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Supplementary Text

Supplementary Note 1. Details of the contemporary and historical datasets.

Information of the datasets has been previously published elsewhere 1–3.

Contemporary data

The dataset comprised information from 35 time-sites, and included Apac A (2017-18),
Apac B (2017-18), Bungoma A (2019-20), Bungoma B (2019-20), Busia (2015-16 and
2017-20, ,Homa Bay (2019-20), Jinja A (2017-18), Jinja B (2012-13 and 2017-18), Kilifi
A (2007-09, 2010-15 and 2017-19), Kilifi B (2007-09, 2010-15, 2017-19), Kabale A
(2017-18), Kabale B (2017-18), Kakamega (2015-16 and 2017-18), Mubende A
(2017-18), Mubende B (2017-18), Muheza A (2006-07), Muheza B (2006-07), Muheza
C (2006-07), Siaya A (2010-13), Siaya B (2010-13), Siaya C (2010-13), Tororo A
(2012-13 and 2017-19), Tororo B (2012-13 and 2017-19), Tororo C (2012-13), and
Vihiga (2017-18). See figure S2 supplementary material in Paton et al.3 showing all
catchment populations and their distance to the hospital where inpatient records were
collected.

Malaria inpatient admissions. Malaria admissions were defined based on clinicians’
reviews on all available clinical, laboratory and radiological information. Children aged
less than 3 months were excluded for simplicity as the influence of maternal immunity
complicates the analysis, and severe malaria incidence is very low below 3 months.
Children with underlying conditions that may have precipitated admission were
excluded, including sickle cell disease, HIV, tuberculosis, malignancies, trauma,
epilepsy, poisoning, snake/animal bites and measles. Children with other coincidental
secondary diagnoses were retained, accepting that comorbidity was common, or hard to
define as primary, secondary or co-primary.

Catchment populations. Residential data for each admission was matched to the
smallest possible area, defined using national census, located within 30 km of the
hospital but excluding urban areas. The definition of the catchment population aimed to
avoid competition with other facilities, allow computation from available census-data
granularity, standardize across sites within the contemporary dataset and allow
comparability with the historical dataset, and reduce the case underascertainment within
the “whole” hospital catchment population under the assumption that larger distances
implied roughly more missing of cases. Population counts among the selected
catchments were derived from the most contemporary national census and projected
forwards or backwards using district level intercensal growth rates. Age-structures of
each population were corrected to single year age groups 3-11 months to 9 years by
applying rural household age structures provided for the nearest time-regional matched
demographic household survey data. Age specific person years of observation were
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adjusted for the months of observation included in each temporal series. The exceptions
were three sites in Kilifi (Kenya) where actual household continuous population
surveillance data were used to define age specific person years of observation.
Catchments were selected to avoid competition with other facilities offering admission.

Community parasite prevalence. Each hospital catchment population was paired with a
community parasite prevalence estimate derived from empirical surveys. Spatially and
temporally disaggregated community-based household parasite prevalence survey data
were used at six time-site periods in Kenya (Kilifi and Siaya) and four time-site periods
in Uganda (Tororo and Jinja 2012-2013). Surveys of malaria parasite prevalence among
school children were established during or within 4 months of the pediatric ward
surveillance in western Kenya 2014-2019 (Busia, Bungoma, Homa Bay, Kakamega and
Vihiga) and Uganda 2017-2019 (Tororo, Apac, Mubende, Kabale and Jinja). Published
estimates of parasite prevalence at three sites in Muheza, Tanzania were extracted from
literature. To standardize parasite prevalence across sites, we implemented a version of
the conversion algorithm by Smith et al. (2007) 4 which standardizes parasite surveys to
the 2-10 years age range.

Historical dataset

Similar criteria were used to collate both hospitalization datasets explicitly to allow
comparison. Thus, comparable approaches to those used in the contemporary dataset
were used to estimate malaria hospitalization incidence -with malaria as primary reason
of admission- among children aged 1 month to 9 years at 6 time-site locations including
Bakau, The Gambia (1991-94), Snow et al. (1997) 1; Kilifi Township, Kenya (1993-96),
Robert Snow unpublished data; Foni Kansala, The Gambia (1994-95), Geisler
Schnieder and Robert Snow, unpublished data; Sukuta, The Gambia; Kilifi North Kenya
(1990-95: Snow et al., (1997) 1; and Mponda, Malawi (1994-95), Slutsker et al. (1994) 5.
Again, similar criteria were used for collating catchment population based on census
and census projections, matched to an area within 15 km of essential clinical services,
as well as the community prevalence based on cross-sectional parasitological surveys
among children 3 months to 10 years.
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Supplementary Note 2. Detailed description of OpenMalaria model of malaria
transmission dynamics

