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Abstract
Background  Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is 
challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate 
in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies.

Method  The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present 
work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), 
transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential 
expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells.

Result  Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus 
collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 
were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be 
used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly 
involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway.

Conclusion  The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in 
vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying 
the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, 
which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.

Keywords  Air-liquid interface, Gastric intestinal metaplasia, Markers, mucus secretion, Mucinomic sequencing, 
Transcriptomic sequencing
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Introduction
Gastric intestinal metaplasia (GIM) is a pathological 
type of intestinal mucosa-like morphological and struc-
tural alternations in the gastric mucosa, and represents a 
risk factor for intestinal-type gastric cancer (GC) [1, 2]. 
Approximately 0.25% and 10% of GIM patients progress 
to GC annually in Western Europe and East Asia, respec-
tively [3, 4]. GIM has been recognized as a precancerous 
lesion and its reverse can be significant for GC curing. 
GIM can be led by chronic inflammation in stomach, 
mainly caused by Helicobacter pylori infection, followed 
by autoimmune diseases [5]. However, its pathogenesis 
remains unclear and it is challenging to study GIM with-
out an appropriate in vitro model. Thus, confirming an 
appropriate in vitro model that is analog to the tissues 
from GIM patients is essential to GIM and GC studies 
and treatments.

Clonal results from human gastric specimens suggest 
that GIM glands are clonal and can form large clonal 
plaques through the division of the glands. This process is 
known as “regional carcinogenesis”, indicating GIM origi-
nates from gastric mucosal stem cells [6]. The organoids 
model and the air-liquid interface (ALI) model are two 
main stem cell models [7], notably, organoids are minia-
ture cell clusters formed by cells in a three-dimensional 
(3D) space in vitro, which can self-proliferate and differ-
entiate into different cell types [8]. A necessary condition 
for a successful in vitro model for human disease is the 
persistent proliferation of certain cells [9]. It has been 
reported that Wnt and R-spondin administrated in vitro 
can maintain the stemness of stem cells and promote 
their continuous proliferation [10, 11]. The previous 
studies have shown that human gastric mucosal epithe-
lial stem cells can be expanded indefinitely in 3D stromal 
cultures [12, 13]. The unique advantage of 3D organoids 
lies in their promising ability to faithfully recapitulate 
the intricate structure, functional properties, and genetic 
characteristics of the original tissue in vivo. This feature 
enables them to serve as a highly realistic and represen-
tative model, allowing for the accurate simulation of the 
complex dynamics observed in GIM tissue [14]. However, 
one limitation of 3D organoids is their tendency to form 
compact structures, which can hinder the penetration of 
drugs or microorganisms into the innermost cells [15]. 
Besides, the traditional 3D organoid model has certain 
restrictions when it comes to collecting mucus. The air-
liquid interface (ALI) model addresses these limitations, 
which makes it ideal for culturing mucus-producing stem 
cells, in this case, GIM [16].

Due to the complexity of stem cell culture and the sub-
stantial differences in the composition of the medium 
required by various cells [17], researchers have only 
induced GIM-related phenotypes by overexpressing 
CDX2 in 3D organoid models at present. This induction 

method, however, has certain limitations as it predomi-
nantly leads to a reduction in the expression of gastric 
epithelium-related genes and an increase in the expres-
sion of intestinal epithelial-related genes [18]. At present, 
only human primary tracheal [19] and gastric epithelial 
cells have been successfully cultured on the ALI model 
[20], no successful cultivated GIM stem cells have been 
set on the ALI model.

In this study, human GIM cells were first cultured using 
the ALI model with the presence of Wnt and R-spondin 
to maintain the stemness of the GIM stem cells. We aim 
to construct an effective in vitro model of human GIM 
cells for further studies and applications, set up new ideas 
and strategies for the target, pathogenesis and related 
interventions of GIM, and provide an important refer-
ence for the early detection and treatment of GIM.

Materials and methods
The selection and exclusion criteria for GIM patients
Three participants with recognized GIM features in any 
part of the stomach, encompassing focal and extensive, 
complete and incomplete manifestations, were included 
in this investigation. The patients diagnosed as oppor-
tunistic by GIM through symptomatic services or popu-
lation-based screening were included. GIM was defined 
by the histological identification of glands exhibiting 
phenotypic characteristics of the intestine. Three partici-
pants were included irrespective of documented H. pylori 
status, as infection may not be detectable once meta-
plasia occurred. Individuals with familial syndromes, 
such as autosomal dominant diffuse gastric cancer, were 
excluded [21]. Detailed patient information can be seen 
in Supplementary Table 1.

