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Abstract
The equilibrium properties of nanoscale systems can deviate significantly from standard
thermodynamics due to their coupling to an environment. We investigate this here for the θ-angled
spin–boson model, where we first derive a compact and general form of the classical equilibrium
state including environmental corrections to all orders. Secondly, for the quantum spin–boson
model we prove, by carefully taking a large spin limit, that Bohr’s quantum–classical
correspondence persists at all coupling strengths. This shows, for the first time, the validity of the
quantum–classical correspondence for an open system and gives insight into the regimes where the
quantum system is well-approximated by a classical one. Finally, we provide the first classification
of the coupling parameter regimes for the spin–boson model, from weak to ultrastrong, both for
the quantum case and the classical setting. Our results shed light on the interplay of quantum and
mean force corrections in equilibrium states of the spin–boson model, and will help draw the
quantum to classical boundary in a range of fields, such as magnetism and exciton dynamics.

Bohr’s correspondence principle [1] played an essential role in the early development of quantummechanics.
Since then, a variety of interpretations and applications of the correspondence principle have been
explored [2–9]. One form asks if the statistical properties of a quantum system approach those of its classical
counterpart in the limit of large quantum numbers [4, 5]. This question was answered affirmatively by
Millard and Leff, and Lieb for a quantum spin system [2, 3]. They proved that the system’s thermodynamic
partition function Zqu

S associated with the Gibbs state, converges to the corresponding classical partition
function Zcl

S , in the limit of large spins. Such correspondence gives insight into the conditions for a quantum
thermodynamic system to be well-approximated by its classical counterpart [8, 9]. While Zqu

S is
computationally tough to evaluate for many systems, Zcl

S offers tractable expressions with which
thermodynamic properties, such as free energies, susceptibilities and correlation functions, can readily be
computed [2, 3]. Similarly, many dynamical approaches solve a classical problem rather than the much
harder quantum problem. For example, sophisticated atomistic simulations of the magnetisation dynamics
in magnetic materials [10–13] solve the evolution of millions of interacting classical spins. A corresponding
quantum simulation [14] would require no less than a full–blown quantum computer as its hardware.

Meanwhile, in the field of quantum thermodynamics, extensive progress has recently been made in
constructing a comprehensive framework of ‘strong coupling thermodynamics’ for classical [15–20] and
quantum [21–31] systems. This framework extends standard thermodynamic relations to systems whose
coupling to a thermal environment can not be neglected. The equilibrium state is then no longer the
quantum or classical Gibbs state, but must be replaced with the environment-corrected mean force (Gibbs)
state [30–32]. These modifications bring into question the validity of the correspondence principle when the
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environment-coupling is no longer negligible. Mathematically, the challenge is that in addition to tracing
over the system, one must also evaluate the trace over the environment.

Strong coupling contributions are present for both classical and quantum systems. However, a
quantitative characterisation of the difference between these two predictions, in various coupling regimes, is
missing. For example, apart from temperature, what are the parameters controlling the deviations between
the quantum and classical spin expectation values? And how strong does the environmental coupling need to
be for the spin–boson model to be well-described by weak or ultrastrong coupling approximations? In this
paper, we answer these questions for the particular case of a spin S0 coupled to a one-dimensional bosonic
environment such that both dephasing and detuning can occur (θ-angled spin–boson model).

1. Setting

This generalised version of the spin–boson model [33, 34] describes a vast range of physical contexts,
including excitation energy transfer processes in molecular aggregates described by the Frenkel exciton
Hamiltonian [35–41], the electronic occupation of a double quantum dot whose electronic dipole moment
couples to the substrate phonons in a semi-conductor [42], an electronic, nuclear or effective spin exposed to
a magnetic field and interacting with an (anisotropic) phononic, electronic or magnonic
environment [43–47], and a plethora of other aspects of quantum dots, ultracold atomic impurities, and
superconducting circuits [48–51]. In all these contexts, an effective ‘spin’ S interacts with an environment,
where S is a vector of operators (with units of angular momentum) whose components fulfil the angular
momentum commutation relations [Sj,Sk] = ih̄

∑
l ϵjklSl with j,k, l ∈ {x,y,z}. We will consider spins of any

length S0, i.e. S2 = S0(S0 + h̄)1. The system Hamiltonian is

HS =−ωLSz, (1)

where the system energy level spacing is h̄ωL > 0 and the energy axis is in the−z-direction without loss of
generality. For a double quantum dot, the frequency ωL is determined by the energetic detuning and the
tunneling between the dots [42]. For an electron spin with S0 = h̄/2, the energy gap is set by a gyromagnetic
ratio γ and an external magnetic field Bext =−Bextẑ, such that ωL = γBext is the Larmor frequency.

The spin system is in contact with a bosonic reservoir, which is responsible for the dissipation and
equilibration of the system. Typically, this environment will consist of phononic modes or an
electromagnetic field [31, 52]. The bare Hamiltonian of the reservoir is

HR =
1

2

ˆ ∞

0
dω
(
P2ω +ω2X2

ω

)
, (2)

where Xω and Pω are the position and momentum operators of the reservoir mode at frequency ω which
satisfy the canonical commutation relations [Xω,Pω ′ ] = ih̄δ(ω−ω ′). With the identifications made in (1)
and (2), the system-reservoir Hamiltonian is

Htot =HS +HR +Hint, (3)

which contains a system-reservoir coupling Hint. Physically, the coupling can often be approximated to be
linear in the canonical reservoir operators [31], and is then modelled as [42, 52, 53]

Hint = Sθ

ˆ ∞

0
dωCωXω, (4)

where the coupling function Cω determines the interaction strength between the system and each reservoir
mode ω. Cω is related to the reservoir spectral density Jω via Jω = C2

ω/(2ω). It is important to note that the
coupling is via the spin (component) operator Sθ = Sz cosθ− Sx sinθ which is at an angle θ with respect to
the system’s bare energy axis, see figure 1. For example, for a double quantum dot [42], the angle θ is
determined by the ratio of detuning and tunnelling parameters.

In what follows, we will need an integrated form of the spectral density, namely

Q=

ˆ ∞

0
dω

Jω
ω

=

ˆ ∞

0
dω

C2
ω

2ω2
. (5)

This quantity is a measure of the strength of the system–environment coupling and it is sometimes
called ‘reorganization energy’ [32, 54–56]. The analytical results discussed below are valid for
arbitrary coupling functions Cω (or reorganisation energies Q). The plots assume Lorentzians
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Figure 1. Illustration of bare and interaction energy axes. A spin operator (vector) S with system Hamiltonian HS with energy
axis in the−z-direction is coupled in θ-direction to a harmonic environment via Hint.

Jω = (2ΓQ/π)ω2
0ω/((ω

2
0 −ω2)2 +Γ2ω2), where ω0 is the resonant frequency of the Lorentzian [43] and Γ

the peak width.
We will model Htot (equation (3)) either fully quantum mechanically as detailed above, or fully

classically. To obtain the classical case, the spin S operator will be replaced by a three-dimensional vector of
length S0, and the reservoir operators Xω and Pω will be replaced by classical phase–space coordinates.
Below, we evaluate the spin’s so-called mean force (Gibbs) states, CMF and QMF, for the classical and
quantum case, respectively. The mean force approach postulates [31] that the equilibrium state of a system in
contact with a reservoir at temperature T is the mean force (MF) state, defined as

τMF := trR [τtot] = trR

[
e−βHtot

Ztot

]
. (6)

That is, τMF is the reduced system state of the global Gibbs state τtot, where β = 1/kBT is the inverse
temperature with kB the Boltzmann constant, and Ztot is the global partition function. Quantum
mechanically, trR stands for the operator trace over the reservoir space while classically, ‘tracing’ is done by
integrating over the reservoir degrees of freedom. Further detail on classical and quantum tracing for the
spin and the reservoir, respectively, is given in appendix A.

While the formal definition of τMF is deceptively simple, carrying out the trace over the reservoir—to
obtain a quantum expression of τMF in terms of system operators alone—is notoriously difficult. Often,
expansions for weak coupling are made [21, 42]. For a general quantum system (i.e. not necessarily a spin),
an expression of τMF has recently been derived in this limit [32]. Furthermore, recent progress has been made
on expressions of the quantum τMF in the limit of ultrastrong coupling [32], and for large but finite
coupling [30, 31, 58]. Moreover, high temperature expansions have been derived that are also valid at
intermediate coupling strengths [41]. However, the low and intermediate temperature form of the quantum
τMF for intermediate coupling is not known, neither in general nor for the θ–angled spin boson model.

2. Classical MF state at arbitrary coupling

In contrast, here we establish that the analogous problem of a classical spin vector of arbitrary length S0,
coupled to a harmonic reservoir via equation (4), is tractable for arbitrary coupling function Cω and
arbitrary temperature. By carrying out the (classical) partial trace over the reservoir, i.e. trclR[τtot] see
appendix C, we uncover a rather compact expression for the spin’s CMF state τMF and the CMF partition
function Z̃cl

S :

τMF =
e−β(HS−QS2θ)

Z̃cl
S

,

with Z̃cl
S = trclS

[
e−β(HS−QS2θ)

]
, (7)

where the mean force nature of the partition function is indicated with a ˜ . The state τMF clearly differs from
the standard Gibbs state by the presence of the reorganisation energy term−QS2θ. The quadratic dependence
on Sθ changes the character of the distribution, from a standard exponential to an exponential with a positive
quadratic term, altering significantly the state whenever the system–reservoir coupling is non-negligible.