Overview: Individual-based model of malaria transmission

For our model simulations and scenario analysis we used our individual-based model of
Plasmodium falciparum malaria transmission and disease dynamics, OpenMalaria
previously described and calibrated elsewhere 6–8. OpenMalaria is documented in detail
in our online source code and wiki (https://github.com/SwissTPH/openmalaria/wiki) and
has been validated against several field studies, used in many studies on the 
epidemiological effects of various intervention, as well as compared to existing models
6,9–11. OpenMalaria currently comprises 14 model variants, with each model variant with
distinct assumptions of its epidemiology and transmission components (14). For our
current study, the “base” simulation model was used, first detailed in 12, and again in 7. A
single-layer Bayesian optimization approach has been implemented to solve the
multidimensional, multi-objective calibration of OpenMalaria, using two prior
distributions, namely a Gaussian Process (GP) emulator and a superlearning algorithm
in form of a GP stacked generalization (GPSG) emulator 13.

OpenMalaria captures the events and processes following infection of a human host,
simulating malaria infection from mosquitos to individuals and modeling infection
characteristics within humans, including parasite densities over time, duration of
infection, infectivity to mosquitoes, and importantly the health outcomes due to
infections such as anemia, uncomplicated symptomatic malaria, complicated severe
malaria with and without co-morbidities, and direct or indirect malaria mortality. The
model approximates the level of malaria transmission and epidemiology in a relatively
homogeneous setting. OpenMalara simulations are driven by a yearly pattern of force
of infection in the absence of interventions. This force of infection is determined by an
input entomological inoculation rate (EIR). In the base model used in our analysis, once
infected, each simulated infected human host has an associated parasite density time
course depending on innate and acquired immunity and duration of infection (modeled
individually this allows us to capture disease outcome effects such as immunity
acquisition, infectiousness to mosquitoes, morbidity, or mortality). OpenMalaria
specifically incorporates between and within host heterogeneity in host exposure,
susceptibility, and immune response. The immune dynamics consider the effects of
several factors such as acquired and innate immunity, including against severe disease.
The model includes a human demography structure and captures seasonality in
infection from mosquitoes 14–16. OpenMalaria also includes a detailed representation of
the health system 17 while tracking multiple health outcomes over time (Fig. 1 and Table
S1). Monitored health outcomes from the model over time can include Plasmodium
falciparum age specific prevalence of infections (PfPR), uncomplicated clinical disease
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rates, severe disease rates in and out of hospital, and direct or indirect malaria mortality
6–8.

The model allows user specification of detection thresholds for both estimating
population-level PfPR and for detection of clinical cases. Diagnostic threshold,
sensitivity and specificity can be supplied. In our simulations we assumed a diagnostic
threshold of 60 asexual parasites per microliter, with 98% sensitivity and specificity.
Small deviations from these assumptions (i.e., parasite threshold between 20 and 150
parasites per microliter and sensitivity/specificity of 85% to 99%) minimally changed the
model outputs (data not shown). Also relevant to this work, hospitalization episodes are
first defined as those events that would have led to an admission diagnosis of severe
malaria, had the patient presented to a health facility. From those episodes, a
predefined rate determines the hospitalizations from all expected severe cases. The
probability that a clinical malaria episode occurs depends on both the simulated parasite
density and a modeled pyrogenic threshold. These episodes include a subset that are
severe. These severe episodes can occur as a result of one or other of two distinct
processes 1) one subset of the severe malaria episodes comprises those that occur
when the host experiences parasitemia over a parasite density threshold. This is
modeled as severe episodes arising when a single host- and exposure-independent
critical parasite density is exceeded, which is constant over all individuals and time
points; 2) the second subset of severe malaria episodes occurs when an otherwise
uncomplicated malaria episode happens to coincide with some other insult (e.g., a
bacterial infection, malnutrition, or anemia, which occurs with risk conditional to the
individual age over time. The age profile of the non-malaria insults is modeled as a
two-parameter hyperbolic curve. The three parameters of the submodel, the critical
parasite density and those defining the hyperbolic function have been previously fitted
as described above 15. The age profile of the non-malaria insults is used as the
background comorbidity occurrence for both datasets, parameterized in the
contemporary simulations as a proportion of those in the historical simulations. Table S1
summarizes the key model components, processes and assumptions, and references
the previous studies where these assumptions have been quantified, fitted, and
validated using field epidemiological data.
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Supplementary Note 3. Details on regression models, model selection criteria,
computation of prediction intervals and evaluation of predictions