Source of cells
This study was approved by the Medical Ethics Com-
mittee of the Fifth Affiliated Hospital of Zhengzhou 
University with the approval number of K201811 (Sup-
plementary File 1). Written consent was obtained from 
the patients with endoscopic diagnosis of GIM before 
starting this study. One piece of GIM tissue and another 
piece of surrounding normal gastric tissue were taken 
from three patients with biopsy forceps. The GIM and 
normal gastric tissues were equally divided into two sec-
tions, one was placed in 4% paraformaldehyde (PFA) for 
fixation and the other was used for cell culture.

Separation of cells
Collagen type II was thawed, and the shaker incubator 
was set as 37℃ for 35 min. The tissue obtained from the 
gastroscopy was immersed in medium containing 10% 
fetal bovine serum, and washed twice with cold (4℃) 
PBS. Then 2 mL of PBS (+ 40 µL penicillin/streptomy-
cin + 8 µL gentamycin/amphotericin B) was added, and 
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the sample and PBS solution were placed in a centrifuge 
tube. Next, they were kept at room temperature (18–
25℃) for 30 min. PBS was discarded, 3 mL of collagenase 
type II solution was added to the tube, and the centrifuge 
tube was shaken at 37  °C for 30–40  min. The solution 
was fully mixed with a pipette, 3–5 mL of the precooled 
medium above was added, and the mixture was centri-
fuged at 1200 rpm under 4℃ for 5 min. The supernatant 
was discarded and 1 mL of cell basic medium was added. 
The cells containing the cell basic medium were gently 
aspirated five times with a 1 mL syringe (if there was still 
agglomeration, a 40 μm cell sieve was applied to remove 
the tissue block, and the cells were collected by reverse 
filtration and placed in another 1 mL centrifuge tube). 
Cells were counted with a common cell counter.

The medium composition of the GIM-ALI model
The basal medium widely utilized for culturing mam-
malian cells is Advanced DMEM/F-12 (ADF) medium 
[22]. To maintain cell stemness, Wnt3a, R-spondin1, and 
A83-01 were employed [23, 24]. Tissue culture buffer was 
provided by 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid [25]. Stem cell development was facilitated by 
Glutamax, nicotinamide, and human epidermal growth 
factor (EGF) [26–28]. Stem cells were maintained by B27 
and human noggin [29, 30], while N2 promoted their sur-
vival [31]. Human fibroblast growth factor (FGF)-10 and 
gastrin were capable of promoting stem cell proliferation 
[32, 33]. The ALI medium composition required for cul-
turing GIM stem cells consists of these components in 
the following proportions (Table 1).

Generation of GIM mucosoid cultures
The inserts (Millipore) were put into 24 wells in advance 
and the pre-cooled collagen gel (Thermo Fischer) com-
pound solution diluted with ddH2O was added. 200 
µL ALI medium mixed with 200,000-250,000 primary 

cells was added to each insert, and 500 µL ALI medium 
combined with 1 µL Y-27,632 factor (Sigma) was added 
beneath each insert after the solution solidified. The 
24-well plate was placed in a constant temperature incu-
bator with 5% CO2, 95% humidity and 37℃ for cultiva-
tion. The day as the cells were cultured on the insert was 
defined to be day zero of cell culture. On the third day, 
the ALI medium above the insert was removed to start 
the ALI culture. The medium beneath the insert was sub-
sequently changed twice a week while the mucus above 
the insert was collected (Supplementary video 1).

Immunofluorescence
4 µM paraffin-embedded sections were placed in an oven 
at 65  °C for 2 h and then placed in a xylene I dewaxing 
tank for 15  min, xylene II dewaxing tank for 15  min, 
anhydrous alcohol I dewaxing tank for 10  min, anhy-
drous alcohol II dewaxing tank for 10 min, 95% alcohol 
dewaxing tank for 5 min, 85% alcohol dewaxing tank for 
5  min and 75% alcohol dewaxing tank for 5  min. Next, 
the sections were washed 3 times with 1×PBS solution 
for 5  min and then immersed in antigen retrieval solu-
tion composed of 12 mL antigen retrieval solution and 
588 mL H2O for 5 min at 85℃ and 20 min at 65℃ suc-
cessively, all at room temperature (18–25℃) and washed 
three times with 1×PBS solution for 5  min. GIM cells 
were circled with an immunohistochemical pen and 
50–100 µL of blocking solution was added to each circle 
for 1–2  h at room temperature (18–25℃). The primary 
antibody diluted with the blocking solution was added to 
the circles and left to stand overnight at 4 °C. The slices 
were balanced at room temperature (18–25℃) for 1 h the 
next day and washed 3 times with 1×PBST solution for 
5 min. The secondary antibody diluted with the blocking 
solution was added to the circles at room temperature 
(18–25℃) for 2 h and the slices were washed 5 times for 
5 min with 1×PBST solution. Slices were mounted with 
the mounting medium containing 4’,6-diamidino-2-phe-
nylindole (DAPI). The images were observed and col-
lected under a fluorescence microscope.

