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Abstract

Serum creatinine in neonates follows complex dynamics due to maturation processes,most pronounced in the first few weeks of life.The development
of a mechanism-based model describing complex dynamics requires high expertise in pharmacometric (PMX) modeling and substantial model
development time.A recently published machine learning (ML) approach of low-dimensional neural ordinary differential equations (NODEs) is capable
of modeling such data from newborns automatically. However, this efficient data-driven approach in itself does not result in a clinically interpretable
model. In this work, an approach to deriving an interpretable model with reasonable PMX-type functions is presented. This “translation” was applied
to derive a PMX model for serum creatinine in neonates considering maturation processes and covariates. The developed model was compared to a
previously published mechanism-based PMX model whereas both models had similar mechanistic structures. The developed model was then utilized
to simulate serum creatinine concentrations in the first few weeks of life considering different covariate values for gestational age and birth weight.
The reference serum creatinine values derived from these simulations are consistent with observed serum creatinine values and previously published
reference values. Thus, the presented NODE-based ML approach to model complex serum creatinine dynamics in newborns and derive interpretable,
mathematical-statistical components similar to those in a conventional PMX model demonstrates a novel, viable approach to facilitate the modeling
of complex dynamics in clinical settings and pediatric drug development.
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Introduction
A steady state between creatinine synthesis and clear-
ance is not reached during the first months of hu-
man life because of developmental changes in normal
physiology as well as superimposed pathophysiological
alterations. Until birth, the fetal renal clearance capac-
ity remains very limited, with the placental circulation
acting as a “physiological hemodialysis circuit,” so that
fetal serum creatinine values nearly equal maternal
ones until (near-)term gestational age. From (near-
)term gestational age onward, the fetal creatinine values
are somewhat higher than the maternal ones, likely
because of limitations of the placental clearance ca-
pacity and increasing fetal creatinine synthesis (muscle
mass related).1–3 Once disconnected from the placen-
tal circulation at birth, this placental dialysis circuit
disappears and will be gradually substituted by an
increasing, “endogenous” renal elimination capacity
of the newborn. This phenomenon is mainly driven
by a significant increase in renal blood flow from 3%
to 25% of the fetal cardiac output, as the neonatal
kidney is highly vasoreactive. Based on drug-specific

observations in neonates and young infants, renal elimi-
nation hereby depends on prenatal (e.g., birth weight or
gestational age) and postnatal maturation (e.g., current
weight, or postnatal age).4–6 In addition, there is some
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weight loss (−6% to −8% of the birth weight) in
the first days of life, related to water losses, so that,
for example, sodium and creatinine may increase due
to volume constriction, while an increase in muscle
mass will happen once the newborn is in anabolic
condition.7

Since all these maturational physiological changes
are most prominent in early infancy, this is reflected in
extensive inter- and intraindividual variability in serum
creatinine, resulting in widely dispersed data instead
of information that can be interpreted and used at
bedside by health care providers. This pattern results
in what Boer et al8 have described as the “broken
stick” pattern in serum creatinine throughout infancy.
Further reflecting on this, a “hockey” stick is perhaps
a more accurate description to focus on the additional
variability in the first 6–8 weeks of life. In the neonatal
(intensive) care setting, these maturational changes are
further modulated by pathophysiological changes like
asphyxia, nephrotoxic drugs, or impaired hemodynam-
ics, further increasing this intra- and interindividual
variability in serum creatinine values.

Although the relevant covariates are reasonably well
identified and quantified and there is knowledge on the
mechanistic understanding of the postnatal creatinine
patterns and its covariates, the conversions of these
phenotypic clouds of serum creatinine in neonates into
useful information to guide daily practices in the indi-
vidual newborn or young infant necessitate more ad-
vanced data analytical approaches such as mechanism-
based pharmacometric (PMX)modeling9,10 ormachine
learning (ML)-based analyses.11

In this manuscript, a novel ML approach called
neural ordinary differential equation (NODE)11–13 is
utilized tomodel serum creatinine dynamics in extreme-
low birth weight (ELBW, <1 kg) neonates. NODEs
approximate the dynamics, that is, the right-hand side
(derivative) of a differential equation, with neural
networks (NNs). Thus, NODEs are data-driven ap-
proaches that do not require prior knowledge about
the dynamics. This is especially useful when complex
dynamics need to be analyzed. ML models are usually
considered to be black-box models, that is, the modeler
does not get information about the explicit model
structure and the underlying dynamics. However, that
is essential information for their applicability in clinical
pharmacology and PMX, particularly in pediatrics.
Thus, a modeling approach was utilized to translate
the dynamics learned by the ML approach back to
an interpretable model, addressing the “black-box as-
pect”. This scientific work aimed to utilize a purely
data-driven model to investigate potential unidentified
covariates and to test whether a NODE-based ML ap-
proach can confirm previously developed mechanism-
based PMX models.