Throughout this article, we will consider that the MF state is the equilibrium state reached by a system in
contact with a thermal bath. While this is widely thought to be the case, some open questions remain about
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Figure 2. Classical mean force and steady–state spin expectation values. Normalised expectation values of the classical spin
components ⟨sz⟩ (left) and ⟨sx⟩ (right) as a function of temperature. These are obtained with: (CSS) the long time average of the
dynamical evolution of the spin, ⟨sk⟩= ⟨Sk⟩CSS/S0; and (CMF) the classical MF state (equation (7)), ⟨sk⟩= ⟨Sk⟩MF/S0. These are
shown for three different coupling strengths Q= 0.04ωLh̄−1,2ωLh̄−1,14ωLh̄−1, that range from the weak to the ultrastrong
coupling regime. In all three cases, we see that the MF predictions are fully consistent with the results of the dynamics. All plots
are for Lorentzian coupling with ω0 = 7ωL, Γ = 5ωL, and coupling angle θ = 45◦. The temperature scale shown corresponds to a
spin S0 = h̄/2. The dynamical simulations where numerically computed using SpiDy.jl [57], a library for the simulation of the
non-Markovian stochastic dynamics of classical spins strongly coupled to the environment.

formal proofs showing the convergence of the dynamics towards the steady state predicted by the MF
state [24–26, 31, 42, 59–64]. For example, for quantum systems, this convergence has only been proven in the
weak [21] and ultrastrong limits [30], while for intermediate coupling strengths there is numerical evidence
for the validity of the MF state [34]. Here, we numerically verify the convergence of the dynamics towards the
MF state for the case of the classical spin at arbitrary coupling strength. This is possible thanks to the
numerical method proposed in [43], see also the optimised implementation in the SpiDy.jl package [57]. For
the classical spin, figure 2 shows the long time average of the spin components once the dynamics has
reached steady state (CSS, triangles), together with the expectation values predicted by the static MF state
(CMF, solid lines), for a wide range of coupling strengths going from weak to strong coupling (see also
section 4 for the first full characterisation of the different coupling strength regimes). We find that both
predictions are in excellent agreement, providing strong evidence for the convergence of the dynamics
towards the MF. The compact expression (7) for the CMF state, as well as the numerical verification that the
dynamical steady state matches the CMF state, are the first result of this paper.

3. Quantum–classical correspondence

We now demonstrate that the quantummean force partition function Z̃qu
S , which includes arbitrarily large

corrections due to the spin’s coupling to the reservoir, converges to the classical one, Z̃cl
S in equation (7).

A well-known classical limit of a quantum spin is to increase the quantum spin’s length, S0 →∞. This is
because, when S0 increases, the quantised angular momentum level spacing relative to S0 decreases,
approaching a continuum of states that can be described in terms of a classical vector [1]. Taking the large
spin limit for a spin-S0 system can be achieved following an approach used by Fisher when treating an
uncoupled spin with Hamiltonian HS [65]. This involves introducing a rescaling of the spin operators via
sj = Sj/S0 so that the commutation rule becomes [sj, sk] = ih̄ϵjkl sl/S0. Hence, in the limit of S0 →∞, the
scaled operators will commute, so in that regard they can be considered as classical quantities [65]. Millard &
Leff [2] take this further and prove, for any spin Hamiltonian H in the spin Hilbert spaceHS, the identity

lim
S0→∞

h̄

2S0 + h̄
trquS
[
e−βH

]
= lim

S0→∞

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−βH(S0,ϑ,φ), (8)

provided the limit on the right hand side exists. Here H(S0,ϑ,φ) is the classical spin-S0 Hamiltonian, where
the spin-vector S is parametrised by two angles, φ and ϑ, such that Sx = S0 sinϑcosφ,Sy = S0 sinϑ sinφ and
Sz = S0 cosϑ. The factor of h̄/(2S0 + h̄) guarantees that the sides of (8) are equal for β= 0. For a fixed value
of S0, this pre-factor is unimportant for thermodynamic expectation values as it immediately cancels in any
calculation of expectation values, i.e. for a quantum system, the expressions h̄

2S0+h̄Z
qu
S (β,S0) and Zqu

S (β,S0)
give the same expectation values. Equation (8) was further confirmed by Lieb who provides a rigorous
argument based on the properties of spin-coherent states [3].
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Note, though, if one simply takes the S0 →∞ limit in (8), withH being the system HamiltonianHS ∝ S0,
that would have the same effect as sending β →∞; namely, all population will go to the ground state.
Instead, maintaining a non-trivial temperature dependence after taking the S0-limit requires a further
rescaling step. One approach involves a rescaling of the physical parameters of the Hamiltonian H, as
followed, e.g. by Fisher [65]. A second approach is to rescale the inverse temperature via βS0 = β ′, and take
the limit S0 →∞ with β ′ held fixed. This is the limit we will take here. The effect of this constrained limit
can readily be seen for the thermal states of the uncoupled classical or quantum spin. The classical partition
function Zcl

S (βS0) = sinh(βS0ωL)/βS0ωL is left invariant because β and S0 always appear together in Zcl
S . In

contrast, the quantum partition function Zqu
S (β,S0) = sinh(β(S0 + h̄/2)ωL)/ sinh(βh̄ωL/2) is altered in the

constrained limit, since Zqu
S separately depends on β and S0. Equation (8) then expresses the convergence of

the partition functions [2, 3, 65], i.e. h̄
2S0+h̄ Z

qu
S (β,S0)→ Zcl

S (βS0).
We now take a step further and extend this result to the case of a spin coupled to a reservoir. The first step

is to consider that the relevant Hilbert space is now the tensor product space of spin and reservoir degrees of
freedom,HS ⊗HB. It was argued by Lieb [3] that (8) remains valid in this case, i.e. even when H ∈HS ⊗HB.
This means we can replace H in (8) with our Htot. But note that the trace is still only over the system Hilbert
spaceHS. Thus, formally one obtains an operator valued identity for operators onHB. The second step is
then to evaluate the trace over the reservoir degrees of freedom. To do so, we start by writing the total
unnormalised Gibbs state as

e−βHtot = exp

[
−β ′

(
−ωLsz +

HR

S0
+ sθ

ˆ ∞

0
dωCωXω

)]
, (9)

with the rescaled inverse temperature β ′ = βS0. Since β ′ is constant as the limit S0 →∞ is taken, doing so
rescales the spin operators, as required. But it also rescales HR to hR =HR/S0, which can be expressed in
terms of rescaled reservoir operators, pω and xω where pω = Pω/

√
S0 and xω = Xω/

√
S0. The commutation

relations are then [xω,pω ′ ] = ih̄δ(ω−ω ′)/S0, so in the limit of S0 →∞, these two operators commute [66].
Thus, the classical limit of the spin induces a limit for the reservoir. That is, the quantum nature of the
reservoir is inevitably stripped away, so that the result eventually obtained is that of a classical spin coupled to
a classical reservoir.

Written in terms of these rescaled reservoir operators, one now has,

e−βHtot = exp

[
−β ′

(
−ωLsz + hR + sθ

ˆ ∞

0
dωCω

√
S0 xω

)]
. (10)

If one were to naively take the S0-limit, then the interaction term dominates and the dependence on the bare
system energy−ωLsz drops out. To explore a non-trivial limit, where the relative energy scale of the bare and
interaction Hamiltonians are kept the same throughout the S0 limit, we now choose the scaling Cω ∝ 1/

√
S0

of the coupling function Cω with spin-length S0 (we will comment on other scaling choices below). The
reorgansiation energy (5) then scales with S0 as

Q= α
ωL

S0
, (11)

where α is a unit-free constant independent of S0 and β. The combined scaling of Q with S0 (equation (11)),
and the rescaling of the inverse temperature, βS0 = β ′ = const, then leaves the CMF state (7) invariant under
variation of S0.

