64 72.02 76.31 7.99

12‐month horizon All 19.64 6.83 71.43 83.62 12.41

Energy 25.02 10.97 70.83 82.14 14.67

Industrial metals 18.05 6.95 78.57 84.50 17.01

Precious metals 13.18 2.79 75.00 83.11 11.19

Agriculture 13.41 3.04 80.95 89.41 13.12

Livestock 9.84 1.61 73.21 80.60 6.64

Notes. The table shows the forecast performance of best threshold models for different GSCI sectors and
different forecast horizons. Light petrol shading indicates best performance across GSCI sectors, red shading
indicates worst performance.
Abbreviations: DA, directional accuracy; DV, directional value; MAE, mean absolute error; MSE, mean

squared error.
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Table 8). In only 25 out of a total of 144 cases (six com-
modity sectors, six performance measures and four fore-
cast horizons), the threshold model is outperformed by a
different specification.

None of the best models in this expanded specification
set can keep up with the best prediction models found in
the smaller set used before. In all cases without any excep-
tion, the best model determined in our previous analysis,
which is always a threshold model, outperforms the best
model found now, including the cases when the best
model now is not a threshold model (see Table 8).17 As
best threshold models for different threshold variables do
often perform similarly (well), as found in our previous
analysis, not only the best threshold model but often also
other threshold models (with different threshold variables)
outperform the corresponding best model found now.

The performance of best models with respect to both
loss measures and the return show a clear pattern with
respect to the forecast horizon: Forecast accuracy
decreases with an increasing forecast horizon and so does
the return. The proportion of correctly forecast TPs,
which was not analysed before, does not show a uniform
pattern with respect to the forecast horizon. However, it
is largest for the 12-month forecast horizon for the total
commodity index, for energy, and industrial metals,
while it is largest for the 1-month forecast horizon for the
remaining sectors (precious metals, agriculture, live-
stock). When forecasting 12 months ahead, the overall
index and energy are actually among the best (ranking
third and second) according to TP (see Table 8).

The vast majority (all but one) of the best performing
threshold models with respect to correctly forecasting

TABLE 8 Best models in smaller and larger class of models.