Methods
Ethics approval was previously granted for the data
collection and analysis (S63405). Informed consent
was hereby waived because of the retrospective and
observational nature of the dataset.

In this section, we describe the (i) neonatal dataset,
(ii) serum creatinine and estimation of kidney function,
(iii) NODE-based ML modeling, (iv) machine learn-
ing covariate modeling, (v) translation back to inter-
pretable “mechanism-based”model, (vi) clinical model
refinement and model evaluation, and (vii) model sim-
ulations to derive a simulation plot showing creatinine
dynamics in preterm newborns.

Neonatal Dataset
Data for this analysis were obtained from two cohorts
of preterm ELBW newborns in the neonatal intensive
care unit of the University Hospitals Leuven between
June 2015 and March 2017, as described previously.14

Serum creatinine concentrations of the first 6 weeks
of life were considered. In addition, clinical data were
collected including gestational age (GA), birth weight
(BWT), current weight (CWT), sex, mode of delivery
(MOD), maternal betamethasone treatment to induce
fetal lung maturation, and treatment of the neonate
with ibuprofen or inotropic antibiotics. For time points
without CWT measurement, CWT was interpolated
linearly. Patients with no information on GA or MOD
were excluded from the analysis.

For evaluation, the dataset was randomly split into
a training set, on which the models were developed,
and an evaluation set, on which the developed models
were evaluated. Neonates were randomly assigned to
the training (80%) or evaluation set (20%).

Serum Creatinine and Estimation of Kidney Function
To estimate kidney function or glomerular filtration
rate (GFR), the most measured and readily accessible
biomarker in humanmedicine is serum creatinine (Scr).
Creatinine is a by-product of the nonenzymatic conver-
sion of creatine to creatinine in themuscle. Creatinine is
subsequently cleared from plasma almost exclusively by
GFRwithminimal active secretion by the renal tubules.
Assuming a steady state, zero-order creatinine synthesis
(Syn)5 and clearance are in balance, so that Scr values
can reliably be used to estimate the GFR.

Scr = Syn
GFR

(1)

NODE-Based Machine Learning Modeling
Amixed-effects low-dimensional NODE11 was utilized
to model serum creatinine levels in the population of
ELBW neonates. The structure of the NODE-based
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ML model reads:

d
dt

ScrC = fCNN (ScrC) + ScrC0 · ftNN (t)

ScrC (0) = ScrC0 (2)

where ScrC denotes the serum creatinine concentration,
ScrC0 serum creatinine concentration at birth, fCNN a
serum creatinine concentration-dependent neural net-
work (NN), ftNN a time dependent NN and t time after
birth in days. Note that ftNN represents the NN approxi-
mating the change in serum creatinine dynamics due to
maturation processes in neonates, and fCNN represents
the NN approximating the overall serum creatinine
dynamics. Details on the exact NN architecture are pro-
vided in the Supplemental Information. The data were
modeled in Monolix (Monolix 2023R1, Lixoft SAS, a
Simulations Plus company) where model parameters
in fCNN and ftNN, and ScrC0 were estimated, and fitted
NODEs were further analyzed in R.15

Machine Learning Covariate Modeling
Model parameters in fCNN and ftNN were tested to corre-
late with time-independent covariates, that is, covariates
that do not change over time. To this end, Pearson’s
correlation coefficient was calculated and tested in a
Student’s t-test with a significance level of P < .05 in
Monolix. Covariates were included for a parameter in
the NODE-based ML model in Equation (2) when a
multivariate linear regression between the parameter
and covariates resulted in a decreased Bayesian In-
formation Criterion of the linear regression. As time-
independent covariates, GA, BWT,MOD, and sex were
considered. Time-dependent covariates, that is, covari-
ates that change over time, were assessed by including
them as regressors on the NN parameters in the model
and testing for effects on modeled dynamics. Treatment
with ibuprofen or inotropic antibiotics was investigated
as time-dependent covariates, that is, covariates that
may change on a daily basis, including possible delayed
effects.