A regression model framework was implemented to describe the statistical relationship
between the scenario modeling outputs, the PfPR2-10 and the malaria hospitalization
rates. The framework was based on the previous analyses performed by Paton et al
(2022) 3 for a composite sub-set of malaria hospitalizations of severe malaria anemia,
cerebral malaria and respiratory distress episodes, and aimed to test whether
simulations through OpenMalaria were able to recover the functional relationships
obtained from the empirical estimates. The rate of hospital admission denoted for a
given simulated time-site as , was modeled as a negative binomial distribution with𝑖 𝑅

𝑖

probability and size parameters . We aimed to compare three𝑝 𝑠 𝑅
𝑖
~ 𝑁𝐵 (𝑝(λ

𝑖
, 𝑟), 𝑟) 

regression models in predicting the rate of malaria admissions obtained via scenario
analyses, as )~ , namely the functional forms of 1) the 3-parameter𝑙𝑜𝑔(λ  𝑓(𝑃𝑓𝑃𝑅

2−10
)

log-logistic )= x and 2) the log-linear )= +𝑙𝑜𝑔(λ α + β 𝑃𝑓𝑃𝑅
2−10

𝑙𝑜𝑔(λ α

. Fitting procedure was implemented in R (version 4.0.2).β/(1 + 𝑒
−γ 𝑥 𝑃𝑓𝑃𝑅

2−10
 
)

Uncertainty estimates were obtained using a bootstrap procedure described elsewhere
18,19. For comparison of the models, we used the difference of Akaike Information
Criterion ( AIC) and Bayesian Information Criterion ( BIC) 20, with reduction greater∆ ∆
than 10 in favor of the more complex model 3 . Table S2 depicts the obtained
parameters and selection criterion values for the key scenarios used in the main text
(historical, steady-state transmission; contemporary, steady-state transmission; and
contemporary, unsteady transmission) along with the 2 specific functional forms of the
regression models. Parametric fits using the log-logistic function showed better
performance with simulations under steady-state transmission, both for the historical
and contemporary scenarios, while the log-linear function fit better to the simulations
based on unsteady transmission.

We further computed the 95% and 50% prediction interval (PI) bounds under the best fit
regression models using a bootstrapping procedure 19 for each of the key scenarios.
First, we generated a bootstrapped dataset by sampling n time-sites randomly with
replacement among simulated time-sites within the PfPR2-10 range. Then, we estimated
the regression parameters by using the bootstrapped dataset. Finally, we simulated
hospitalization rates for all time-sites under our model by using the parameters
estimates from the bootstrapped dataset. We repeated the 3 steps 10,000 times to
generate 10,000 simulated time-sites computed to the lower and upper PI bounds (PI
2.5%–97.5% and 25%-75%). We smoothed the 95% and 50% PI bounds by using
ggplot2 in R. Regression models, evaluation and bootstrapping procedures were
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implemented in R (version 4.0.2) and are available at
github.com/PDeSalazarSwissTPH/SevereMalaria .

Last, in order to formally test the scenario modeling outputs in recovering the empirical
relationship, we contrasted the simulation-based regression models against the
empirical estimates. Specifically, we used the log-logistic and log-linear regression
models to compute predictions of the hospitalization rates for each of the contemporary
time-sites based on the ePfPR2-10 for each time-site. We compared predicted vs
observed time-site hospitalization rates residuals using evaluation metrics including the
root-mean square error (RMSE), root-mean square log error (RMSLE), root square error
(RSE) the mean square error (MSE), the mean absolute error (MAE). Fig S9 depicts
observed versus predicted contemporary hospitalization rates for each time-site using
(a) the log-logistic model, and b) the log-linear model. As seen in Table S3, all
performance metrics improved using the log-linear regression model. Model
performance evaluation was implemented in R (version 4.0.2) and is available at
github.com/PDeSalazarSwissTPH/SevereMalaria.
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Supplementary Note 4. Evaluation of the major epidemiological determinants in the
scenario modeling framework