Quantitative real-time PCR (qRT‐PCR)
The entire process of RNA extraction was carried out on 
ice. The inserts were washed with cold PBS twice, with 
200 µL Trizol added to each wash. The cell suspension 
was aspirated and collected in a 1.5 mL sterile enzyme-
free tube after waiting for 20 min. 400 µL of chloroform 
was added, the tube was shaken vigorously for 15 s, and 
left at room temperature (18–25℃) for 5 min. The sam-
ples were centrifuged at 4℃ and 12,000 rpm for 15 min. 
The upper aqueous phase was removed and transferred 
to a new 1.5 mL sterile enzyme-free tube. Isopropa-
nol equal to the volume of upper aqueous phase was 
added, slowly shaken 15 times and centrifuged at 4℃, 

Table 1  ALI medium composition
Factor Name Final con-

centration
ADF 18.45% V/V
Wnt3a 50% V/V
R-sondin1 25% V/V
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 10 mM
Glutamax 1% V/V
B27 2% V/V
nicotinamide 10 mM
N2 1% V/V
human epidermal growth f-actor(EGF) 20 ng/ml
A83-01 1 µM
human fibroblast growth factor(FGF)-10 150 ng/ml
human noggin 150 ng/ml
human gastrin100 µM 10 nM
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12,000–13,000 rpm for 10 min. The supernatant was dis-
carded and 1 mL of 75% alcohol was added to the tube, 
gently shaken, and centrifuged for 5  min. The superna-
tant was discarded, the remaining pellet was dried in air 
for 5  min, and dissolved 10 µL of diethyl pyrocarbon-
ate (DEPC) water. The absorbance at A260/A280 was 
detected by Nando drop ND200, and the RIN value of 
RNA was determined by Agilent Bioanalyzer 4150. The 
Reverse Transcription Kit (Roche Diagnostics, India-
napolis, IN) was used to generate complementary DNA. 
qRT-PCR was performed on the Step One Plus Real-
Time PCR System (Applied Biosystems, FosterCity, CA) 
using the SYBR-Green PCR kit (Roche Diagnostics, 
Indianapolis, I-N). Glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) was used as a reference gene. All prim-
ers are shown in Supplementary Tables 2, and the 2−ΔΔCt 
method [34] used made for qRT-PCR analysis.

Transcriptomic sequencing
The qualified RNA was prepared according to the instruc-
tions of the AB clonal transcriptomic analysis Lib Perp 
Kit to prepare the PE library. Library quality was assessed 
using an Agilent Bioanalyzer 4150 and the Illumina 
Novaseq 6000/MGISEQ-T7 sequencing platform was 
applied for sequencing. HISAT2 software (http://dae-
hwankimlab.github.io/hisat2/) was employed to compare 
the clean reads obtained by processing the Perl script [35] 
with the reference genome [36] to obtain mapped reads, 
and further FPKM values for each gene were calculated 
in Feature Counts (http://subread.sourceforge.net/).

Proteomic sequencing
The GIM and normal mucus were extracted and quan-
titatively analyzed. The samples were separated by the 
HPLC liquid phase system Easynlc and analyzed using 
a Q-Exactive mass spectrometer (AGC, Automatic gain 
control). The target was set as 1e6, maximum IT as 50 
ms and dynamic exclusion time as 60 s. The raw data files 
were analyzed and processed with the mass spectrometer.

Differentially expressed genes (DEGs) analysis
The processed transcriptomics data were imported 
into R software 4. 1. 3 [37], and differential analy-
sis was performed by the “DESeq2” package [38]. The 
screening threshold for DEGs was |log2FC|>1 [39] and 
P value < 0.05 [40]. The “pheatmap” package [41] and 
“ggplot2” package [42] were applied to draw heat maps 
and bar graphs.