Crucially, the QMF state defined by equation (6) will not be invariant under variation of S0. Returning to
the unnormalised total Gibbs state (10), taking the quantum trace over the spin, and using equation (8), one
obtains an identity that still contains the bath operators in contrast to the uncoupled spin. Finally taking the
quantum trace over the reservoir on both sides, one finds, see appendix D, the quantum–classical
correspondence for the open spin’s mean force partition functions:

lim
S0→∞

h̄

2S0 + h̄
Z̃qu
S (β,S0,α) = Z̃cl

S (βS0,α) . (12)

Here it was used that the total quantum partition function, Zqu
SR(β,S0,α), divided by the bare quantum

reservoir partition function, Zqu
R (β), is the quantum mean force partition function, Z̃qu

S (β,S0,α), i.e.
Zqu
SR(β,S0,α)/Z

qu
R (β) = Z̃qu

S (β,S0,α) [67, 68]. In contrast to the quantum–classical correspondence
established by Millard & Leff, and Lieb, for the standard Gibbs state partition functions, there now is a
dependence on the spin-environment coupling strength α. Proving the quantum–classical
correspondence (12) for the spin–boson model, valid at all coupling strengths, is the second result of the

5
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Figure 3. Classical and quantum mean force spin components. Normalised expectation values of the spin components ⟨sz⟩ (left)
and ⟨sx⟩ (right) obtained with: (QMFWK) the quantumMF partition function Z̃qu

S in the weak coupling limit for a spin of length

S0 = nh̄/2 (n= 1,2,5,100); (CMF) the classical MF partition function Z̃cl
S given in (7). As the length S0 of the quantum spin is

increased, the quantum mean force prediction QMFWK converges to that corresponding to the CMF state. Non-zero sx (right)
indicate ‘coherences’ with respect to the system’s bare energy axis (z). These arise entirely due to the spin-reservoir interaction.
Such coherences have been discussed for the quantum case [42]. Here we find that they also arise in the classical CMF. All plots
are for a weak coupling strength, α= 0.06, and θ = π/4.

paper. To our knowledge, this is the first time that such correspondence has been established for an open
quantum system.

The above quantum–classical correspondence was derived assuming a constant ratio between bare and
interaction energy, i.e. Cω ∝ 1/

√
S0. Different scaling choices also show a quantum–classical

correspondence—but a much more trivial one where the dependence on α drops out. To see this, consider

scalings of the form Cω ∝ 1/
√
Sp0, first for p> 1. Taking again the constrained large spin limit, as detailed in

appendix D, the bare energy will stay constant while the interaction term then decays as 1/Sp−1
0 . This

immediately results in recovering the CMF partition function but in the regime where the spin is negligibly
coupled to a reservoir, i.e. h̄

2S0+h̄ Z̃
qu
S (β,S0,α)→ Z̃cl

S (βS0,0)≡ Zcl
S (βS0). Correspondingly for 0⩽ p< 1, the

interaction term will grow when taking the large spin limit. The regime where the interaction is the
dominant term is called the ‘ultrastrong’ limit [32], see also section 4 below. It is known that the QMF
partition function’s dependence on α drops out in this limit and a specific expression is recovered [32].
Besides, as we show in appendix G, at ultrastrong coupling, the quantum and classical mean force partition
functions Z̃qu

S,US(β,S0) and Z̃cl
S,US(βS0) are identical. Hence, one has the trivial quantum–classical

correspondence h̄
2S0+h̄ Z̃

qu
S (β,S0,α)→ Z̃cl

S,US(βS0) for the quantum and classical MF partition functions.
We finally remark that, in the above proof, it was assumed that α is independent of β. Physically this is

not entirely accurate because the coupling Cω is usually a function of temperature [69], albeit often a rather
weak one. For the limiting process leading to (12) to apply, a weak dependence on β would need to be
compensated by an equally weak additional dependence of Q on S0.

To visually illustrate the quantum to classical convergence, we choose a weak coupling strength, α= 0.06,
for which an analytical form of the quantum Z̃qu

S is known [32]. Mean force spin component expectation
values ⟨sk⟩= ⟨Sk⟩MF/S0 for k= x,z can then readily be computed from the partition functions Z̃qu

S and Z̃cl
S ,

respectively, see appendix B. Figure 3 shows ⟨sz⟩ and ⟨sx⟩ for various spin lengths, S0 = nh̄/2 with
n= 1,2,5,1000 for the quantum case (QMFWK, purple to green) and the classical case (CMF, dashed black).
Note, that the x-axis is a correspondingly rescaled temperature, 2kBT/nh̄ωL, a scaling under which the CMF
remains invariant. The numerical results illustrate that the quantum ⟨sz⟩ and ⟨sx⟩ change with spin length
S0 = nh̄/2, and indeed converge to the classical prediction in the large spin limit, n→∞.

4. Coupling regimes

Finally, we now classify the interaction strength necessary for the spin–boson model to fall in various
coupling regimes, from ultra-weak to ultra-strong. To quantify the relative strength of coupling we use the
dimensionless parameter

ζ =
QS0
ωL

, (13)

6
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Figure 4. Quantum coupling regimes at T= 0 and T> 0. Panels (a) and (b): Spin expectation values ⟨sz⟩ and−⟨sx⟩ for the MF
state (6) at T= 0 for the total Hamiltonian (3) with S0 = h̄/2, θ = π/4 and different coupling strengths as quantified by the
dimensionless parameter ζ, see (13). We identify four coupling regimes for the numerically exact QMF state (solid dark
blue): Ultraweak coupling (UW), where the spin expectation values are consistent with the Gibbs state (QG, dashed light
green); Weak coupling (WK), where the expectation values are well approximated by a second order expansion in ζ (QMFWK,
dashed turquoise) [42]; Ultrastrong coupling (US), where the asymptotic limit of infinitely strong coupling ζ →∞ is valid
(QMFUS, dashed grey) [32], and Intermediate coupling (IM) where the QMF state is not approximated by any known analytical
expression. The dynamical steady state of the quantum spin (QSS, dark blue triangles) is also computed using the reaction
coordinate technique [71–74]. Excellent agreement between the QSS and the QMF prediction is seen for all ζ. Panel c): Coupling
regimes as a function of temperature T and coupling strength ζ. With increasing temperature, the boundaries shift towards
higher coupling ζ. At large temperatures, all three boundaries follow a linear relation T∝ ζ (dashed lines).

which is the ratio of interaction and bare energy terms, see also equation (7). For scaling (11) one has ζ = α.
It’s important to note that temperature sets another scale in this problem: as we will see, higher temperatures
will allow higher coupling values ζ to still fall within the ‘weak’ coupling regime [32, 70]. Thus, we will first
characterise various coupling regimes at T= 0 K, where the coupling has the most significant effect on the
system equilibrium state, and then proceed to study finite temperatures.

Figures 4(a) and (b) show the spin components ⟨sz⟩ and ⟨sx⟩ in the quantumMF state (QMF, solid dark
blue) at T= 0 K. These expressions are evaluated numerically using the reaction coordinate method [71–74]
see appendix E, for S0 = h̄/2 and angle θ = π/4. Also shown are the spin components for the quantum Gibbs
state (QG, dashed green), and for the analytically known quantumMF state in the weak coupling limit
(QMFWK, dashed turquoise) and the ultrastrong coupling limit (QMFUS, dashed grey) [32].

By comparing the analytical results (dashed lines) to the numerically exact result (solid line), and
requiring the relative error to be at most 4 · 10−3, we can clearly identify four regimes: For ζ < 4 · 10−2,
equilibrium is well-described by the quantum Gibbs state and this parameter regime can thus can be
considered as ultraweak coupling (UW) [31]. For 4 · 10−2 ⩽ ζ < 8 · 10−1, equilibrium is well-described by
the weak coupling state QMFWK, which includes second order coupling corrections [32]. Thus, this regime
is identified as the weak coupling regime (WK). At the other extreme, for 7 · 101 ⩽ ζ , the equilibrium state
converges to the ultrastrong coupling state QMFUS which was derived in [32]. Thus, this regime is identified
as the ultrastrong coupling regime (US). Finally, for the parameter regime 8 · 10−1 ⩽ ζ < 7 · 101 the exact
QMF shows variation with ζ that is not captured by neither weak nor ultrastrong coupling approximation.
This is the intermediate coupling regime (IM), which is highly relevant from an experimental point of view,
but there are no known analytical expressions that approximate the exact solution.

Beyond the zero temperature case, we compute ⟨sx⟩ and ⟨sz⟩ with the numerically exact QMF state over a
wide range of coupling strengths and temperatures, and compare the results with those of the UW, WK, and
US approximations allowing an error of 4 · 10−3, as above. Figure 4(c) shows how pairs of ζ and T fall into
various coupling regimes. One can see that, at elevated temperatures, the coupling regime boundaries shift
towards higher coupling ζ . Thus at higher temperatures, 2kBT/h̄ωL ≳ 10, the UW and WK approximations
are valid at much higher coupling strengths ζ than at T= 0. At higher temperatures we also observe an
emerging linear relation, 2kBT/h̄ωL ∝ ζ , for all three regime boundaries. The temperature dependence of the

7
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Figure 5. Classical coupling regimes at T= 0 and T> 0. Same plot as figure 4, but here for the equilibrium state of a classical spin
vector S with Hamiltonian equation (3). A particular (T, ζ)-pair (red star) is identified for which the classical spin falls in the
intermediate regime. For the same parameter pair, the quantum spin falls in the weak coupling regime, see red star in figure 4(c).
Moving the classical red star upwards in temperature until it reaches a point (black square) in the weak coupling regime that is
laterally distanced from the boundaries similar to the quantum star, figure 4(c), gives an effective temperature shift of
∆T= 1.6 · 2h̄ωL/kB. This example evidences significant differences between the environmental impact on quantum and classical
equilibrium states.

border between the weak and intermediate coupling regime has previously been identified to be linear
by Latune [70].