Smaller class of models Larger class of models

MAE MSE DA DV return MAE MSE DA DV return TP

h¼ 1 all 4.00 0.28 70.24 76.90 31.46 4.07 0.28 66.67 74.52 27.44 20.25

energy 5.45 0.50 67.26 79.53 42.76 5.64 0.55 64.88 75.08 37.62 24.38

industrial met. 3.72 0.26 70.24 78.89 34.47 3.81 0.27 69.05 77.85 32.23 21.48

precious met. 3.23 0.17 66.67 72.90 19.75 3.38 0.18 60.71 66.96 14.59 33.74

agriculture 3.64 0.23 67.86 74.82 23.75 3.70 0.25 63.69 70.28 18.70 19.38

livestock 2.45 0.10 69.05 74.27 15.79 2.50 0.11 65.48 73.06 14.68 31.51

h¼ 3 all 8.70 1.46 68.45 78.34 20.70 8.70 1.46 66.07 78.34 20.70 20.48

energy 11.77 2.63 70.83 78.31 27.71 12.03 2.73 67.26 75.30 24.69 25.84

industrial met. 7.42 1.03 76.79 88.57 31.67 7.76 1.20 72.02 80.89 25.13 28.38

precious met. 5.93 0.61 70.24 75.00 13.82 6.39 0.65 64.88 69.48 10.82 23.47

agriculture 7.36 0.97 68.45 77.47 17.07 7.77 1.06 64.29 72.28 14.29 22.62

livestock 4.84 0.38 66.07 74.01 10.10 5.30 0.46 63.69 70.07 8.29 29.35

h¼ 6 all 13.27 3.59 70.24 82.01 14.58 13.99 4.27 67.26 76.63 12.18 20.97

energy 17.90 5.97 68.45 83.41 20.58 18.33 7.59 67.86 76.91 16.57 18.42

industrial met. 11.65 2.40 78.57 84.83 23.43 12.67 3.25 73.81 80.16 19.91 25.58

precious met. 8.94 1.35 70.24 79.80 12.83 9.37 1.45 65.48 73.13 10.37 30.16

agriculture 9.56 1.60 73.21 81.26 14.66 10.88 2.08 67.86 75.56 12.36 28.07

livestock 6.58 0.64 72.02 76.31 7.99 7.46 0.88 63.69 68.86 5.76 23.33

h¼ 12 all 19.64 6.83 71.43 83.62 12.41 20.44 8.42 60.71 73.30 6.75 35.00

energy 25.02 10.97 70.83 82.14 14.67 26.92 13.09 65.48 72.75 11.75 36.36

industrial met. 18.05 6.95 78.57 84.50 17.01 21.82 7.97 70.24 76.81 13.39 39.39

precious met. 13.18 2.79 75.00 83.11 11.19 14.57 3.09 63.69 75.50 9.57 16.28

agriculture 13.41 3.04 80.95 89.41 13.12 15.58 3.87 75.00 79.12 9.71 29.55

livestock 9.84 1.61 73.21 80.60 6.64 10.54 1.79 66.07 72.78 5.17 26.32

Notes. The table shows the performance criteria of best models in “Smaller class of models” and of best models in “Larger class of models” for different GSCI
sectors and different forecast horizons. The best model in the smaller class of models (left panel) is always better than, or at least as good as, the best model in
the larger class of models (right panel). In the smaller class of models best models are always threshold models, in the larger class of models, in 25 out of the
total of 144 cases the best model is not a threshold model. Light petrol shading indicates the cases when the best model is not a threshold model.
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TPs for the aggregate index and the energy sector rely on
a threshold variable that is connected to oil (Δoil or
COR-oil). All models for the aggregate index and for
energy, except for one case, contain the oil stock-to-use
ratio as a determinant. Best models for precious metals
according to TP are either based on a threshold variable
related to oil or have the oil stock-to-use ratio among the
explanatory variables. The same holds for industrial
metals and livestock. For all indices, best models accord-
ing to TP rely on an oil related threshold variable for a
forecast horizon of 12 months. For all indices (but agri-
culture), the REER is included in the best model (accord-
ing to TP) for a 12-month forecast horizon.18

6 | CONCLUSIONS

In this paper, we present overwhelming evidence that
allowing for regime-dependent dynamics in models for
commodity prices leads to improvements in predictive
ability. This follows from the fact that the characteristics of
the dynamics of commodity prices and their interactions
with other variables are not constant over time but differ
depending on particular phenomena (e.g., periods of high
and low volatility in the equity markets, good and bad eco-
nomic times or the level of inflation). If these regimes can
be properly defined out of the data, the stability of dynam-
ics and interactions within particular regimes allow for bet-
ter predictions. However, the nature of these improvements
also differs across predictive measures and sectors.

We assess the quality of commodity forecasts with a
variety of different performance measures. In addition to
the MSE, the traditional forecast performance measure
used in many studies, we also consider measures that
evaluate DA, DV, the ability to predict TPs, and the
returns implied by a simple trading strategy based on
commodity price forecasts. These additional profit-based
measures do not directly assess forecast accuracy but
relate to other dimensions of forecasting quality and may
be more relevant for particular applications in policy and
applied work. We create an econometric modeling frame-
work to predict commodity price dynamics as captured
by the changes in an overall commodity price index, the
S&P Goldman Sachs Commodity Index, as well as in five
sub-indices (energy, industrial metals, precious metals,
agriculture, livestock). We consider short-term and long-
term forecast horizons (ranging from one month to
twelve months) and use monthly observations in the
period 1980–2018. Our forecast models include threshold
models that are based on different threshold variables.