The model structure of OpenMalaria is based on assumptions given prior scientific
evidence and/or empirical observations on malaria transmission dynamics and
pathogenesis. Before evaluating the contemporary and the historical empirical datasets,
we used a conceptual framework based on causal inference21 to systematically evaluate
key assumptions we needed for designing the simulation scenarios, and to ensure
consistency with the major changes that have occurred between the 90s (when the first
dataset was collected) and a contemporary time in malaria clinical and epidemiological
interventions . First, we defined the core causal pathways of the variables that defined
the malaria outcomes, namely exposure, infection (for prevalence) and severe
outcomes (for hospitalization incidence). We then defined and included the
epidemiological factors -as exposures- that influence the process leading from exposure
to infective mosquito bites towards infection and severe disease. We focus on factors
that, if present, drive differences at the population level (such as exposure to a certain
entomological inoculation rate) in opposition to those that lead to individual variability of
severe disease risk (such as individual variability in becoming infected after a mosquito
bite). We then formulated a simple regression model for the occurrence of severe
disease at the population level as a function of malaria prevalence and included as
predictors: 1) the overall immunity of the observed population of children, 2) the case
management, which includes effective diagnostic and effective treatment, and 3) the
occurrence of comorbidities influencing malaria severe risk. Thus, we assumed that the
hospitalization risk among children is a function of the ongoing exposure, the life-long
immunity elicited by the previous years exposure, the joint probability of receiving
diagnostic and treatment and the efficacy of these diagnostic and treatment and the
probability of co-occurring comorbidities. The conceptual framework allowed us to
systematically address all the OpenMalaria parameters that relate to these statistical
predictors.

Further, we focused on defining scenarios (i.e., simulations over the targeted PfPR2-10

range with a specific set of parameters values based on assumptions on the described
determinants) that could test the impact of the assumptions in accurately recovering the
contemporary relationship between community prevalence and hospitalization rates. We
addressed A) the rate of health-care access of uncomplicated and severe malaria (i.e.
rate of accurate diagnostic of true occurrence and subsequent timely treatment) B) the
efficacy of the available malaria drugs at each period (e.g., the efficacy of artemisinin
derivatives combination therapies in clearing malaria), and C) the co-occurrence of
other diseases with influence on malaria severe progression over age-groups. For each
identified determinant, we implemented a framework which included 3 different
scenarios including 1) a main scenario parameterized based on data from the literature
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2) two more extreme secondary scenarios (i.e., stronger assumption) parameterized
using values above and below the range of those included from the literature.
Specifically, we evaluated the following: A) main scenario: access rates of malaria
requiring hospitalization have ranged from 60%-90% while the access rates of
uncomplicated malaria treatment ranged 20%-40% based on the higher estimates from
the Demographic and Health Surveys program 22; secondary scenario 1: health care
access rates have been substantially lower, with hospitalizations being between 40%
and 60% and uncomplicated malaria treatment rates of 20%-40%, similar to those
estimates in the 1990s; secondary scenario 2: access rates were 90-98%; B) main
scenario: drug efficacy at the individual level has ranged between 85%-98% given the
wide deployment of artemisinin-based combination therapies in the countries 23,24; and
C) main scenario: co-occurrence of diseases contributing to malaria hospitalization was
substantially reduced by 20%-40% compared to the historical data under the
assumption that lower-respiratory tract infections 25 and diarrhea 26, which have reduced
substantially their incidence in the targeted countries, are the major contributors;
secondary scenario 1: drug efficacy has ranged between substantially lower values,
with expectation of 50%; secondary scenario 2: drug efficacy is 98-100%; secondary
scenario 1: comorbidities occurrence has been similar to those estimated during the
90s; secondary scenario 2: comorbidities contributing to hospitalization rates were
reduced by 75%-90%.

Overall, the different set of parameterizations aimed to be consistent with the following
characteristics of the contemporary empirical dataset: a) malaria population-based
hospitalization estimates were aligned with DHS estimates 22, and b) individuals with
primarily reported comorbidities that were not malaria had been excluded in their
majority from the analysis dataset.