The quantum coupling regimes can now be compared to the corresponding regimes for a classical spin
vector, shown in figures 5(a)–(c). Perhaps surprisingly, we find that the classical regime boundary values for
ζ differ significantly from those for the quantum spin, e.g. by a factor of 10 for the WK approximation. This
shift is exemplified by the red star, which indicates the same parameter pair (T, ζ) in both figures, figures 4(c)
and 5(c). While the open quantum spin lies in the weak coupling regime, the classical one requires an
intermediate coupling treatment. We suspect this quantum–classical distinctness comes from the fact that,
while for a classical spin at zero temperature there is no noise induced by the bath, in the quantum case noise
is present even at T= 0 K due to the bath’s zero-point-fluctuations [43]. One may qualitatively interpret this
additional noise as an effective temperature shift with respect to the classical case, by ca.∆T= 1.6 · 2h̄ωL/kB,
as indicated by the black square in figure 5(c).

To conclude, for any given coupling value ζ and temperature T, the two plots figures 4(c) and 5(c)
provide a tool to judge whether a ‘weak coupling’ approximation is valid for the spin–boson model or not.
We emphasise that, interestingly, the answer depends on whether one considers a quantum or a classical spin.

5. Conclusions

In this paper we have characterised the equilibrium properties of the θ–angled spin–boson model
equations (1)–(4), in the quantum and classical regime. Firstly, for the classical case, we have derived a
compact analytical expression for the equilibrium state of the spin, that is valid for arbitrary coupling to the
harmonic reservoir. This is of great practical relevance as it allows one to analytically obtain all equilibrium
properties of the spin at any coupling strength. It remains an open question [31] to find a similarly general
analytical expressions for the quantum case.

Secondly, we have proven that the quantumMF partition function, including environmental terms,
converges to its classical counterpart in the large-spin limit at all coupling strengths. This is the first time that
such correspondence has been established for an open quantum system. Our results provide direct insight
into the difference between quantum and classical states of a spin coupled to a noisy environment. Apart
from being of purely fundamental interest, this will constitute key information for many quantum
technologies [75], and ultimately links to the quantum supremacy debate.

Finally, we presented the first quantitative characterisation of the coupling parameter values that put the
spin–boson model in the ultraweak, weak, intermediate, or ultrastrong coupling regime, both for the

8
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quantum case as well as the classical setting. This classification will be important in many future studies of
the spin–boson model, quantum or classical, for which it provides the tool to chose the correct
approximation for a specific parameter set.

Data availability statements

The code used to produce figures 4 and 5 is publicly available online at https://github.com/quantum-exeter/
SpinMFGS. It can be used to make analogous plots for a desired coupling angle θ and spin length S0. The
dynamical plots of figure 2 where done using the open-source library SpiDy.jl [57]. No new data were created
or analysed in this study.
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Note added

Since the original version of this paper was posted on the arXiv, a new approximate method to express the
QMF in the IM regime has been proposed [76] based on the reaction coordinate mapping and polaron
transformation. Furthermore, the impact of reservoir coupling to three spin components has been discussed
for the quantum and classical case [77] and anisotropic spin-reservoir coupling effects have been
identified [78]. Inclusion of the quantum reservoir in the prediction magnetisation curves [79] is showing
high agreement with experimental curves of several materials, where classical models have not shown a
match.

Appendix A. Tracing for spin and reservoir, in classical and quantum setting

A.1. Spin tracing in the classical setting
For a classical spin of length S0, with components Sx,Sy,Sz, one can change into spherical coordinates, i.e.

Sx = S0 sinϑcosφ, Sy = S0 sinϑ sinφ,

Sz = S0 cosϑ, ϑ ∈ [0,π] ,φ ∈ [0,2π] . (A1)

Then, traces of functions A(Sx,Sz) are evaluated as

trclS [A(Sx,Sz)] =
1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑA(S0 sinϑcosφ,S0 cosϑ) . (A2)

A.2. Spin tracing in the quantum setting
For a quantum spin S0, given any orthogonal basis |m⟩, then the trace of functions of the spin operators
A(Sx,Sz) are evaluated as

trquS [A(Sx,Sz)] =
∑
m

⟨m|A(Sx,Sz) |m⟩ . (A3)

A.3. Reservoir traces
When taking traces over the environmental degrees of freedom (in either the classical or quantum case), we
ought to first discretise the energy spectrum of HR. This is because, strictly speaking, the partition function
for the reservoir, ZR = tr[exp(−βHR)], is not well defined in the continuum limit. Thus, we write

HR =
∞∑
n=0

1

2

(
P2ωn

+ω2
nX

2
ωn

)
. (A4)
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Then, for example, the classical partition function of the environment is

Zcl
R =

∞∏
n=0

[ˆ +∞

−∞
dXωn

ˆ ∞

−∞
dPωne

− β
2 (P

2
ωn

+ω2
nX

2
ωn)

]
, (A5)

and similarly for the quantum case.

Appendix B. Expectation values from the partition function

With the partition function of the MF we can proceed to calculate the Sz and Sx expectation values as follows.

B.1. Classical case
For the classical spin, from (7) we have the partition function

Z̃cl
S =

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−β(−ωLSz(ϑ,φ)−QS2θ(ϑ,φ)). (B1)

While obtaining the Sz expectation value is straightforward, the Sx case may seem less obvious. It is therefore
convenient to do a change of coordinates

Sz ′ (ϑ,φ) = Sz (ϑ,φ)cosθ− Sx (ϑ,φ) sinθ,

Sx ′ (ϑ,φ) = Sx (ϑ,φ)cosθ+ Sz (ϑ,φ) sinθ. (B2)

Defining hx ′ =−ωL sinθ, hz ′ =−ωL cosθ, we then have that

Z̃cl
S =

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−β(hz ′Sz ′ (ϑ,ϕ)+hx ′Sx ′ (ϑ,ϕ)−QS2z ′ (ϑ,ϕ)), (B3)

and we can obtain the Sz ′ and Sx ′ expectation values as usual, i.e.

⟨Sx ′,z ′⟩=− 1

β

∂

∂hx ′,z ′
log Z̃cl

S . (B4)

Finally, by linearity, we have that

⟨Sx⟩= ⟨Sx ′⟩cosθ−⟨Sz ′⟩ sinθ,
⟨Sz⟩= ⟨Sz ′⟩cosθ+ ⟨Sx ′⟩ sinθ. (B5)

B.2. Quantum case
For the quantum case we proceed in a completely analogous manner. We have that

⟨Sx⟩= trqu
[
Sxe

−β(−ωLSz+SθB+HR)
]
,

⟨Sz⟩= trqu
[
Sze

−β(−ωLSz+SθB+HR)
]
. (B6)

Starting from the partition function

Zqu
SR = trqu

[
e−β(−ωLSz+SθB+HR)

]
, (B7)

we define a new set of rotated operators,

Sz ′ = Sz cosθ− Sx sinθ,

Sx ′ = Sx cosθ+ Sz sinθ, (B8)

and variables hx ′ =−ωL sinθ, hz ′ =−ωL cosθ, so that

Zqu
SR = trqu

[
e−β(hz ′Sz ′+hx ′Sx ′+Sz ′B+HR)

]
. (B9)

Then, we proceed in an analagous way as in (B4) and (B5).

10
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B.3. Example: ultrastrong limit
Let us consider the quantum ultrastrong partition function,

Z̃qu
S,US = cosh(βωLS0 cosθ) . (B10)

Following the procedure outlined above, we have that hz ′ =−ωL cosθ, and therefore

Z̃qu
S,US = cosh(βS0hz ′) . (B11)

Therefore, the expectation values of the transformed observables are

⟨Sx ′⟩=− 1

β

∂

∂hx ′
log Z̃qu

S,US = 0, (B12)

⟨Sz ′⟩=− 1

β

∂

∂hz ′
log Z̃qu

S,US =−S0 tanh(βS0hz ′)

=−S0 tanh(βωLS0 cosθ) . (B13)

Therefore, in the original variables we have

⟨Sx⟩= S0 sinθ tanh(βωLS0 cosθ) , (B14)

⟨Sz⟩=−S0 cosθ tanh(βωLS0 cosθ) , (B15)

in agreement with what is later obtained in appendix G directly from the MF in the ultra-strong limit.

Appendix C. Derivation of classical MF state for arbitrary coupling

In this section we derive the mean force Gibbs state of the classical spin for arbitrary coupling strength. As
discussed in appendix A, we discretise the environmental degrees of freedom, and thus we have for the total
Hamiltonian, (3)

Htot =−ωLSz +
∞∑
n=0

[
1

2

(
P2ωn

+ω2
nX

2
ωn

)
+ SθCωnXωn

]
. (C1)

On ‘completing the square’, we get

Htot =−ωLSz +
∞∑
n=0

1

2

[
P2ωn

+ω2
n

(
Xωn −

SθCωn

ω2
n

)2

− (SθCωn)
2

2ω2
n

]
. (C2)

The partition function is then,

Zcl
SR =

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−βHeffZcl

R. (C3)

Here, there appears an effective system Hamiltonian given by

Heff ≡−ωLSz −QS2θ (C4)

where the reorganization energy Q, is given by equation (5) of the main text, and

Zcl
R =

∏
n

ˆ ∞

−∞
dXωn

ˆ ∞

−∞
dPωne

− 1
2β

(
P2ωn

+ω2
n

(
Xωn−

SθCωn
ω2
n

)2)
, (C5)

is the partition function for the reservoir only. Note that, despite seemingly depending on the spin
coordinates, this last integral coincides with the reservoir partition function since once one carries out the
Gaussian integral, the dependence on Sθ vanishes.