Translation Back to Interpretable “Mechanism-Based”
Model
While the NODE-based ML model in Equation (2)
can fit clinical data, it is considered to be a “black
box” because the structural model provides no insights
into the equations that drive the dynamics. To translate
the dynamics learned by the NODE-based ML model
in Equation (2) back to an interpretable “mechanism-
based” model, the dynamics learned by fCNN and ftNN
were plotted in derivative versus state plots.11 These
plots allow us to assess the learned mechanism in the
NNs of the NODE, that is, they allow us to open the
“black-box.” These plots were manually analyzed, and

interpretable functions were derived by visual compar-
ison to commonly applied PMX functions. To obtain
reasonable initial values, the derived functions were
directly fitted to the derivative data. These functions
were implemented in a mixed-effects model, refitted
with Monolix, and the previously identified potential
covariates according to Pearson’s correlation test were
tested to influence the model parameters. Note that the
interpretable “mechanism-based” model is still a data-
driven model, but it is based on mechanistic reasonable
functions. However, it is not based on prior knowledge
of physiological mechanisms and clinical considera-
tions.

Clinical Model Refinement and Model Evaluation
The NODE-based ML model developed here and the
subsequent interpretable “mechanism-based” model
developed from it are mainly data-driven and do not
incorporate a priori clinical knowledge. For this model
to be useful for clinicians at the bedside, it was further
refined with clinical knowledge. Covariate analysis for
the refined “mechanism-based” model was performed
similarly to the machine learning covariate modeling.

To evaluate the NODE-based ML model in Equa-
tion (2), the interpretable “mechanism-based” model
and the refined “mechanism-based” model for their
capability of capturing general serum creatinine dy-
namics, population simulations on evaluation dataset
with individual covariates but no interindividual vari-
ability was performed. Similar to the model evaluation
in the original analysis of van Donge et al,9 several
measures of precision and bias16 were calculated for the
population simulations on the evaluation dataset. As a
measure of precision, mean squared error (MSE) and
relative mean squared error (RMSE) and as a measure
of bias, relative mean prediction error (RMPE) were
calculated according to:

MSE = 1
n

n∑
i = 1

(Predi − Obsi)
2
, (3)

RMSE =
√√√√1

n

n∑
i=1

(
Predi − Obsi

Obsi
· 100

)2

, (4)

RMPE = 1
n

n∑
i = 1

Predi − Obsi
Obsi

· 100. (5)

Simulation Plot Showing Creatinine Dynamics in Preterm
Newborns
Simulationswith the refined “mechanism-based”model
were performed for different GA to derive serum cre-
atinine reference ranges. These reference ranges were
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Table 1. Characteristics of Neonates in the Training and in the
Evaluation Dataset

Characteristic
Training,
N = 1741

Evaluation,
N = 431

Obs. per patient 19 [14, 24] 17 [14, 26]
Gestational age (weeks) 27.1 (2.0) 26.5 (1.5)
Birth weight (gram) 807.9 (135.1) 799.6 (123.5)
Sex

Female 82 (47.1%) 20 (46.5%)
Male 92 (52.9%) 23 (53.5%)

Mode of delivery
Vaginal 54 (31.0%) 16 (37.2%)
Caesarean 120 (69.0%) 27 (62.8%)

Betamethasone treatment
No 25 (14.4%) 5 (11.6%)
Yes 149 (85.6%) 38 (88.4%)

Ibuprofen treatment 99 (56.9%) 32 (74.4%)

1
Median [min, max]; mean (SD); n (%).

compared to observed and previously published refer-
ence ranges.

Results
In this section, we describe: (i) the statistics of the
neonatal dataset, (ii) the results from NODE-based
ML modeling, (iii) the machine learning covariate
modeling, (iv) the translation back to an interpretable
“mechanism-based” model, (v) the clinical model re-
finement and model evaluation, and (v) a simulation
plot showing creatinine dynamics in preterm newborns.

Neonatal Dataset
Data from 217 ELBW neonates were included in the
overall dataset with a total of 4026 serum creatinine
concentrations. Data from 174 neonates with a total
of 3210 serum creatinine measures were included in
the training dataset, and 43 neonates with a total of
816 serum creatinine measures were included in the
evaluation dataset.