We also performed a sensitivity evaluation of the empirical prevalence estimates by
time-site by comparing the estimates to those obtained using a geospatial model.
Modeled mPfPR2-10 estimates were explicitly obtained for each time-site catchment
population using a geospatial model detailed elsewhere 27,28, a Bayesian hierarchical
geostatistical framework based on more than 180000 geo-coded empirical prevalence
survey data points from East Africa, interpolated in time to 1 x 1 km resolutions using
climatic and ecological covariates. As seen in fig S10, the modeled estimates,
computed for the time period when the hospitalization estimates were obtained,
reproduce the overall “exponential” relationship with only one time-site showing a
significant deviation (fig S10 A). Consistently the correlation between the mPfPR and
the ePfPR shows a linear relationship (fig S10 B).
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Supplementary Note 5. Recovery of hospitalization risk by age group

We further explored the implications of time-varying transmission on the age-structure of
the hospitalization rates. To assess the performance of the modeling framework in
recovering the disease risk over age groups, we compared both empirical and
simulation-based estimates disaggregated by one year age-groups, except for those
between 3 months and 2 years which were all aggregated in a single group for simplicity
as empirical estimates for children under 3 months were not available. We then
performed the 4-steps iterative analysis for the present-day dataset under the steady
and time-varying transmission assumptions as previously described and evaluated the
PfPR2-10 -severe disease incidence relationship by age-group. As a case study, we
computed the resulting hospitalization incidence over age-groups at values of PfPR2-10

equal to those estimated in the four representative time-sites Apac A, Busia, Mubende
B and Jinja B.

Age-structure of malaria severe disease under steady transmission is known to show
characteristic dynamics, with low prevalence settings shifting the severe cases towards
older children relative to higher transmission settings 29. As a result, severe malaria
incidence among young and very young children in high transmission settings are
typically higher than among same age-groups in low transmission settings whereas the
opposite occurs among older children. When we examine the empirical patterns
disaggregated by age-group (fig S2), we observed that the exponential relationship
present in the younger ages is maintained over the older groups, although with less
steepness. This is in opposition to what would be observed in clinical series with an
asymptotic pattern (i.e., with steady transmission), as the relationship among older
children would transition towards an asymptotic pattern (or even a convex one).

The simulations under the time-varying transmission assumption reasonably recover the
trends across age-groups. Consistent with the main results here, we find that, for any
age group, severe incidence increases towards higher PfPR2-10. Further, the empirical
data shows that time sites with low PfPR2-10 present a lower-than-expected severe
malaria risk for older ages. When analyzing these trends by looking at the incidence
over age-groups disaggregated by time-site (fig. S3, plotting 4 representative time-sites)
the empirical estimates of severe malaria occurrence over age-groups (left column) are
better recovered under the time-varying assumption (center column) than under the
steady- state transmission assumption. The overall analysis is consistent with an
excess (e.g., fig. S3, Apac A) or reduction (e.g. fig. S3, Jinja B) of severe disease risk
relative to the steady-state assumption, particularly towards older ages, as expected
with time-varying exposure and subsequent gap between age-dependent developed
immunity and transmission at assessment.
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Fig. S1.

Fig. S1. Available modeled PfPR2-10 time series estimates between 2000-2020 for all sites
included in the East-African contemporary dataset obtained from Bayesian hierarchical
geospatial models 27,28 (site indicated in plot title).
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Fig. S2.

Fig. S2. Recovery of the empirical PfPR2-10-hospitalization incidence relationship over age
groups and under unsteady transmission. Plots show the empirical PfPR2-10-hospitalization
incidence estimates by age group obtained from the contemporary dataset (orange dots)
overlapping the modeled PfPR2-10-severity estimates obtained through simulations under the
time-varying transmission assumption (gray dots) and the subsequent log-linear regression
model (median and 95% prediction intervals, black lines).
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Fig. S3.

Empirical age structure Modeled age structure, Modeled age structure,
unsteady transmission steady transmission

Fig. S3. Comparison of the empirical age structure of malaria hospitalization rates with
unsteady and steady transmission modeled estimates. Depiction of the empirical age
structure of malaria hospitalizations for children 3 months to 9 years old (left column, orange)
and modeled age structure computed under the steady exposure assumption (middle column,
blue) and unsteady exposure (right column, green) age structure in four representative time
sites (indicated in plot titles).
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Fig. S4.
Unsteady state Transition Steady state

Fig. S4. Depicting the prevalence-hospitalization relationship obtained through simulations (gray
points) under unsteady exposure, a transition stage towards equilibrium, and under steady
exposure. Orange points showing the empirical relationship for comparison at each stage.

Fig. S5.

Fig. S5. Scatterplot depicting the relationship between empirical community prevalence
as empirical PfPR2-10, and estimated relative change at survey (as %) computed from the
median value of the modeled PfPR2-10 of the past 7-9 years before empirical survey for each
time-site. Four representative time-sites are highlighted, Apac A (red), Busia (green), Jinja B
(purple) and Mubende B (blue) colored dots). Blue line shows the best fit using a nonparametric
local polynomial regression suggesting a quasilienar trend in the relationship.
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Fig. S6.