While it is possible to derive an expression for ZR, its details are not needed as it depends solely on
reservoir variables and can be divided out to yield the system’s MF partition function,

Z̃cl
S =

Zcl
SR

Zcl
R

=
1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−βHeff , (C6)
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where Heff includes all spin terms independent of the coordinates of the environment. Finally, the MF is
given by

τMF =
1

Z̃cl
S

e−βHeff , (C7)

which is precisely equation (7) of the main text.
In terms of polar coordinates, we have Sθ = S0 (cosϑcosθ− sinϑcosφ sinθ), and then

Heff (ϑ,φ) =−ωLS0 cosϑ− S20Q(cosθ cosϑ− sinθ sinϑcosφ)2 . (C8)

The equilibrium state of the spin is then entirely determined by Z̃cl
S . The classical expectation values for the

spin components Sz and Sx are then given by

⟨sz⟩=
⟨Sz⟩
S0

=
1

Z̃cl
S

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑcosϑe−βHeff(ϑ,φ) (C9)

⟨sx⟩=
⟨Sx⟩
S0

=
1

Z̃cl
S

ˆ 2π

0
dφ cosφ

ˆ π

0
dϑ sin2ϑe−βHeff(ϑ,φ). (C10)

The integral expressions for the expectation values above cannot in general be expressed in a closed form, but
can be readily evaluated numerically for arbitrary coupling strength Q.

Appendix D. Quantum–classical correspondence for the MF partition functions

Starting from equation (F27) of the main text, we now ‘complete the square’ for the combination

hR + sθ

ˆ ∞

0
dωCω

√
S0xω, (D1)

to arrive at

1

2

ˆ ∞

0
dω

(
p2ω +ω2

(
xω + sθ

Cω

√
S0

ω2

)2
)
− s2θS0Q(S0) = hshiftR − s2θS0Q(S0) , (D2)

where Q(S0) =
´∞
0 dωC2

ω(S0)/(2ω
2) is the reorganisation energy, see (5). Note that because of the scaling

Cω ∝ 1/
√
S0, the product S0Q(S0) = αωL is independent of S0. Here, we have defined the reservoir

Hamiltonian

hshiftR =
1

2

ˆ ∞

0
dω

(
p2ω +ω2

(
xω + sθ

Cω

√
S0

ω2

)2
)
, (D3)

where the oscillator centres have been shifted.
Applying (8) to the total spin-reservoir Hamiltonian Htot, and immediately taking the reservoir trace on

both sides, gives

lim
S0→∞

h̄

2S0 + h̄
Zqu
SR (β,S0,α) = lim

S0→∞

h̄

2S0 + h̄
trquSR

[
e−β ′(−ωLSz+hshiftR −s2θ αωL)

]
= lim

S0→∞

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑtrquR

[
e−β ′(−ωL cosϑ+hshiftR −s2θ(ϑ,ϕ

′)αωL)
]

= lim
S0→∞

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−β ′(−ωL cosϑ−s2θ(ϑ,ϕ

′)αωL)trquR

[
e−β ′hshiftR

]
, (D4)

where the trace over the reservoir now factors out and

sθ (ϑ,ϕ
′) = cosθ cosϑ− sinθ cosφ sinϑ. (D5)

The reservoir trace factor gives

trquR

[
e−β ′hshiftR

]
= trquR

[
e−β 1

2

´∞
0 dω(P2ω+ω2(Xω+µω)2)

]
= Zqu

R (β) , (D6)
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with µω = Sθ
Cω

ω2 a shift in the centre position of the oscillators. The operators Xω +µω have the same
commutation relations with the Pω as the Xω themselves. Thus such a shift does not affect the trace and the
result is the bare quantum reservoir partition function at inverse temperature β, i.e. Zqu

R (β).
Dividing by Zqu

R (β) on both sides, putting it all together, we find

lim
S0→∞

h̄

2S0 + h̄

Zqu
SR (β,S0,α)

Zqu
R (β)

=
1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑe−β ′(−ωL cosϑ−s2θ(ϑ,ϕ

′)αωL), (D7)

where we have dropped the limit symbol since there is no dependence on S0.
Now we may replace again β ′ = βS0, and the RHS emerges as the spin’s classical mean force partition

function Z̃cl
S (βS0,α), cf (7), where the classical trace is taken according to (A2). Moreover, the fraction of

total quantum partition function divided by bare reservoir partition function is the quantum mean force
partition function [67, 68]. Thus, we conclude:

lim
S0→∞

h̄

2S0 + h̄
Z̃qu
S (β,S0,α) = lim

S0→∞

h̄

2S0 + h̄

Zqu
SR (β,S0,α)

Zqu
R (β)

= Z̃cl
S (βS0,α) . (D8)

Appendix E. Quantum reaction coordinate mapping

The Reaction Coordinate mapping method [71–74] is a technique for dealing with systems strongly coupled
to bosonic environments. To do so, it isolates a single collective environmental degree of freedom, the so
called ‘reaction coordinate’ (RC), that interacts with the system via an effective Hamiltonian. The rest of the
environmental degrees of freedommanifest as a new bosonic environment coupled to the RC. Concretely, for
our total Hamiltonian (3), the effective Hamiltonian that we have to consider is

HRC
tot =HS +HRC +HRC

int +Hres
int +Hres, (E1)

where HRC is the Hamiltonian of the RC mode,

HRC = h̄ΩRCa
†a, (E2)

with a† the creation operator of a quantum harmonic oscillator of frequency ΩRC; HRC
int is the spin–RC

interaction

HRC
int = λRCSθ

(
a+ a†

)
, (E3)

where λRC determines the the coupling strength between the RC mode and the spin; Hres =
´
dω(p2ω+

ω2q2ω)/2 is the Hamiltonian of the residual bosonic bath; and finally the residual bath-RC interaction Hres
int is

Hres
int =

(
a+ a†

)ˆ ∞

0
dω

√
2ωJRCqω, (E4)

with JRC the spectral density of the residual bath.
Given Htot, for an appropriate choice of JRC (which depends on the original Hamiltonian spectral density

and coupling), it has been proven that the reduced dynamics of the spin under Htot are exactly the same as
those of the spin under the effective Hamiltonian HRC

tot [73]. In general, the mapping between the original
spectral density, Jω , and that of the RC Hamiltonian, JRC, is hard to find. However, one particular case were
there is a simple closed form for JRC is that of a Lorentzian spectral density Jω (see main text). In such case,
the JRC spectral density is exactly Ohmic [71–73], i.e. has the form

JRC = γRCωe
−ω/ωc , ωc →∞. (E5)

Furthermore, the RC effective Hamiltonian parameters (ΩRC, λRC and γRC) are given in terms of the
Lorentzian parameters by

ΩRC = ω0, (E6)

λRC =
√
Qω0, (E7)

γRC =
Γ

2πω0
. (E8)
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Noticeably, by appropriately choosing Q, Γ, and ω0, we can have an initial Hamiltonian with arbitrarily
strong coupling to the full environment (i.e. arbitrarily strong Q), while having arbitrarily small coupling to
the residual bath of the RC Hamiltonian (i.e. arbitrarily small γRC).

As mentioned, it has been shown that the reduced spin dynamics under Htot with Lorentzian spectral
density (see main text) is exactly the same as the reduced spin dynamics under HRC

tot with spectral
density (E5). In particular, the steady state of the spin will also be the same. Therefore, it is reasonable to
expect that the spin MF state obtained with Htot will be the same as the spin MF state for HRC

tot , i.e.

τMF = Z̃−1
S trR

[
e−βHtot

]
= Z̃ ′−1

S trR
[
e−βHRC

tot

]
. (E9)

We now assume that γRC is arbitrarily small, so that the MF state is simply going to be given by the Gibbs
state of spin+RC, i.e.

τMF = Z̃ ′−1
S trR

[
e−βHRC

tot

]
≈ Z̃ ′ ′−1

S trR
[
e−β(HS+ΩRCa

†a+λRCSθ(a+a†))
]
. (E10)

It is key here to observe that the condition γRC → 0 does not imply any constraint on the coupling strength to
the original environment, since we can always choose Γ and ω0 so that γRC is arbitrarily small, while allowing
Q to be arbitrarily large.

Finally, to numerically obtain the MF state, since unfortunately (E10) does not have a general closed
form, we numerically evaluate (E10) by diagonalising the full Hamiltonian and then taking the partial trace
over the RC. To numerically diagonalise this Hamiltonian we have to choose a cutoff on the number of
energy levels of the RC harmonic oscillator. This cutoff was chosen by increasing the number of levels until
observing convergence of the numerical results.