We provide a rich set of empirical results. In addition
to the forecast performance comparison of threshold and

linear models we investigate the threshold variables
and explanatory variables that imply “best” models, the
structural pattern of evaluation criteria across different
regimes, and best sector-specific forecast performance.
We observe that threshold models with volatility in
equity markets defining the states of the economy seem
to perform better in times of low volatility than in times
of high volatility with respect to loss measures, while, on
the other hand, they seem to perform better in times of
high volatility than in times of low volatility with respect
to profit-based measures. Our results suggest that an
interesting trade-off appears between loss and profit mea-
sures, which implies that the particular aim of the predic-
tion exercise carried out plays a very important role in
terms of defining which set of models is the best to use.
The optimal specifications for applications where the
metrics for success are related to systematically predict-
ing the direction of change of commodity prices accu-
rately may thus be systematically different from those
aimed at providing point predictions with an absolute
minimal distance to the realized values. In addition, the
positive results found in the paper for threshold models
(as compared to part of the literature) are also related to
the fact that we exploit a large specification space as com-
pared with other studies, both in terms of potential cov-
ariates and threshold variables.

The importance of the oil market as a determinant of
commodity price dynamics is reflected in the results
of our analysis, with oil related variables appearing in the
best forecasting models for TPs (either as a covariate or a
threshold variable) in the aggregate GSCI, energy, and
precious metals models. This result indicates that particu-
lar oil price dynamics may act as a leading indicator of
changes in trends in commodity prices, and its inclusion
in econometric specifications aimed at predicting TP
probabilities may lead to significant improvements in
forecasting ability.

Exploiting the potential for improving predictive
ability in order to refine the specification and estima-
tion of models may be a potentially fruitful avenue of
future research. In particular, entertaining estimation
methods that differ from least squares (and thus do not
build on the minimization of in-sample squared errors)
or Bayesian methods with suitable prior specifications
could lead to further improvements in the prediction
of commodity prices. Enlarging the set of possible
models to account for nonlinearities to include smooth
transition in the parameters appears also as a natural
next step that builds upon the results presented in this
study, as does the implementation of threshold dynamic
factor models in the spirit of the specifications in
Massacci (2017).
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ENDNOTES
1 Type of stock-to-use ratio depends on the class of commodity
index that is forecast.

2 See Table A3 in Appendix A, where we present a summary of
such a testing exercise.

3 The type of stock-to-use ratio (namely for oil, wheat and meat)
depends on the specification of the commodity class under
consideration.

4 In principle, the threshold estimation could have been based on
optimizing an overall model selection criterion of the full system
of equations given by the multivariate model, but such an esti-
mation procedure could result in identifying threshold dynamics
related to other endogenous variables of the vector autoregressive
model, thus complicating the identification of the source of
potential improvements in predictive ability of commodity prices
using such specifications.

5 The S&P GSCI total return indices reflect the performance of a
total return investment in commodities, that is, the contract daily
return plus the daily interest on the funds hypothetically com-
mitted to the investment.

6 In alternative modelling exercises, we also included the indus-
trial production index as an additional variable but removed it
from the list of variables as it is heavily correlated with the CLI
and did not help to improve the forecast performance
substantially.

7 As a robustness check, we also performed the analysis over the
out-of-sample period January 2001 to December 2018 and
obtained similar results.

8 Note, however, that it is difficult to compute a reliable regime-
specific value of this measure. Three consecutive time points are

needed to calculate the TP, there are usually not that many TPs
in general, and there tend to be even less in each regime. It may
easily happen that the three consecutive time points required to
calculate the measure are not in the same regime. Therefore, we
do not use TPs in the comparison of threshold and linear models,
where the analysis of regime-based performance is essential.
However, we use this performance measure when analyzing
overall performance differences.

9 Notice that while the “buy low, sell high” trading strategy is not
a feasible trading strategy for physical commodities, as it would
require calculating spot returns net of the cost of carry such as
storage costs and insurance, it may well be implemented for
investable indices like the GSCI indices. See Miffre (2016) for an
overview on strategies in commodity markets.

10 The best linear models with respect to a certain performance
measure were chosen according to all possible combinations of
lag lengths as well as all combinations of explanatory variables
(in case of multivariate models) such that the performance mea-
sure under consideration is maximized.

11 A similar conclusion follows from Table 5, where we present the
results for the aggregate GSCI with the threshold variable being
volatility of the US stock market. These results are discussed
below in more detail when analysing a different aspect of the
forecasting exercise.