Differentially expressed proteins (DEPs) analysis
Quantitative analysis with MaxQuant was utilized 
to ascertain protein abundance while removing anti-
library and contaminant proteins [43]. Proteins lacking 
any recorded features (those with zero counts across all 

samples) were excluded [44]. The dataset underwent log-
arithmic transformation and was then subjected to dif-
ferential expression analysis employing “Limma” package. 
Differentially expressed proteins (DEPs) were defined 
based on a significance threshold of P value < 0.05 and a 
fold change (FC) greater than 1 [45]. The relative protein 
abundance in gastric tissues was depicted through the 
creation of heatmaps and bar graphs using ggplot2 in R 
software [46].

GO and KEGG enrichment analysis and PPI network
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were per-
formed for the up- and down-regulated DEGs. The “clus-
terProfiler”, “richplot”, and “ggplot2” packages were used 
for analysis [47, 48]. The GO terms comprised 3 parts: 
Biological Process (BP), Cellular Component (CC), and 
Molecular Function (MF). The KEGG database included 
the systematic analysis, annotation, and visualization of 
gene functions [49]. The protein-protein interaction (PPI) 
network of DEGs was constructed by the STRING online 
website [50]. The PPI network was analyzed by Cytoscape 
software (version 3.9.0) [51].

GEO data processing
The GIM datasets GSE60427, GSE60662, GSE106656, 
and GSE78523 were retrieved from the Gene Expres-
sion Omnibus (GEO) database website (www.ncbi.nlm.
nih.gov/geo) [52]. Specifically, GSE60427 comprised 7 
normal cases and 8 GIM samples; GSE60662 contained 
4 normal samples and 4 GIM samples; GSE106656 fea-
tured 7 GIM samples; and GSE78523 encompassed 15 
normal samples and 16 GIM samples. These datasets 
consisted of various platform files, namely GPL17077, 
GPL13497, GPL6244, and GPL18990, housing clinical 
data of IM patients. ComBat, a classical Bayesian-based 
analysis method leveraging known batch information, 
was employed for batch correction on high-through-
put data. The “Combat” algorithm within the R pack-
age “SVA” (version 3.29.1) was utilized to mitigate batch 
effects among different GSE datasets [53]. The data nor-
malization was conducted post-batch effect removal, 
wherein the average value was considered as the expres-
sion value for a gene when multiple probes corresponded 
to it [54]. Finally, Principal Components Analysis (PCA) 
was employed to validate the results post-removal. To 
enhance the credibility of the analysis and verify the 
results, the GIM samples in GSE60427, GSE60662, and 
GSE78523 were designated as the train group, while 
those in GSE106656 were defined as the test group.

Cluster analysis of essential genes
The hub genes identified from the intersection of the 
DEGs obtained from the GEO datasets and the DEGs 

http://daehwankimlab.github.io/hisat2/
http://daehwankimlab.github.io/hisat2/
http://subread.sourceforge.net/
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gained from the experimental groups were visualized by 
Venn diagrams [55]. The “ConsensusClusterPlus” pack-
age [56] was used to process cluster analysis on the sam-
ples from the GEO datasets. More details were shown in 
the heatmap.

Statistics
The statistical analysis was conducted using SPSS 23.0 
(SPSS, Inc., Chicago, IL, USA), R software (version 4.2.1), 
and GraphPad Prism 8.0 software (GraphPad, Inc., La 
Jolla, CA, USA) [57, 58]. Each experiment was repeated 
3 times on 3 samples to ensure robustness and repro-
ducibility. For the identification of differential genes 
between the two groups of samples, The Wilcox test was 
utilized for statistical comparison. This non-parametric 
test is suitable for analyzing data that do not meet the 
assumptions of normality. It helps determine if there are 
significant differences between groups [59]. The hyper-
geometric distribution, a discrete distribution suitable 
for describing the number of sampling instances from 
a limited total sample pool, where n samples are drawn 
each time without replacement until a specified type of 
sample is obtained, was employed. The hypergeometric 
test was applied to conduct GO and KEGG enrichment 
analysis on differentially expressed genes (DEGs) [60]. 
For comparison of the means of two groups of inde-
pendent samples, the t test was utilized [61]. Numeric 
expressions of P values were provided for each analysis, 
with statistical significance defined as P < 0.05 (*P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001) [62]. To control 
for type I errors (false positives) resulting from multiple 
comparisons, the P values of genes were corrected using 
various methods, including Bonferroni [63], Benjamini-
Hochberg [64], Holm, Hochberg [65], Hommel [66], and 
BY [64]. These correction methods adjust the significance 
threshold to account for the increased chance of obtain-
ing false positives when conducting multiple statistical 
tests simultaneously. By applying these correction meth-
ods, the study aimed to mitigate bias and enhance the 
reliability of the results.