Appendix F. Quantum to classical limit in the weak coupling approximation

In this section we explicitly compute the large spin limit for the weak coupling expressions of the classical
and quantum mean force Gibbs states. These results are used in the characterisation of the different coupling
regimes.

Since we are going to perform perturbative expansions in the coupling strength, in what follows we
introduce, for book-keeping purposes, an adimensional parameter λ in the interaction, so that Hint now
reads

Hint = λSθ

ˆ ∞

0
dωCωXω. (F1)

This will allow us to properly keep track of the order of each term in the expansion. Finally, at the end of the
calculations we will take λ= 1.

F.1. Classical spin: weak coupling
Here, we derive the classical weak coupling expectation values starting from the exact MF found in
appendix C. The effective Hamiltonian, with the inclusion of the parameter λ now reads

Heff =−ωLSz −λ2QS2θ. (F2)

For weak coupling, the expressions for Z̃cl
S ,⟨Sz⟩ and ⟨Sx⟩ can be approximated by treating the term λ2S20Q as a

perturbation. Therefore, expanding exp[−βHeff] to lowest order in λ we have

e−βHeff = eβωLS0 cosϑ
[
1+βλ2S20Q(cosθ cosϑ− sinθ sinϑcosφ)2

]
+O

(
λ4
)
, (F3)

from which we can determine the weak coupling limit of the classical spin partition function and spin
expectation values.

F.1.1. Standard Gibbs results for a classical spin
First, here we write the partition function and spin expectation values for a classical spin in the standard
Gibbs state for the bare Hamiltonian HS (i.e. in the limit of vanishing coupling, λ= 0). These expressions
will be useful to later on to write the second order corrections.
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For the partition function we have that

Zcl
0 =

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑexp [βωLS0 cosϑ] =

sinh(βωLS0)

βωLS0
. (F4)

The expectation value of Sx is trivially 0 by symmetry, i.e.

⟨Sx⟩0 =
1

Zcl
0

S0

ˆ 2π

0
dφ cosφ

ˆ π

0
dϑ sin2ϑeβωLS0 cosϑ = 0. (F5)

For the expectation value of the powers of Sz (which will be useful later), we have

⟨Snz ⟩0 =
2π

Zcl
0

Sn0

ˆ π

0
dϑ sinϑcosnϑeβωLS0 cosϑ. (F6)

In particular, we find

⟨Sz⟩0 = S0 coth(βωLS0)−
1

βωL
, (F7)

⟨S2z⟩0 = S20 −
2S0 coth(βωLS0)

βωL
+

2

(βωL)
2 , (F8)

⟨S3z⟩0 = S30 coth(βωLS0)−
3S20
βωL

+
6S0 coth(βωLS0)

(βωL)
2 − 6

(βωL)
3 . (F9)

F.1.2. Classical spin partition function for weak coupling
Expanding the partition function to second order in λ we find that

Z̃cl
S =

1

4π

ˆ 2π

0
dφ

ˆ π

0
dϑ sinϑ

[
eβωLS0 cosϑ +

βλ2S20Q

4π
eβωLS0 cosϑ(cosθ cosϑ− sinθ sinϑcosφ)2

]
+O(λ4).

(F10)

The first term can be recognised as the partition function for the bare system, Zcl
0 . The φ

′ integral in the
second term is straightforward to perform,

Z̃cl
S = Zcl

0 +
1

2
βλ2S20Q

ˆ π

0
dϑ sinϑeβωLS0 cosϑ[(3cos2 θ− 1)cos2ϑ+ sin2 θ] +O(λ4). (F11)

We typically require the inverse of the partition function, which to lowest order in the perturbation is

Z̃cl
S = (Zcl

0 )
−1

[
1−πβλ2S20QZ

−1
0

ˆ π

0
dϑ sinϑeβωLS0 cosϑ((3cos2 θ− 1)cos2ϑ+ sin2 θ)

]
+O(λ4). (F12)

Now turning to the expectation value ⟨Sz⟩, given in equation (C9), and carrying out the same lowest
order expansion we get

⟨Sz⟩= ⟨Sz⟩0 +
1

2
βλ2Q

[(
3cos2 θ− 1

)(
⟨S3z⟩0 −⟨Sz⟩0⟨S2z⟩0

)]
+O

(
λ4
)
. (F13)

This result will be compared later to the quantum weak coupling result obtained in the large spin (classical)
limit.

F.1.3. Classical ⟨Sx⟩ for weak coupling
A similar calculation can be followed for ⟨Sx⟩, the main difference being in the handling of the φ ′ integral.
Thus, we find

⟨Sx⟩=− 1
2 sin2θβλ

2Q
(
⟨Sz⟩0S20 −⟨S3z⟩0

)
+O

(
λ4
)
, (F14)

where we have used that Z0/Z̃cl
S = 1 to lowest order.

Using the zeroth order expressions for ⟨Sz⟩0 and ⟨S3z⟩0 from (F7) we get the result in terms of the scaled
temperature β ′ = βS0

⟨Sx⟩=− sin2θλ2S0Q

ωL

(
1− 3coth(β ′ωL)

β ′ωL
+

3

(β ′ωL)2

)
+O(λ4). (F15)

This result will be compared later to the quantum weak coupling result obtained in the large spin (classical)
limit.

15



New J. Phys. 26 (2024) 053032 F Cerisola et al

F.2. Quantum spin: weak coupling
In general, the quantum mean force Gibbs state is given by

τMF =
trquR
[
e−βHtot

]
Zqu
tot

, (F16)

with Htot given by equation (3) of the main text. Unfortunately, determining the form of τMF and the various
expectation values for the spin components is unfeasible in the general case, but limiting forms are available.
Here we derive the spin expectation values in the weak coupling limit, and then later on take the large spin
limit to explicitly verify the quantum-to-classical transition.

F.2.1. Standard Gibbs results for a quantum spin
Here, we present the results of the standard Gibbs state for the quantum spin (i.e. in the limit of vanishing
coupling, λ= 0). The Gibbs state for the system’s bare Hamiltonian is

τS =
eβωLSz

Zqu
S

, Zqu
S = tr

[
eβωLSz

]
. (F17)

We also have that [τS,Sz] = 0. The trace is readily evaluated, yielding the partition function

Zqu
0 =

sinhβωL

(
S0 +

h̄
2

)
sinh h̄

2βωL
, (F18)

from which we can derive the expectation values of Sz, S2z and S3z ,

⟨Snz ⟩0 =
1

Zqu
0

dn

d(βωL)
nZ

qu
0 . (F19)

We find,

⟨Sz⟩0 =
(
S0 +

h̄
2

)
coth

(
βωL

(
S0 +

h̄
2

))
− h̄

2 coth
(
h̄
2βωL

)
(F20)

⟨S2z⟩0 =
(
S0 +

h̄
2

)2 − h̄
(
S0 +

h̄
2

)
coth

(
h̄
2βωL

)
coth

(
βωL

(
S0 +

h̄
2

))
+ h̄2

4

(
2coth2

(
h̄
2βωL

)
− 1
)

(F21)

⟨S3z⟩0 =
(
S0 +

h̄
2

)3
coth

(
βωL

(
S0 +

h̄
2

))
− 3h̄

2

(
S0 +

h̄
2

)2
coth

(
h̄
2βωL

)
+ 3h̄2

4

(
S0 +

h̄
2

)
coth

(
βωL

(
S0 +

h̄
2

))(
2coth2

(
h̄
2βωL

)
− 1
)

− 3h̄3

4 coth3
(
h̄
2βωL

)
+ 5h̄3

8 coth
(
h̄
2βωL

)
. (F22)

F.2.2. General form of weak coupling density operator
For a total Hamiltonian HS +HR +Hint with interaction of the form Hint = λXB, the general expression for
the unnormalisedmean force state to second order in the interaction is given by [32]

ρ̃(2) = τS +λ2
∑
n

([
X†
n, τSXn

]
A ′
β (ωn)+βτSXnX

†
nAβ (ωn)

)
+λ2

∑
m̸=n

ω−1
mn

([
Xm,X

†
nτS
]
+
[
τSXn,X

†
m

])
Aβ (ωn) , (F23)

where the system operator X is expanded in terms of the energy eigenoperators Xn

X=
∑
n

Xn, (F24)

with [HS,Xn] = ωnXn, and ωn are Bohr frequencies for the system. We have X†
n = X−n and ωn =−ω−n. The

quantities Aβ(ωn) are determined by the correlation properties of the reservoir operator B and are given by

Aβ (ωn) =

ˆ ∞

0
dω Jω

(
nβ (ω)+ 1

ω−ωn
− nβ (ω)

ω+ωn

)
, (F25)

A ′
β (ωn) =

ˆ ∞

0
dω

Jω
h̄

(
nβ (ω)+ 1

(ω−ωn)
2 +

nβ (ω)

(ω+ωn)
2

)
. (F26)
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We can separate out the particular case of ωn = 0, for which we find