A summary of characteristics of the training and
evaluation dataset is given in Table 1.

Machine Learning Covariate Analysis
All time-independent covariates showed correlations to
model parameters according to Pearson’s correlation
test with P-values < .05. However, based on multi-
variate linear regressions performed by Monolix, only
GA and BWT were included in the NODE-based ML
model in Equation (2), indicating GA and BWT to be
the most important covariate effects.

As time-dependent covariates, only ibuprofen co-
administration showed an effect on serum creatinine
dynamics, reducing the creatinine elimination. Co-
administration of inotropic antibiotics showed no effect
on serum creatinine dynamics.

Translation Back to an Interpretable “Mechanism-Based”
Model
The learned dynamics of the serum creatinine concen-
tration dependent NN, that is, f CNN , are plotted against
serum creatinine in Figure 1A. The visualized serum
creatinine–derivative relationship can be described ap-
proximately with a linear function according to:

fCNN (ScrC) ∼ kin − kout · ScrC. (6)

For consistency with conventional modeling ap-
proaches, the y-axis intercept in such a linear function
is called kin and represents the production rate of serum
creatinine and the slope of the linear function is called
kout and represents the elimination rate. The fitted linear
function is visualized in Figure 1A.

The dynamics learned by the time-dependent NN,
that is, ftNN, are plotted against time in Figure 1B. The
visualized time–derivative relationship can be described
approximately with a sigmoidal function, whereas the
Emax function with a Hill-coefficient is the most com-
mon sigmoidal function in PMX. Thus, the following
approximation is assumed:

ftNN (t) ∼ Emax,in ·
(
1 − th

th50 + th

)
, (7)

where Emax,in denotes the maximal increased input in
immature neonates, h the Hill-coefficient describing the
steepness of the curve, and t50 the time point where half
the effect is reached.

Thus, the resulting interpretable “mechanism-
based”model can be written as:

d
dt

ScrC = kin − kout · ScrC + ScrC0 · Emax,in

·
(
1 − th

th50 + th

)
, ScrC (0) = ScrC0 (8)

Clinical Model Refinement and Model Evaluation
In the interpretable “mechanism-based” model in
Equation (8), serum creatinine concentrations are mod-
eled directly as differential equations, and all estimated
parameters are based on concentrations; that is, units of
estimated parameters are in the form mg/dL. However,
the volume of distribution for serum creatinine changes
with increasing body weight. Thus, in the refinement
of the interpretable “mechanism-based” model, the
volume of distributionwas introduced following the ap-
proach proposed by van Donge et al9 to set the volume
of distribution to 7 dL/kg and linearly interpolate the
current weight CWT. The refined “mechanism-based”
model describing serum creatinine changes in newborns
then reads,
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Figure 1. Learned dynamics of the NODE-based ML approach in Equation (2) (solid black) and the corresponding translation to a “mechanism-based”
model (dashed red) for the serum creatinine concentration dependent fCNN (A) and the time-dependent ftNN (B).

Table 2. Model Parameter Estimates and Covariate Effects of the Refined “Mechanism-Based” Model in Equation (9) with Relative Standard Errors
(RSE%) and Interindividual Variability (IIV)

Model Parameter Estimates

Parameter (unit) Estimates (RSE%) IIV (RSE%)

ScrA0 (mg) 3.44 (1.74) 0.23 (5.67)
kAin (mg/day) 0.33 (2.86) 0.34 (5.92)
kAout (1/day ) 0.94 (2.17) 0.25 (6.01)
EAmax,in (1/day ) 1.08 (0.42) -
h 1.73 (5.70) 0.73 (5.90)
tA50 (days) 6.53 (5.89) 0.71 (6.29)

Covariate Effects

Effect Population Parameter (RSE%) Equation

GA on ScrA0 1.6 (15.7) ScrA0,i = ScrA0,pop · ( GAi
GAm

)
1.6 · ( BWTi

BWTm
)
0.45

BWT on ScrA0 0.45 (19.9)

GA on tA50 −6.45 (11.4) tA50,i = tA50,pop · ( GAi
GAm

)
−6.45

Ibuprofen treatment on kAout −0.064 (4.31) kAout,i = kAout,pop · (1 − 0.064 · IBUi )
V on kAin kAin,i = kAin,pop · (7 · CWTi)