Fig. S6. Schematic illustration of the iterative analysis approach to interrogating empirical data
with mechanistic models
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Fig. S7.
Hospitalization rates 60-90% Hospitalization 40-60% Hospitalization 90-98%

Reduction comorbidities by 60-80% Reduction by 40-60% Reduction by 90-100%

ACT effectiveness 85% ACT effectiveness 50% ACT effectiveness 99%

Fig. S7 Results of the sensitivity analysis of our main model parameterization
assumptions under unsteady transmission. a-c) Sensitivity to access to hospital care for
severe disease, d-f) Sensitivity to levels of comorbidities, g-i) Sensitivity to access and
effectiveness of first-line AC treatment of uncomplicated malaria.
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Fig S8.
Hospitalization rates 60-90% Hospitalization 40-50% Hospitalization 90-98%

Reduction comorbidities by 60-80% Reduction by 40-60% Reduction by 90-100%

ACT effectiveness 85% ACT effectiveness 50% ACT effectiveness 99%

Fig. S8 Results of the sensitivity analysis of our main model parameterization
assumptions under steady transmission. a-c) Sensitivity to access to hospital care for severe
disease, d-f) Sensitivity to levels of comorbidities, g-i) Sensitivity to access and effectiveness of
first-line AC treatment of uncomplicated malaria.
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Fig S9.
Log-linear model residuals Log-logistic model residuals

Fig. S9. Comparison of residuals from the regression-based predicted PfPR2-10 versus
observed empirical PfPR2-10.

Fig S10

Fig. S10. (A) Comparison of the prevalence-hospitalization relationship obtained using the
empirical PfPR2-10(orange) and the modeled PfPR2-10 (red) computed for the specific catchment
populations and time-periods of the hospitalization data. (B) Correlation between the empirical
and the modeled PfPR2-10 for the same time-sites (gray) and linear relationship (black line).
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Table S1 Summary of the OpenMalaria model components (adapted from 30)

Name and reference/s Description of core assumptions 

Key modeled epidemiological processes (base model)

Malaria infection of humans 
12 also detailed in eq. 1-4 of
Additional file 1 in 8

● Determined by EIR which is a model input and affects the force of
infection in the simulated setting. 

● The model includes functions that allow age-dependent exposure of
human hosts to mosquitoes (correlating with body-surface area).

● The relationship between infection rates and EIR was determined by
fitting to data from The Gambia, Nigeria and Kenya in 12.

Infection progression in
humans: asexual parasite
densities and immunity 16,31,32

and eq. 5-15 of Additional file 1
in 8 

● In the base model. blood-stage parasite density depends on the time
since infection and is affected by naturally acquired immunity. Acquired
immunity reduces parasite density of subsequent infections.

● The duration of infection follows a log-normal distribution and was
estimated from a malaria therapy dataset (16,31 and eq. 1 in 32

● Immunity (both pre-erythrocytic and blood-stage) is host specific and
depends on consequent episodes of exposure to infection and total
parasitemia seen by an individual in their lifetime. 

● Super-infection is possible with cumulative parasite densities
● The parasite density in a host at a given time is defined and fitted with

data from Ghana, Nigeria and Tanzania in  32

Transmission from infected
humans to mosquitoes
16,30,31 and eq. 16-21 of
Additional file 1 in 8 

● Infectivity to mosquitoes depends on the density of parasites present in
the human (and includes a time-lag for gametocyte development)

● The fraction of resulting infected mosquitoes after feeding on a human
host follows a binomial distribution.

● The relationship between infectivity to mosquitoes and parasite density
was informed by data in (16,31 and with data from malaria therapy
collected in Georgia between 1940 and 1963 and available from 31

● The age-specific contribution to overall infectiousness to mosquitoes
was also validated against field data collected from Liberia, The
Gambia, Tanzania, Kenya, Papua New Guinea and Cameroon.

Disease progression:
uncomplicated, severe
morbidity, mortality, and
anemia.

16,33 and eq. 22-32 of Additional
file 1 in 8

● Acute clinical illness depends on the current parasite densities in a
human host and their innate pyrogenic threshold. This threshold is
dynamic over time and depends on the individual exposure history.

● Acute morbidity episodes are either uncomplicated or evolve to severe
episodes; A proportion of the severe episodes leads to deaths.