Aβ (0) =

ˆ ∞

0
dω

Jω
ω

= Q. (F27)

It turns out that we will require various symmetric and antisymmetric combinations of Aβ(ωn) and
A ′
β(ωn). [Note that in the following (and in the initial definition of the quantity A ′

β(ωn)), the dash
indicates a derivative wrt to the argument ωn. Thus the quantity A ′

β(−ωn) is a derivative wrt−ωn, i.e.
A ′
β(−ωn) =−dAβ(−ωn)/dωn, whereas, as usual, A ′

β(ωn) = dAβ(ωn)/dωn etc.] Therefore, we define

Σ(ωn) = Aβ (ωn)+Aβ (−ωn) = 2

ˆ ∞

0
dωJω

ω

ω2 −ω2
n

(F28)

∆β (ωn) = Aβ (ωn)−Aβ (−ωn) = 2ωn

ˆ ∞

0
dωJω

1

ω2 −ω2
n

coth
(
1
2βh̄ω

)
(F29)

∆ ′
β (ωn) = A ′

β (ωn)+A ′
β (−ωn) = 2

ˆ ∞

0
dω

Jω
h̄

(
ω2 +ω2

n

)
(ω2 −ω2

n)
2 coth

(
1
2βh̄ω

)
(F30)

Σ ′ (ωn) = A ′
β (ωn)−A ′

β (−ωn) = 4ωn

ˆ ∞

0
dω

Jω
h̄

ω

(ω2 −ω2
n)

2 . (F31)

F.2.3. Normalising the second order MF state
From (F23) we get the second order partition function

Z̃(2)
S = tr

[
ρ̃(2)
]
= 1+βλ2

∑
n

tr
[
τSXnX

†
n

]
Aβ (ωn) . (F32)

This can be used directly to evaluate the second order expectation value ⟨Sz⟩(2), but instead we will proceed
to derive the second order MF state. This normalised state can be arrived at as in [32], where a binomial
approximation in used. Those expressions however seem to imply that the validity of the approximation
depends on the temperature, with the approximation breaking down at low enough temperatures. Here we
proceed in an alternative way that shows that there is no such limitation.

The exact density operator is

τMF (λ) =
ρ̃(λ)

Z̃qu
S (λ)

, (F33)

where the dependence on λ is made explicit, and write

τMF (λ) = τMF (0)+
1
2λ

2 d
2τMF

dλ2
(0)+O

(
λ4
)
, (F34)

where τMF(0) = τS is the Gibbs state of the system in the limit of vanishingly small system-reservoir coupling,
and it has been recognised that odd order contributions will vanish.

From this we also find

Z̃qu
S (λ) = 1+ 1

2λ
2 d

2Z̃qu
S

dλ2
(0)+O

(
λ4
)
. (F35)

If we now do a Taylor series expansion of τMF(λ) we find, using Z̃
qu
S (0) = 1,

τMF(λ) = τS +
1
2λ

2

(
d2ρ̃

dλ2
(0)−

d2Z̃qu
S

dλ2
(0)τS

)
+O(λ4)

= τS +λ2
∑
n

[[X†
n, τSXn]A

′
β(ωn)+βτS(XnX

†
n − tr[τSXnX

†
n])Aβ(ωn)]

+
∑
m≠n

([Xm,X
†
nτS] + [τSXn,X

†
m])

Aβ(ωn)

ωnm
+O(λ4). (F36)

We regain the expressions found in [32], but without having to consider any restrictions on β. In contrast,
the binomial expansion based derivation of [32] seems to imply that irrespective of the choice of coupling
strength, there will always be a temperature below which the binomial approximation will fail and (F36) can
lead to incorrect results below this temperature. But this argument cannot be sustained as the validity of the
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second order expansion is not constrained by any lower temperature limit implied by the binomial expansion
as it can be obtained without making this approximation.

What we now have is the necessary requirement that (for some definition of the norm || . . . || of the
operators involved)

1
2λ

2

∣∣∣∣∣
∣∣∣∣∣
(
d2τMF

dλ2
(0)− τS

d2Z̃qu
S

dλ2
(0)

)∣∣∣∣∣
∣∣∣∣∣≪ ||τS||, (F37)

for the second order result (F36) to be valid. This of course is not a sufficient condition as the higher order
terms,O(λ4), are not guaranteed to be negligible.

The concern is the low temperature limit β →∞, where the term linear in β seems to imply linear
divergence so the condition (F37) cannot be met. However, it can be shown that in this limit the second
order correction term in (F36) actually vanishes [32]. It also does so for β→ 0, the high temperature limit, so
there might be an intermediate temperature for which the condition (F37) is not satisfied, this then requiring
a weaker interaction coupling strength.

The conclusion then is that for sufficiently weak coupling, the result (F36) will hold true for all
temperatures.

To evaluate the second order expression for the normalised density operator given by (F36) we need to
expand X= Sθ in terms of the energy eigenoperators Xn,

X= Sz cosθ− Sx sinθ =− 1
2 sinθS− + cosθSz −− 1

2 sinθS+, (F38)

so we can identify, from X= X−1 +X0 +X+1,

X−1 =− 1
2 sinθS−, (F39)

X0 = cosθSz, (F40)

X+1 =− 1
2 sinθS+. (F41)

To determine the corresponding eigenfrequencies, we use [HS,Xn] = ωnXn and find that

[HS,X−1] =
[
−ωLSz,− 1

2 sinθS−
]
= ωLX−1, (F42)

and hence ω−1 = ωL. It follows that ω+1 =−ωL, and by inspection, ω0 = 0.

To evaluate τ (2)MF we then have a number of sums to evaluate, and from that expression we can then
calculate the expectation values of Sz and Sx. The calculation of these quantities is made ‘easier’ by the fact
that τS is diagonal in the Sz basis, and that ⟨Sy⟩= 0. After somewhat lengthy but straightforward calculations
we find that

⟨Sz⟩(2) = ⟨Sz⟩0 + 1
4 h̄λ

2 sin2 θ[(S0(S0 + h̄)−⟨S2z⟩0)Σ ′(ωL)−⟨Sz⟩0h̄∆ ′
β(ωL)]

−βλ2[ 14 sin
2 θ((⟨S2z⟩0 −⟨Sz⟩20)h̄∆β(ωL)+ (⟨S3z⟩0 −⟨Sz⟩0⟨S2z⟩0)Σ(ωL))

− cos2 θ(⟨S3z⟩0 −⟨Sz⟩0⟨S2z⟩0)Q], (F43)

and

⟨Sx⟩(2) = λ2 sin2θ

4ωL
[(S0(S0 + h̄)−⟨S2z⟩0)Σ(ωL)− h̄⟨Sz⟩0∆β(ωL)− 4⟨S2z⟩0Q], (F44)

where ⟨. . .⟩0 = tr[τS . . .].

F.3. Quantum to classical limit for weak coupling
In what follows we explicitly verify the quantum to classical transition in the large spin limit presented in
appendix D, using the quantum and classical weak coupling expressions found in the previous sections.

First, (F43), we have ⟨Sz⟩, regrouped to read

⟨Sz⟩= ⟨Sz⟩0 + 1
4λ

2 sin2 θ[(S0(S0 + h̄)−⟨S2z⟩0)h̄Σ ′ −⟨Sz⟩0h̄2∆ ′
β −β((⟨S2z⟩0 −⟨Sz⟩20)h̄∆β

+(⟨S3z⟩0 −⟨Sz⟩0⟨S2z⟩0)(Σ− 2Q))]+ 1
4βλ

2(1+ 3cos2θ)Q(⟨S3z⟩0 −⟨Sz⟩0⟨S2z⟩0). (F45)
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Introducing the scaled temperature β ′ = βS0 and the scaled spin sz = Sz/S0 and taking the limit S0 →∞
with β ′ held constant gives

⟨sz⟩= ⟨sz⟩0 + 1
4λ

2 sin2 θ[(1−⟨s2z⟩0)h̄(S0Σ ′)−⟨sz⟩0h̄2∆ ′
β −β ′((⟨s2z⟩0 −⟨sz⟩20)h̄∆β

+(⟨s3z⟩0 −⟨sz⟩0⟨s2z⟩0)((S0Σ)− 2S0Q))]+
1
4β

′λ2(1+ 3cos2θ)(S0Q)(⟨s3z⟩0 −⟨sz⟩0⟨s2z⟩0). (F46)

with (and noting that S0Jω is independent of S0)

S0Σ→
ˆ ∞

0
(S0Jω)

2ω

ω2 −ω2
L

dω, (F47)

∆β →
ˆ ∞

0

(S0Jω)

h̄

4ωL

ω2 −ω2
L

1

β ′ω
dω, (F48)

∆ ′
β →
ˆ ∞

0

(S0Jω)

h̄2
4
(
ω2 +ω2

L

)
(ω2 −ω2

L)
2

1

β ′ω
dω, (F49)

S0Σ
′ →
ˆ ∞

0

(S0Jω)

h̄

4ωLω

(ω2 −ω2
L)

2 dω, (F50)

S0Q→
ˆ ∞

0
(S0Jω)

1

ω
dω. (F51)

Making use of the S0 →∞ limit of ⟨snz ⟩0, n= 1,2,3 with β ′ held constant, given from (F20) by the classical
forms (F7):

⟨sz⟩0 = coth(β ′ωL)−
1

β ′ωL
, (F52)

⟨s2z⟩0 = 1− 2coth(β ′ωL)

β ′ωL
+

2

(β ′ωL)
2 , (F53)

⟨s3z⟩0 = coth(β ′ωL)−
3

β ′ωL
+

6coth(β ′ωL)

(β ′ωL)
2 − 6

(β ′ωL)
3 , (F54)

and the above limiting forms for the integrals, we find that the factor multiplying sin2 θ vanishes and we are
left with

⟨sz⟩= ⟨sz⟩0 +
1

4
β ′λ2S0Q(1+ 3cos2θ)

(
⟨s3z⟩0 −⟨sz⟩0⟨s2z⟩0

)
, (F55)

which on substituting for the ⟨snz ⟩0 yields a result formally identical to the fully classical result, (F13). In a
similar way we can check the large spin limit for ⟨Sx⟩, and we regain the classical result, (F15).