ScrA0, serum creatinine amount at birth; kAin, the zero-order production rate at amount level; kAout, the first-order elimination rate at amount level; EAmax,in, the
maximal increased input in immature neonates; h the Hill-coefficient; tA50, the time-point where half the effect is reached.

d
dt

ScrA = kAin − kAout · ScrA + ScrA0 · EA
max,in

·
(
1 − th

thA,50 + th

)
,

ScrC = ScrA
7 · CWT

, ScrA (0) = ScrA0 (9)

where ScrA is the serum creatinine amount in the
blood, ScrA0 the serum creatinine amount at birth,
and parameters kAin, k

A
out, and EA

max,in the corresponding
parameters on the amount level. Since kin in the in-
terpretable “mechanism-based” model in Equation (8)
was on concentration level, that is, the unit of kin is
mg/dL/day, and kAin in the refined “mechanism-based”

model in Equation (9) is on the amount level, that is, the
unit of kAin is mg/day, kAin should be scaled with volume
of distribution, as shown in Table 2.

Interindividual variability was not estimated on
EA
max,in due to high shrinkage (> 50%). Parameter esti-

mates and covariate effects are summarized in Table 2.
Serum creatinine concentration at birth Sc rC0 =

ScrA0
7·BWT was estimated at 0.6 mg/dL with a median BWT
of 0.83 kg. GA was identified as a covariate for t50, and
treatment with ibuprofen was identified to decrease the
serum creatinine elimination. These covariate effects are
visualized in Figure 2. Covariate analysis also showed
increasing ScrA0 with increasing GA and BWT. The
combined effect of GA on maturation, that is, t50, and
of GA and BWT on initial serum creatinine ScrA0 is
visualized in the simulation plot in Figure 3.
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Figure 2. Simulations for the maturation process of serum creatinine elimination under different gestational ages (left), and simulation for influence
of ibuprofen treatment (right) on days 3 to 7 (red line) compared to no ibuprofen treatment (blue line). Note that serum creatinine elimination is
visualized for first 42 days after birth but maturation is not completed in all ELBW neonates.

Figure 3. Simulations of serum creatinine concentrations for gesta-
tional ages from 24 to 32 weeks with the corresponding median birth
weights over post-gestational age (weeks).

Measures of precision and bias for theNODE-based
ML approach in Equation (2) were in similar ranges
for the evaluation dataset compared to the training
dataset, as presented in Table 3. This indicates that the
NODE-based ML model did not overfit, and performs
consistently between the data observed during devel-
opment and new data. The interpretable “mechanism-

based” model in Equation (8) had similar measures of
precision compared to the NODE-based ML model.
The refined “mechanism-based”model in Equation (9)
including clinical knowledge shows slightly higherMSE
and RMSE on the training data but a lower RMPE
compared to the purely data-driven approaches. A
similar pattern can be observed in the evaluation data;
however, a lower RMSE and a higher RMPE are
observed compared to the NODE-based ML model.

Simulations Showing Creatinine Dynamics in Preterm
Newborns
Simulations for newborns with different GA were per-
formed with the refined “mechanism-based” model in
Equation (9) and summarized in a simulation plot, as
shown in Figure 3. The simulation plot illustrates the
shorter time until maturation stabilizes serum creati-
nine dynamics, that is, the time of increasing serum
creatinine concentration after birth and the increase of
initial serum creatinine concentration with increasing
GA, as already described by Wu et al.17

The median predictions and the 95% prediction
intervals of Scr concentrations for neonates with GAs

Table 3. Measures of Precision and Bias for the NODE-Based ML Model Equation (2), the Therefrom Derived Interpretable “Mechanism-Based”
Model Equation (8), and the Refined “Mechanism-Based” Model Equation (9) with Clinical Knowledge

Training Data Evaluation Data

Model MSE RMSE RMPE MSE RMSE RMPE

ML 0.024 23.61 2.448 0.023 23.02 1.471
Interpretable 0.024 22.93 −1.621 0.022 21.84 −1.888
Refined 0.027 24.93 −0.426 0.025 22.36 −2.170

Measures were calculated separately for training data and evaluation data.
MSE, mean squared error; RMSE, relative mean squared error; RMPE, relative mean prediction error.
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Table 4. Median Predictions and 95% Prediction Intervals of Scr Concentrations (ScrC) for the First 6 Weeks of Life of Neonates with Gestational
Ages of 24, 27, and 32 and the Average Observed Birth Weights in the Corresponding Group