● Clinical malaria patterns were fitted with data from Senegal in 16.
● The probabilities that a clinical episode will become severe (and the

associated risk of mortality for a severe episode) are defined were
originally fitted to field data from over 10 African countries in 15. Some
of which are shown in historical data of Fig 1 in the main text, including
Bakau, The Gambia (1991-94), Snow et al. (1997) 1; Kilifi Township,
Kenya (1993-96), Robert Snow unpublished data; Foni Kansala, The
Gambia (1994-95), Geisler Schnieder and Robert Snow, unpublished
data; Sukuta, The Gambia; Kilifi North Kenya (1990-95: Snow et al.,
(1997) 1; and Mponda, Malawi (1994-95), Slutsker et al. (1994) 5.

Modeled characteristics of the transmission setting
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Population age structure
15,34

● Can be supplied by the user. In this study informed by the site in
Ifakara, Tanzania, (data available through the INDEPTH network 34.

Transmission seasonality
12,35

● Force of infection input into the model via EIR, is seasonally forced.
The same transmission pattern is reproduced each year in absence of
interventions. Users can define any patterns as needed.

Case management
17

● Treatment seeking and care (including drug efficacy, adherence, etc) of
uncomplicated malaria is modeled through a comprehensive decision
tree-based model defined and validated in 17. This model determines
the outcomes treatment depending on the occurring clinical events
such as fevers and seeking of care

● The model includes specification of access to official or non-official
care, access to hospital for severe cases, diagnostic tests (use,
specificity, sensitivity, and threshold of detection), treatments for first,
second line and non-official care, effects of treatment, case fatality
rate, case sequelae and cure rates.

Simulation regimes and model variants

Time steps -       Simulation outputs are tracked every 5 days

Model variants
7

● Up to 14 model variants are available, including the base model. These
variants include distinct assumptions on immunity decay, treatment and
heterogeneity of transmission. In this study, we use the base model
(parameterization described in Table 2 in 7 under the denomination
R0001)

Software availability and documentation

Source code and wiki page available on GitHub: https://github.com/SwissTPH/openmalaria/
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Table S2.

Scenario Functional form Selection criterion

Historical scenario,
steady-state transmission

log-logistic AIC=462; BIC=473

log-linear AIC=595; BIC=602

Contemporary scenario,
steady-state transmission

log-logistic AIC=511; BIC=516

log-linear AIC=601; BIC=606

Contemporary scenario,
unsteady transmission

log-logistic AIC=509; BIC=514

log-linear AIC=483; BIC=488

Table S2. Showing Information Criteria values used for regression model selection. The
log-logistic model is favored for simulations under steady-state transmission for both the
historical and contemporary scenarios. The log-linear model favored for simulations under
unsteady transmission for the contemporary scenario.

Table S3. Performance metrics of the parametric regression models on predicting the empirical
relationship

Metric Log-logistic Log-linear

RMSE 5.99 3.89

RMSLE 0.598 0.590

RSE 0.58 0.24

MSE 35.9 15.1

MAE 4.4 3.3
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Table S4. Data sourced from Paton et al. (2021)3

Site, dates Dates
Community (CS) or
School Survey (SS)*

Positive/examined
[Age range, years]

PfPR2-10
% [95% CI]**

Citation

Kilifi A, Kenya
2007-09
2010-15
2017-19

2007-09 (CS)
2010-15 (CS)
2017-19 (CS)

10/1645 [0.5-14.9]
1/1439 [0.5-14.9]
0/355 [0.5-14.9]

0.68 [0.32, 1.12]
0.12 [0, 0.34]
0.2 [0, 0.87]

36,37

Kilifi B, Kenya
2007-09
2010-15
2018-19

2007-09 (CS)
2010-15 (CS)
2017-19 (CS)

406/2061 [0.5-14.9]
404/2261 [0.5-14.9]
62/841 [0.5-14.9]

20.75 [18.96, 22.55]
18.82 [17.2, 20.5]
7.91 [6.09, 9.84]

36,37

Kilifi C, Kenya
2018-19 2018-19 (CS) 267/1336 [0.5-14.9] 15.78 [13.9, 17.66]

38

Siaya A, Kenya
2010-13 2010-13 (CS)

234/454 [0.1-14.9]
53.81 [49.12, 58.65]

38

Siaya B, Kenya
2010-13 2010-13 (CS)

588/1155 [0.1-14.9]
53.29 [50.3, 56.33]

39

Siaya C, Kenya
2010-13 2010-13 (CS)

492/808 [0.1-14.9]
63.79 [60.26, 67.2]

39

Busia, Kenya
2015-16
2017-20

2014 (SS)
2019 (SS)