12 The use of the Diebold-Mariano test in the case of nested models
is known to be modestly conservative (see the Monte Carlo evi-
dence in Clark & McCracken, 2013), that is, to have size slightly
below nominal size. Since the tests of interest in our exercise have
the linear model as the null hypothesis, the potential bias plays
against the threshold model and thus provides particularly credi-
ble evidence for the nonlinear models if we observe a rejection.

13 Note that the different forecasting accuracy across commodity
sectors corresponds to different variability in returns, as sug-
gested above. Commodity sectors with smaller variability are eas-
ier to predict than those with larger variability; see Table 2 and
Figures 7 and 8.

14 Notice that the return we report does not account for potential
trading costs. The returns from actual trading strategies related
to different forecast horizons which include trading costs may be
different, and the current pattern with respect to the forecast
horizon may not be preserved.

15 Note that compared to the setting discussed before, where we
choose specifications based on out-of-sample validation, the in-
sample lag determination is in some sense more restrictive and
may provide (slightly) inferior forecast performance of the linear
and threshold models used before. This different model selection
approach when considering this larger set of specifications is
required due to the expensive computational price of carrying
out out-of-sample validation in the larger model space
employed here.

16 As discussed before, see Section 4, this measure cannot be reli-
ably computed for individual regimes in threshold models sepa-
rately and thus has not been used in the previous analysis.

17 This comparison does not include best models with respect to
the proportion of correct TPs, as this measure was not used
before.
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18 More detailed tables presenting the forecasting performance of
best models when a larger class of models is included can be
obtained from the authors upon request.
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APPENDIX A: DATA DESCRIPTION

TABLE A1 Contracts included in the S&P GSCI in 2019 (RPDW = reference percentage dollar weight; see S&P Dow Jones, 2019).

Commodity Trading facility 2019 RPDW Sector

Chicago wheat CBT 2.77% Agriculture

Kansas wheat KBT 1.15% Aagriculture

Soybeans CBT 3.14% Agriculture

Coffee ICE - US 0.72% Agriculture

Sugar ICE - US 1.54% Agriculture

Cocoa ICE - US 0.32% Agriculture

Cotton ICE - US 1.41% Agriculture

Lean hogs CME 1.91% Agriculture

Live cattle CME 3.48% Agriculture

Feeder cattle CME 1.27% Agriculture

WTI crude oil NYM / ICE 26.42% Energy

Heating oil NYM 4.45% Energy

RBOB gasoline NYM 4.48% Energy

Brent crude oil ICE - UK 18.61% Energy

Gas oil ICE - UK 5.56% Energy

Natural gas NYM / ICE 3.11% Industrial metals

Aluminum LME 3.89% Industrial metals

Copper LME 4.45% Industrial metals

Nickel LME 0.76% Industrial metals

Lead LME 0.78% Industrial metals

Zinc LME 1.28% Industrial metals

Gold CMX 3.72% Precious metals

Silver CMX 0.42% Precious metals
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TABLE A2 Data description and sources.

Abbreviation Variable Unit Note Source Code
Start
date Frequency

Commodity

GSCI S&P GSCI Index Total return index Ref DS: S&P GSCITOT 1980:1 m

GSCI-energy S&P GSCI Energy Index Total return index Ref DS: S&P GSENTOT 1982:12 m

GSCI-
industrial

S&P GSCI Industrial
Metals

Index Total return index Ref DS: S&P GSINTOT 1980:1 m

GSCI-
precious

S&P GSCI Precious
Metals

Index Total return index Ref DS: S&P GSPMTOT 1980:1 m

GSCI-agri S&P GSCI Agriculture Index Total return index Ref DS: S&P GSAGTOT 1980:1 m

GSCI-live S&P GSCI Livestock Index Total return index Ref DS: S&P GSLVTOT 1980:1 m

Explanatory variables: macro/finance

CLI US Composite
Leading Indicator

Index Amplitude adjusted,
seasonally adjusted

Ref DS:
OECD

USOL2000Q 1980:1 m

REER US real effective
exchange rate

Index Ref DS:
OECD

USOCC011 1980:1 m

stock world stock market
index

Index Ref DS: DS TOTMKWD 1980:1:1 d

Explanatory variables: fundamental

oOl-stu Oil stock-to-use ratio,
total world

ratio linear interpolation
from annual

own calc.,
OPEC

1980:1 m (a)