The raw data, scripts and supplementary materials 
have been uploaded to https://www.jianguoyun.com/p/
DSA9JDwQw5fKDBiEtc4FIAA.

Results
Verification of GIM tissue and cells
Prominent goblet cells were visible in the GIM tissue 
after HE staining (Fig.  1A-C). We found that GIM tis-
sue expressed a large amount of MUC2 and a small 
amount of MUC5AC by immunohistochemistry and 
immunofluorescence, while normal gastric tissue spe-
cifically expressed MUC5AC (Figs. 1D-I and 2A-F; Sup-
plementary Fig.  1), which agreed with their molecular 
characteristics.

We found that GIM and gastric epithelial cells devel-
oped into a mature columnar epithelial morphology 
while GIM and normal samples separately specifically 
expressed MUC2 and MUC5AC based on immunofluo-
rescence using the ALI model, which is consistent with 
in vivo findings (Fig. 3A&B; more details in Supplemen-
tary Fig. 2). The expression of intestinal markers (MUC2, 
CDX1, and CDX2), epithelial stemness markers (CD44, 
LGR5, and CTNNB), epithelial markers (KRT18, KRT19, 
and CDH1), and gastric gland cell type markers (PGC, 
MUC6, MUC5AC, CHGA, and ATP4B) kept relatively 
stable with the cells’ passage (Fig.  3C-F). Moreover, the 
importance of each component in the ALI medium was 
determined by qRT-PCR (Supplementary Fig.  3). These 
results suggest that our ALI model can be used to study 
GIM.

The differentially expressed genes (DEGs) functions 
between GIM and normal samples
To reveal the functions and relationships of DEGs, we 
conducted enrichment analysis and PPI network analysis. 
Compared with normal samples, the upregulated DEGs 
in GIM samples were mainly related to cell junction 
(Fig.  4A). In contrast, the down-regulated DEGs were 
primarily enriched in the negative regulation of Wnt 
signaling pathway by GO enrichment analysis (Fig.  4B). 
Moreover, the upregulated DEGs were relative to leuko-
cyte transendothelial migration, proteoglycans in cancer 
(Fig. 4C), while down-regulated DEGs were abundant in 
the pentose-glucuronic acid conversion pathway and the 
PPAR lipid synthesis pathway through the KEGG path-
way enrichment analysis (Fig. 4D). Eight nodes adjacent 
to SEMA5A and SPON2 were identified (Supplementary 
Fig. 4A). The top eight DEGs that were most connected 
were applied to construct a protein interaction net-
work map (Supplementary Fig.  4B). Multiple pathways 
enriched in upregulated genes in the GIM samples were 
associated with GC progression, and these results sug-
gested that GIM may affect GC occurrence through these 
genes.

Enrichment analysis of differentially abundant proteins in 
GIM and normal samples
The enrichment analysis was similarly conducted to learn 
about the functions of differentially abundant proteins 
between GIM and normal samples. We found that the 
differentially abundant proteins were mainly enriched in 
the interleukin-like epithelial-mesenchymal transition 
(EMT) inducer domain (Fig.  5A). They were primarily 
associated with oxidative phosphorylation-related path-
ways and PPAR-Lipid synthesis-related pathways in the 
KEGG pathway enrichment analysis (Fig.  5B), and also 
related to the response to mis-folded proteins, nucleoside 
diphosphatase activity and polarized growth sites by GO 

https://www.jianguoyun.com/p/DSA9JDwQw5fKDBiEtc4FIAA
https://www.jianguoyun.com/p/DSA9JDwQw5fKDBiEtc4FIAA
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analysis (Fig. 5C). In addition, they were mainly located 
in the cytoplasm and nucleus (Fig.  5D). These results 
indicate that GIM may also influence the development of 
GC by these proteins.