Postnatal Age (Days)
24 Weeks GA 609 g BWT ScrC

(mg/dL)
27 Weeks GA 803 g BWT ScrC

(mg/dL)
32 Weeks GA 899 g BWT ScrC

(mg/dL)

1 0.63 [0.4–0.98] 0.65 [0.42–0.99] 0.79 [0.51–1.23]
3 0.96 [0.67–1.33] 0.88 [0.62–1.24] 0.78 [0.51–1.2]
7 0.84 [0.56–1.23] 0.72 [0.46–1.15] 0.53 [0.33–0.89]
14 0.65 [0.42–1.02] 0.53 [0.35–0.85] 0.43 [0.28–0.67]
21 0.55 [0.37–0.87] 0.47 [0.31–0.71] 0.39 [0.26–0.61]
28 0.49 [0.33–0.75] 0.43 [0.28–0.64] 0.38 [0.25–0.6]
35 0.46 [0.31–0.7] 0.41 [0.27–0.61] 0.37 [0.24–0.59]
42 0.43 [0.29–0.65] 0.39 [0.26–0.59] 0.37 [0.24–0.6]

Predictions were made with the refined “mechanism-based” model Equation (9).

Table 5. Median Observation and 95% Observation Intervals of Scr Concentrations (ScrC) for the First 6Weeks of Life of Neonates with Gestational
Ages of 24, 27, and 32 and the Average Observed Birth Weights in the Corresponding Group

Postnatal Age (Days)
24 Weeks GA 609 g BWT ScrC

(mg/dL)
27 Weeks GA 803 g BWT

ScrC (mg/dL)
32 Weeks GA 899 g BWT ScrC

(mg/dL)

1 0.62 [0.49–0.93] 0.69 [0.51–0.98] 0.66 [0.65–0.81]
3 0.88 [0.77–0.98] 0.99 [0.75–1.21] 0.81 [0.55–0.9]
7 1.04 [0.98–1.11] 0.8 [0.52–1.07] 0.52 [0.41–0.62]
14 0.5 [0.43–0.56] 0.54 [0.36–0.66] 0.4 [0.3–0.5]
21 0.54 [0.5–0.59] 0.44 [0.32–0.58] 0.37 [0.32–0.4]
28 0.52 [0.5–0.53] 0.42 [0.33–0.6] 0.31 [0.28–0.35]
35 NA* [NA–NA] 0.36 [0.29–0.47] 0.31 [0.31–0.31]
42 0.49 [0.49–0.49] 0.33 [0.25–0.55] 0.26 [0.26–0.26]

∗For GA of 24 weeks at a postnatal age of 35 days, no observations are available.

of 24, 27, and 32 weeks in Table 4 are generally
in accordance with observed Scr concentrations, as
presented in Table 5, and previously published reference
values.9

Comparison to Previously Published Mechanism-Based
PMX Model
A previously published mechanism-based PMX model
for serum creatinine by van Donge et al9 proposes
a model that is structurally similar to the refined
“mechanism-based” model. The previously published
model by van Donge can be written as:

d
dt

ScrA = kin − kout · ScrA − ScrA

·Emax,in · th

th50 + th
, ScrA (0) = ScrA0, (10)

whereas the refined “mechanism-based” model Equa-
tion (9) developed in this work can be written as:

d
dt

ScrA =
(
kAin + ScrA0 · EA

max,in

)
− kAout · ScrA − ScrA0 · EA

max,in

· th

thA,50 + th
, ScrA (0) = ScrA0 (11)

Thus, the main structural difference between both
developed models is that the maturation in the previ-
ously published model from van Donge is scaled by the
current serum creatinine amount in the blood while the
maturation in the refined “mechanism-based” model is
scaled by the serum creatinine amount at birth, which is
due to the structure of the NODE-based ML model in
Equation (2). In addition, no covariate effect of MOD
was identified in the refined “mechanism-based”model.
However, the effect of GA was estimated to be larger
compared to the PMX model from van Donge et al.