Wheat-stu US wheat stock-to-use
ratio

% linear interpolation
from annual

USDA (FAS) 1980:1 a

Meat-stu US meat stock-to-use
ratio

% lin interp from annual,
meat: beef & veal

USDA (FAS) 1980:1 a

Threshold variables

CLI US Composite
Leading Indicator

Index Amplitude adjusted,
seasonally adjusted

Ref DS:
OECD

USOL2000Q 1980:1 m

CCI US consumer
confidence index

Index Seasonally adjusted Ref DS:
Conference
Board

USCNFCONQ 1980:1 m

VOLA US Stock Market
Volatility

% SD of daily stock
market ret. in one
month, ann

own calc.,
Ref DS

1980:1 m

COR Cor betw. US stock &
bond markets, 6m

Cor Correlation between
stock and bond, 6m

own calc.,
Ref DS

1980:6 m

COR-oil Cor betw. world stock
& oil markets, 6m

Cor Correlation between
stock and oil, 6m

own calc.,
Ref DS

1980:6 m

Oil Oil price (Brent) USD/
b

Crude Oil BFO M1
Europe FOB $/BBl,
Brent

Ref DS: Ref OILBREN 1980:1 m

INF US inflation
(consumer price
index)

% All urban sample: all
items

Ref DS: BLS USCPANNL 1980:1 m

Spread diff. betw. long- and
short-term US int.
rates

pp IR-long minus IR own calc.,
Ref DS

1980:1 m

Auxiliary variables

(Continues)
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TABLE A2 (Continued)

Abbreviation Variable Unit Note Source Code
Start
date Frequency

Stock-us US stock market
index

Index S&P 500 Ref DS: S&P S&PCOMP 1980:1:1 d

Bond US government bond
market index

Index US tracker all Lives
DS government index

Ref DS: DS TUSGVAL
(RI)

1980:1:1 d

Stock World stock market
index

Index Ref DS: DS TOTMKWD 1980:1:1 d

IR US interbank rate, 3
months

% TR DS:
Reuters

USINTER3 1980:1 m

IR-long US treasury constant
maturity, 10 years

% Ref DS: US
Fed

FRTCM10 1980:1:1 d

Note: All variables with the unit “index” are indexed at 2000:1=100. The volatility is calculated as the standard deviation of the daily returns in a given month,
annualized. The correlations are calculated between returns in the respective markets over the last 65 days (� 3 months) or over the last 130 days (� 6
months), recorded at the end of a given month. If daily data are available for a given variable the monthly values are computed as the averages of the daily

values in a given month.
Abbreviations: b, barrel; BLS, Bureau of Labor Statistics; d, day; DS, datastream; GSCI, goldman sachs commodity index; own calc., own calculations; pp,
percentage points; Ref, refinitiv; SD, standard deviation; S&P, standard and poors.

TABLE A3 Results of regime testing over the out-of-sample period.

Threshold variable Mean number of regimes Median number of regimes

Long- and short-term US int. rate spread 2.05 2.00

US stock market volatility 1.42 1.00

US consumer confidence index 2.05 2.00

Cor. betw. US stock & bond markets, 6m 1.82 2.00

Cor. betw. world stock & oil markets, 6m 1.57 2.00

Inflation 1.71 2.00

Oil price change 1.37 1.00

US composite leading indicator 1.75 2.00

Note. The table presents the mean and median number of regimes chosen by recursive testing based on a Bai-Perron test (Bai & Perron, 2003).

26 CRESPO CUARESMA ET AL.


	Regime-dependent commodity price dynamics: A predictive analysis
	1  INTRODUCTION
	2  METHODOLOGY
	3  DATA
	4  FORECAST EVALUATION
	5  RESULTS
	5.1  Threshold models and linear models
	5.2  Threshold and explanatory variables
	5.3  Threshold models and performance criteria
	5.4  Threshold models across sectors
	5.5  Threshold models and larger class of models

	6  CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ENDNOTES
	REFERENCES
	APPENDIX A DATA DESCRIPTION