Batch correction of GEO datasets and identification of 
critical genes of GIM
To better make use of the GIM and normal samples in the 
GEO datasets and screen for potential markers of GIM, 
batch effects were removed among GSE60427, GSE60662 
and GSE78523 as GIM train datasets (Fig.  6A&B). The 
data visualized by Venn diagrams allowed us to deter-
mine the intersection of the GEO datasets DEGs and the 
experimental group DEGs. The essential genes, MUC17, 
CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, and 
NMUR2, were upregulated in GIM samples compared 
with normal samples; the down-regulated essential genes 

were GLDN, REP15, SLC5A5, and MAL (Fig.  6C&D). 
The P value of these genes was processed multiple test-
ing corrections in Supplementary Table 3. In addition, 
GSEA enrichment analysis (Supplementary Fig.  5) was 
conducted on the 13 genes exhibiting differential expres-
sion between GIM and normal samples. It was observed 
that genes demonstrating elevated expression levels in 
GIM samples were primarily associated with cellular-
cytokine interactions and immune-related functional-
ities. The samples from the above datasets were clustered 
into “Cluster1” and “Cluster2” according to these criti-
cal genes (Fig. 6E). “Cluster1” and “Cluster2” were inter-
sected with the GIM samples and normal samples in the 
GEO databases by using a Venn diagram (Fig. 6F). Only 
5 samples cannot be accurately divided into GIM and 
normal samples. The error rate is 5/55 = 9%<10%. Fur-
thermore, the heatmap results also showed that these 

Fig. 1  Identification of the GIM organization. (A-C) HE staining of 3 GIM samples. The nucleus is stained blue, the cytoplasm is stained red and Red arrows 
indicate goblet cells. (C-F) Immunohistochemistry of 3 GIM samples. Nuclei are stained blue and MUC2 is stained brown. (G-I) Immunohistochemistry of 
3 GIM samples. Nuclei are stained blue and MUC5AC is stained brown
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critical genes could be used to differentiate GIM sam-
ples from normal ones (Supplementary Fig.  6), suggest-
ing that these genes could serve as potential markers 
for GIM. The analysis of the GIM test datasets revealed 
that the expression levels of CDA, TBX3, FLVCR2, ONE-
CUT2, ACY3, and NMUR2 were significantly elevated 
in the GIM samples compared with the normal ones. 
Conversely, the expression of GLDN, REP15, and MAL 
showed significantly reduced in GIM patients (Supple-
mentary Fig.  7, P < 0.05). These findings validate prior 
research and underscore a high level of conformity in the 
expression patterns of GIM biomarkers.

Validation of crucial genes linked to GIM
Based on qRT-PCR, we found that compared with nor-
mal samples, the expression of MUC17, CDA, TRIM15, 
TBX3, FLVCR2, ONECUT2, ACY3, and NMUR2 was 
significantly (P<0.05) higher in GIM (Fig.  7A&B), while 
expression of GLDN, REP15, SLC5A5, and MAL was sig-
nificantly lower (P < 0.05, Fig. 7).

Discussion
This work confirmed that the ALI model provides the 
possibility for constructing GIM cells in vitro. We cul-
tured human GIM and gastric mucosal epithelial cells 

using the ALI model for the first time, detected MUC5AC 
expression in normal gastric epithelium samples and 
MUC2 expression in GIM samples by IF, and verified the 
long-term stability of the GIM-ALI model for expressing 
intestinal markers, epithelial stem markers, stem markers 
and gland cell type markers using qRT-PCR. Consistent 
with our results, MUC5AC is secreted by the pit cells of 
the gastric antrum and corpus [67], and MUC2 is a gut 
marker highly expressed in GIM [68]. Studies had shown 
that CDX1, CDX2, and MUC2 are specifically expressed 
in GIM [69]; markers of epithelial stem include CD44, 
LGR5 and CTNNB [70–72], and KRT18, KRT19 and 
CDH1 are markers of epithelial cells [73–75]. Gastric 
gland cell type markers include PGC, MUC5AC, MUC6, 
and ATP4B. PGC is considered the final product of gas-
tric mucosa maturity and differentiation [76]. The marker 
of gastric pit cells is MUC5AC, and the marker of gas-
tric pyloric cells is MUC6 [77]; CHGA protein secreted 
by gastric mucosal enterochromaffin-like (ECL) cells is 
an acidic protein [78]. The protein expressed by ATP4B 
is a proton pump that plays a crucial role in gastric acid 
secretion [79]. Thus, adopting these selected genes to 
verify the stability of the GIM-ALI model in this study 
provided a proof-of-concept, representing a reliable and 
useful strategy for the future.