Discussion
Our data-driven NODE-based ML model in Equa-
tion (2) was capable of describing the complex dy-
namics of serum creatinine concentrations in ELBW
neonates well. In addition, it was able to identify
the three covariates, that is, GA, BWT, and ibupro-
fen as medication, which were also identified in the
refined “mechanism-based” model including clinical
knowledge in Equation (9). Further possible covari-
ates were identified but not proposed to be included
in the NODE-based ML model. An interpretable
“mechanism-based” model in Equation (8) could be
derived from the NODE-based ML model that had
a reasonable structure for Scr concentration dynam-
ics including a maturation process. Further, clinical
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assumptions, such as the linearly assumed increase of
volume of distribution with increasing CWT, could
be leveraged to refine the interpretable “mechanism-
based” model to improve clinical rationale. In this
refined “mechanism-based” model in Equation (9), a
maturation was proposed where the time to reach
maturation was dependent on GA. GA and BWT
might be representative of the overall maturity of
the neonate at birth and thus influence the initial
serum creatinine level and time until the maturation
process in serum creatinine elimination has completed
as the maturation process takes longer in neonates
with lower GA. This could in part also be explained
by the characteristics of the cohort, determined by
ELBW, with consequent overrepresentation of growth-
restricted preterm neonates. Similar behavior can be
observed for serum creatinine concentration at birth,
as less mature neonates with lower GA tend to have
a more pronounced initial increase in serum creatinine
concentration after birth. Consistent with previous
reports, treatment with ibuprofen showed a decrease
in serum creatinine elimination. In comparison to a
previously published mechanism-based PMX model
describing serum creatinine changes in newborns by
van Donge et al9 in Equation (10), the general model
structure is identical with only differences in the scaling
of thematuration process. In addition, except forMOD
included in the previously published mechanism-based
PMX model reported by van Donge et al, the same
covariates were included in the refined “mechanism-
based”model. This might be explained by the larger ef-
fect of GA, as GA correlates with MOD in the dataset.
Further, a faster maturation is proposed, comparing t50
values. This might be related to the limited observation
period, that is, making it difficult to properly estimate
a t50 and Hill-coefficient for a process taking longer
than the observation period. In addition, the structural
difference where initial serum creatinine is utilized in
our refined “mechanism-based”model in Equation (9),
which is inherent to the ML approach utilized, com-
pared to the current serum creatinine level in the
previously published “mechanism-based” PMX model
from van Donge et al might change the interpretation
of the Emax function from maturation of clearance to
maturation of ratio of Scr synthesis to elimination. A
limitation of the presented refined “mechanism-based”
model might be the assumption of linear scaling of the
volume of distribution with CWT.

The measures of precision and bias calculated for
the NODE-basedMLmodel in Equation (2), the there-
from derived interpretable “mechanism-based” model
in Equation (8), and the refined “mechanism-based”
model in Equation (9) suggest a similar good descrip-
tion of training and new data that was not utilized for
model development.

The presented approach of fitting data first with a
data-drivenNODE-basedMLmodel has the advantage
that the dynamics of data can efficiently and easily
be visualized without prior assumptions about the
biological processes. Combining the knowledge gained
through the visualized dynamics with usually applied
functions in PMX models allows us to translate such
dynamics into an interpretable “mechanism-based”
model and to develop a “mechanism-based” model
for complex data within days. This is in contrast to
mechanism-based or physiology-based PMXmodels as
the development of suchmathematical–statistical mod-
els can take weeks and months. While the sigmoidal
curve in the derivative versus state plot makes it easy
to derive the Emax function in the presented case,
more complex derivative versus state plots may be more
challenging to find one or a combination of reasonable
PMX functions to describe the visualized dynamics. In
such cases, however, the development of a PMXmodel
directly from the data might be even more difficult.
Further, the interpretable “mechanism-based” model
allows us to propose hypotheses about the driving
factors of the dynamics, such as the maturation term
in the presented model. In addition, a NODE-based
ML model allows identification of the most important
covariates, thus facilitating covariate selection in PMX
models. In conclusion, data-driven NODE-based ML
models may provide a good starting point for the
development of mechanism-based models, particularly
if clinical and scientific knowledge is included for their
refinement and application.

Conclusion
The combination of efficient data-driven modeling
and translation to an interpretable “mechanism-based”
model with mathematical–statistical components sim-
ilar to those in a conventional PMX model has the
potential to revolutionize and facilitate the modeling
of complex dynamics in clinical settings as well as
in drug development, particularly in neonatology and
pediatrics.
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