Appendix G. Ultrastrong coupling limit

In this section the we examine ultrastrong coupling limit of the quantum and classical MF.

G.1. Classical ultrastrong coupling limit
The ultrastrong limit is the limit in which the coupling λ is made very large, in principle taken to infinity. To
take this limit, first note that the partition function can be written as

Zcl
S = Zcl

0

ˆ π

0
dθ ′ sinθ ′eβωLS0 cosθ

′
F(λ,θ,θ ′) , (G1)

where

F(λ,θ,θ ′) =

ˆ 2π

0
dφ ′e

1
2βλ

2S20Q(sinθ sinθ
′ cosφ ′−cosθ cosθ ′)

2

. (G2)

Defining a= 1
2βQS

2
0, expanding the exponent and using the periodicity of the trigonometric functions

we can rewrite
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F(λ,θ,θ ′) = eaλ
2 cos2(θ ′−θ)H(cosθ ′ cosθ)

ˆ 2π

0
dφ ′

× e−4aλ2 sinθ sinθ ′ cos2(φ ′/2)(sinθ sinθ ′ sin2(φ ′/2)+cosθ cosθ ′)

+ eaλ
2 cos2(θ ′+θ)H(−cosθ ′ cosθ)

ˆ π

−π

dφ ′

× e−4aλ2 sinθ sinθ ′ sin2(φ ′/2)(sinθ sinθ ′ cos2(φ ′/2)−cosθ cosθ ′) (G3)

where H(x) is the Heaviside step function. The advantage of this rewriting of F(λ,θ,θ ′) is that now the
exponents in the integrands are all negative (or zero) over the range of integration. The exponent of the
integrand for the first integral where cosθ ′ cosθ > 0 will vanish at φ ′ = π, while for the second integral,
where cosθ ′ cosθ < 0, the exponent of the integrand will vanish at φ ′ = 0,2π. At these points the integrands
will have local maxima which will become increasingly sharp as λ is increased. Similarly, for the second
integral the maximum of the second integrand lies at φ ′ = 0.

Thus, as λ is increased, we can approximate the exponent in the integral by its behaviour in the
neighbourhood of φ ′ = π for the first integral, and in the neighbourhood of φ ′ = 0 for the second one. This
is just using the method of steepest descent. We then obtain

Zcl
S ∼ Zcl

0 e
aλ2
ˆ π

0
dθ ′ sinθ ′eβωLS0 cosθ

′
[
e−aλ2 sin2(θ ′−θ)R−(θ

′,θ)H(cosθ ′ cosθ)

×
ˆ 2π

0
dφ ′δ(φ ′ −π)+ e−aλ2 sin2(θ ′+θ)R+(θ

′,θ)H(−cosθ ′ cosθ)

ˆ π

−π

dφ ′δ(φ ′)

]
. (G4)

where

R± (θ ′,θ) =

√
π

aλ2| sinθ ′ sinθ cos(θ ′ ± θ) |
, (G5)

and for later interpretation purposes, the φ ′ integrals have been retained unevaluated.
Once again we notice that the exponents in the integrands are all negative. The zeroes of the exponents

will occur within the range of integration for θ ′ = θ for the first exponents, and for θ ′ = π − θ for the
second. Therefore, in the large λ limit we have

Zcl
S → Z̃cl

S,US ∼ Zcl
0
π eaλ

2

aλ2

ˆ π

0
dθ ′eβωLS0 cosθ

′
[ˆ 2π

0
dφ ′δ(θ ′ − θ)δ(φ ′ −π)+

ˆ π

−π

dφ ′δ(θ ′ + θ−π)δ(φ ′)

]
.

(G6)

This suggests that in the large λ limit, the spin orients itself in either the θ ′ = θ,φ ′ = π or θ ′ = π− θ,φ ′ = 0
directions, though with different weightings for the two directions.

If we return to the interaction on which this result is based, that is

V= (Sz cosθ− Sx sinθ)B= S ·B(− sinθx+ cosθz) = S ·B, (G7)

we see that the vector− sinθx+ cosθz has the polar angles θ ′ = θ,φ ′ = π. But as B can be fluctuate between
positive or negative values, the vector B can fluctuate between this and the opposite direction
θ ′ = π− θ,φ ′ = 0. So the effect of the ultrastrong noise is to force the spin to orient itself in either of these
two directions.

Returning to the expression for the partition function, we have

Z̃cl
S,US ∼ Z ′ ′

0

(
eβωLS0 cosθ + e−βωLS0 cosθ

)
∝ cosh(βωLS0 cosθ) , (G8)

where extraneous factors have been absorbed into Z ′ ′
0 . These results are of the same form as found for a

quantum spin half. That result is understandable given that the spin half would have two orientations, which
mirrors the two orientations that emerge in the strong coupling limit here in the classical case.

G.2. Quantum ultrastrong coupling limit
The aim here is to derive an expression for the quantumMFG state of a spin S0 particle coupled to a thermal
reservoir at a temperature β−1, (F16).

The ultrastrong coupling limit is achieved by making λ very much greater than all other energy
parameters of the system, in effect, λ→∞. However, note the absence of the ‘counter-term’
−λ2(cosθSz − sinθSx)2Q in the above Hamiltonian. This term appears in [32], where it is found to be
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cancelled in the strong coupling limit when the trace over the reservoir states is made. Here, that cancellation
will not take place, so its presence must be taken into account. It will have no impact in the case of S0 =

1
2 , as

this will be a c-number contribution, but it will have an impact otherwise.
With HS =−ωLSz and Psθ = |sθ⟩⟨Sθ| the projector onto the eigenstate |sθ⟩ of Sθ where

Sθ = cosθSz − sinθSx; Sθ|sθ⟩= sθ|sθ⟩ (G9)

we have, in the ultrastrong coupling limit, the unnormalised MFG state of the particle

ρ̃= exp

[
−β

S0∑
sθ=−S0

PsθHSPsθ

]
eβλ

2S2θQ =

S0∑
sθ=−S0

Psθ exp [−β⟨sθ|HS|sθ⟩]eβλ
2γ2s2θQ. (G10)

Note, as a consequence of the absence of a counter-term, the contribution exp[βλ2S2θQ] is not cancelled.
Further note the limits on the sum are±S0. This follows since Sθ = cosθSz − sinθSx is just Sz rotated

around the y axis, i.e.

cosθSz − sinθSx = eiθSySze
−iθSy = Sθ (G11)

so the eigenvalue spectrum of Sθ will be the same as that of Sz, i.e. sz =−S0,−S0 + 1, . . . ,S0 − 1,S0. The
eigenvectors of Sθ are then, from Sz|sz⟩= sz|sz⟩

Sθe
iθSy |sz⟩= sz e

iθSy |sz⟩ (G12)

i.e. the eigenvectors of Sθ are

|sθ⟩= eiθSy |sz⟩; sθ = sz =−S0, . . . ,S0. (G13)

We then have

⟨sθ|HS|sθ⟩= ωL⟨sz|e−iθSySze
iθSy |sz⟩

= ωL⟨sz|cosθSz + sinθSx|sz⟩
= ωLsz cosθ, (G14)

from which follows

ρ̃=

S0∑
sz=−S0

eiθSy |sz⟩⟨sz|e−iθSyeβωLSz cosθeβλ
2Qs2z . (G15)

The partition function is then given by

Z̃qu
S =

sz=S0∑
sz=−S0

eβωLSz cosθeβλ
2Qs2z . (G16)

This cannot be evaluated exactly, but the limit of large λ is yet to be taken. The dominant contribution to the
sum in that limit will be for sz =±S0, so we can write

Z̃qu
S,USe

−βλ2QS20 ∼ eβωLS0 cosθ + e−βωLS0 cosθ ∝ cosh(βωLS0 cosθ) . (G17)

Apart from an unimportant proportionality factor, this is exactly the same results as found for the classical
case in the limit of ultrastrong coupling, (G8).
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