Fig. 2  Immunofluorescence of GIM and normal gastric samples. (A-C) Expression of MUC5AC and MUC2 in GIM samples. (D-F) The expression of MUC5AC 
and MUC2 in normal gastric tissue samples. The nucleus is stained blue, MUC5AC is stained green, and MUC2 is stained red
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Transcriptomic and MS analyses were performed 
on human GIM and normal samples. Oxidative phos-
phorylation, an important source of energy and meta-
bolic precursors in GC cells, provides a potential target 
for GC therapy [80]. The highly expressed protein in 
GIM samples was primarily associated with oxidative 
phosphorylation-related pathways, which suggests that 
these pathways may be necessary for GIM to develop into 
GC. By combining the transcriptomic analysis results of 
the human GIM and normal samples in the GEO datas-
ets with the results in the experimental group, potential 
markers of GIM were: MUC17, CDA, TRIM15, TBX3, 
FLVCR2, ONECUT2, ACY3, NMUR2, GLDN, REP15, 
SLC5A5, and MAL. After verification by qRT-PCR exper-
iments, the differences were all statistically significant 
(P<0.05).

Among the potential markers of GIM found in this 
study, only ONECUT2 has been reported in human GIM 
samples, which can induce and trigger the expression of 
ACSL5 through epigenetic changes in GIM. ONECUT2 
and ACSL5 may synergistically promote the transdif-
ferentiation of gastric mucosal epithelial cells to GIM 
cells and the progression of GIM to GC [81]. In GC, the 
expression of TRIM15 and TBX3 are specific and inde-
pendent factors for poor prognosis [82, 83]. The suppres-
sion of GC cells invasion and metastasis is accomplished 
through the inhibition of STAT3 phosphorylation by 
MAL [84]. This supports the idea that the upregulation 
of these genes, TRIM15, TBX3, and MAL, are potentially 
responsible for the occurrence of GIM and GC.

Currently, stimulation of GES-1 cells by bile acid 
induces the GIM phenotype, which contains certain 

Fig. 3  GIM ALI model immunofluorescence and qRT-PCR identification. (A) The expression of MUC2 in GIM samples using the ALI model after 10 days 
of culture under added Wnt and R-spondin (+ W + R) conditions visualized by red fluorescence (B) The expression of MUC2 in normal samples using the 
ALI model after 10 days of culture under added Wnt and R-spondin (+ W + R) conditions seen by red fluorescence. (C-F) Expression of intestinal markers, 
epithelial stemness markers, epithelial markers and gastric gland cell type markers in GIM samples remain relatively stable with cell passage
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limitations, as the model solely exhibits an elevation in 
GIM markers through in vitro intervention [85]. Fur-
thermore, GIM features can be induced by overexpress-
ing CDX2 [85] or knocking out ATP4a [86] in the gastric 
mucosa of mice, albeit this model, utilizing mice and 
employing gene-editing technology to induce the emer-
gence of the GIM phenotype, differs in species from 
humans. Furthermore, human induced pluripotent stem 
cells (hiPSCs) were differentiated into gastric organoids, 
subsequently in which overexpressed CDX2 via the tet-on 
system, the expression of partly gut genes and previously 
reported genes associated with GIM were enhanced. 
Despite the utilization of hiPSCs, this model is also gene-
edited as well as incapable of collecting mucus secreted 
by human GIM goblet cells [18]. None of the three mod-
els featuring GIM phenotypes in the current study can 
realistically portray the state of human GIM.

Moreover, the GIM-ALI model represents a significant 
advancement, allowing for the long-term, stable in vitro 
cultivation of GIM cells. This achievement fills a criti-
cal void in the realm of in vitro GIM cell models, paving 
the way for enhanced biomarker discovery and more 
in-depth investigations into the mechanisms underly-
ing GIM. Notably, this model offers a unique avenue for 
the collection of mucus secretions above the inserts, a 
distinguishing feature of GIM cells [87], thereby facili-
tating a deeper exploration of the role of mucus in GIM 

pathogenesis. In parallel, the GIM-ALI model presents 
novel strategies for investigating the impacts of diverse 
substances, encompassing drugs, metabolites, and bacte-
ria co-cultivated with GIM cells treated under the insert, 
as well as for finding out the interactions of GIM cells 
with other cellular entities. The GIM-ALI model offers a 
novel framework, facilitating a deeper exploration of the 
pathogenic factors associated with the onset of GIM and 
elucidating how cytokines secreted by other cells influ-
ence the initiation and progression of GIM [16]. These 
attributes render the GIM-ALI model to simulate the 
real situation of GIM tissues in vivo. This provides a valu-
able tool for unraveling the mechanisms by which these 
agents either hinder or promote GIM progression.