330/596 [4-14.9]
285/681 [4-14.9]

49.16 [45.01, 53.28]
35.79 [32.22, 39.34]

3

Kakamega, Kenya
2015-16
2017-18

2014 (SS)
2018-19 (SS)

65/198 [4-14.9]
204/789 [4-14.9]

26.97 [21.25, 33.09]
20.82 [18.14, 23.59]

3

Vihiga, Kenya
2017-18 2018-19 (SS) 56/596 [4-14.9] 7.1 [5.3, 9.09] 3

Bungoma A, Kenya
2019-20 2019 (SS) 77/297 [4-14.9] 20.85 [16.63, 25.36] 3

Bungoma B, Kenya
2019-20 2019 (SS) 137/392 [4-14.9] 29 [24.69, 33.4] 3

Homa Bay, Kenya
2019-20 2019 (SS) 24/397 [4-14.9] 4.52 [2.81, 6.44] 3

Jinja A, Uganda
2017-18 2019 (SS) 68/400 [5-16.9] 18.33 [14.46, 22.29]

40
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Jinja B, Uganda
2012-13
2017-18

2012-13 (CS)
2019 (SS)

80/637 [0.5-14.9]
59/400 [5-16.9]

13.36 [10.8, 16.18]
15.8 [12.26, 19.64]

40,41

Tororo A, Uganda
2012-13
2017-19

2011-13 (CS)
2019 (SS)

501/820 [0.1-14.9]
27/425 [5-16.9]

64.08 [60.7, 67.63]
6.98 [4.64, 9.64]

40,41

Tororo B, Uganda
2012-13
2017-19

2011-13 (CS)
2019 (SS)

303/499 [0.1-14.9]
70/399 [5-16.9]

63.54 [59.05, 67.94]
18.78 [14.93, 22.86]

40,41

Tororo C, Uganda
2012-13 2011-13 (CS) 994/1836 [0.1-14.9] 56.7 [54.29, 59.05]

42

Apac A, Uganda
2017-18 2019 (SS) 127/199 [5-16.9] 67.87 [60.75, 74.95]

43

Apac B, Uganda
2017-18 2019 (SS) 167/294 [5-16.9] 60.46 [54.34, 66.4]

43

Mubende A, Uganda
2017-18 2019 (SS) 77/195 [5-16.9] 42.63 [35.56, 49.9]

43

Mubende B, Uganda
2017-18 2019 (SS) 53/208 [5-16.9] 27.57 [21.56, 33.99]

43

Kabale A, Uganda
2017-18 2019 (SS) 0/400 [5-16.9] 0.18 [0, 0.79]

43

Kabale B, Uganda
2017-18 2019 (SS) 1/400 [5-16.9] 0.44 [0.01, 1.25]

43

Muheza A, Tanzania
2006-07 2008 (CS) 13/39 [0.1-4.9] 30.14 [18.08, 42.53]

44

Muheza B, Tanzania
2006-07 2008 (CS) 164/671 [0.1-99.0] 23.82 [20.41, 27.37]

45

Muheza C, Tanzania
2006-07 2008 (CS) 417/1050 [0.4-19.9] 42.63 [39.44, 45.79]

45

*At each site, diverse sampling strategies were implemented. In Siaya A-C and Kilifi A-B,
households underwent annual sampling as part of long-term surveillance. Kilifi C saw four
rounds of household sampling, aligning with the hospital surveillance period. School surveys
were conducted in various regions of Kenya (Busia, Kakamega, Vihiga, Bungoma, Homa Bay)
and Uganda (Jinja A, Jinja B 2017-2018, Tororo A 2017-2019, Tororo B 2017-2019, Apac A & B,
Mubende A & B, Kabale A & B). The survey included all public, primary schools within hospital
catchment areas, with annual community-based household surveys also taking place.
Community surveys in Jinja B and Tororo A and C (2012-2013) were part of broader household
sample surveys across respective districts, with data limited to catchment parishes. Published
findings in Muheza, Tanzania, provided village-level data reflecting time-site transmission
estimates. Due to the varied sampling methods, the incorporation of sampling weights in
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PfPR2-10 estimation was precluded. However, at all sites (excluding Muheza), samples covered
entire community or school catchment areas within selected hospital catchment areas.

**Parasite prevalence, adjusted for the 2-10 age range as detailed in methods is presented in
bold. Estimates conducted by RDT were corrected to microscopy values using a regression
framework outlined in Mappin et al. (2015)46.
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