While the GIM-ALI model presents certain advan-
tages over conventional GIM in vitro models and in 
vivo animal models, it still harbors limitations. Primar-
ily, the model solely comprises the GIM epithelial layer, 
thus lacking engagement with the vascular, immune, and 
nervous systems [88]. Moreover, the GIM-ALI models 
are relatively high costs attributable to the necessity for 
reagents and growth factors/inhibitors, alongside their 
reliance on extracellular matrices (e.g., matrix) and pro-
longed culture periods [89]. In addition, a significant 
amount of time is required for GIM-ALI model cultiva-
tion and the present GIM-ALI model fails to faithfully 
replicate the metabolism of its parent organ. To mitigate 

Fig. 4  The enrichment and PPI network of DEGs between the GIM and normal group. (A-D) GO and KEGG pathway enrichment analysis of up-regulated 
and down-regulated DEGs in GIM samples. Red and purple circles represent up-regulated and down-regulated DEGs in GIM samples, respectively. The 
larger the circle, the more the DEGs are enriched; the darker the circle, the more significant the difference
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certain constraints, efforts are being made by bioengi-
neers to develop precisely defined culture media and 
extracellular matrix systems [90]. Notably, a gastric epi-
thelial ALI model has been developed by the German 
laboratory, and the identical GIM-ALI model has been 
established using our methodology for drug screening 
purposes (data in process).

Briefly, the development of the GIM-ALI model is a 
significant advancement, offering a novel in vitro plat-
form for GIM studies. This model’s ability to mimic in 
vivo conditions and facilitate mucus secretion studies is 
particularly noteworthy. In addition, the identification of 
novel potential markers of GIM and the innovative GIM-
ALI model represent significant contributions to the 
field, offering a new scene for research and therapeutic 
intervention. Our findings have significant implications 
for understanding GIM pathogenesis and its progres-
sion to GC, offering potential biomarkers for early detec-
tion and targets for therapeutic intervention [91]. In the 

future, our research aims to leverage the GIM-ALI model 
for crucial applications, including drug screening and the 
development of innovative therapeutic interventions. We 
also plan to delve into genetic and epigenetic studies to 
unravel the intricate mechanisms underlying GIM pro-
gression. Moreover, we envision adapting this model to 
individual patient cells to explore its potential in person-
alized medicine approaches. Furthermore, we are com-
mitted to expanding the utility of the GIM-ALI model 
in various aspects of gastrointestinal tract research. This 
includes investigating other precancerous lesions and 
conducting direct comparisons with in vivo observa-
tions to gain deeper insights. We are also dedicated to 
overcoming technical challenges such as batch effects 
and sample diversity that may arise during experimen-
tation. To bolster the credibility and widespread adop-
tion of the GIM-ALI model, we will actively collaborate 
with the broader research community. By engaging mul-
tiple research centers, we aim to assess and validate the 

Fig. 5  Comparison of differentially abundant proteins between the GIM and normal group. (A&B) The domain and KEGG pathway enrichment of differ-
entially abundant proteins between GIM and normal samples. The circle size represents the number of differentially abundant proteins enriched in each 
case: the larger the circle, the higher the number. The color gradually changes from green to red, indicating that the difference is more distinguished. (C) 
The GO enrichment of differentially abundant proteins between the two sample groups. The color gradually changing from yellow to red shows that the 
difference is becoming more conspicuous. (D) The cellular distribution of differentially abundant proteins between the two sample groups
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Fig. 6  Batch correction between GEO datasets and identification of GIM key genes. (A&B) Batch correction between GEO datasets of GIM and normal 
samples. (C&D) The intersection of the upregulated and downregulated DEGs in the GIM sample from GEO datasets and the experimental group. (E) 
Cluster analysis of samples among GEO datasets. (F) The intersection of two clusters with GIM and normal samples in the GEO database
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Fig. 7  qRT-PCR validation of key GIM genes. (A&B) The key upregulated genes in GIM. (C) The key down-regulated key genes in GIM. *: P<0.05; **: P<0.01; 
***: P<0.001; ****: P<0.0001
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model’s performance across different settings. This col-
laborative effort will enhance the reliability and general-
izability of our findings.

Conclusion
GIM cells using the ALI model were successfully cultured 
for the first time, revealing 12 potential markers of GIM. 
This study fills the gap of lacking effective in vitro mod-
els of human GIM cells and provides insights into the 
GIM pathogenesis. It’s recommended that future stud-
ies explore the identified markers’ therapeutic potential, 
expand the GIM-ALI model’s applications, and strive for 
larger, more diverse study cohorts to validate and extend 
these findings.
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